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Abstract— This paper studies the Discrete-Time Switched Mixed Integer Quadratic Program (MIQP) and solved
LQR problem over an infinite time horizon subject to poly- efficiently using available optimization algorithms.

hedral constraints on state and control input. The overall

constrained, infinite-horizon problem is split into two subprob- The above two subproblems are connected through the so-
lems: (i) an unconstrained, infinite-horizon problem and (i)  called safe setthat is a set of states for which the solution

a congtrained, finite-horizon one. We derive a stationary sub- to the unconstrained DSLQR problem is guaranteed to be
Op:?ma:_ po“Cydf%r pfcl’b'em f(i) Witlht_a”a'y';ica' Elound?)on its  always feasible. We show that if the unconstrained DSLS
optumality, an evelop a tormulation O ropiem (1) as a : o :
Mﬁxed-lr?t/eger Quadratig Program. By introdzcing the concept m_o_del is stabilizable, thgn for reasonable Constramts_ra no
of a safe set, the solutions of the two subproblems are combined trivial safe set always exists. Moreover, we show that irecas
to achieve the overall control objective. It is shown that, the constrained system starting from the given intial condi
by proper choice of the design parameters, the error of the tion is stablizable, then with a sufficiently large optintina
overall sub-optimal solution can be made arbitrarily small. The  horizon the solution of the CFTOHC problem (ii) can always
approach is tested through a numerical example. drive the state trajectory into the safe set, from where
the solution of the (unconstrained) DSLQR problem (i) is
feasible and optimal. Thus, by concatenating the solutions

_Among the f[emplate problems_ in optimal control, the f the first and the second subproblem, we can obtain the
Linear Quadratic Regulator (LQR) is a fundamental one [.1]golution to the overall infinite-horizon DCSLQR problem.

The study of this problem in a discrete-time framework in . i ) .
. L . Based on the above ideas, an efficient algorithm is devel-
the recent past has witnessed enticing extensions to models

. : . (%ged to solve the infinite-horizon DCSLQR problem with
subject to hard constraints on the states and control inpu Saranteed suboptimal performance. We formally show that
[2], [3], [4], [5]. In addition, an extension of the LQR g P P ' y '

problem to Discrete-Time Switched Linear Systems (DSLSEy proper choice of the design parameters, the suboptymalit

. ) : rror can be made arbitrarily small. The performance of the
referred to as the D|screte-T|me SWItCh.ed LQR (DSLQR Igorithm is demonstrated through a numerical example.
problem, has also been extensively studied [6], [7], [8], [9 Due to space constraints, the proofs of most of the
However, one of the main restrictions of this line of work is e L
that it deals exclusively with unconstrained DSLS. theorems in this paper will be_om|tte_d_. L

. o . . Notation: n, p and M are arbitrary finite positive integers;
The main contribution of this paper is the developmen%r denotes the set of nonnegative integafss {1 M)
of a general_ framework for solving the D|screte-T|m_e (.:O.nfs the set of subsystem indicds, is thenxn identity matrix;
strained Switched LQR (DCSLQR) problem over an mﬂmtw .|| represents the standard Euclidean norriki and the
horizon. Specifically, we characterize the infinite-honizo .

hybrid-control sequencécontinuous and discrete controls)'nduceOI norm over n-dim. matricels; denotes the cardinality
y q of a given set;4 denotes the set of positive semidefinite

that minimizes a quadratic cost function, subject to polyhe ) ) )
dral constraints on the state and on the input. Motivated p-s-d.) matncesg*“ is the power set otd; Ami“('.) and
the solution of the classical (non-hybrid) constrained L max(~).character|z§ the Sm‘.”".'eS‘ anq thg ".”“geSt elger_walues,
problem developed in [4], we split the infinite-horizon DC_respchyer, of a given p05|t|vg s'er.n.|def|n|te (p.s.d.)mmat
SLQR problem into the following two related subproblems:The variablez denotes a generic initial state of system (1).
(i) Infinite-Horizon Unconstrained DSLQR: the solution Il. PROBLEM FORMULATION
to this problem can be computed efficiently using the Consider the DSLS described by:
numerical relaxation framework from [6], [8] and is a
stationary hybrid-control law, characterized by a set of Tir1 = Ay, Tt + By, us Q)
positive semidefinite matrices.
(ii) Constrained, Finite-Time, Optimal Hybrid Control
(CFTOHC): this problem can be formulated as a zEX, u el VteZt, ()
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matrices of appropriate dimensions and the gals, B;) that none of the subsystems is stabilizable, it is still flides

denotes a subsystem. for the overall unconstrained switched linear system to be
For eacht € Z™, denote by¢; = (i, v¢) : R"—RP xM  exponentially stabilizable (see Section VI and [8]).

the (state-feedback) hybrid-control lawf system (1), where

pe : R™ — RP is called thecontinuous-control lawand ||, THEg UNCONSTRAINEDHYBRID CONTROL PROBLEM
v+ R" — M is called theswitching-control law A se- _ _
quence of hybrid-control laws constitutes iafinite horizon !N this section, we recall some recent results on the

hybrid-control policyr.c = {£,&1,. .. }. A policy is called DSLQR problem [9], which can be viewed as a special case

stationaryif it consists of the same control law at all time, ©f Problem (5) with the trivial constraintd” = R™, ¢/ = R”.
ie., & = ¢ forall t € Z*. The closed-loop dynamics of a These results are crucial for solving the general DCSLQR

system controlled by a policy.. are given by: problem, as will be further discussed in Section V-B.

Te41 = Av, ()Tt + By tie (3¢) - () A. The Value Function
Denote byr(z) the hybrid-control sequence generated by

n ' i .
the policy .. for the initial conditionzo = =, i.e. () — For eachk € Z™*, define thek-horizon value function as

{(pt(zt), ve(zt)) }1ez+ . Define the running cost function as: k—1
Jl: uc(z) = inf ZL(xhuhvt)
’ us ERP v €M =0 (6)
L(z,u,v) = 27 Quz + u Ryu, Yo € X,u € U,v e M, Ostsk—1

s.t. equation (1) withzy = z.
whereQ,=Q,” =0 andR,=R,” > 0 be the weighting ma- o . o .
trices for the state and continuous-control input in sutesys The objective of DSLQR is to solve the infinite horizon un-
v € M. Each hybrid-control sequenge, = {(us, v¢)},, is constrained optimal control problem, i.e. to find the ingnit

associated with a quadratic performance index: horizon value function/s, ,,.(z) = limg 0 Jj; ,0(2)-
) By a standard result of dynamic programming, the finite-
Joo (2,%00) = Z L(xg, ug, vy), (4) horizon value functions can be computed recursively thinoug
t=0 the one-stage value iteration

where z; is the closed-loop trajectory controlled hy..,
with initial condition zy = z € R™. Our objective is to find

the optimal hybrid-control sequence that solves the fahow
constrained optimal control problem: An important feature of the DSLQR problem is that its finite-

J* . horizon value function can be characterized analyticalhe
(2= inf  Ju(2,%) . . . .
V0,1, key idea is to generalize the notion of the well known
gon ®) " pifference Riccati Equation (DRE) [1] to the Switched LQR
s.t. (1) and (2) withzo = z. problem. For each subsysteinc M, define theRiccati
We will refer to the above problem as thgiscrete-Time Mappingp; : A — A as:
Constrained Switched LQR problef@CSLQR). The stated
problem is an extension of the classical discrete-time LQRp;(P)=Q~+A] PA—A] PB;(R+B] PBi)leiT PA;. (7)
controller synthesis to Switched Linear Systems subject ) o ) )
to polyhedral input and state constraints. Because of the Definition 2 (Switched Riccati Mapping)the mapping
complexity of the problem at hand, we do not require t@™ : 24+ 24 defined by:
find the optimal policyr}, for all initial statesz € X', but g .
rather the control sequeneg, for a given initial condition. pu(H) = {pi(P), i €M, P €1} ®)
Clearly, if the unconstrainedsystem (1) is not stabiliz- is called theSwitched Riccati MappingSRM) associated
able, Joo (20, %) Will be infinite for all possible control with the infinite horizon value functiod, ,.(z).
sequences for anyz 70. Therefore, the stabilizabilityisa  pefinition 3 (Switched Riccati Setsfhe sequence of
minimum requirement for the well-posedness of problem (Sxetg {Hx}72, generated iteratively byHj 1 = pu(Hs)
Definition 1 (exp. stabilizability):.The unconstrained sys- with 7/, = {0} is called theSwitched Riccati Set(SRS)
tem (1) is calledexponentially stabilizabléf there exists @ associated with the infinite horizon value functidty . (z).
policy 7, and constanta > 1 and0 < ¢ < 1 such that the T
closed-loop trajectory under the poliey,, starting from any Starting from the singleton sef0}, the SRSs evolve

initial statexo =z satisfies|z,||* < ac'||z||*, vt € Z*. according to the SRM. For any finite the set},, consists
The following assumption is made throughout this papeg ot mostas* p.s.d. matrices. It has been shown [9] that the

(A1) The unconstrained SLS (1) is exp. stabilizable. SRS completely characterize the value functifip ,,.(2).
Remark 1: Assumption (A1) holds for most problems of ~Theorem 1 ([9]): For eachk € Z*, the k-horizon value
practical interest and can be easily verified. In particulafunction of the unconstrained DSLQR problem is given by:

if one of the ynconstrglr!ed subsystems is stabllhzable, the Jio(2) = min 2Pz, VzeR™ )
assumption will be satisfied. Furthermore, even in the case ’ PEM,,

JI::«H,uc(Z) = uE]RiII’,lEEM{L(Z’ u, U) + le,uc<AUZ + BUU’)}



B. Efficient Computation of the SRSs Applying this law at each time step yields a stationary polic
For nontrivial DSLSs with) > 1, the cardinality ofH, 75 .. = {&5 uer Efuer - - -1- The particular structure (13) of

grows exponentially withk. However, usually not all the Jf . €nables an analytical characterizationégf, ..

matrices in;, contribute to the overall minimum of (9). Lemma 1:The hybrid-control lawgj, . is given by:

The main idea therefore is to at each iteratibrremove Erne(2) = (hne(2), Vi we(2))

“redundant” matrices from the setg; [9]. Additionally, a ’ )

numerical relaxation parametecan be introduced to further = (_Ki;<2) (Pi(2)) 2, Zi(z)) ;

reduce the size of the associated SRS, possibly resultiag in = with (Pg(z),i¢(z)) = argmin 27p;(P)z, (15)
suboptimal solution. This motivates the following defioits. PEHE ieM

Definition 4 ¢-redundancy):For any constant > 0, & \yhere K. () is the Kalman gain defined by:
matrix P € Hy, is callede-redundant with respect té), if Ki(P) 2 (R, + BTPB,)'BTPA;, i c M, P € A. (16)
2 - ) 7 7 i (Xl ) .

min 27 Pz < min 27(P +el,)z, foranyzecR". By Theorem 2, we know thafy . is a good approxima-
PeH\P PeHs (10) tion of J<, ,,. for sufficiently largek and smalle. Intuitively,
Definition 5 ¢-equivalent subset): the performance of the polrcyroo wc generated byJg .
For any constant > 0, the set¢ is called ane-equivalent should also be close to the optimal one. This can indeed
subsetof H,, if HE C #, and folr allz € R® be guaranteed if&* ‘. 1S €xponentially stabilizing.

o o o Theorem 3 ([10]) Suppose for eacl € 75, there exist
foin 2" Pz < Auin 2 Pz < pin 2 (P +elp)z. (11) nonnegatrve constants] _j =1,...,5* ands; such that
Removing thee-redundant matrices fror;, will result Za] —1landP » Za (P(” + (k1 — k)] ) 17)

in an e-equivalent subsekis,. If we replace?, with 75 in j=1

equation (9), Definition 5 guarantees that the correspandin Where {P(J } is an enumeration of the sety(?S),
=1
value function will deviate from the original one by a term dH*—mlnzeM pens )\mm( (P)TRK(P) + O ) with

at most equal ta||z||?. To simplify computation, we shall

remove as many-redundant matrices as possible. A convex ‘Ej ) belgg dﬁe}:rned in (16). Tth e|r|1 thte Ellosecir:oop trajectory
condition is derived in ([6], Lemma 1) to test whether & riven by mey),.. is exponentially Sta ew

matrix in H;, is e-redundant or not. By removing the el < £ ( 1 ) B (18)
redundant matrices after each iteration, a relaxed version T A \Itri/Aq ’

the SRSs can be obtained iteratively as: where 8 and )\, are constants defined in Theorem 2.
HE =MHo, and Hi,, = ES (pu(H})), (12) Checking condition (17) can be formulated as a LMI
feasibility problem and thus may be verified efficiently.
Theorem 4:1f s, satisfies (17) in Theorem 3, then the
cost associated with the poliey;”, . is bounded above by:

where ES.(H) denotes an algorithm that computes the
equivalent subset off by implementing the test of the con-
dition in [6]. Similar to (9), one can define ttepproximate
value functionbased on the relaxed SRSs as Joo (2,75 1(2)) < T we(2) + 17 <1 T B(”“cﬂ) 1212,

? oo, uc
Jiwe(2) = Pneli# TPz, VzeR™ (13)
k

where 3, A5, 1, v and s, are the constants defined in
Theorem 2 and Theorem 3.

Theorem 4 indicates that by further increasihgand
reducinge, we can make the performance of this stabilizing

Moreover, by choosing sufficiently small and: sufficiently policy arbitrarily close to the optimal one. These resultsa

large, the function/s | = can be made arbitrarily close to the us to _consrruct a s_uboptimal .policy in a systematical way as
mfﬁute horizon vallljewfunctlon]* [6] y described in Algorithm 1, which returns a relaxed SRS that

Theorem 2:Under (A1), there always exist constarits: characterizes a suboptimal policy independent of theainiti
statez of the system

oo, n<oo andy <1, all independent o ande, such that Both the- refaxaton algorithmeS, and the algorithm
() )\(5||z\|2 < Jfwe(2) < Bllz|I?, Vz e R ke ZT; for checking (17) involve only simple convex optimization
(ii) |Jl§7u(‘( 2) = Tl we(2)| < nyke ||z|‘27 VzeR" kezt, programs. Additionally, a_lthough the size of the SRSs grows
whereA; = mingey{ Amin(Qi)}- exponentially fast, experience shows that due to the numer-
Q MU min ical relaxation, the size of the relaxed SR®S usually

Since the se#{;, computed through (12) typically contains
much fewer matrices thak, the approximate value func-
tion Jg . is usually much easier to compute thay .

C. Stationary Suboptimal Policy grows slowly and saturates at a small number, even in
Denote bye; . the hybrid-control law generated by the high-dimensional state space (see [9] for details). Theegf
approximate value functiody ., namely, Algorithm 1 can be carried out rather efficiently.
For the remainder of this paper, we shall denoté4jythe
Ehue(2) = (15 ue(2)s Vi ue(2)) (14)  relaxed SRS returned by Algorithm 1, whose corresponding
2 arginf {L(z,u,v)+ Ji we(Avz + Byu)}. policy w&* "uc 1S exponentially stabilizing with a upper bound

u€RP vEM on the performance given in Theorem 4.



Algorithm 1 (Unconstrained Suboptimal Policy) constantsrg, ¢; and co. Therefore, the safe subsat

00, UC

Input: €, €min aNd kpax in (20) can be easily computed in a state space of arbitrary
1: SetH§ = {0}. dimension. However, this approach may be too conservative,
2: while € > €pi, dO resulting in a sett’ , ,. much smaller than the actual safe
3: for k=110 kpax do set X 4c. In the following, we discuss a computational
4 . =ES(pm(Hy,)) approach which can be used to under-approxinféte,,.,

5: if H¢, satisfies the condition of Theoremt3en especially in lower-dimensional state spaces.
6: stop and returr¥{§, (which characterizes”,,
;: ?jnfd if C. Computational Approach via Invariant Set
9: fn: 67; The most straightforward approach to obtain a safe set
10: end while Xoo uc IS to compute the positive invariant set in Definition 6.
The computation of invariant sets can be reframed as a
reachability problem and is reminiscent of the seminal work
in [12], [13]. Different approaches have been developed
IV. SAFE SET AND ITS COMPUTATION in the literature to compute reachable sets for dynamical
A. The Safe Set systems, such as polytopic or zonotopic methods, ellipsoid

We define the safe set of an unconstrained, infinittmethods, level-set methods and others [14]. In our case, the
horizon, hybrid-control policy as the set of initial stafés  main issue preventing the direct use of those computational
which the closed-loop system driven by this policy satisfiefools is the implicit form of the control law (15), as its

the constraints (2) for all > 0. associatedlecision regiongregions in the state space which
Definition 6 (Safe Set)For an arbitrary infinite-horizon yield the same minimizing pairK, i$) of (15)), are non-
policy moe ={ (41, v¢) }rez+, the safe set¥ (my) is: convex subsets of second-order cones in general [9].
X (7o) = {mo cR" | 2 € X, e (z1) €U, . One immedﬁatg approach for computing an invariant sc_at
N (19) is through gridding the state space, as implemented in
Tip1 = Ay, ()Tt + Byt (21) , Vi € Z } Algorithm 2 (for the proposed algorithn®’ is assumed to

be bounded). LeGG+ be the set of all points that constitute
a uniform grid with step sizé,,;; over the smallest hyper-
rectangleX in the state space that contains the constraint
polyhedronX’. Let G describe the region in the state space
covered by the gridpointg; in Gz. A mapped stater is

; A i : dgrid
regarded as contained @ if mingeq., ||z — gllsc < 5.

From the above definition, given a poliey if z;, € X'(7)
for somet, € Z*, thenz; € X(x) for all t > to. In
other words, the safe set is the maximal positive invariaht s
for the closed-loop system subject to constraints (2) the.
maximal output admissible sgt1]. In the following, denote
Xooe = X(75F,.). Notice that a closed-loop trajectory

starting from any point in any arbitrarily shaped subset : _ i
X C Xoo ue Will stay inside Xy, .. for all time and thus Algorithm 2 (Grid-based approx. computation &t )

2 o0,uc

never violate the constraints. Since an exact charactieniza Input: ;. . = {(1g yes Viwe) }» X2 U, Gz
pf Xoo uc 1S very hard to optain, the rest of this subsection1: setG, =4 g, € Gxlgi€X, 1 ,.(g:) € u}
is devoted to the computation of a subgef, . C Xoc uec-

2: Gk+1={9i€Gk|Auz <gi>9z‘+Buz,uc(gi>u2,w(gi)Egk}

,uc

B. Analytical Characterization of the Safe Set 3 if Gre1 = Gy, then
Theorem 5:Under (Al), there exists a constant > 0 4. return Gy = Grg1
such that the set 5 else o
Xeowe ={z €R"| |l2]| <77} (200 6 GOTO2
7: end if

is a subset of the safe s&t, ...

Proof: Let rp = max{r : ||z]| < r = z € X}. . . .
Since € int(X), we havery> 0. By Theorem 37<* . _is Algorithm 2 was implemented ilMATLAB and tested

exponentially stabilizing and thuge,|| < ¢ [|zol], vt >0, for state d!menS|qn91 = 4. In principle, gridding alg,o
for some finite positive constant. From (15), we know works in higher dimensions. However, the computational
y complexity grows exponentially with the state dimension.

||'sz|| = HKL(P)IfH < CQH.’L‘tH, Vit e ZJr, WhereCQ = . . . . . N
: This “curse of dimensionality” prohibits dense gridding fo
i < {||(K;(P))||}. Let X ,. be the Euclidean . _ .
maxieu,pex; {|(Ki(P)ll} Seoue uel higher dimensional problems.

ball B(r*), with 7* = min { 72, -*2- ¢, centered at the origin.
The values ofrg, ¢; and ¢, are all finite and thus is*.
It can be easily seen that for any initial state An, .,
the closed-loop trajectory and the corresponding contisuo  The goal of this section is to solve a general DCSLQR
control sequence will always satisfy constraints (2). B problem, i.e. to find an infinite-horizon hybrid-control se-
Following the above proof, the characterization of the safquence for a given initial state to achieve at least subopti-

subsetX . requires only the estimation of the threemal performance with respect to the cost functiG(z).

V. SOLUTION TO A GENERAL DCSLQR FROBLEM

C



A. Stabilizable Set statex o is in X, .. This can be always guaranteed\f
The DCSLQR problem is meaningful only when the giveris chosen sufficiently large.
initial state z results in a finite cosy* (z). To characterize ~ Theorem 7:For every initial conditionzy = z € S,
the set of such initial states, we introduce the following: there exists a finiteV(z) such that for allN > N(z), the
Definition 7 (Stabilizable Set)The set defined by terminal stater o of the closed-loop system controlled by
Soo = {2z € R" | T4hoe = {(us, 1) },5+ Such that 1) che fﬁlution of fPIr_oblem (Zf)n:Z;Zf)s insdi@%o,uc- _—
_ . or the case of linear syste and compact se
. € X, € U and, — 0 exponentially fast andi/, it is possible to computeV for all z € S, before-
is called thestabilizable setof system (1) subject to con- hand [3]. However, the issues with the computation of the
straints (2), wherer; is the closed-loop trajectory driven by stabilizable set mentioned in Section V-A also prohibisthi
Yoo With initial statexo=z. for SLS. In the following section, we therefore employ a
For constrained LQR of linear system3/(= 1), it is  straightforward approach inspired by [4], [5], which mini-
possible to compute the stabilizable s&f, for compact mizes the computational complexity of (22).
setsX’ andi{ [3]. This is achieved by combining multipara- A main contribution of this work is that we are able to
metric quadratic programming [2] with reachability anédys characterize the hybrid-control policys. by the set of
However, the algorithmic approach used by the authors in [§] s d. matrice$(s. This allows us to cast problem (23) as one
can not be easily used for DSLS/(>1). See [15] for further  sjngle augmented Mixed-Integer Quadratic Program (MIQP)
details on this problem. for a given initial statez and prediction horizonV. The
B. DCSLQR formulation as an MIQP obtained MIQP can then be solved efficiently using available

For a given initial state inS.,, our strategy in solving optimization software.

the DCSLQR problem is to first drive the system state into i
the safe subset’.. ., and then use the suboptimal infinite-C- Overall Algorithm for DCSLQR

horizon policyr<F,,. to further regulate the state towards the Theorem 7 guarantees that Asincreases, the controlled
origin. To this end, we introduce the followingpnstrained terminal stater y |, associated with (23) eventually enters the
finite-time optimal hybrid control (CFTOHQ)roblem: safe subset’ In this case, a suboptimal infinite-horizon

N_l —oo,uc"
Jx (25 ¢)= min {¢($N)+ ; L(mtautavt)} " (22)

control sequeﬁce for Problem (5) is given by
(ug,vr) 1poo = {('&Oa ﬁ0)7 B (ﬁth ﬁN*l)a 7Tf>’ok,uc(xN|O)}7 (24)

s.t(1) and (2) withzo = z, where{ (i, ©;) }o<t<n denotes the solution to the optimiza-
with the terminal cost functiop: X —R*. Denote byzy|, tion problem (23) andrSF,.(zy|0) denotes the infinite-
the state at time = N when system (1) is controlled by horizon hybrid-control sequence generated by the policy
the solution of (22). The reason for introducing the abovag’c’fuC with initial state xyo. A general procedure for

optimization problem is that with a properly chosen terrhinasolving Problem (5) with initial condition:y =2 € S__ is
cost functiong(-), the optimal cost/}; will coincide with  summarized in Algorithm 3. The returned control sequence

the value functionJ, of the DCSLQR problem. is guaranteed to be suboptimal in the sense that by choosing
Theorem 6:.J% (z; ¢) = JZ (2) if, for all z € & k sufficiently large and sufficiently small, its performance
(i) #(z) = J%(2) or can be made arbitrarily close to the optimal one.
(”) (Z)(Z) = J;o,uc(z) and‘r]\”() € &oo,uc'

Theorem 6 indicates in particular that solving Problem (5flgorithm 3 (Solution of DCSLQR Problem (5))
is equivalent to solving Problem (22) when= J3, .. and Input: zo =2 € S, method for solving MIQPs

Znjo € X e BY Theorem 2, the functiow’, ,. can be  1: Computer”, . and relaxed SR$L, using Algorithm 1
accurately approximated byy . for large k and smalle. ComputeX . using Theorem (5) or Algorithm 2
Thus, Jg . serves us as a local CLF insid€_ .. With SetN =1

Solve problem (23) with time horizoWV
if TN|0 S ioo,uc then

Stop and return the control sequence as defined in (24)

¢(2) = J§ 4.(2) = minpeyy: 27 Pz, Problem (22) becomes:
IN (23 T e

CoNoaR®ON

. s Rl else
T Mo e Pen+ Y Ll u, )| o, (23) Set N=N+1 and go to step 4
o t=0 ;
: end if

s.t (1) and (2) withzg = 2.
The above formulation is obtained by first substituting Theorem 8:For anys >0 andz € S__, there exists an
. oo

¢(2) = minpey; 2" Pz into (22) and then changing the ;, -+ ande> 0 such that the control sequence, returned
order of the two minimizations. The change on the orde(5y Algorithm 3 satisfies

of the minimizations will not affect the solution because
there are only finitely many matrices #. By Theorem 6, Joo(2,00) < JZ (2) + 6.
Jx (23 Jg ) Will be close toJZ, () if the controlled terminal



V1. NUMERICAL EXAMPLE gl X
Consider the following DSLS with two modes: 1t : xXOO’uc
—9— m’ltC
2 0 15 1 1 1
Al[o 2]"42{0 1.5}’31{2}’32{0}’ 0.5F
10 )
QZ|:O 1:|3R113 1*1723 To O
subject to the constraints:
—0.5
—-0.95 0.3 0.85
0 -1 1.25 1 0.75
Yl 095 —03|*W=|oss| U {—1}“““ [0.75} T
0 1 1.25
-15 : : : : ‘ :
Notice that none of the two subsystems is stabilizable (see ' -1 -05 ;{1 05 1 L5
Remark 1). The DSLS can therefore only be stabilized b¥ig. 1. Feasible regiort, gridding-based approximation of the safe set

appropriate switching between the two subsystems. The corp:,

putation of the se#{; was performed for a time horizon of
k=30 steps and a numerical relaxation parameter0—3,
which led to a cardinality ofj,| =16, as opposed to using
230 ~ 10° matrices for characterizing the cost function. It
is obvious that, because of the exponential growth of the"
number of elements in the SRSs, obtainiff, without
computing equivalent subsets would be computationally pro
hibitive even for the simple problem at hand.

For an initial conditionzo = [0 1]%, the optimal discrete
modes for0 < ¢ < 7 are {vopt,uc} = {1,2,2,1,2,1,2,1}
and {vope} = {1,2,1,2,1,2,1,2}, respectively. The alter- 4]
nating discrete switching sequence that occurs in both the
unconstrained and constrained case validates the previoisﬁ
claim that switching between the discrete modes is the onl
possible control strategy that can stabilize this speciffarid
system. The computation time (excluding the computation of€!
*Hs,) for this problem on a 3 GHz Intel Core2 CPU was 156
ms using theCPLEX solver, where we usedALM P [16]
to conveniently parse the optimization problem.

An approximation of the maximal positive invariant set (g
Xoo,ue fOr a gridpoint distance offgmizlo‘?’ and the opti-
mal state trajectories are depicted in Figure 1, the aswsaktia
optimal continous control actions in Figure 2. As can be
seen from Figure 1, the safe s&i, .. in this example is
rather large and takes up a substantial part of the feasidié!
set X'. Consequently, the value @¥ =3 is rather small in
this case. State trajectory and control inputs clearlysBati [11]
the constraints over the whole simulation horizon.

Fig.

(7]

(9]
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