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Abstract— This paper studies the Discrete-Time Switched
LQR problem over an infinite time horizon subject to poly-
hedral constraints on state and control input. The overall
constrained, infinite-horizon problem is split into two subprob-
lems: (i) an unconstrained, infinite-horizon problem and (ii)
a constrained, finite-horizon one. We derive a stationary sub-
optimal policy for problem (i) with analytical bounds on its
optimality, and develop a formulation of problem (ii) as a
Mixed-Integer Quadratic Program. By introducing the concept
of a safe set, the solutions of the two subproblems are combined
to achieve the overall control objective. It is shown that,
by proper choice of the design parameters, the error of the
overall sub-optimal solution can be made arbitrarily small. The
approach is tested through a numerical example.

I. I NTRODUCTION

Among the template problems in optimal control, the
Linear Quadratic Regulator (LQR) is a fundamental one [1].
The study of this problem in a discrete-time framework in
the recent past has witnessed enticing extensions to models
subject to hard constraints on the states and control inputs
[2], [3], [4], [5]. In addition, an extension of the LQR
problem to Discrete-Time Switched Linear Systems (DSLS),
referred to as the Discrete-Time Switched LQR (DSLQR)
problem, has also been extensively studied [6], [7], [8], [9].
However, one of the main restrictions of this line of work is
that it deals exclusively with unconstrained DSLS.

The main contribution of this paper is the development
of a general framework for solving the Discrete-Time Con-
strained Switched LQR (DCSLQR) problem over an infinite
horizon. Specifically, we characterize the infinite-horizon
hybrid-control sequence(continuous and discrete controls)
that minimizes a quadratic cost function, subject to polyhe-
dral constraints on the state and on the input. Motivated by
the solution of the classical (non-hybrid) constrained LQR
problem developed in [4], we split the infinite-horizon DC-
SLQR problem into the following two related subproblems:

(i) Infinite-Horizon Unconstrained DSLQR: the solution
to this problem can be computed efficiently using the
numerical relaxation framework from [6], [8] and is a
stationary hybrid-control law, characterized by a set of
positive semidefinite matrices.

(ii) Constrained, Finite-Time, Optimal Hybrid Control
(CFTOHC): this problem can be formulated as a
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Mixed Integer Quadratic Program (MIQP) and solved
efficiently using available optimization algorithms.

The above two subproblems are connected through the so-
called safe set, that is a set of states for which the solution
to the unconstrained DSLQR problem is guaranteed to be
always feasible. We show that if the unconstrained DSLS
model is stabilizable, then for reasonable constraints a non-
trivial safe set always exists. Moreover, we show that in case
the constrained system starting from the given intial condi-
tion is stablizable, then with a sufficiently large optimization
horizon the solution of the CFTOHC problem (ii) can always
drive the state trajectory into the safe set, from where
the solution of the (unconstrained) DSLQR problem (i) is
feasible and optimal. Thus, by concatenating the solutions
of the first and the second subproblem, we can obtain the
solution to the overall infinite-horizon DCSLQR problem.

Based on the above ideas, an efficient algorithm is devel-
oped to solve the infinite-horizon DCSLQR problem with
guaranteed suboptimal performance. We formally show that,
by proper choice of the design parameters, the suboptimality
error can be made arbitrarily small. The performance of the
algorithm is demonstrated through a numerical example.

Due to space constraints, the proofs of most of the
theorems in this paper will be omitted.

Notation: n, p andM are arbitrary finite positive integers;
Z
+ denotes the set of nonnegative integers,M,{1, . . . ,M}

is the set of subsystem indices,In is then×n identity matrix;
‖ · ‖ represents the standard Euclidean norm inR

n, and the
induced norm over n-dim. matrices;|·| denotes the cardinality
of a given set;A denotes the set of positive semidefinite
(p.s.d.) matrices;2A is the power set ofA; λmin(·) and
λmax(·) characterize the smallest and the largest eigenvalues,
respectively, of a given positive semidefinite (p.s.d.) matrix.
The variablez denotes a generic initial state of system (1).

II. PROBLEM FORMULATION

Consider the DSLS described by:

xt+1 = Avt
xt +Bvt

ut (1)

subject to the constraints

xt ∈ X , ut ∈ U , ∀ t ∈ Z
+, (2)

where xt ∈ R
n is the continuous state,ut ∈ R

p is the
continuous control andvt ∈ M is the discrete control that
determines the discrete mode at timet. The setsX andU
are polyhedra that contain the origin in their interiors. The
sequence of pairsψ∞ = {(ut, vt)}

∞
t=0 is called thehybrid-

control sequence. For eachi ∈ M, Ai andBi are constant



matrices of appropriate dimensions and the pair(Ai, Bi)
denotes a subsystem.

For eacht ∈ Z
+, denote byξt , (µt, νt) : Rn 7→R

p×M

the (state-feedback) hybrid-control lawof system (1), where
µt : Rn 7→ R

p is called thecontinuous-control lawand
νt : R

n 7→ M is called theswitching-control law. A se-
quence of hybrid-control laws constitutes aninfinite horizon
hybrid-control policyπ∞ = {ξ0, ξ1, . . . }. A policy is called
stationary if it consists of the same control law at all time,
i.e., ξt = ξ for all t ∈ Z

+. The closed-loop dynamics of a
system controlled by a policyπ∞ are given by:

xt+1 = Aνt(xt)xt +Bνt(xt)µt (xt) . (3)

Denote byπ∞(z) the hybrid-control sequence generated by
the policyπ∞ for the initial conditionx0=z, i.e. π∞(z)=
{(µt(xt), νt(xt))}t∈Z+ . Define the running cost function as:

L(x, u, v) = xTQvx+ uTRvu, ∀x ∈ X , u ∈ U , v ∈ M,

whereQv=Qv
T≻0 andRv=Rv

T≻0 be the weighting ma-
trices for the state and continuous-control input in subsystem
v ∈ M. Each hybrid-control sequenceψ∞={(ut, vt)}

∞
t=0 is

associated with a quadratic performance index:

J∞ (z, ψ∞) =

∞
∑

t=0

L(xt, ut, vt), (4)

where xt is the closed-loop trajectory controlled byψ∞,
with initial condition x0 = z ∈ R

n. Our objective is to find
the optimal hybrid-control sequence that solves the following
constrained optimal control problem:







J∗
∞ (z) = inf

v0,v1,...
u0,u1,...

J∞ (z, ψ∞)

s.t. (1) and (2) withx0 = z.

(5)

We will refer to the above problem as theDiscrete-Time
Constrained Switched LQR problem(DCSLQR). The stated
problem is an extension of the classical discrete-time LQR
controller synthesis to Switched Linear Systems subject
to polyhedral input and state constraints. Because of the
complexity of the problem at hand, we do not require to
find the optimal policyπ∗

∞ for all initial statesz ∈ X , but
rather the control sequenceψ∗

∞ for a given initial condition.
Clearly, if the unconstrainedsystem (1) is not stabiliz-

able, J∞(x0, ψ∞) will be infinite for all possible control
sequencesψ∞ for anyx 6=0. Therefore, the stabilizability is a
minimum requirement for the well-posedness of problem (5).

Definition 1 (exp. stabilizability):The unconstrained sys-
tem (1) is calledexponentially stabilizableif there exists a
policy π∞ and constantsa≥ 1 and 0< c< 1 such that the
closed-loop trajectory under the policyπ∞ starting from any
initial statex0=z satisfies‖xt‖2 ≤ act‖z‖2, ∀t ∈ Z

+.
The following assumption is made throughout this paper:

(A1) The unconstrained SLS (1) is exp. stabilizable.

Remark 1:Assumption (A1) holds for most problems of
practical interest and can be easily verified. In particular,
if one of the unconstrained subsystems is stabilizable, the
assumption will be satisfied. Furthermore, even in the case

that none of the subsystems is stabilizable, it is still possible
for the overall unconstrained switched linear system to be
exponentially stabilizable (see Section VI and [8]).

III. T HE UNCONSTRAINEDHYBRID CONTROL PROBLEM

In this section, we recall some recent results on the
DSLQR problem [9], which can be viewed as a special case
of problem (5) with the trivial constraintsX = R

n, U = R
p.

These results are crucial for solving the general DCSLQR
problem, as will be further discussed in Section V-B.

A. The Value Function

For eachk ∈ Z
+, define thek-horizon value function as















J∗
k,uc(z) = inf

ut∈R
p,vt∈M

0≤t≤k−1

k−1
∑

t=0

L(xt, ut, vt)

s.t. equation (1) withx0 = z.

(6)

The objective of DSLQR is to solve the infinite horizon un-
constrained optimal control problem, i.e. to find the infinite-
horizon value functionJ∗

∞,uc(z) = limk→∞ J∗
k,uc(z).

By a standard result of dynamic programming, the finite-
horizon value functions can be computed recursively through
the one-stage value iteration:

J∗
k+1,uc(z) = inf

u∈Rp,v∈M

{L(z, u, v) + J∗
k,uc(Avz +Bvu)}.

An important feature of the DSLQR problem is that its finite-
horizon value function can be characterized analytically.The
key idea is to generalize the notion of the well known
Difference Riccati Equation (DRE) [1] to the Switched LQR
problem. For each subsystemi ∈ M, define theRiccati
Mappingρi : A 7→ A as:

ρi(P )=Qi+A
T
i PAi−A

T
i PBi

(

Ri+B
T
i PBi

)−1
BT

i PAi. (7)

Definition 2 (Switched Riccati Mapping):The mapping
ρM : 2A 7→ 2A defined by:

ρM(H) = {ρi(P ), i ∈ M, P ∈ H} (8)

is called theSwitched Riccati Mapping(SRM) associated
with the infinite horizon value functionJ∗

∞,uc(z).
Definition 3 (Switched Riccati Sets):The sequence of

sets {Hk}
∞
k=0 generated iteratively byHk+1 = ρM(Hk)

with H0 = {0} is called theSwitched Riccati Sets(SRS)
associated with the infinite horizon value functionJ∗

∞,uc(z).

Starting from the singleton set{0}, the SRSs evolve
according to the SRM. For any finitek, the setHk consists
of at mostMk p.s.d. matrices. It has been shown [9] that the
SRS completely characterize the value functionJ∗

∞,uc(z).
Theorem 1 ([9]): For eachk ∈ Z

+, the k-horizon value
function of the unconstrained DSLQR problem is given by:

J∗
k,uc(z) = min

P∈Hk

zTPz, ∀ z ∈ R
n. (9)



B. Efficient Computation of the SRSs
For nontrivial DSLSs withM > 1, the cardinality ofHk

grows exponentially withk. However, usually not all the
matrices inHk contribute to the overall minimum of (9).
The main idea therefore is to at each iterationk remove
“redundant” matrices from the setsHk [9]. Additionally, a
numerical relaxation parameterǫ can be introduced to further
reduce the size of the associated SRS, possibly resulting ina
suboptimal solution. This motivates the following definitions.

Definition 4 (ǫ-redundancy):For any constantǫ ≥ 0, a
matrix P̂ ∈ Hk is calledǫ-redundant with respect toHk if

min
P∈Hk\P̂

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z, for any z ∈ R
n.

(10)
Definition 5 (ǫ-equivalent subset):

For any constantǫ ≥ 0, the setHǫ
k is called anǫ-equivalent

subsetof Hk if Hǫ
k ⊆ Hk and for allz ∈ R

n,

min
P∈Hk

zTPz ≤ min
P∈Hǫ

k

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z. (11)

Removing theǫ-redundant matrices fromHk will result
in an ǫ-equivalent subsetHǫ

k. If we replaceHk with Hǫ
k in

equation (9), Definition 5 guarantees that the corresponding
value function will deviate from the original one by a term
at most equal toǫ‖z‖2. To simplify computation, we shall
remove as manyǫ-redundant matrices as possible. A convex
condition is derived in ([6], Lemma 1) to test whether a
matrix in Hk is ǫ-redundant or not. By removing theǫ-
redundant matrices after each iteration, a relaxed versionof
the SRSs can be obtained iteratively as:

Hǫ
0 = H0, and Hǫ

k+1 = ESǫ (ρM(H
ǫ
k)) , (12)

whereESǫ(H) denotes an algorithm that computes theǫ-
equivalent subset ofH by implementing the test of the con-
dition in [6]. Similar to (9), one can define theapproximate
value functionbased on the relaxed SRSs as

Jǫ
k,uc(z) = min

P∈Hǫ
k

zTPz, ∀z ∈ R
n. (13)

Since the setHǫ
k computed through (12) typically contains

much fewer matrices thanHk, the approximate value func-
tion Jǫ

k,uc is usually much easier to compute thanJ∗
k,uc.

Moreover, by choosingǫ sufficiently small andk sufficiently
large, the functionJǫ

k,uc can be made arbitrarily close to the
infinite-horizon value functionJ∗

∞,uc [6].
Theorem 2:Under (A1), there always exist constantsβ<

∞, η<∞ andγ<1, all independent ofk and ǫ, such that

(i) λ−Q‖z‖
2 ≤ Jǫ

k,uc(z) ≤ β‖z‖2, ∀z ∈ R
n, k ∈ Z

+;
(ii) |Jǫ

k,uc(z)−J
∗
∞,uc(z)| ≤ ηγkǫ ||z||

2
, ∀z∈R

n, k∈Z
+,

whereλ−Q = mini∈M{λmin(Qi)}.

C. Stationary Suboptimal Policy
Denote byξǫk,uc the hybrid-control law generated by the

approximate value functionJǫ
k,uc, namely,

ξǫk,uc(z) =
(

µǫ
k,uc(z), ν

ǫ
k,uc(z)

)

(14)

, arg inf
u∈Rp,v∈M

{L(z, u, v) + Jǫ
k,uc(Avz +Bvu)}.

Applying this law at each time step yields a stationary policy
πǫ,k
∞,uc = {ξǫk,uc, ξ

ǫ
k,uc, . . .}. The particular structure (13) of

Jǫ
k,uc enables an analytical characterization ofξǫk,uc.
Lemma 1:The hybrid-control lawξǫk,uc is given by:

ξǫk,uc(z) ,
(

µǫ
k,uc(z), ν

ǫ
k,uc(z)

)

=
(

−Kiǫ
k
(z) (P

ǫ
k(z)) z , i

ǫ
k(z)

)

,

with (P ǫ
k(z), i

ǫ
k(z)) = argmin

P∈Hǫ
k
,i∈M

zT ρi(P )z, (15)

whereK·(·) is the Kalman gain defined by:

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi, i ∈ M, P ∈ A. (16)

By Theorem 2, we know thatJǫ
k,uc is a good approxima-

tion of Jǫ
∞,uc for sufficiently largek and smallǫ. Intuitively,

the performance of the policyπǫ,k
∞,uc generated byJǫ

k,uc

should also be close to the optimal one. This can indeed
be guaranteed ifπǫ,k

∞,uc is exponentially stabilizing.
Theorem 3 ([10]): Suppose for eachP ∈ Hǫ

k, there exist
nonnegative constantsαj , j = 1, . . . , j∗ andκ1 such that

j∗
∑

j=1

αj = 1 andP ≻

j∗
∑

j=1

αj

(

P̂ (j) + (κ1 − κ∗)In

)

(17)

where {P̂ (j)}
j∗

j=1 is an enumeration of the setρM(Hǫ
k),

andκ∗=mini∈M,P∈Hǫ
k
λmin

(

Ki(P )
TRiKi(P ) +Qi

)

, with
Ki(P ) being defined in (16). Then the closed-loop trajectory
xt driven byπǫ,k

∞,uc is exponentially stable with

‖xt‖
2 ≤ β

λ−

Q

(

1
1+κ1/λ

−

Q

)t

‖z‖2, (18)

whereβ andλ−Q are constants defined in Theorem 2.
Checking condition (17) can be formulated as a LMI

feasibility problem and thus may be verified efficiently.
Theorem 4:If Hǫ

k satisfies (17) in Theorem 3, then the
cost associated with the policyπǫ,k

∞,uc is bounded above by:

J∞(z, πǫ,k
∞,uc(z)) ≤ J∗

∞,uc(z) + ηγkǫ

(

1 +
β(κ+λ−

Q
)

κ·λ−

Q

)

‖z‖2,

where β, λ−Q, η, γ and κ1 are the constants defined in
Theorem 2 and Theorem 3.

Theorem 4 indicates that by further increasingk and
reducingǫ, we can make the performance of this stabilizing
policy arbitrarily close to the optimal one. These results allow
us to construct a suboptimal policy in a systematical way as
described in Algorithm 1, which returns a relaxed SRS that
characterizes a suboptimal policy independent of the initial
statez of the system.

Both the relaxation algorithmESǫ and the algorithm
for checking (17) involve only simple convex optimization
programs. Additionally, although the size of the SRSs grows
exponentially fast, experience shows that due to the numer-
ical relaxation, the size of the relaxed SRSsHǫ

k usually
grows slowly and saturates at a small number, even in
high-dimensional state space (see [9] for details). Therefore,
Algorithm 1 can be carried out rather efficiently.

For the remainder of this paper, we shall denote byHǫ
k the

relaxed SRS returned by Algorithm 1, whose corresponding
policy πǫ,k

∞,uc is exponentially stabilizing with a upper bound
on the performance given in Theorem 4.



Algorithm 1 (Unconstrained Suboptimal Policy)
Input: ǫ, ǫmin andkmax

1: SetHǫ
0 = {0}.

2: while ǫ > ǫmin do
3: for k = 1 to kmax do
4: Hǫ

k = ESǫ(ρM(H
ǫ
k))

5: if Hǫ
k satisfies the condition of Theorem 3then

6: stop and returnHǫ
k (which characterizesπǫ,k

∞,uc)
7: end if
8: end for
9: ǫ = ǫ/2

10: end while

IV. SAFE SET AND ITS COMPUTATION

A. The Safe Set
We define the safe set of an unconstrained, infinite-

horizon, hybrid-control policy as the set of initial statesfor
which the closed-loop system driven by this policy satisfies
the constraints (2) for allt ≥ 0.

Definition 6 (Safe Set):For an arbitrary infinite-horizon
policy π∞={(µt, νt)}t∈Z+ , the safe setX (π∞) is:

X (π∞) =
{

x0 ∈ R
n
∣

∣ xt ∈ X , µt (xt) ∈ U ,

xt+1 = Aνt(xt)xt +Bνt(xt)µt (xt) , ∀ t ∈ Z
+
}

.
(19)

From the above definition, given a policyπ, if xt0 ∈ X (π)
for some t0 ∈ Z

+, then xt ∈ X (π) for all t ≥ t0. In
other words, the safe set is the maximal positive invariant set
for the closed-loop system subject to constraints (2), i.e.the
maximal output admissible set[11]. In the following, denote
X∞,uc = X (πǫ,k

∞,uc). Notice that a closed-loop trajectory
starting from any point in any arbitrarily shaped subset
X∞,uc ⊂ X∞,uc will stay insideX∞,uc for all time and thus
never violate the constraints. Since an exact characterization
of X∞,uc is very hard to obtain, the rest of this subsection
is devoted to the computation of a subsetX∞,uc ⊂ X∞,uc.

B. Analytical Characterization of the Safe Set
Theorem 5:Under (A1), there exists a constantr∗ > 0

such that the set

X∞,uc = {z ∈ R
n | ||z|| ≤ r∗} (20)

is a subset of the safe setX∞,uc.
Proof: Let r0 = max{r : ‖z‖ ≤ r ⇒ z ∈ X}.

Since0∈ int(X ), we haver0> 0. By Theorem 3,πǫ,k
∞,uc is

exponentially stabilizing and thus||xt|| ≤ c1 ||x0|| , ∀ t ≥ 0,
for some finite positive constantc1. From (15), we know
||ut|| = ||Ki(P )xt|| ≤ c2 ||xt|| , ∀ t ∈ Z

+, where c2 =
maxi∈M,P∈Hǫ

k
{‖(Ki(P ))‖}. Let X∞,uc be the Euclidean

ballB(r∗), with r∗ = min
{

r0
c1
, r0
c1c2

}

, centered at the origin.
The values ofr0, c1 and c2 are all finite and thus isr∗.
It can be easily seen that for any initial state inX∞,uc,
the closed-loop trajectory and the corresponding continuous-
control sequence will always satisfy constraints (2).
Following the above proof, the characterization of the safe
subsetX∞,uc requires only the estimation of the three

constantsr0, c1 and c2. Therefore, the safe subsetX∞,uc

in (20) can be easily computed in a state space of arbitrary
dimension. However, this approach may be too conservative,
resulting in a setX∞,uc much smaller than the actual safe
set X∞,uc. In the following, we discuss a computational
approach which can be used to under-approximateX∞,uc,
especially in lower-dimensional state spaces.

C. Computational Approach via Invariant Set

The most straightforward approach to obtain a safe set
X∞,uc is to compute the positive invariant set in Definition 6.
The computation of invariant sets can be reframed as a
reachability problem and is reminiscent of the seminal work
in [12], [13]. Different approaches have been developed
in the literature to compute reachable sets for dynamical
systems, such as polytopic or zonotopic methods, ellipsoidal
methods, level-set methods and others [14]. In our case, the
main issue preventing the direct use of those computational
tools is the implicit form of the control law (15), as its
associateddecision regions(regions in the state space which
yield the same minimizing pair (P ǫ

k , iǫk) of (15)), are non-
convex subsets of second-order cones in general [9].

One immediate approach for computing an invariant set
is through gridding the state space, as implemented in
Algorithm 2 (for the proposed algorithm,X is assumed to
be bounded). LetGX be the set of all points that constitute
a uniform grid with step sizeδgrid over the smallest hyper-
rectangleX in the state space that contains the constraint
polyhedronX . Let G describe the region in the state space
covered by the gridpointsgi in GX . A mapped statez is
regarded as contained inG, if ming∈G

X
‖z − g‖∞ ≤

δgrid
2 .

Algorithm 2 (Grid-based approx. computation ofX∞,uc)

Input: ξǫk,uc = {(µǫ
k,uc, ν

ǫ
k,uc)}, X , U , GX

1: setG0 =
{

gi ∈ GX | gi ∈ X , µǫ
k,uc(gi) ∈ U

}

2: Gk+1=
{

gi∈Gk|Aνǫ
k,uc

(gi)gi+Bνǫ
k,uc

(gi)µ
ǫ
k,uc(gi)∈Gk

}

3: if Gk+1 = Gk then
4: return GX∞,uc

= Gk+1

5: else
6: GOTO 2
7: end if

Algorithm 2 was implemented inMATLAB and tested
for state dimensionsn ≤ 4. In principle, gridding also
works in higher dimensions. However, the computational
complexity grows exponentially with the state dimension.
This “curse of dimensionality” prohibits dense gridding for
higher dimensional problems.

V. SOLUTION TO A GENERAL DCSLQR PROBLEM

The goal of this section is to solve a general DCSLQR
problem, i.e. to find an infinite-horizon hybrid-control se-
quence for a given initial statez to achieve at least subopti-
mal performance with respect to the cost functionJ∗

∞(z).



A. Stabilizable Set
The DCSLQR problem is meaningful only when the given

initial statez results in a finite costJ∗
∞(z). To characterize

the set of such initial states, we introduce the following:
Definition 7 (Stabilizable Set):The set defined by

S∞ =
{

z ∈ R
n
∣

∣ ∃ ψ∞ = {(ut, vt)}t∈Z+ such that

xt ∈ X , ut ∈ U andxt → 0 exponentially fast
} (21)

is called thestabilizable setof system (1) subject to con-
straints (2), wherext is the closed-loop trajectory driven by
ψ∞ with initial statex0=z.

For constrained LQR of linear systems (M = 1), it is
possible to compute the stabilizable setS∞ for compact
setsX andU [3]. This is achieved by combining multipara-
metric quadratic programming [2] with reachability analysis.
However, the algorithmic approach used by the authors in [3]
can not be easily used for DSLS (M>1). See [15] for further
details on this problem.

B. DCSLQR formulation as an MIQP
For a given initial state inS∞, our strategy in solving

the DCSLQR problem is to first drive the system state into
the safe subsetX∞,uc, and then use the suboptimal infinite-
horizon policyπǫ,k

∞,uc to further regulate the state towards the
origin. To this end, we introduce the followingconstrained
finite-time optimal hybrid control (CFTOHC)problem:











J∗
N (z;φ)= min

(ut,vt)

{

φ(xN )+
N−1
∑

t=0

L(xt, ut, vt)

}

,

s.t (1) and (2) withx0 = z,

(22)

with the terminal cost functionφ :X →R
+. Denote byxN |0

the state at timet = N when system (1) is controlled by
the solution of (22). The reason for introducing the above
optimization problem is that with a properly chosen terminal
cost functionφ(·), the optimal costJ∗

N will coincide with
the value functionJ∗

∞ of the DCSLQR problem.
Theorem 6:J∗

N (z;φ) = J∗
∞(z) if, for all z ∈ X :

(i) φ(z) = J∗
∞(z) or

(ii) φ(z) = J∗
∞,uc(z) andxN |0 ∈ X∞,uc.

Theorem 6 indicates in particular that solving Problem (5)
is equivalent to solving Problem (22) whenφ = J∗

∞,uc and
xN |0 ∈ X∞,uc. By Theorem 2, the functionJ∗

∞,uc can be
accurately approximated byJǫ

k,uc for large k and smallǫ.
Thus, Jǫ

k,uc serves us as a local CLF insideX∞,uc. With
φ(z) = Jǫ

k,uc(z) = minP∈Hǫ
k
zTPz, Problem (22) becomes:























J∗
N (z; Jǫ

k,uc)

= min
P∈Hǫ

k

{

min
(ut,vt)

[

xTNPxN+
N−1
∑

t=0

L(xt, ut, vt)

]}

,

s.t (1) and (2) withx0 = z.

(23)

The above formulation is obtained by first substituting
φ(z) = minP∈Hǫ

k
zTPz into (22) and then changing the

order of the two minimizations. The change on the order
of the minimizations will not affect the solution because
there are only finitely many matrices inHǫ

k. By Theorem 6,
J∗
N (z; Jǫ

k,uc) will be close toJ∗
∞(z) if the controlled terminal

statexN |0 is in X∞,uc. This can be always guaranteed ifN
is chosen sufficiently large.

Theorem 7:For every initial conditionx0 = z ∈ S∞,
there exists a finiteN̂(z) such that for allN ≥ N̂(z), the
terminal statexN |0 of the closed-loop system controlled by
the solution of Problem (23) resides insideX∞,uc.
For the case of linear systems (M=1) and compact setsX
andU , it is possible to computêN for all z ∈ S∞ before-
hand [3]. However, the issues with the computation of the
stabilizable set mentioned in Section V-A also prohibit this
for SLS. In the following section, we therefore employ a
straightforward approach inspired by [4], [5], which mini-
mizes the computational complexity of (22).

A main contribution of this work is that we are able to
characterize the hybrid-control policyπǫ,k

∞,uc by the set of
p.s.d. matricesHǫ

k. This allows us to cast problem (23) as one
single augmented Mixed-Integer Quadratic Program (MIQP)
for a given initial statez and prediction horizonN . The
obtained MIQP can then be solved efficiently using available
optimization software.

C. Overall Algorithm for DCSLQR

Theorem 7 guarantees that asN increases, the controlled
terminal statexN |0 associated with (23) eventually enters the
safe subsetX∞,uc. In this case, a suboptimal infinite-horizon
control sequence for Problem (5) is given by

ψ∞ = {(û0, v̂0), . . . , (ûN−1, v̂N−1), π
ǫ,k
∞,uc(xN |0)}, (24)

where{(ût, v̂t)}0≤t<N denotes the solution to the optimiza-
tion problem (23) andπǫ,k

∞,uc(xN |0) denotes the infinite-
horizon hybrid-control sequence generated by the policy
πǫ,k
∞,uc with initial state xN |0. A general procedure for

solving Problem (5) with initial conditionx0 = z ∈ S∞ is
summarized in Algorithm 3. The returned control sequence
is guaranteed to be suboptimal in the sense that by choosing
k sufficiently large andǫ sufficiently small, its performance
can be made arbitrarily close to the optimal one.

Algorithm 3 (Solution of DCSLQR Problem (5))
Input: x0 = z ∈ S∞, method for solving MIQPs
1: Computeπǫ,k

∞,uc and relaxed SRSHǫ
k using Algorithm 1

2: ComputeX∞,uc using Theorem (5) or Algorithm 2
3: SetN = 1
4: Solve problem (23) with time horizonN
5: if xN |0 ∈ X∞,uc then
6: Stop and return the control sequence as defined in (24)
7: else
8: Set N=N+1 and go to step 4
9: end if

Theorem 8:For any δ > 0 and z ∈ S∞, there exists an
k<∞ andǫ>0 such that the control sequenceψ∞ returned
by Algorithm 3 satisfies

J∞(z, ψ∞) ≤ J∗
∞(z) + δ.



VI. N UMERICAL EXAMPLE

Consider the following DSLS with two modes:

A1=

[

2 0
0 2

]

, A2=

[

1.5 1
0 1.5

]

, B1=

[

1
2

]

, B2=

[

1
0

]

,

Qi=

[

1 0
0 1

]

, Ri=1, i = 1, 2,

subject to the constraints:

X :









−0.95 0.3
0 −1

0.95 −0.3
0 1









x(t)≤









0.85
1.25
0.85
1.25









, U :

[

1
−1

]

u(t)≤

[

0.75
0.75

]

.

Notice that none of the two subsystems is stabilizable (see
Remark 1). The DSLS can therefore only be stabilized by
appropriate switching between the two subsystems. The com-
putation of the setHǫ

k was performed for a time horizon of
k=30 steps and a numerical relaxation parameterǫ=10−3,
which led to a cardinality of|Hǫ

k|=16, as opposed to using
230 ≈ 109 matrices for characterizing the cost function. It
is obvious that, because of the exponential growth of the
number of elements in the SRSs, obtainingHk without
computing equivalent subsets would be computationally pro-
hibitive even for the simple problem at hand.

For an initial conditionx0 = [0 1]
T, the optimal discrete

modes for0 ≤ t ≤ 7 are {vopt,uc} = {1, 2, 2, 1, 2, 1, 2, 1}
and {vopt} = {1, 2, 1, 2, 1, 2, 1, 2}, respectively. The alter-
nating discrete switching sequence that occurs in both the
unconstrained and constrained case validates the previous
claim that switching between the discrete modes is the only
possible control strategy that can stabilize this specific hybrid
system. The computation time (excluding the computation of
Hǫ

k) for this problem on a 3 GHz Intel Core2 CPU was 156
ms using theCPLEX solver, where we usedYALMIP [16]
to conveniently parse the optimization problem.

An approximation of the maximal positive invariant set
X∞,uc for a gridpoint distance ofδgrid=10−3 and the opti-
mal state trajectories are depicted in Figure 1, the associated
optimal continous control actions in Figure 2. As can be
seen from Figure 1, the safe setX∞,uc in this example is
rather large and takes up a substantial part of the feasible
setX . Consequently, the value ofN = 3 is rather small in
this case. State trajectory and control inputs clearly satisfy
the constraints over the whole simulation horizon.
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