
An Efficient Transformation from Max-Plus-Linear
Systems to Piecewise Affine Systems

Dieky Adzkiya
Department of Mathematics

Institut Teknologi Sepuluh Nopember
Surabaya 60111, Indonesia
dieky@matematika.its.ac.id

Alessandro Abate
Department of Computer Science

University of Oxford
Oxford OX1 3QD, United Kingdom

aabate@cs.ox.ac.uk

Abstract—Max-Plus-Linear (MPL) systems are a modeling
framework for synchronization without concurrency. In this
paper, we propose a procedure to construct Piecewise Affine
(PWA) systems from MPL systems, such that the regions in the
PWA systems are a partition of the state space and without
using any refinement process. On the contrary, in the literature
the standard procedure uses a refinement process. According
to our numerical benchmark, the procedure without refinement
outperforms the one with refinement. The obtained PWA models
are key for the analysis of the dynamics of the received MPL
systems.

Index Terms—Max-Plus-Linear systems, Piecewise Affine sys-
tems, Difference-Bound Matrices

I. INTRODUCTION

Max-Plus-Linear (MPL) systems are a subclass of discrete-
event systems to model synchronization phenomena without
concurrency [1], [2]. These systems have been applied in many
areas, such as computational systems [1], railway systems [2]
and biological systems [3].

There are a lot of results over MPL systems on the literature.
Classical results study the transient and steady-state behavior
of MPL systems using algebraic or geometric approaches.
Baccelli et al [1] discuss the computation of eigenvalue and
eigenvectors of MPL systems by using algebraic techniques.
The propagation of delay with applications to railway systems
has been studied in [2]. The use of geometric techniques to
synthesize a controller for MPL systems has been discussed
in [4]. Recently, some authors have developed a framework
for the formal verification of MPL systems [5]–[7]. The
verification algorithms have been implemented in a freely
available software tool VeriSiMPL [8], [9].

The paper [5] discusses finite abstraction of MPL systems.
One of the key steps consists of constructing a partition of
the state space based on the MPL dynamics. The partition
is obtained by refining (via intersection) the regions of a
Piecewise Affine (PWA) system generated by a given MPL
system - the regions originally form a cover of the state space.
PWA systems are characterized by a finite collection of convex
polytopes, where the dynamics in each convex polytope is
affine [10]. In this work, we propose a procedure to construct
a PWA system from an MPL system such that the obtained
regions of the PWA system already form a partition of the
state space. The procedure is based on [5, Proposition 3],
which states that the difference between two adjacent regions

This work has been supported by Penelitian Dana Departemen
1145/PKS/ITS/2017. D. Adzkiya is also with the PUI – PT Mechatronics
and Industrial Automation – Research Center, Institut Teknologi Sepuluh
Nopember, Kampus ITS Sukolilo-Surabaya 60111, Indonesia.

is a Difference-Bound Matrix (DBM). DBM is a subclass of
polyhedra where the inequalities are described either as the
difference of two variables or as a single variable [11].

This paper is structured as follows. Section II discusses
some modeling frameworks and current results in the liter-
ature. The proposed transformation algorithm and its applica-
tion to a simple case study is discussed in Section III. Finally,
Section V describes concluding remarks.

II. MODELS AND PRELIMINARIES

In this section, we describe some models and some related
concepts. First, we introduce Max-Plus-Linear (MPL) systems
in Section II-A. Then, the notion of Difference-Bound Matri-
ces (DBM) is described in Section II-B. Finally, in Section
II-C we discuss the known procedure to transform an MPL
system to a Piecewise Affine (PWA) system.

A. Max-Plus-Linear Systems

First of all, we define R as the set of real numbers, ε := −∞
and Rε := R ∪ {ε}. Then we also define the following two
binary operators

a⊕ b := max{a, b}, a⊗ b := a+ b,

where a, b ∈ Rε. The structure (Rε,⊕,⊗) is called max-plus
algebra [1], [2]. Notice that ε and 0 are the neutral element
of ⊕ and ⊗, respectively. The definition of ⊕ and ⊗ can be
extended to matrices and vectors, as in the classical algebra:

[A⊕B](i, j) = A(i, j)⊕B(i, j),

[A⊗ C](i, j) =

n⊕
k=1

A(i, k)⊕B(k, j),

where A,B ∈ Rm×n
ε and C ∈ Rn×p

ε . Notation A(i, j)
represents the entry of matrix A at row i column j.

An autonomous Max-Plus-Linear (MPL) system is defined
as:

x(k + 1) = A⊗ x(k), (1)

where state vector x ∈ Rn and state matrix A ∈ Rn×n
ε .

In MPL systems, the independent variable k represents the
occurrence index of events, whereas x(k) represents the time
of k-th occurrence of all events. A matrix in Rn×n

ε is called
row finite if there is at least one finite entry in each row.

Example 1. Throughout this paper, we use the following two-
dimensional MPL system that represents a simple railway
network [2]:

x(k + 1) =

[
2 5
3 3

]
⊗ x(k) (2)



B. Difference-Bound Matrices

Difference-Bound Matrices (DBM) are a subclass of polyhe-
dra, where the inequalities are in the form of the difference of
two variables or a single variable [11]. DBM has been used in
the verification of timed automata [12] and finite abstraction of
MPL systems [5]. The formal definition of DBM is as follows

Definition 1 (Difference-Bound Matrices [11]). A Difference-
Bound Matrix in Rn is the intersection of finitely many sets
defined as xj−xi ./i,j αi,j where ./i,j∈ {<,≤} represents a
strict and nonstrict inequality sign, αi,j ∈ R∪{+∞} denotes
the upper bound, for i, j ∈ {0, . . . , n} and value of the special
variable x0 is always equal to 0. The sets are subsets of Rn

that are characterized by the values of variables x1, . . . , xn.

DBM has an advantage compared to polyhedra in terms of
the computational complexity. More precisely, in polyhedra,
the time complexity of many operations is exponential. On the
other hand, many operations over DBM have polynomial time
complexity, such as computing the intersection of two DBM,
checking whether a DBM is empty, computing the complement
of a DBM.

C. Piecewise Affine Systems Generated by Max-Plus-Linear
Systems

Piecewise Affine (PWA) systems are defined by multiple
affine dynamics, where each affine dynamics is active on a
predefined polyhedron. In this section, we discuss the transfor-
mation from MPL systems to PWA systems (with refinement),
such that the PWA regions are a partition of the state space Rn

[5]. The transformation consists of two steps: construction of
PWA systems where the PWA regions are not pairwise disjoint
and refinement of PWA regions.

First, we discuss the construction of PWA systems from
MPL systems [5]. The autonomous MPL system in (1) can be
expressed as a PWA system in the event domain [13] under
the condition that the state matrix is row finite. The regions
and the corresponding affine dynamics are characterized by
coefficients g = (g1, . . . , gn) ∈ {1, . . . , n}n [5], [9]. For
each i ∈ {1, . . . , n}, the coefficient gi represents the maximal
term in the i-th state equation xi(k) = max{A(i, 1) +
x1, . . . , A(i, n) + xn}, that is A(i, j) + xj ≤ A(i, gi) + xgi
for all j ∈ {1, . . . , n}. Here, xj represents the j-th entry of
vector x.

By using the above scheme, the states corresponding to
coefficients g, denoted by Rg , can be expressed explicitly as
follows

Rg =

n⋂
i=1

⋂
j 6=gi

{x ∈ Rn : A(i, j) + xj ≤ A(i, gi) + xgi}. (3)

The affine dynamics that is active in Rg is given by

xi(k) = xgi(k − 1) +A(i, gi), i ∈ {1, . . . , n}.

The complete algorithm to generate the collection of re-
gions in PWA systems generated by MPL systems is as
follows.
Require: row finite state matrix A ∈ Rn×n

ε

Ensure: collection of PWA regions R
initialize R with the empty set, i.e. R← ∅
for all g ∈ {1, . . . , n}n do

generate Rg according to (3)

if Rg is not empty then
store Rg in R, i.e. R← R ∪ {Rg}

end if
end for
In general, the regions of the PWA system generated by

an MPL system are not pairwise disjoint. We can use the
refinement procedure described in [5, Fig. 6] to obtain a
partition of the state space. The procedure uses the notion
of adjacent regions, which is formally defined as follows.

Definition 2 (Adjacent Regions [5, Definition 9]). Let Rg and
Rg′ be regions generated by an n-dimensional state space
matrix. The two regions are adjacent, denoted by Rg > Rg′ ,
if there exists a single 1 ≤ i ≤ n such that gi > g′i and
gj = g′j for each j 6= i.

The refinement algorithm works as follows. For any pair
of adjacent regions, the refinement procedure removes the
intersection from the region corresponding to lower coefficient
[5, Fig. 6], as shown below.
Require: a collection of PWA regions R
Ensure: a collection of partitioning regions R

for all Rg ∈ R do
for all Rg′ ∈ R \ {Rg} do

if Rg > Rg′ then
Rg′ ← Rg′ \Rg

else if Rg′ > Rg then
Rg ← Rg \Rg′

end if
end for

end for

III. PROPOSED TRANSFORMATION PROCEDURE

In this section, we describe the procedure to construct a
PWA system from an MPL system such that the regions in
the PWA system are a partition of the state space. Then, we
illustrate the procedure on a simple example.

First of all, the procedure relies on Proposition 1, which
states that the difference of two adjacent regions is a DBM.

Proposition 1 (Difference of Adjacent Regions [5, Proposition
3]). If Rg > Rg′ , then Rg′ \ Rg is a DBM described by
Rg′ ∩ {x ∈ Rn : A(i, g′i) + xg′

i
> A(i, gi) + xgi}.

According to Proposition 1 and the refinement procedure
of PWA regions (cf. Section II-C), the PWA regions that
form a partition are a slight modification of (3). Remember
that in [5, p. 3045], the intersection is assigned to the region
corresponding to higher coefficient.

R̄g =

n⋂
i=1

⋂
j<gi

{x ∈ Rn : A(i, j) + xj ≤ A(i, gi) + xgi}∩

n⋂
i=1

⋂
j>gi

{x ∈ Rn : A(i, j) + xj < A(i, gi) + xgi}. (4)

In (4), there are two conditions:
• If a region (j) has coefficient smaller than this region

(gi), namely j < gi, then the intersection is assigned to
this region. In this case, the form is the same as in (3)
and the inequalities are not strict.

• If a region (j) has coefficient higher than this region (gi),
namely j > gi, then the intersection is not assigned to



this region. Thus, the intersection has to be removed from
this region. In this case, according to Proposition 1, the
inequalities are strict.

The complete algorithm to compute the collection of regions
in PWA systems generated by MPL systems, and such that
the PWA regions are a partition of the state space, is as
follows.
Require: row finite state matrix A ∈ Rn×n

ε

Ensure: collection of partitioning regions R̄
initialize R̄ with the empty set, i.e. R̄← ∅
for all g ∈ {1, . . . , n}n do

generate R̄g according to (4)
if R̄g is not empty then

store R̄g in R̄, i.e. R̄← R̄ ∪ {R̄g}
end if

end for

Example 2. When we apply the procedure to the MPL system
in (1), we obtain R̄(1,1) = {x ∈ R2 | x1−x2 > 3}, R̄(1,2) = ∅,
R̄(2,1) = {x ∈ R2 | 0 < x1 − x2 ≤ 3} and R̄(2,2) = {x ∈
R2 | x1 − x2 ≤ 0}. The graphical representation is shown in
Fig. 1.

x1

x2
R̄(2,2)

3

R̄(1,1)R̄(2,1)

Fig. 1. Graphical representation of the partition generated by the autonomous
MPL system in (1).

IV. COMPUTATIONAL BENCHMARK

In this section, we compare the computational time of the
procedure to construct a partition without refinement discussed
in Section III against the procedure to construct a partition
with refinement discussed in [5]. Our scenario is as follows.
For each dimension n, we generate 10 random full matrices
A (i.e. all entries are finite), where each entry is an integer
between 1 and 100. Then we determine the mean and maximal
computational time over 10 experiments. The algorithms have
been implemented in MATLAB by using the backtracking
technique to improve the performance. The experiments have
been run on an Intel® Core™ i7-4720HQ CPU @2.60GHz
with 16 GB of memory.

As you can see from Table I, the computational time of the
proposed procedure (without refinement) is significantly faster
compared to the procedure with refinement from [5].

TABLE I
MEAN AND MAXIMAL COMPUTATIONAL TIME OF CONSTRUCTING PWA

SYSTEMS FROM MPL SYSTEMS OVER 10 EXPERIMENTS.

With refinement Without refinement
n Mean Maximum Mean Maximum
3 0.010002 [s] 0.012857 [s] 0.0051881 [s] 0.00614 [s]
4 0.0415318 [s] 0.044975 [s] 0.033309 [s] 0.037264 [s]
5 0.2236356 [s] 0.240583 [s] 0.1120053 [s] 0.117824 [s]
6 1.2117465 [s] 1.31256 [s] 0.5257748 [s] 0.540758 [s]
7 10.4736843 [s] 11.142775 [s] 2.3186673 [s] 2.372729 [s]

V. CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm to generate a Piecewise-
Affine (PWA) system from a Max-Plus-Linear (MPL) system
such that the regions are a partition of the state space. In order
to speed up the computational time, the algorithm does not use
any refinement process. This fact has been shown empirically
through our computational benchmark. We are planning to
integrate the procedure to the next version of VeriSiMPL.

REFERENCES

[1] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat, Synchronization
and Linearity, An Algebra for Discrete Event Systems. John Wiley and
Sons, 1992.

[2] B. Heidergott, G. Olsder, and J. van der Woude, Max Plus at Work–
Modeling and Analysis of Synchronized Systems: A Course on Max-Plus
Algebra and Its Applications. Princeton University Press, 2006.

[3] C. A. Brackley, D. S. Broomhead, M. C. Romano, and M. Thiel, “A max-
plus model of ribosome dynamics during mRNA translation,” Journal
of Theoretical Biology, vol. 303, no. 0, pp. 128–140, Jun. 2012.

[4] R. D. Katz, “Max-plus (A,B)-invariant spaces and control of timed
discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 2, pp. 229–241, Feb. 2007.

[5] D. Adzkiya, B. De Schutter, and A. Abate, “Finite abstractions of max-
plus-linear systems,” IEEE Transactions on Automatic Control, vol. 58,
no. 12, pp. 3039–3053, Dec. 2013.

[6] ——, “Computational techniques for reachability analysis of max-plus-
linear systems,” Automatica, vol. 53, no. 0, pp. 293–302, 2015.

[7] S. Esmaeil Zadeh Soudjani, D. Adzkiya, and A. Abate, “Formal veri-
fication of stochastic max-plus-linear systems,” IEEE Transactions on
Automatic Control, vol. 61, no. 10, pp. 2861–2876, Oct. 2016.

[8] D. Adzkiya and A. Abate, “VeriSiMPL: Verification via biSimulations
of MPL models,” in Proceedings of the 10th International Conference
on Quantitative Evaluation of Systems (QEST’13), ser. Lecture Notes
in Computer Science, K. Joshi, M. Siegle, M. Stoelinga, and
P. D’Argenio, Eds., vol. 8054. Springer, Heidelberg, Sep. 2013, pp.
253–256. [Online]. Available: http://sourceforge.net/projects/verisimpl/

[9] D. Adzkiya, Y. Zhang, and A. Abate, “VeriSiMPL 2: An open-source
software for the verification of max-plus-linear systems,” Discrete Event
Dynamic Systems, vol. 26, no. 1, pp. 109–145, 2016.

[10] E. D. Sontag, “Nonlinear regulation: The piecewise-linear approach,”
IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 346–358,
Apr. 1981.

[11] D. Dill, “Timing assumptions and verification of finite-state concurrent
systems,” in Automatic Verification Methods for Finite State Systems,
ser. Lecture Notes in Computer Science, J. Sifakis, Ed. Springer,
Heidelberg, 1990, vol. 407, ch. 17, pp. 197–212.

[12] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, no. 2, pp. 183–235, 1994.

[13] W. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of hybrid
dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–1091, Jul.
2001.


