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ABSTRACT
This paper deals with the notion of approximate proba-
bilistic bisimulation (APB) relation for discrete-time labeled
Markov Chains (LMC). In order to provide a quantified up-
per bound on a metric over probabilistic realizations for
LMC, we exploit the structure and properties of the APB
and leverage the mathematical framework of Markov set-
Chains. Based on this bound, the article proves that the ex-
istence of an APB implies the preservation of robust PCTL
formulae, which are formulae that allow being properly re-
laxed or strengthened, according to the underlying APB.
This leads to a notion of robustness for probabilistic model
checking.

Categories and Subject Descriptors
G.3, G.4 [Mathematics of Computing]: Probability and
Statistics; Mathematical Software.

General Terms
Markov processes; Stochastic processes; Verification.

1. INTRODUCTION
For complex probabilistic systems with large state space

dimension, automatic verification of probabilistic properties
can be computationally prohibitive. An approach that is
successfully used to cope with the issue of computational
complexity and scalability that arise in formal verification
of complex models is that of abstraction: a system – equiva-
lent in some sense to the original system – with smaller state
space or simpler dynamics is sought. The abstraction is usu-
ally an aggregated or lumped version of the concrete model.
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Equivalence is usually introduced with reference to the no-
tion of bisimulation [26, 27], which is an equivalence relation
induced on the state space of the original system. System
equivalence implies that certain properties of the original
(complex) system are preserved by the (simpler) abstrac-
tion. Thus a specific property of interest can be checked
more efficiently (that is, with a lower computational com-
plexity) on the abstraction [21].

Often though, the exact notion of equivalence appears to
be quite conservative, because it requires an exact match
between trajectories of the concrete and of the abstract sys-
tems. In practice, severe problems may occur with the com-
putation of exact bisimulation due to numerical errors, in
particular for models with large state spaces [29]. This is-
sue is even more taxing for probabilistic models: if an ab-
stract system is verified on a model obtained with quantiza-
tion/discretization errors in the transition probabilities, the
effect of a small perturbation can invalidate the outcome of
the procedure.

These issues have led to the introduction of an approxi-
mate notion of equivalence, which for deterministic systems
was introduced in [15] via the notion of approximate bisimu-
lation – a notion based on metrics over the distance between
trajectories of concrete and abstract models.

In the context of non-deterministic models, the notion of
approximate bisimulation has been used to perform model
reduction while preserving properties expressed by temporal
logics, e.g. TCTL [19]. Such properties are subsequently
verified by the use of model checking procedures. In [8],
a quantitative version of transition systems is considered,
and different versions of trace and bisimulation distance are
defined.

For probabilistic systems, the concept of (strong) proba-
bilistic bisimulation has been introduced in [25] over discrete-
time, finite-state Markov Chains. Bisimulation corresponds
to what is also known as lumping. The use of approximate
notions is advocated in [14] and motivated by the robustness
issues mentioned above. Of course approximate notions are
also likely to result in coarser bisimulations than those ob-
tained with the exact notion. The work in [12] discusses ap-
proximate notions of bisimulations for discrete-time labeled
Markov processes.

The reference model framework in this paper is that of
discrete time labeled Markov Chains (LMC). We tailor the
definition of approximate probabilistic bisimulation (APB)
in [12] to LMC. As a first result of this paper, we provide
a quantitative upper bound for a probabilistic realization



metric in time (both over a finite and an infinite horizon)
with an expression that depends on the approximation level
of the APB. We provide these bounds first by exploiting
the structure of the APB, then by employing the theory of
Markov set-Chains (MSC) [18]. Since the APB notion in-
duces a coarser bisimulation than the corresponding exact
notion, it cannot be used to prove that all PCTL properties
of the original system are preserved by an approximately
bisimilar abstraction. As the main result of the paper, we
prove that an APB with precision ε implies the preserva-
tion of ε-robust PCTL properties over the original system.
PCTL [2, 22] is a discrete-time probabilistic temporal logic
that allows modeling probabilistic specifications, to be then
verified by probabilistic model checking using tools such as
PRISM [23, 24] or MRMC [20].

The results obtained in this paper for finite LMC represent
the first step towards robustness analysis for model check-
ing of infinite state space systems as general as Stochastic
Hybrid Systems (SHS). Indeed we aim to leverage the ab-
straction procedure we developed in [1], where we show how
to derive a finite LMC abstraction of a SHS characterized by
a finite precision, to subsequently verify properties of SHS
by using classical PCTL model checking algorithms over the
abstraction. In order to guarantee that the model check-
ing result obtained over the abstraction also holds for the
SHS, the accuracy of the abstraction needs to satisfy the
constraints discussed in this paper.

The paper is structured as follows. In Section 2, we de-
fine LMC and introduce the notions of APB. In Section 3 we
state quantified relations between the APB and a probabilis-
tic realization metric both by exploiting the structure and
properties of the APB (Section 3.1) and leveraging the math-
ematical framework of Markov set-Chains (Section 3.3). In
Section 4 we recall basic notions of PCTL model checking
(Section 4.1), and prove that the presence of an APB with
precision ε implies the preservation of ε-robust PCTL for-
mulae (Section 4.2). A case study is developed throughout
the paper, to apply and clarify the presented notions and
results.

2. APPROXIMATE BISIMULATION
Let AP be a finite, fixed set of atomic propositions.

Definition 1. [Discrete-time labeled Markov Chain] We
define a discrete-time labeled Markov Chain (LMC) as a tu-
ple (Q,P,L) consisting of:

• Q, a non-empty set of states of finite cardinality n ∈ N;

• P : Q×Q→ [0, 1], a stochastic matrix that associates
to each pair (q1, q2) ∈ Q×Q the transition probability
from state q1 to state q2;

• L : Q → 2AP , a labeling function that associates to
each state q ∈ Q the set L(q) of atomic propositions
that are valid in q.

A LMC can be related to a DTMC, as in [3], and is a subclass
of the labeled Markov process (LMP) model as in [12].

Consider a LMC M = (Q,P,L) and k ∈ N. We define
by P k(q, q′) the probability that state q′ is reached in k
steps by an execution of M starting from state q. Given a
set A ∈ 2Q, we define by P k(q,A) =

∑
q′∈A P

k(q, q′) the
probability that the set of states A is reached in k steps
starting from state q.

Given a LMC M , a relation Γ ⊆ Q×Q and a set A ∈ 2Q,
we introduce the set

Γ(A) = {q ∈ Q | ∃q′ ∈ A, (q, q′) ∈ Γ},

and say that A is Γ-closed if Γ(A) ⊆ A. The following
definition is inspired by [10, 25].

Definition 2. [Probabilistic bisimulation] Given a LMC
M = (Q,P,L), a probabilistic bisimulation is an equivalence
relation Γ ⊆ Q × Q such that for any (q1, q2) ∈ Γ then
L(q1) = L(q2), and for any Γ-closed set A ∈ 2Q,

P (q1, A) = P (q2, A).

States q1, q2 ∈ Q are probabilistic bisimilar, which is denoted
by q1 ≡ q2, if there exists a probabilistic bisimulation Γ with
(q1, q2) ∈ Γ.

The condition P (q1, A) = P (q2, A) in the above definition is
equivalent to the condition P (q1,Γ(A)) = P (q2,Γ(A)), since
for an equivalence Γ we have A = Γ(A). Any probabilistic
bisimulation relation induces a partition of the state space,
where the equivalence classes are made up of bisimilar states
[3]. In particular, the equivalence classes are given by the
Γ-closed sets {A1, . . . , Am}. In the following, we will denote
by m the number of Γ-closed sets that form a partition of
the state space. A recursive algorithm to compute the max-
imal (coarsest) bisimulation of a LMC with time complexity
O(|Q|2 log |Q|) has been proposed in [9]. Note that Defini-
tion 2 hinges on rather strong conditions on the transition
probabilities, marginalized over the equivalence classes.

Example 1. Craps is a dice game where the players bet
on the outcome of dice rolls. An LMC (Q,P,L) character-
izes the dynamics (the possible outcomes) of the game – its
transition probability matrix P is reported in Figure 1 [3,
Section 10]. Given a set AP = {start, mid, won, lost}, the
Markov Chain states

Q = {start, 4, 10, 5, 9, 6, 8, won, lost}

are associated to the following labels:

L(start) = start, L(i) = mid, i ∈ {4, 10, 5, 9, 6, 8},
L(won) = won, L(lost) = lost.

The Markov Chain admits an (exact) probabilistic bisimu-

Figure 1: Concrete Markov Chain of the craps game.

lation, depicted in Figure 2, with the following collection of



6 equivalence classes:

{start}, {4, 10}, {5, 9}, {6, 8}, {won}, {lost}.

Each pair of vertices within an equivalence class denotes
probabilistically bisimilar states.

Figure 2: Bisimilar LMC for craps game.

Notice how even small perturbations on the transition
probabilities or possible numerical approximations in ma-
trix P would invalidate the exact probabilistic bisimulation
relation of the above example. The concept of approxi-
mate probabilistic bisimulation has been introduced in [12]
to overcome the above limitations. The definition in [12,
Definition 10] has been introduced for LMP, and can be
shown to directly tailor to the one given here for LMC.

Definition 3. [Approximate probabilistic bisimulation]
Given a LMC M = (Q,P,L), an approximate probabilistic
bisimulation with precision 0 ≤ ε ≤ 1 (APB with precision
ε) is a reflexive and symmetric relation Γε ⊆ Q × Q such
that for any (q1, q2) ∈ Γε, then L(q1) = L(q2) and for any
Γε-closed set A ∈ 2Q,

|P (q1,Γε(A))− P (q2,Γε(A))| ≤ ε,

States q1, q2 ∈ Q are probabilistic approximately bisimilar
with precision ε, which is denoted by q1 ≡ε q2, if there exists
an APB Γε with precision ε, such that (q1, q2) ∈ Γε.

It is easy to see that an APB with precision ε = 0 is an
exact probabilistic bisimulation in the sense of Definition 2.
For any given LMC with state space Q and approximation
parameter ε ∈ [0, 1], techniques to compute the largest APB
with precision ε in time O(|Q|7) are introduced in [12].

Example 2. Let us consider a perturbed LMC (Q, P̃ , L)
of (Q,P,L) in Example 1, which is defined as follows:

P̃ = P + E,

where E(i, j) = εi,j , |εi,j | ≤ min{P (i, j), 1 − P (i, j)}, and∑
j∈Q εi,j = 0. As an example, consider

P̃ (start, i) = P (start, i) + εstart,i,
∑
i∈Q

εstart,i = 0.

Notice that P̃ is again a stochastic matrix. The LMC (Q, P̃ , L)
admits an APB with precision ε = 4‖E‖∞. (The presence of
the multiplicative factor is elucidated in the following set of
inequalities.) In this example, the APB Γε induces a collec-
tion of classes of ε-bisimilar pairs of states, which is equiv-
alent to the partition of Q as described in Figure 2. This
partition also corresponds to the collection of Γε-closed sets.
Let us consider the Γε-closed set A = {start, won, lost}:
since {5} ≡ε {9}, we obtain

|P (5, A)− P (9, A)|

=

∣∣∣∣∣
(

0 +
1

9
+ ε5,won +

1

6
+ ε5,lost

)

−
(

0 +
1

9
+ ε9,won +

1

6
+ ε9,lost

) ∣∣∣∣∣
≤ |ε5,won − ε9,won|+ |ε5,lost − ε9,lost| ≤ 2 · 2‖E‖∞.

The precision bound ε = 4‖E‖∞ can be shown to hold regard-
less of the choice of ε-bisimilar pairs q1 ≡ε q2 and Γε-closed
set A.

Let us now introduce the quantity ε̃ := 5
36
− 1

9
= 1

9
− 1

12
.

If ‖E‖∞ < ε̃
2

, then there exists a coarser APB that consists
of 5 classes (instead of 6 as before) of ε-bisimilar states

{start}, {4, 10, 5, 9}, {5, 9, 6, 8}, {won}, {lost}.

The new APB is associated to a precision ε = 4ε̃, which
can be checked as done above and imposing the bound on
‖E‖∞. Note that the obtained APB with precision ε does not
generate a partition of Q: this fact will be further discussed
shortly. The collection of Γε-closed sets is then

{start}, {4, 10, 5, 9, 6, 8}, {won}, {lost}.

As it is also evident in the above example, let us remark
that an APB with precision ε does not usually induce a par-
tition of the state space by equivalence classes that consist
of ε-bisimilar states. This is due to the fact that APB with
precision ε is not an equivalence relation, since in general
it does not satisfy the transitive property. This entails that
any two states belonging to the same Γε-closed set are not
necessarily ε-bisimilar: we show instead that they are lε-
bisimilar, with l a finite positive integer smaller than the
diameter of the Γε-closed set. To clarify and formalize this
fact, we provide some connections between the concept of
APB and graph theory [17].

Definition 4. [APB graph] Given a LMC M = (Q,P,L)
and an APB Γε, we define the associated APB graph G =
(V,E) as V = Q and E = Γε. Since Γε is symmetric, then
G is an undirected graph.

The set {A1, . . . , Am} of all non-intersecting Γε-closed sets
forms a partition of the set Q. Moreover, the following
straightforward result holds.

Proposition 1. Given a LMC M = (Q,P,L) and an
APB Γε, then the associated APB graph G has m connected
components {Gi = (Vi, Ei)}mi=1, and ∀i ∈ {1, . . . ,m}, Vi =
Ai.

Definition 5. [Central vertex, radius, and diameter of
APB graph] Given a LMC M = (Q,P,L), an APB Γε and
the associated APB graph G, we select for each Γε-closed set
Ai any element āi ∈ Ai as a central vertex of Gi, and define



the radius ri and the diameter di associated to Ai as the
radius and diameter of Gi.

The radius of a graph is the minimum eccentricity of any
of its vertices. The eccentricity of a vertex is its greatest
possible distance from any other vertex in the graph. Thus
a radius of a graph (and its central vertex) can be com-
puted by first running the all-pairs-shortest-path algorithm,
then maximizing the computed distance for any vertex, and
finally minimizing the obtained value over the vertices of
the graph. This can be done over un-weighted, un-directed
graphs in polynomial time, at worst in O(n3) [4]. Analogous
considerations hold for the concept of graph diameter.

Figure 3 provides an example of APB and associated APB
graph. The dashed ellipses denote Γε-bisimilar states in Q.
The Γε-closed sets are A1 = {1, 2, 4, 5, 8}, A2 = {3, 6}, A3 =
{7, 10}, A4 = {9, 11, 12}. The central vertex a1 of G1 can be
indifferently state 4 or state 5. The radius and the diameter
of G1 are respectively r1 = 2 and d1 = 3.

1

121110

987

654

32 1

121110

987

654

32

G1 G2

G4
G3

Figure 3: Left: APB - dashed ellipses define the Γε
relation. Right: associated APB graph G = G1 ∪ G2 ∪
G3 ∪ G4.

Example 3. With reference to the last instance of APB
Γε in Example 2, which is characterized by the following sets
of Γε bisimilar states

{start}, {4, 10, 5, 9}, {5, 9, 6, 8}, {won, lost},

we obtain the following Γε-closed sets:

A1 = {start}, A2 = {4, 10, 5, 9, 6, 8}, A3 = {won, lost},

with radii r1 = 0, r2 = 1, r3 = 1 and diameters d1 = 0, d2 =
5, d3 = 1 The central vertices of the Γε-closed sets are re-
spectively start for G1, either 5 or 9 for G2, and either won

or lost for G3. The APB graph is represented in Figure 4.

3. BISIMULATION BOUNDS ON
REALIZATION DISTANCE

In this section we draw a connection between the notion
of probabilistic realization distance over a LMC and that of
APB. More precisely, we are interested in defining a metric
on the distance in time between realizations of trajectories
starting from two different initial conditions. We focus on
initial conditions that are related by the notion of APB, and
compute metrics over sets that are closed over this relation.
We show explicit upper bounds in time for this distance.

start G1

G2
G3

4 10 5 9 6 8

won lost

Figure 4: APB graph of Example 3.

Definition 6. [Probabilistic realization distance induced
by Γε] Given M = (Q,P,L) and an APB Γε ⊆ Q × Q, we
define a distance dkΓε

(q1, q2) induced by Γε at time k ≥ 1 as
follows:

dkΓε
(q1, q2) = max

∀A Γε − closed

∣∣∣P k(q1,Γε(A))− P k(q2,Γε(A))
∣∣∣ .

We define d∞Γε
(q1, q2) = lim

k→∞
dkΓε

(q1, q2), if such limit exists.

Note that the probabilistic realization distance at time k
induced by an APB Γε between two LMC is the 1-norm
distance at time k between the probability distributions,
marginalized over the Γε-closed sets.

Given M = (Q,P,L) and an APB Γε, let us introduce the
quantity

dkε(M) = max
(q1,q2)∈Γε

dkΓε
(q1, q2). (1)

3.1 Bound on finite-time realization distance
The next result draws an explicit bound on the finite-

horizon realization distance. The bound depends on the
existence of an APB Γε, in particular on its precision ε and
on the properties of the associated APB graph.

Theorem 1. Given a LMC M = (Q,P,L) and an APB
Γε, then for any (q1, q2) ∈ Γε and for any k ∈ N the following
holds:

dkΓε
(q1, q2) ≤ ε

(
m+ ε

m∑
i=1

ri

)k−1

.

Proof. Recall that |Q| = n and that the m-dimensional
(m ≤ n) collection {Ai}mi=1 of Γε-closed sets results in a
partition of Q. Each set Ai, i ∈ {1, . . . ,m} is associated to
a central vertex āi and a radius ri (cfr. Def. 5).
Consider any two states q1, q2 ∈ Q : q1 ≡ε q2. By Definition
3, for any Γε-closed set A:

|P (q1, A)− P (q2, A)| ≤ ε,

thus d1
Γε

(q1, q2) ≤ ε. As a next step, consider:

∣∣P 2(q1, A)− P 2(q2, A)
∣∣=∣∣∣∣∣

n∑
j=1

(P (q1, qj)− P (q2, qj))P (qj , A)

∣∣∣∣∣ .
Notice that ∪nj=1{qj} = ∪mi=1Ai. Consider a setAi ∈ {Ai}mi=1,
a generic state q ∈ Ai and its central vertex āi, and the con-
nected component Gi of the APB graph G. By construction,



there exists a finite-discrete path

{q = s0, s1, . . . , sk, sk+1, . . . , āi}

of cardinality at most ri, which connects q with āi. There-
fore, ∀q ∈ Ai, it holds that

P (q,A) ≤ |P (q,A)− P (s1, A)|
+ |P (s1, A)− . . .− P (sk, A)|+ |P (sk, A)− P (sk+1, A)|
+ |P (sk+1, A)− . . .− P (āi, A)|+ P (āi, A).

Since (sk, sk+1) ∈ Γε for all 0 ≤ k ≤ ri − 1 by definition of
Gi, then ∀A,AΓε-closed, it holds that

∀k, |P (sk, A)− P (sk+1, A)| ≤ ε.

We then obtain that

∀q ∈ Ai, P (q,A) ≤ P (āi, A) + riε,

which leads to ∣∣P 2(q1, A)− P 2(q2, A)
∣∣ ≤∣∣∣∣∣

m∑
i=1

(P (q1, Ai)− P (q2, Ai)) (P (āi, A) + riε)

∣∣∣∣∣ ≤
m∑
i=1

|P (q1, Ai)− P (q2, Ai)| (P (āi, A) + riε) ≤∣∣∣∣∣
m∑
i=1

ε (P (āi, A) + riε)

∣∣∣∣∣ ≤ ε
(
m+ ε

m∑
i=1

ri

)
. (2)

Inductively, we obtain∣∣∣P k(q1, A)− P k(q2, A)
∣∣∣ ≤ ε(m+ ε

m∑
i=1

ri

)k−1

,

which leads to the bound in the statement.

Notice that the derived bound can be practically conser-
vative, in particular due to the inequality in (2), and can
thus be substituted by a tighter lower-approximant, as the
following example displays.

Example 4. Let us consider the first instance of APB
discussed in Example 2. Note that the radii related to the
Γε-closed sets are equal either to 0 (for classes start, won,
lost) or to 1 (for classes (4, 10), (5, 9), (6, 8)).

At step k, the derived bound results in the quantity ε(6 +
3ε)k−1, however this worst-case bound can be actually re-
fined. For instance, consider the two states 4 and 10, which
are ε-bisimilar, and the Γε-closed set A = {won}. Then,
the inequality in (2) can be refined as follows (refer to the
incoming edges into set {won} in Figure 2):∣∣∣P k(4, A)− P k(10, A)

∣∣∣
≤ ε

(
2

9
+ 0ε+

1

12
+ 1ε+

1

9
+ 1ε+

5

36
+ 1ε+ 0 + 0ε

)k−1

= ε

(
5

9
+ 3ε

)k−1

.

Notice that the new bound is not only lower than ε(6 +
3ε)k−1, but is also decreasing in time if ε < 4

27
.

Theorem 1 provides a bound that in general increases
quickly with k if the argument of the exponent is larger

than the unity. In order to try to generalize this bound to
hold over an infinite horizon (cfr. Section 3.3), we introduce
next the formalism and theory of Markov set-Chains.

3.2 Markov Set-Chains
The results illustrated in this section are from [18] and are

also summarized in [1].

Definition 7. [18, Definition 2.5, Transition Set] Let
P,Q ∈ Rn×n be nonnegative matrices (not necessarily stochas-
tic) with P ≤ Q, where ≤ is element-wise. We define a tran-
sition set as [Π] = [P,Q] = {T ∈ Rn×n : T is a stochastic
matrix and P ≤ T ≤ Q}.

In this paper, we assume that the set [P,Q] 6= ∅. A (discrete-
time) Markov set-Chain can be formally introduced as fol-
lows.

Definition 8. [18, Definition 2.5, Markov set-Chain]
Let [Π] be a transition set, i.e. a compact set of n × n
stochastic matrices. Consider the set of all inhomogeneous
Markov Chains having their transition matrices in [Π]. We
call the sequence [Π], [Π]2, . . . a Markov set-Chain (MSC),
where [Π]k is defined by induction as the set of all possible
products T1T2 · · ·Tk, such that ∀i = 1, . . . , k, Ti ∈ [Π].

Definition 9. [18, Definition 1.2, Coefficient of Ergod-
icity of a Stochastic Matrix] For a stochastic matrix T , its
coefficient of ergodicity is defined as follows:

T (T ) =
1

2
max
i,j
||ai − aj ||,

where ai, aj are the i–th, j–th rows of T , and ‖ · ‖ is the
standard 1-norm over row vectors: ‖x‖ =

∑
k |xk|.

It can be shown that the condition T (T ) < 1, along with
the condition of irreducibility of the chain, implies the exis-
tence of a unique limiting and invariant distribution for the
associated Markov Chain [18, 13]. The previous definition
can be directly extended to MSC.

Definition 10. [18, Definition 3.1, Coefficient of Ergod-
icity of a Transition Set] For any transition set [Π], its co-
efficient of ergodicity is defined over the stochastic matrices
that define [Π] as follows: T ([Π]) = maxT∈[Π] T (T ).

Since T (·) is a continuous function and [Π] a compact set,
the corresponding maximum argument exists.

Theorem 2. [18, Theorem 3.1] Let [Π] be the interval
[P,Q] and T ∈ [Π], then |T ([Π])− T (T )| ≤ ||Q− P ||.

The used matrix norm is the induced 1-norm over row-
vectors: ‖T‖ = maxx6=0

‖xT‖
‖x‖ . Let us define the diameter

of a transition set:

∆([Π]) = max
T,T ′∈[Π]

||T − T ′||.

The following result provides an upper bound for the diam-
eter of the transition set [Π]k, k > 0.

Theorem 3. [18, Theorems 3.4, 3.11] Given a MSC with
transition set [Π] = [P,Q], then

∆([Π]k) ≤ T ([Π])k + (T ([Π])k−1 + . . .+ 1)∆([Π]).



In particular, if T ([Π]) < 1, given any initial distribution
set [π0], there exists a unique set [π∞] that is invariant, i.e.
such that [π∞][Π] = [π∞], and moreover such that

lim
k→∞

[πk] = lim
k→∞

[π0][Π]k = [π∞].

Furthermore, the following holds:

∆([π∞]) ≤ ∆([Π])

1− T ([Π])
≤ ||Q− P ||

1− T ([Π])
.

The notion of limit of a vector interval hinges on the Haus-
dorff distance [18], which is a distance between sets. The de-
rived bounds are not necessarily tight, however they are suf-
ficient for the objectives of the study (finiteness of bounds),
and as such they will be used below. Tighter results can be
obtained with more sophistication (cfr. the Hi-Lo method
and the notion of scrambling coefficient in [18]).

3.3 Bound on infinite-time realization distance
On the basis of the MSC theory illustrated in the previ-

ous section, we provide a new bound for the probabilistic
realization distance induced by an APB Γε.

Theorem 4. Given a LMC M = (Q,P,L) and an APB
Γε, then for any (q1, q2) ∈ Γε and k ∈ N∪{∞} the following
holds:

dkΓε
(q1, q2) ≤ τk + ελm

k−1∑
l=0

τ l,

where τ = T (M) + ελm, and λ = maxi=1,...,m di is the
maximum diameter among the connected components of the
APB graph.

Proof. Consider the APB Γε on M . We define a MSC
over the state space Q[M ] = {A1, . . . , Am} of Γε-closed sets,
and characterized by the following transition set P[M ]: for
each A1, A2 ∈ Q[M ], define

P[M ](A1, A2) = [ min
q∈A1

{P (q,A2)}, max
q∈A1

{P (q,A2)}].

Since the cardinality of the MSC [M ] is given by m =
|Q[M ]| ≤ |Q| = n, and since by Definition 3∣∣∣∣min

q∈A1

{P (q,A2)} − max
q∈A1

{P (q,A2)}
∣∣∣∣ ≤ εd1,

then ∆([M ]) = ελm: in fact (cfr. Section 3.2), ∆([M ]) =
maxi=1,...,m

∑m
j=1 εdi = maxi=1,...,m εdim. The coefficient

of ergodicity T ([M ]), according to Theorem 2, satisfies the
inequality T (M) ≤ T ([M ]) ≤ T (M) + ελm = τ .

Given any A1, A2 ∈ Q[M ] and any q, q′ ∈ A1, it follows
that

P (q,A2) ∈ P[M ](A1, A2), P (q′, A2) ∈ P[M ](A1, A2).

Using the above set of inclusions, we can derive the following
bound for any Γε-closed set A2 ∈ Q[M ]:∣∣P (q,A2)− P (q′, A2)

∣∣ ≤ ∆([M ]),

Directly leveraging Theorem 3 this yields, ∀k > 0,∣∣∣P k(q,A2)− P k(q′, A2)
∣∣∣ ≤ ∆([M ]k) ≤ τk + ελm

k−1∑
l=0

τ l.

Thus, the following holds for all (q1, q2) ∈ Γε:

dkΓε
(q1, q2) = max

∀A Γε − closed

∣∣∣P k(q1, A)− P k(q2, A)
∣∣∣

≤ τk + ελm

k−1∑
l=0

τ l,

which proves the statement.

The bound provided above is finite for any k > 0 if τ < 1.
Therefore, if the MSC [M ] is sufficiently ergodic (namely its
coefficient of ergodicity is less then 1− ελm), then Theorem
4 also holds for k → ∞ since the bound dkε(q1, q2) is finite
in time for all (q1, q2) ∈ Γε. In this instance, the result is
stronger than the bound obtained in Theorem 1. Further-
more, a positive aspect of the above bound is that, under
the ergodicity assumption, it does not accumulate in time,
unlike other metrics [11, 28] that have to rely on discounting
over time [12].

4. ROBUSTNESS OF PCTL FORMULAE
Robustness issue have been the main driver that has lead

to an approximate concept of probabilistic bisimulation. In
this section we go further along this research path by “ro-
bustifying” PCTL model checking.

4.1 Probabilistic Computation Tree Logic
Let M = (Q,P,L) be a LMC, where L = 2AP and AP

is a finite set of atomic propositions. We recall now syntax,
semantics and model checking for PCTL.

Definition 11. [PCTL syntax, [16]] The syntax of PCTL
is as follows:

Φ = true | a | ¬Φ | Φ ∧ Φ | P∼p[φ]

φ = XΦ | ΦU≤kΦ

where a is an atomic proposition, ∼∈ {<,≤,≥, >}, p ∈ [0, 1]
and k ∈ N ∪ {∞}.

PCTL formulae are interpreted over the states of a LMC.
For the presentation of the syntax we distinguish between
state formulae Φ and path formulae φ, which are evaluated
over states and paths, respectively. A path q is an infi-
nite sequence of states in the LMC q1 q2 q3 . . ., such that
P (qi, qi+1) > 0. Let q(i) denote the i-th state in q, i.e.,
q(i) = qi. For a state q and a PCTL formula Φ, we write
q |= Φ to indicate that q satisfies Φ. Similarly, for a path q
satisfying the path formula φ, we write q |= φ.

Definition 12. [PCTL semantics, [16]] The semantics
of PCTL over LMC is defined as follows:

q |= true ∀q ∈ Q
q |= a ⇔ a ∈ L(q)

q |= ¬Φ ⇔ q 2 Φ
q |= Φ ∧Ψ ⇔ q |= Φ ∧ q |= Ψ
q |= P∼p[φ] ⇔ Prob({q : q(0) = q : q |= φ}) ∼ p

q |= XΦ ⇔ q(1) |= Φ
q |= ΦU≤kΨ ⇔ ∃i ∈ N : (i ≤ k ∧ q(i) |= Ψ ∧

∀j < i, (q(j) |= Φ)).

where Prob({q : q(0) = q : q |= φ}) is the probability that q
generates a path q satisfying formula φ. We now summarize



a model checking algorithm for PCTL over LMC [6, 7, 16].
The inputs to the algorithm are a LMC M = (Q,P,L) and a
PCTL formula Φ. The output is the set of states Sat(Φ) =
{q ∈ Q : q |= Φ}, i.e. the set containing all the states
of the model which satisfy Φ. The overall structure of the
algorithm is identical to the model checking algorithm for
CTL [5] (the non-probabilistic temporal logic which PCTL
is based on) and can be summarized as follows:

Sat(true) = Q

Sat(a) = {q ∈ Q : a ∈ L(q)}
Sat(¬Φ) = Q \ Sat(Φ)

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(P∼p[φ]) = {q ∈ Q : ProbM (q, φ) ∼ p},

where ProbM (q, φ) is the probability that q generates a path
satisfying formula φ. Model checking for the majority of
these formulae is trivial to implement and is, in fact, the
same as for the non-probabilistic logic CTL. The exception
is made up of formulae with the form P∼p[φ]. For these
formulae, we have to calculate for all states q of the LMC, the
probability ProbM (q, φ), then compare these values to the
bound ∼ p in the formula. We now describe how to compute
these values for the two cases: P∼p[XΦ] and P∼p[ΦU≤kΨ].
Because of the recursive nature of the PCTL model checking
algorithm, we can assume that the relevant sets Sat(Φ) and
Sat(Ψ) are already known.
P∼p[XΦ] formulae. In this case, we need to compute the

probability ProbM (q,XΦ) for each q ∈ Q. This requires the
probabilities of the immediate transitions from q:

ProbM (q,XΦ) = P (q, Sat(Φ)). (3)

P∼p[ΦU≤kΨ], k ∈ N ∪ {∞} formulae. For such formulae
we need to determine the probabilities ProbM (q,ΦU≤kΨ)
for all states q, where k ∈ N ∪ {∞}. To this aim, we need
the following definition:

Definition 13. [Formula-dependent LMC, [16]] Given a
LMC M = (Q,P,L) and a PCTL formula Φ, let M [Φ] =
(Q,P [Φ], L), where if q 2 Φ, then P [Φ](q, q′) = P (q, q′)
for all q′ ∈ Q, and if q |= Φ, then P [Φ](q, q) = 1 and
P [Φ](q, q′) = 0 for all q′ 6= q.

Using this transformation we characterize ProbM (q,ΦU≤kΨ)
as follows.

Proposition 2. [16] For any LMC M = (Q,P,L), state
q ∈ Q, PCTL formulae Φ and Ψ, and k ∈ N:

ProbM (q,ΦU≤kΨ) = P kM [¬Φ∨Ψ](q, Sat(Ψ)). (4)

Model checking can be performed directly on M [¬Φ ∨ Ψ].
For the unbounded until case, we obtain:

ProbM (q,ΦU≤∞Ψ) = lim
k→∞

P kM [¬Φ∨Ψ](q, Sat(Ψ)).

We remark that lim
k→∞

P kM [¬Φ∨Ψ](q, Sat(Ψ)) always exists and

is unique. This can be shown using the theory of labeled
Markov Chains, and is also implied by the existence and
uniqueness of a solution to unbounded until formulae [16,
22].

4.2 Robust PCTL
Given a PCTL formula Φ, a LMC M and a APB Γε over

M , we propose in the following definition an iterative recipe
to construct a strengthened formula Sε(Φ) and a relaxed
formula Rε(Φ). This definition will be used in the following
to define the set of formulae that are preserved by an APB
with precision ε.

Definition 14. [Strengthened and Relaxed PCTL formu-
lae] Given a LMC M , a PCTL formula Φ and a non-negative
real ε > 0, we define the ε–strengthened PCTL formula
Sε(Φ) and the ε–relaxed PCTL formula Rε(Φ) by structural
induction as follows:

1. Sε(true) = true,
Rε(true) = true.

2. Sε(a) = a,
Rε(a) = a.

3. Sε(¬Φ) = ¬Rε(Φ),
Rε(¬Φ) = ¬Sε(Φ).

4. Sε(Φ ∧Ψ) = Sε(Φ) ∧ Sε(Ψ),
Rε(Φ ∧Ψ) = Rε(Φ) ∧Rε(Ψ).

5. Sε(P∼p[XΦ]) = P∼p′ [XSε(Φ)], where:

p′ =

{
p− ε if ∼∈ {<,≤}
p+ ε if ∼∈ {>,≥},

Rε(P∼p[XΦ]) = P∼p′ [XRε(Φ)], where:

p′ =

{
p+ ε if ∼∈ {<,≤}
p− ε if ∼∈ {>,≥}.

6. Sε(P∼p[ΦU≤kΨ]) = P∼p′ [Sε(Φ)U≤kSε(Ψ)], where k ∈
N ∪ {∞} and:

p′ =

{
p− dkε(M) if ∼∈ {<,≤}
p+ dkε(M) if ∼∈ {>,≥},

Rε(P∼p[ΦU≤kΨ]) = P∼p′ [Rε(Φ)U≤kRε(Ψ)], where k ∈
N ∪ {∞} and:

p′ =

{
p+ dkε(M) if ∼∈ {<,≤}
p− dkε(M) if ∼∈ {>,≥}.

We say that a strengthened or relaxed formula Sε(Φ) or
Rε(Φ) is consistent if in each step of the recursive substitu-
tion above p′ ∈ [0, 1]. Note that inconsistent strengthened
or relaxed formulae are either identically true (e.g. P≤1.1[·],
P≥−0.1[·]) or identically false (e.g. P≥1.1[·], P≤−0.1[·]).

Example 5. Consider the first perturbed LMC (Q, P̃ , L)
introduced in Example 2 and the formula

Φ = P≥γ [startU≤k won].

Let us first compute the distance dkε(Q, P̃ , L) := dkε in (1),
employing the finite-time bounds derived in Theorem 1, which
we tailor to the case study at hand as discussed in Example
4. A few cases need to be considered. Select A = {won}.
Notice that if (i, j) ∈ {(4, 10), (5, 9), (6, 8)}, then∣∣∣P k({i}, A)− P k({j}, A)

∣∣∣ ≤ ε(5

9
+ 3ε

)k−1

.



If A = {lost}, then∣∣∣P k({i}, A)− P k({j}, A)
∣∣∣ ≤ ε(11

18
+ 3ε

)k−1

.

If A = {(4, 10)} or A = {(5, 9)} or A = {(6, 8)}, then∣∣∣P k({i}, A)− P k({j}, A)
∣∣∣ ≤ ε(5

6
+ 3ε

)k−1

.

The instance A = {start} yields a trivial bound. In conclu-

sion, we derive that dkε = ε
(

5
6

+ 3ε
)k−1

. It follows that

Sε(Φ) = P≥γ+dkε
[startU≤k won],

whereas

Rε(Φ) = P≥γ−dkε [startU≤k won].

Notice that assuming ε ≤ 1/18, the distance bound is de-
creasing with time k. Furthermore, S0(Φ) = R0(Φ) = Φ.

Definition 15. [ε-robustness of a PCTL formula] Given
a LMC M , a PCTL formula Φ and a non-negative real ε >
0, we say that Φ is ε-robust with respect to M if, for any q ∈
Q and for any sub-formula Ψ of Φ, either q ∈ Sat(Sε(Ψ))
or q /∈ Sat(Rε(Ψ)).

The above definition requires that the case q |= Rε(Ψ) ∧
¬Sε(Ψ) can not occur. The following Theorem establishes
the main result of this paper.

Theorem 5. Given a LMC M , an APB Γε and a PCTL
formula Φ, let Φ be ε-robust with respect to M . Then for
each q1, q2 ∈ Q such that q1 ≡ε q2 the following holds:

q1 ∈ Sat(Φ)⇔ q2 ∈ Sat(Φ).

Proof. (By induction on formula depth).
According to [6, 7, 16], model checking is performed over
the parse tree of Φ where the root node is labeled with Φ
itself, and leaves of the tree are labeled with either true or
an atomic proposition a.

We prove the theorem by structural induction on Φ. For
the base case, Φ = a for an atomic proposition a. Since q1 ≡ε
q2, it follows that L(q1) = L(q2), hence q1 ∈ Sat(a) iff q2 ∈
Sat(a). Then, we prove the induction step for the negation,
next and until (bounded and unbounded) operators. The
induction step for the other formulae is trivial.
¬Φ formulae (negation):

Let q1 ∈ Sat(¬Φ), then q1 /∈ Sat(Φ). The induction hypoth-
esis implies that ∀q1, q2 such that q1 ≡ε q2 then

q1 ∈ Sat(Φ)⇔ q2 ∈ Sat(Φ),

which implies that

q1 /∈ Sat(Φ)⇔ q2 /∈ Sat(Φ).

The above statement directly implies that

q1 ∈ Sat(¬Φ)⇔ q2 ∈ Sat(¬Φ).

P∼p[XΦ] formulae (next operator):
Let q1 ∈ Sat(P∼p[XΦ]), then equation (3) implies that:

P (q1, Sat(Φ)) ∼ p.

The induction hypothesis implies that ∀q′1, q′2 such that q′1 ≡ε
q′2 the following holds:

q′1 ∈ Sat(Φ)⇔ q′2 ∈ Sat(Φ). (5)

Therefore Sat(Φ) is a Γε-closed set. Given any q2 ∈ Q such
that q1 ≡ε q2, Definition 3 implies that:

|P (q1, Sat(Φ))− P (q2, Sat(Φ))| ≤ ε. (6)

It follows that, if ∼∈ {<,≤}, then:

P (q2, Sat(Φ)) ∼ P (q1, Sat(Φ)) + ε.

Since q1 ∈ Sat(P∼p[XΦ]), the robustness assumption im-
plies that q1 ∈ Sat(Sε(P∼p[XΦ])), thus:

P (q1, Sat(Φ)) + ε ∼p− ε+ ε = p.

Analogously, if ∼∈ {>,≥}, then:

P (q2, Sat(Φ)) ∼ p+ ε− ε = p.

The above reasoning implies that

q1 ∈ Sat(P∼p[XΦ])⇒ q2 ∈ Sat(P∼p[XΦ]).

To complete the induction step, we need to prove that

q1 /∈ Sat(P∼p[XΦ])⇒ q2 /∈ Sat(P∼p[XΦ]).

The proof is analogous and is thus omitted.
P∼p[ΦU≤kΨ], k ∈ N ∪ {∞} formulae (bounded and

unbounded until operators):
Let q ∈ Sat(P∼p[ΦU≤kΨ]), k ∈ N ∪ {∞}, then equation (4)
implies that:

P kM [¬Φ∨Ψ](q, Sat(Ψ)) ∼ p.

The induction hypothesis implies that ∀q′1, q′2 such that q′1 ≡ε
q′2 the following hold:

q′1 ∈ Sat(¬Φ)⇔ q′2 ∈ Sat(¬Φ),

q′1 ∈ Sat(Ψ)⇔ q′2 ∈ Sat(Ψ).

Therefore Sat(¬Φ) and Sat(Ψ) are Γε-closed sets, and the
following holds:

∀(q1, q2) ∈ Γε, q
′
1 ∈ Sat(¬Φ ∨Ψ)

⇔q′1 ∈ Sat(¬Φ) ∨ q′1 ∈ Sat(Ψ)

⇔q′2 ∈ Sat(¬Φ) ∨ q′2 ∈ Sat(Ψ)

⇔q′2 ∈ Sat(¬Φ ∨Ψ).

Therefore Sat(¬Φ ∨Ψ) is a Γε-closed set, and the following
property holds for the LMC M [¬Φ ∨Ψ]:

∀(q1, q2) ∈ Γε, either q1, q2 ∈ Sat(¬Φ ∨Ψ)

or q1, q2 /∈ Sat(¬Φ ∨Ψ).

We prove now that Γε is an APB over the LMC M [¬Φ∨Ψ].
Pick any (q1, q2) ∈ Γε. If q1, q2 ∈ Sat(¬Φ ∨ Ψ), then by
Definition 13:

P [¬Φ ∨Ψ](q1, q1) = P [¬Φ ∨Ψ](q2, q2) = 1,

∀q′ 6= q1, P [¬Φ ∨Ψ](q1, q
′) = 0,

∀q′ 6= q2, P [¬Φ ∨Ψ](q2, q
′) = 0.

Therefore, for any Γε-closed set A 6= Sat(¬Φ ∨Ψ),

|P [¬Φ ∨Ψ](q1, A)− P [¬Φ ∨Ψ](q2, A)| = 0− 0 ≤ ε,

and

|P [¬Φ ∨Ψ](q1, Sat(¬Φ ∨Ψ))− P [¬Φ ∨Ψ](q2, Sat(¬Φ ∨Ψ))|
= 1− 1 ≤ ε.



If q1, q2 /∈ Sat(¬Φ ∨Ψ), then by Definition 13:

∀q′ ∈ Q, P [¬Φ ∨Ψ](q1, q
′) = P (q1, q

′) and

P [¬Φ ∨Ψ](q2, q
′) = P (q2, q

′).

Therefore, for any Γε-closed set A

|P [¬Φ ∨Ψ](q1, A)− P [¬Φ ∨Ψ](q2, A)|
= |P (q1, A)− P (q2, A)| ≤ ε.

Since the condition of Definition 3 is satisfied, then Γε is
an APB over the LMC M [¬Φ ∨ Ψ]. Therefore, Theorem 4
implies that for any Γε-closed set A the following holds, for
each k ∈ N ∪ {∞}:∣∣∣P kM [¬Φ∨Ψ](q1, A)− P kM [¬Φ∨Ψ](q2, A)

∣∣∣ ≤ dkε(M [¬Φ ∨Ψ]),

(7)

where P kM [¬Φ∨Ψ](q,A) is the probability that the set A is
reached in k steps by an execution of M [¬Φ ∨ Ψ] starting
from state q. If ∼∈ {<,≤} then using the robustness as-
sumption and by applying Equation (7) with A = Sat(Ψ),
it follows that:

P kM [¬Φ∨Ψ](q2, Sat(Ψ)) ∼ P kM [¬Φ∨Ψ](q1, Sat(Ψ)) + dkε(M)

∼ p− dkε(M) + dkε(M) = p.

Analogously, if ∼∈ {>,≥}, then:

P kM [¬Φ∨Ψ](q2, Sat(Ψ)) ∼ p+ dkε(M)− dkε(M) = p.

The above reasoning implies that

q1 ∈ Sat(P∼p[ΦU≤kΨ])⇒ q2 ∈ Sat(P∼p[ΦU≤kΨ]).

To complete the induction step, we need to prove that

q1 /∈ Sat(P∼p[ΦU≤kΨ])⇒ q2 /∈ Sat(P∼p[ΦU≤kΨ]).

The proof is analogous and is thus omitted.
The above steps imply that q1 ∈ Sat(Φ) ⇔ q2 ∈ Sat(Φ),

and this completes the proof.

The above result allows the verification of a PCTL for-
mula Φ over a numerical model Mε obtained from a con-
crete model M , where the transition probabilities of Mε are
obtained by approximation with precision ε. If Φ is ε robust
over Mε, then the PCTL model checking results over Mε can
be exported over M . Otherwise, it is necessary to use a more
refined numerical model. Characterizing the existence of a
strictly positive precision ε′ > 0 that allows PCTL model
checking of Φ over Mε′ is an interesting question for future
work.

Example 6. Consider the LMC (Q, P̃ , L) discussed in
Example 5, which is a perturbed version of (Q,P,L) in Ex-
ample 1. As suggested in [10], the definitions of (probabilis-
tic bisimulation and of) APB can be extended to relate two
different LMC: this is achieved by considering an APB over
the cross product of the two LMC. We are here interested in
verifying properties of (Q,P,L) over (Q, P̃ , L). Suppose that

P̃ is obtained by quantization of P . This example argues that
an increase in the quantization precision allows verifying on
(Q, P̃ , L) a larger set of PCTL properties for (Q,P,L).

Assume that the quantization is obtained by truncating the
elements of P within its third decimal digit: for instance
5/36 = 0.138̄ is approximated by 0.139, whereas 1/9 = 0.1̄

is approximated by 0.111. It is easy to realize that P̃ can be
related to an error bound ‖E‖∞ = 5 · 10−4 and thus to an
APB with approximation precision ε = 2 · 10−3. Similarly,
if P̃ is obtained by truncating the elements of P within its
ith decimal digit, then ε = 2 · 10−i. Recall that in Example

5 we have established that dkε = ε
(

5
6

+ 3ε
)k−1

. The bounded
until formula

Φ = P≥γ [startU≤k won]

is robust if dkε ≤ γ ≤ 1 − dkε : this can be established by
application of Definition 15 over any q ∈ Q. Figure 5 plots
this upper bound on γ, over different approximation digits
and time horizons. Select γ = 0.7, and assume that the
approximation digit is strictly greater than one. If Φ is true
on (Q, P̃ , L) for any k > 1, being Φ robust then Φ is also
true on (Q,P,L) for any k > 1. If instead the approximation

digit is one then regardless of the value of Φ on (Q, P̃ , L)
for any k > 1, since Φ not robust, we cannot draw any
conclusion on the validity of Φ over (Q,P,L).

1
2

3
4

5

1
2

3
4

5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time horizon k

Bound on γ

Approximation digit

Figure 5: Robustness bounds on γ for formula Φ =
P≥γ [startU≤k won].

Consider now the formula Φ = P≤γ [Xlost]. Then Sε(Φ) =
P≤γ−ε[Xlost] and Rε(Φ) = P≤γ+ε[Xlost]. Robustness can
again be studied via Definition 15, applied on any q ∈ Q.
The allowed interval for ε is [0, 5/12]. In particular, if 0 ≤
ε < 1/36, then

γ ∈ [ε, 1/9] ∪ [1/9 + ε, 1/6− ε] ∪ [1/6 + ε, 1− ε],

whereas if 1/36 ≤ ε < 1/18, then

γ ∈ [ε, 1/9− ε] ∪ [1/6 + ε, 1− ε],

and if 1/18 ≤ ε ≤ 5/12, then

γ ∈ [1/6 + ε, 1− ε].

With focus on the approximated LMC (Q, P̃ , L), again as the
approximation increases to i digits, Φ grows in robustness.
Given a particular approximation digit, if Φ is robust then
we can safely claim that checking j |= Φ and k |= Φ is
equivalent for any j, k ∈ {4, 10, 5, 9, 6, 8}.

5. CONCLUSIONS
With focus on labeled Markov Chains (LMC) in discrete-

time, this work has utilized the notion of approximate prob-
abilistic bisimulation (APB) to introduce bounds on prob-
abilistic realization metrics in time between approximately



bisimilar states. As the main contribution of the paper, we
have shown that the presence of an APB implies the preser-
vation of (properly defined) robust PCTL formulae. This
result allows the verification of a PCTL formula executed
over an abstract model obtained as an approximation of a
concrete model, e.g. over a numerical model where the tran-
sition probabilities are obtained by finite-precision approxi-
mation.

As for future work, it is of interest to understand what
model properties (ergodicity, presence of absorbing classes)
yield APB resulting in finite bounds for the probabilistic re-
alization metrics. Furthermore, as discussed in Section 1, we
aim to leverage on the abstraction procedure we developed in
[1] and on the results developed in this paper to verify prop-
erties of continuous models as general as Stochastic Hybrid
Systems by using classical PCTL model checking algorithms
over a finite LMC abstraction which satisfies some accuracy
constraints.
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