
Logically-Constrained Neural Fitted Q-iteration
Extended Abstract

Mohammadhosein Hasanbeig
University of Oxford

Oxford, United Kingdom
hosein.hasanbeig@cs.ox.ac.uk

Alessandro Abate
University of Oxford

Oxford, United Kingdom
alessandro.abate@cs.ox.ac.uk

Daniel Kroening
University of Oxford

Oxford, United Kingdom
daniel.kroening@cs.ox.ac.uk

ABSTRACT
We propose a method for efficient training of Q-functions for
continuous-state Markov Decision Processes (MDPs), such that
the traces of the resulting policies satisfy a given Linear Tempo-
ral Logic (LTL) property. LTL, a modal logic, can express a wide
range of time-dependent logical properties (including safety) that
are quite similar to patterns in natural language. We convert the
LTL property into a limit deterministic Büchi automaton and con-
struct an on-the-fly synchronised product MDP. The control policy
is then synthesised by defining an adaptive reward function and by
applying a modified neural fitted Q-iteration algorithm to the syn-
chronised structure, assuming that no prior knowledge is available
from the original MDP (namely, the method is model-free). The pro-
posed method is evaluated in a numerical study to test the quality
of the generated control policy and is compared with conventional
methods for policy synthesis, such as MDP abstraction (Voronoi
quantizer) and approximate dynamic programming (fitted value
iteration).

KEYWORDS
Reinforcement Learning; Safety; Formal Methods; Neural Networks
ACM Reference Format:
Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
2019. Logically-Constrained Neural Fitted Q-iteration. In Proc. of the 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Reinforcement Learning (RL) is a successful paradigm for training
an autonomous agent to make optimal decisions when interact-
ing with an MDP, when the stochastic behaviour of the MDP is
unknown. Conventional RL is mostly focused on problems where
the set of states of the MDP and the set of possible actions are
finite. Nonetheless, many interesting real-world problems require
actions to be taken in response to high-dimensional or real-valued
sensory inputs [4]. A number of solutions have been proposed to
deal with MDPs with large or uncountably infinite state spaces, e.g.,
CMACs [21], kernel-based modelling [16], tree-based regression [6],
generalisation via basis functions [3], etc. Among these methods,
neural networks stand out thanks to their ability to construct a
generalisation of any non-linear function over continuous (or a
very large discrete) domains [12], relying only on a set of samples
from that domain. This feature has attracted significant attention

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in the machine learning community, resulting in numerous appli-
cations of neural networks on infinite- or large-state space MDPs,
e.g., Deep Q-networks [15], TD-Gammon [23], Asynchronous Deep
RL [14], Neural Fitted Q-iteration [17] and CACLA [25].

In this paper, we propose the first formal architecture that en-
ables RL to generate policies that satisfy an arbitrary given Linear
Temporal Logic (LTL) property for continuous-state MDPs. LTL en-
ables the formalisation of complex mission requirements with a rich
time-dependent language and can express sophisticated high-level
control objectives that are hard (if at all possible) to achieve by on
standard reward-based setups [20, 22] or by recent methods such
as Policy Sketching [2]. The most immediate application of LTL in
RL is for safe learning: for this use case, we show that the proposed
architecture is efficient and that it can be combined easily with re-
cently developed RL algorithms, and specifically with architectures
apt at dealing with continuous-space MDPs. Detailed discussions
and further in-depth analysis can be found in [9].

There exist a number of algorithms that can synthesise policies
with LTL constrains in finite-stateMDPs by employing model-based
RL (e.g., [7]). Logic-based synthesis for continuous-space models
has been so far limited to DP- or optimisation-based techniques
[1, 8, 24]. However, the first model-free formal LTL-constrained RL
algorithm for fully unknown finite-state MDPs has appeared in [10].
[10] further shows that the RL procedure sets up an off-policy
local value iteration method to efficiently calculate the maximum
probability of satisfying the given property, at any given state of
the MDP. The work in [10] has been extended to [11] with in-depth
discussions on theory and also additional experiments.

2 PRELIMINARIES
Definition 2.1 (Continuous-state Space MDP (CSMDP)). The tuple

M = (S,A, s0, P ,AP,L) is a CSMDP over a set of states S = Rn ,
where A is a finite set of actions, s0 is the initial state and P :
B(Rn) × S × A → [0, 1] is a Borel-measurable transition kernel
that assigns to any state and any action a probability measure
on the Borel space (Rn ,B(Rn)) [5]. AP is a finite set of atomic
propositions and a labelling function L : S→ 2AP assigns to each
state s ∈ S a set of atomic propositions L(s) ⊆ 2AP [5]. ⌟

When analysing a CSMDP, the standard finite look-up table used
in classical RL algorithms such as Q-learning (QL) is of no use.
We aim to preserve the key benefit of QL, namely to synthesise
policies from finite experiences and without maintaining a model
of the MDP. Neural Fitted Q-iteration (NFQ) [17] achieves this
by employing a multi-layer perceptron [13] to approximate the
Q-function over the set of experience samples. NFQ is the key
algorithm behind Deep Reinforcement Learning [15].

Definition 2.2 (Policy Satisfaction). Given an LTL1 formula φ, we
state that a stationary deterministic policy Pol : S → A satisfies
an LTL formula φ if P[L(s0)L(s1)L(s2)... ∈ Words(φ)] > 0, where
every transition si → si+1, i = 0, 1, ... is executed by taking action
Pol (si) at state si . ⌟

An LTL formula can be expressed by various finite-state au-
tomata. We employ Limit-Deterministic Büchi Automata (LDBA),
which yield a succinct representation, enable fast convergence, and
are applicable with MDPs.

Definition 2.3. [Limit Deterministic Büchi Automaton (LDBA)]
An LDBA is a special case of Generalised Büchi Automaton (GBA).
Formally, a GBA N = (Q,q0, Σ,F,∆) is a structure where Q is a
finite set of states, q0 ⊆ Q is the set of initial states, Σ = 2AP is a
finite alphabet, F = {F1, ..., Ff } is the set of accepting conditions
where Fj ⊂ Q, 1 ≤ j ≤ f , and ∆ : Q × Σ → 2Q is a transition
relation. A GBA N = (Q,q0, Σ,F,∆) is limit deterministic if Q can
be partitioned into two disjoint sets Q = QN ∪ QD , such that (1)
∆(q,α) ⊆ QD and |∆(q,α) | = 1 for every state q ∈ QD and for
every corresponding α ∈ Σ, (2) for every Fj ∈ F, Fj ⊂ QD [19]. ⌟

3 LOGICALLY-CONSTRAINED NFQ
In this section, we propose an NFQ-based algorithm that is able
to synthesise a policy (or a set thereof) that satisfies a temporal
logic property. We call this algorithm Logically-Constrained NFQ
(LCNFQ). We formally relate the MDP and the given automaton
by synchronising them on-the-fly, creating a new structure that
enforces the logical property and that furthermore is prone to RL
algorithms.

Definition 3.1 (ProductMDP). Given anMDPM(S,A, s0, P ,AP,L)

and an LDBA N(Q,q0, Σ,F,∆) with Σ = 2AP, the product MDP is
defined as (M ⊗ N) = MN = (S⊗,A, s⊗0 , P

⊗,AP⊗,L⊗,F⊗), where
S⊗ = S × Q, s⊗0 = (s0,q0), AP⊗ = Q, L⊗ = S × Q → 2Q such
that L⊗ (s,q) = q and F⊗ ⊆ S⊗ is the set of accepting states
F⊗ = {F ⊗1 , ..., F

⊗
f }, where F ⊗j = S × Fj . The transition kernel

P ⊗ is such that, given the current state (si ,qi) and action a, the
new state is (sj ,qj), where sj ∼ P (·|si ,a) and qj ∈ ∆(qi ,L(sj)). ⌟

By synchronising MDP states with LDBA states in the product
MDP we add an extra dimension to the state space of the original
MDP. The role of the added dimension is to track the automaton
state and, hence, to evaluate the satisfaction of the corresponding
LTL property. Note that LCNFQ is fully model-free and there is no
need to construct the product MDP explicitly. The synchronised
product MDP subsumes the transition relations of the original
MDP and the structure of the Büchi automaton, thus it inherits
characteristics of both. Thus, an appropriate reward function2 can
guide RL to find a policy that is optimal with respect to satisfaction
of the LTL property φ on the MDP.

We now discuss generalisation issues. In LCNFQ, we employ
n separate multi-layer perceptrons with one hidden layer where
n = |Q| and Q is the finite cardinality of the automaton N. Each
neural net is associated with a state in the LDBA and together the
neural nets approximate the Q-function in the product MDP. For
1Syntax and semantics of LTL are thoroughly discussed in [9].
2Details can be found in [9].

each automaton state qi ∈ Q the associated neural net is called
Bqi : S⊗×A→ R. Once the agent is at state s⊗ = (s,qi) the neural
net Bqi is used for the local Q-function approximation. The set of
neural nets acts as a global Q-function approximatorQ : S⊗ ×A→
R. Note that the neural nets are not decoupled from each other. For
example, assume that by taking action a in state s⊗ = (s,qi) the
agent is moved to state s⊗′ = (s ′,qj) where qi , qj . The weights of
Bqi are updated such that Bqi (s⊗,a) has minimum possible error to
R (s⊗,a)+γ maxa′ Bqj (s⊗

′
,a′). Therefore, the value of Bqj (s⊗

′
,a′)

affects Bqi (s⊗,a).
Let qi ∈ Q be a state in the LDBA. Then define Eqi := {(·, ·, ·, ·,x)

∈ E|x = qi } as the set of experiences withinE that is associated with
state qi , i.e., Eqi is the projection of E onto qi . Once the experience
set E is gathered, each neural net Bqi is trained by its associated
experience set Eqi . At each iteration a pattern set Pqi is generated
based on Eqi : Pqi = {(inputl , targetl), l = 1, ..., |Eqi |)}, where
inputl = (sl

⊗,al) and targetl = R (sl
⊗,al)+γ maxa′∈AQ (sl

⊗′,a′)

such that (sl ⊗,al , sl ⊗
′
,R (sl

⊗,al),qi) ∈ Eqi . The pattern set is used
to train the neural net Bqi . We use Rprop [18] to update the weights
in each neural net, as it is known to be an efficient method for batch
learning [17]. In each cycle of LCNFQ, the training schedule starts
from networks that are associated with accepting states of the
automaton and goes backward until it reaches the networks that
are associated to the initial states. In this way, we allow the Q-value
to back-propagate through the product MDP. LCNFQ stops when
the generated policy stops improving for long enough.

4 EXPERIMENTS AND DISCUSSION
We have tested the performance of LCNFQ in a mission planning
task for an autonomous Mars rover, and benchmarked it against
alternatives, namely the use of a Voronoi Quantiser (VQ) and the
use of Fitted Value Iteration (FVI). The results are presented in
Table 1, where LCNFQ has outperformed the alternative algorithms.
LCNFQ exploits the positive effects of generalisation in neural
networks, while at the same time it avoids the negative effects of
disturbing previously learned experiences. This means that LCNFQ
requires less experience and the learning process is highly data
efficient, which leads to increases in scalability and applicability of
the proposed algorithm. Let us conclude emphasising that LCNFQ is
model-free, meaning that the learning only depends on the sample
experiences that the agent gathered by interacting and exploring
the MDP.

REFERENCES
[1] A. Abate, J.P. Katoen, J. Lygeros, and M. Prandini. 2010. Approximate Model

Checking of Stochastic Hybrid Systems. European Journal of Control 16, 6 (2010),
624–641.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular Multitask Rein-
forcement Learning with Policy Sketches. In ICML, Vol. 70. 166–175.

[3] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. 2010.
Reinforcement Learning and Dynamic Programming Using Function Approximators.
Vol. 39. CRC press.

[4] Kenji Doya. 2000. Reinforcement Learning in Continuous Time and Space. Neural
computation 12, 1 (2000), 219–245.

[5] Richard Durrett. 1999. Essentials of stochastic processes. Vol. 1. Springer.
[6] Damien Ernst, Pierre Geurts, and Louis Wehenkel. 2005. Tree-based Batch Mode

Reinforcement Learning. JMLR 6, Apr (2005), 503–556.
[7] Jie Fu and Ufuk Topcu. 2014. Probably Approximately Correct MDP Learning

and Control With Temporal Logic Constraints. In Robotics: Science and Systems
X.

Table 1: Simulation results

Experiment 1

Algorithm Sample Complexity U Pol∗ (s0) Success Rate† Training Time∗(s) Iteration Num.

LCNFQ 7168 samples 0.0203 99% 95.64 40

VQ (∆ = 0.4) 27886 samples 0.0015 99% 1732.35 2195

VQ (∆ = 1.2) 7996 samples 0.0104 97% 273.049 913

VQ (∆ = 2) - 0 0% - -

FVI 40000 samples 0.0133 98% 4.12 80

Experiment 2

Algorithm Sample Complexity U Pol∗ (s0) Success Rate† Training Time∗(s) Iteration Num.

LCNFQ 2680 samples 0.1094 98% 166.13 40

VQ (∆ = 0.4) 8040 samples 0.0082 98% 3666.18 3870

VQ (∆ = 1.2) 3140 samples 0.0562 96% 931.33 2778

VQ (∆ = 2) - 0 0% - -

FVI 25000 samples 0.0717 97% 2.16 80

† Testing the trained agent for 100 trials ∗ Average for 10 ep

[8] S. Haesaert, S.E.Z. Soudjani, and A. Abate. 2017. Verification of general Markov
decision processes by approximate similarity relations and policy refinement.
SIAM Journal on Control and Optimisation 55, 4 (2017), 2333–2367.

[9] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2018.
Logically-Constrained Neural Fitted Q-Iteration. arXiv preprint arXiv:1809.07823
(2018).

[10] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2018.
Logically-Constrained Reinforcement Learning. arXiv preprint arXiv:1801.08099
(2018).

[11] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2019.
Certified Reinforcement Learning with Logic Guidance. arXiv preprint
arXiv:1902.00778 (2019).

[12] Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural networks 4, 2 (1991), 251–257.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5 (1989),
359–366.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous Methods for Deep Reinforcement Learning. In ICML. 1928–1937.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. 2015. Human-level Control Through Deep Reinforcement
Learning. Nature 518, 7540 (2015), 529–533.

[16] Dirk Ormoneit and Śaunak Sen. 2002. Kernel-based Reinforcement Learning.
Machine learning 49, 2 (2002), 161–178.

[17] Martin Riedmiller. 2005. Neural Fitted Q iteration-First Experiences with a Data
Efficient Neural Reinforcement Learning Method. In ECML, Vol. 3720. Springer,
317–328.

[18] Martin Riedmiller and Heinrich Braun. 1993. A Direct Adaptive Method for
Faster Backpropagation Learning: The RPROP Algorithm. In Neural networks.
IEEE, 586–591.

[19] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínskỳ. 2016. Limit-
deterministic Büchi automata for linear temporal logic. InCAV. Springer, 312–332.

[20] Stephen L Smith, Jana Tumová, Calin Belta, and Daniela Rus. 2011. Optimal
path planning for surveillance with temporal-logic constraints. The International
Journal of Robotics Research 30, 14 (2011), 1695–1708.

[21] Richard S Sutton. 1996. Generalization in Reinforcement Learning: Successful
Examples Using Sparse Coarse Coding. In NIPS. 1038–1044.

[22] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[23] Gerald Tesauro. 1995. TD-Gammon: A self-teaching Backgammon Program. In
Applications of Neural Networks. Springer, 267–285.

[24] Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate.
2017. Quantitative model-checking of controlled discrete-time Markov processes.
Information and Computation 253 (2017), 1–35.

[25] Hado Van Hasselt and Marco A Wiering. 2007. Reinforcement Learning in
Continuous Action Spaces. In ADPRL. IEEE, 272–279.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Logically-Constrained NFQ
	4 Experiments and Discussion
	References

