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Abstract— A measurement-based statistical verification ap-
proach is developed for systems with partly unknown dynamics.
Grey-box systems, which are specified as a model class, are
subject to identification experiments that enable accepting or
rejecting system properties expressed as formulae in a linear-
time logic with a given confidence. We employ a Bayesian
framework for the computation of the confidence level and
for the design of experiments to increase the confidence. The
experiment design is formulated as a stochastic optimal control
problem, which solvable via dynamic programming. Applied
to linear control systems, this work enables efficient data-
driven verification of partly-known dynamics with controllable
non-determinism (inputs) and noisy output observations. A
numerical case study concerning the safety of a dynamical
system is used to elucidate this approach.

I. INTRODUCTION

The area of system identification [1] investigates
measurement-based model construction of physical systems,
and deals with models characterised via noisy input-output
measurements, with dynamics evolving over uncountable
(continuous) state spaces. Within this area, a relevant re-
search direction [2], [3], [4] has focused on the development
of approaches towards identification for control, where the
model building aspects are integrated around a cost function
that needs to be optimised over.

In this work we are interested in the use of these tech-
niques to verify or falsify system properties, such as safety or
reachability requirements on the dynamics: these properties
can be naturally formulated as specifications in a given
temporal logic [5]. This problem has been first studied in
[6]. Towards this goal, the input signals exciting the system
should be chosen to maximise the amount of information
gained. An optimal input typically depends on the knowledge
of the true system, and the literature distinguishes three
approaches to input design: an iterative approach, where
an estimate of the nominal system is used to design the
experiment at each stage; a min-max design that is robust to
the worst-case scenario; and a Bayesian design that uses the
prior uncertainty distribution over the model. While the first
approach is predominant [2], [4], some work has been done
on the robust experiment design using the min-max approach
[7]. On the other hand the third approach, well known from
Bayesian statistics [8], is not yet widely employed.
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In this work we embrace a Bayesian experiment design
formulation for the verification of quantitative properties
[6]. We will focus on linearly parameterised models classes,
and linear-time properties that map into convex sets in the
parameter space [9]. We show that the problem of experiment
design can be reformulated as a stochastic optimal control
problem over a Markov decision process (MDP) [10].

The work distinguishes itself from the standard experiment
design problems for estimation, in that its main goal is
not to estimate an optimal parameter. Instead, the overall
goal of this work is to verify or falsify a property of
the underlying system of interest. As such, there is only
an indirect need to minimise the accuracy (and especially
the variance) of the estimate. The idea of reformulating
the experiment design problem as an MDP optimisation
originates from [11], which is newly enhanced by embedding
the posterior distribution of the model parameters into the
state of the MDP. This extended MDP allows for an input
design that depends on the collection of past data, since
the state of the MDP encompasses the collected data via
the updated posterior distribution. As such, in this work we
extend previous results in [6] on Bayesian experiment design
problem by synthesising a state-based policy, rather than a
state-independent (open-loop) one as in [6]. The iterative
design of experiments based on available knowledge has
been explored in [12]: with focus on parameter estimation,
the goal is expressed via the eigenvalues of the covariance
matrix, and the input is designed via a receding horizon
optimisation based on the nominal estimate of the system,
which is updated in time during the experiment.

The article is structured as follows. Section II provides the
background, based on the work in [6], [9], and introduces
the goal of experiment design. Section III reframes this goal
as a stochastic optimisation problem over an MDP, which
is solved via dynamic programming. Section IV discusses a
case study intended to elucidate the solution of the problem.

II. DATA-DRIVEN AND MODEL-BASED VERIFICATION

The overall goal of this work can be stated as follows:
starting from available a-priori knowledge over system S,
iteratively and efficiently gather measurements until a speci-
fication ψ defined over the system is verified or falsified with
a given confidence 1− δ.

We discuss the problem setup, first introduced in [6], [9],
in the remainder of this section.

A. System and model class

The system, denoted by S as in Figure 1, is measured in
discrete time. An input signal u(t), t ∈ N, captures how the
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Fig. 1: System S has input u(t) and output y0(t). In the measurement
setup, the measured output ỹ(t) includes the system output y0(t) and the
measurement noise e(t).

environment acts on the system. Similarly, the output y0(t)
indicates how the system interacts with the environment
(namely, how it can be measured). The measurements ỹ(t)
at t ∈ N of y0(t) are disturbed by the measurement noise
e(t).

The behaviour of a deterministic system can be described
by mathematical models as a (causal) relation between the
system input and output. In most cases the knowledge of the
behaviour of a system is only partial, making it impossible
to represent the system with a “true” model. In such cases,
a-priori available knowledge allows to construct a model set
G, with elements M ∈ G representing possible mathematical
models of S. Let us denote a parameterisation of the model
set G as the mapping M(·) : Θ → G, from the parameters
θ ∈ Θ in the parameter set, which is a subset of a Euclidean
space Θ ⊂ Rd, to the models M in G. This allows for a
parametrised expression of the model set as G = {M(θ)|θ ∈
Θ}. The chosen parameterised model set is assumed to
contain the “true” model denoted as M(θ0), θ0 ∈ Θ, which
exactly represents the behaviour of the system S. The
uncertainty about M(θ0) is structured as a distribution over
the parameter set Θ. It is then the (unknown) model denoted
by M(θ0) = S that we would ideally like to formally model-
check.

It is possible to collect data of the system
by exciting it with an input sequence uNs =[
u(0) u(1) . . . u(Ns − 1)

]T
, with Ns the length of the

input sequence. Noisy observations ỹ(t) of the output y0(t)
are classically perturbed by Gaussian white noise e(t) that
is additive to y0(t), i.e. ỹ(t) = y0(t) + e(t). Let us denote
the output samples obtained by exciting the system with
the input uNs as ỹNs =

[
ỹ(1) ỹ(2) . . . ỹ(Ns)

]T
. The

collected input-output data contains statistical information
on the behaviour of the system, and allows to refine
the uncertainty distribution over the parameter space, as
discussed in the second part of this section.

B. Properties and confidence of satisfaction

Let us define Θψ ⊆ Θ to be the maximal feasible set
of parameters, such that for every parameter in that set
the property ψ holds, i.e. ∀θ ∈ Θψ : M(θ) � ψ and
∀θ 6∈ Θψ : M(θ) 6� ψ. The formula M(θ) � ψ reads as “the
model satisfies property ψ”. We are interested in temporal
properties that, given a set of parameterised models M(θ),
translate to polytopic sets of feasible parameters (cf. Fig. 2):
this is the case of specifications, for instance certain safety
requirements, expressed in a fragment of linear temporal
logic [9]. The work in [9] discusses how to synthesise set Θψ
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Fig. 2: Example of a feasible set Θψ in a two-dimensional θ = (θ1, θ2)
parameter space, obtained by synthesising parameters θ that are such that
M(θ) � ψ [9].

for parameterised LTI models and specific sets of linear-time
properties.

The confidence (or credibility in Bayesian literature) in
a specification ψ defined over system S is computed based
on the uncertainty distribution over Θψ: given a prior un-
certainty distribution p

(
θ
)
, the confidence is computed as

P
(
Θψ

)
=
∫

Θψ
p
(
θ
)
dθ, whereas after an additional ex-

periment and parametric inference (next paragraph), the a-
posteriori uncertainty distribution p

(
θ|ỹNs ,uNs

)
can be used

to compute the confidence as

P
(
Θψ|ỹNs ,uNs

)
=

∫
Θψ

p
(
θ|ỹNs ,uNs

)
dθ . (1)

According to the Bayesian probability calculus [8], the con-
fidence of a property becomes the measure of the uncertainty
distribution. Given a prior distribution p

(
θ
)

and a data set
ỹNs obtained by taking Ns measurements of ỹ(t), the a-
posteriori uncertainty distribution p

(
θ|ỹt,ut

)
is based on

parametric inference [8], [13] structured over the parameter
set Θ as

p
(
θ | ỹNs ,uNs

)
=

p
(
ỹNs |θ,uNs

)
p
(
θ
)∫

Θ
p
(
ỹNs |θ,uNs

)
p
(
θ
)
dθ
. (2)

C. Experiment design for formal verification with confidence

As discussed earlier, we are interested in generating
system data to refine the uncertainty distribution over the
parameter space and to increase the confidence in the satis-
faction (or lack thereof) of a property. We assume that the
identification experiment is started at t = 0, and is stopped
at a given time t when we have a sufficient confidence over
the statement S � ψ, namely P

(
Θψ | ỹt,ut

)
> 1 − δ, or

over its complement S 6� ψ, namely 1 − P
(
Θψ | ỹt,ut

)
>

1 − δ. We want to terminate the experiment as soon as
possible: to this end we can choose the inputs u(t) based
on a model of the system, on ỹt and ut, and within the
set of allowed experiment inputs u(t) ∈ E (for example
E := {u ∈ [−umax, umax]}).

III. BAYESIAN EXPERIMENT DESIGN:
MDP FORMULATION AND OPTIMISATION

Let us consider linearly-parameterised models, such as
models parameterised with orthonormal basis functions. This
model class is able to represent a wide set of physical
systems [14, Chapter 4 and 7]. Consider models within a

428



linearly-parameterised model class G to have the following
state-space realisation

M(θ) :

{
x(t+ 1) = Ax(t) +Bu(t),
ŷ(t, θ) = θTx(t),

(3)

which is linearly parameterised by θ =
[
θ1 ... θn

]T ∈ Θ ⊂
Rn. We assume that system S has a representation M(θ0) in
this model set, with unknown parameter θ0, and has an output
denoted as y0(t) = ŷ(t, θ0). Without loss of generality, it
is assumed that the initial state of the system and of the
model representing it is x(0) = 0, both in the identification
experiment and for the verification of the property. This
is a common assumption for verification procedures and
identification experiments, and can be relaxed to any known
x(0) ∈ Rn or to any probability distribution for x(0). As
mentioned earlier, we assume that the measurements are per-
turbed by an additive zero-mean, white, Gaussian-distributed
measurement noise with variance σ2

e , i.e. N (0, σ2
e), which is

uncorrelated with the input.

A. MDP formulation

Definition 1 (General Markov process): A discrete-time
MDP, denoted as Σ = (X,U, Tx), is comprised of:
• a continuous (uncountable) state space X ⊂ Rn;
• an action space U consisting of a possibly uncountable

number of actions, which we equate with E ;
• a Borel-measurable stochastic kernel Tx, which assigns

to each state-action pair x ∈ X and a ∈ U a probability
distribution Tx (· |x, a) over X. �

For a given parameter θ, model M(θ) in (3) can be re-
garded as a discrete-time Markov process, expressed at time
k with a deterministic transition corresponding to a Dirac
distribution (a point distribution), namely Tx (dx′ |x, u) =
δAx+Bu (dx′). Of interest to us is a Markov representation
of the Bayesian inference procedure, where the posterior
distributions in (2) can be computed recursively. More pre-
cisely, a prior p

(
θ
)

= N (µ,R) is updated via Bayesian
inference from system-drawn data {ut, ỹt} up to time t. Both
the resulting posterior probability distribution p

(
θ|ut, ỹt

)
=

N (µ+, R+), the data realisation ỹt, and the unknown true
parameter θ can be described by random variables with
Gaussian distributions given as

p
(
ỹt | θ,ut

)
= N

(
ΦT (ut)θ, Iσ

2
e

)
, (4a)

p
(
ỹt | ut

)
= N

(
ΦT (ut)µ,Rỹt

)
, (4b)

Rỹt =
[
σ2
eI + ΦT (ut)RΦ(ut)

]
,

p
(
θ | ỹt,ut

)
= N

(
µ+, R+

)
, (4c)

R+ =
[
R−1 + σ−2

e Φ(ut)Φ
T (ut)

]−1
, (4d)

µ+ = R+
[
R−1µ+ σ−2

e Φ(ut)ỹt
]
,

p
(
µ+|θ,ut

)
= N

(
µ,R−R+

)
, (4e)

with Φ(ut) =
[
x(1) . . . x(t)

]
∈ Rn×t. In (4a), the dis-

tribution over the expected data ỹt =
[
ỹ(1) . . . ỹ(t))

]T
,

conditioned on the parameter θ and the input sequence ut,
can be computed from the distribution of the measurement

noise. Its mean is a linear mapping of the input data to the
matrix Φ(ut). Marginalised over the prior distribution, this
is the data distribution conditioned on the input alone, as per
(4b). The posterior distribution p

(
θ | ỹt,ut

)
in (4c) provides

an expression for (2), and yields the prior distribution for the
next iteration of the procedure.

Employing Gaussian distributions we can rewrite the it-
erative data collection above via data sets of length one as
an MDP. More precisely, let the MDP be defined by the
following stochastic transitions

x(t+ 1) = Ax(t) +Bu(t),

µ(t+ 1) = µ(t) +R(t)x(t+ 1)v(t),

R(t+ 1) = R(t)−R(t)x(t+ 1)Σ(t)x(t+ 1)TR(t),

v(t) ∼ N
(
0,Σ(t)

)
,

Σ(t) = (σ2
e + x(t+ 1)TR(t)x(t+ 1))−1.

We refer to this model as Σθ (as opposed to M(θ) in (3)) for
later use. Denote by Sn the set of real symmetric matrices
M = MT ∈ Rn×n. Since the covariance R ∈ Sn, it
can be uniquely defined by its upper triangular elements,
denoted by r ∈ R(n+1)n/2. This means that there exists a
one-to-one mapping from the variances in matrix R ∈ Sn
to points r ∈ R(n+1)n/2, that is fR : R(n+1)n/2 → Sn
and fr : Sn → R(n+1)n/2, where fr = f−1

R . For a given
mapping fr, the MDP Σθ has as state space Xθ with elements
xθ = (x, µ, r) ∈ Rn × Rn × Rn(n+1)/2 and takes as input
signals u ∈ U.

Given a prior distribution p
(
θ
)
∼ N

(
µ(0), R(0)

)
, µ(0) =

µ,R(0) = R, and given an initial state for M(θ), the initial
state of the MDP is given as xθ(0) = (x(0), µ(0), fr(R(0))).
At every time instant the input can be selected as a function
of the state xθ of the MDP.

Definition 2 (Markov policy): A Markov policy π over
the horizon [0, Ns] is a sequence π = (π0, π1, . . . , πNs−1)
of measurable maps, πk : Xθ → U, k = 0, 1, . . . , Ns − 1,
from the state space Xθ to the action space U. The set of
Markov policies is denoted as Π. �

Remark 1: We refer the reader to [15] for a complete dis-
cussion on measurability issues related to Markov decision
processes over continuous state and control spaces, and to
corresponding optimal control problems. In this work we
refer for simplicity to general measurability requirements,
as in the previous statement. �

The goal of this work is the design of a Markov policy for
Σθ, to attain an efficient data collection for the verification
(with a given confidence level) of a property defined over
the unknown system S.

B. Experiment setup

Suppose we perform an experiment on S with a given
policy π ∈ Π. At the start of the experiment, the MDP
Σθ is initiated as xθ(0) = (x(0), µ(0), fr(R0)), where x(0)
is the initial state of S and where the normal distribution
N (µ0, R0) represents the prior uncertainty distribution of θ0.
At t = 0 the control input u(0) is selected based on the policy
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u(0) = π0(xθ(0)). The subsequent transition from xθ(0) to
xθ(1) is governed by deterministic transitions for x(0) to
x(1) and for r(0) to r(1), and by a stochastic transition
for µ(0) to µ(1) obtained from the measured output ỹ(1)
as in (4c). At every subsequent time instant the input is
chosen based on the current state and the stochastic part
of the transition is obtained as a function of the measured
output drawn from S. For the latter, the MDP Σθ gives the
uncertainty distribution of this transition based on the current
state of the MDP xθ(t) = (x(t), µ(t), r(t)). Remember that
the current state of the system represents the collection of
past measurements ỹt.

C. Experiment design via MDP optimisation

The experiment is successfully completed at time t ∈
N when θ0 ∈ Θψ or θ0 ∈ Θ \ Θψ , with associated
confidence of at least 1− δ, and where θ0 ∼ N (µ(t), R(t)),
with R(t) = fR(r(t)). Denote set K ⊂ Xθ as the set
of states (x, µ, r) associated with the required confidence
on θ0 ∼ N (µ, fR(r)). Hence a given state trajectory
{xθ(t) | 0, 1, . . . , Ns} represents a successful experiment if
it reaches the target set K. This property can be expressed
as

∃j ∈ [0, Ns] : xθ(j) ∈ K.

If in addition the state of the MDP is required to stay within a
given safe set A, then the success of an experiment within the
finite horizon becomes equivalent to a finite-horizon reach-
avoid (or constrained reachability) property [5] over a safe
set A and target set K. This can be expressed as

∃j ∈ [0, Ns] : xθ(j) ∈ K ∧ ∀i ∈ [0, j − 1] : xθ(i) ∈ A \K.

Specifications on the MDP that can be encoded as safety ones
include all the requirements on the safe operating range of
the system S.
The probability associated to this event can be characterised
as a boolean expression using indicator functions [15], [16],
which leads to an expectation over the state trajectories as

rπxθ(0)(K,A) = Eπxθ(0)

[∑
j∈[0,Ns]

1K(xθ(j))

j−1∏
i=0

1A\K(xθ(i))

]
,

where 1B(x) = 1 if x ∈ B, and otherwise it is equal to 0.
To attain short experiments, let us penalise the time it

takes to achieve the required confidence. Whilst above we
have attached a value of 1 to each trajectory reaching the
target set, let us instead consider a discount factor γ ∈ (0, 1)
attached to each time step that xθ stays in A \ K before
reaching K. Denoting 1γB(x) = γ1B(x), the expression for
the experiment design objective becomes

sπxθ(0)(K,A) = Eπxθ(0)

[∑
j∈[0,Ns]

1K(xθ(j))

j−1∏
i=0

1γA\K(xθ(i))

]
.

In the sequel we refer to sπxθ(0)(K,A) as the dis-
counted reach-avoid property. Notice that unlike the reach-
avoid probability rπxθ(0)(K,A), the discounted equivalent

sπxθ(0)(K,A) is not induced by a probability over the trajec-
tories of Σθ. Still the discounted quantity sπxθ(0)(K,A) over
the traces of Σθ can be written as a reach-avoid probability
rπx̄θ(0)(K,A) for an extended MDP Σ̄θ, which includes a
transition probability of (1 − γ) to model the possibility
that the experiment is terminated preemptively. Σ̄θ extends
the state space of Σθ with two discrete modes: q1 for the
experiment being active and q2 for the experiment being
interrupted preemptively.

For a given policy π, the time-dependent value function
Wπ

k : Xθ → [0, 1], defined as

Wπ
k (xθ)= Eπ

∑
j∈[k+1,Ns]

1K(xθ(j))

j−1∏
i=k+1

1γA\K(xθ(i))

∣∣∣∣xθ(k) = xθ

,
is the γ-discounted probability that the state trajectory
{xθ(k + 1), . . . , xθ(Ns)}, starting from xθ(k), will reach the
target set K within the time horizon [k,Ns], while staying
within the safe set A. This function allows expressing the
discounted reach-avoid probability backward recursively, as
follows.

Proposition 3: Given a policy π = (π0, π1, . . . , πNs−1),
define function Wπ

k : Xθ → [0, 1] by backward recursion

Wπ
k (xθ) = Eπkxθ

[
1K(xt+1

θ ) + 1γA\K(xt+1
θ )Wπ

k+1(xt+1
θ )

]
,

with the compact notation xt+1
θ ∼ Tx (· |xθ, πk(x)) for

k = Ns− 1, Ns− 2, . . . , 0, and initialised with Wπ
Ns

(xθ) =
0. Then for any initial state xθ(0) ∈ Xθ, the discounted
probabilistic reach-avoid property sπxθ(0)(K,A) is

sπxθ(0)(K,A) = 1K(xθ(0)) + 1γA\K(xθ(0))Wπ
0 (xθ(0)). �

Proof: The proof follows [16, Lemma 4], where the
above statement is proven for a value function V πk (x) =
1K(x) + 1A\K(x)Wπ

k (x). To allow for the discounting,
extend the state space with two discrete modes as described
above. Consider an extended safe set Ā := {q1} × A and a
target set K̄ := {q1, q2} ×K. Let the probability of going
from q1 to q2 be 1 − γ for any continuous state in A \K.
The proof follows [16].

Rather than selecting and fixing a policy π, as done
above, we now focus on the optimal control problem, which
seeks the Markov policy π∗ that maximises the discounted
probabilistic reach-avoid property, and which is such that
s∗xθ(0)(K,A) = supπ∈Π s

π
xθ(0)(K,A). This optimal policy

can be characterised as follows.
Proposition 4: Define functions W∗

k : Xθ → [0, 1], by the
backward recursions

W∗
k(xθ) = sup

u∈U
Euxθ
[
1K(xt+1

θ ) + 1γA\K(xt+1
θ )W∗

k+1(xt+1
θ )

]
,

with xt+1
θ ∼ Tx (· |xθ, u) for k = Ns−1, Ns−2, . . . , 0, and

initialized by W ∗Ns(xθ) = 0. Then for any initial state x0 ∈ X
the optimal probabilistic reach-avoid property s∗xθ(0)(K,A)
can be expressed as

s∗xθ(0)(K,A) = 1K(xθ(0)) + 1γA\K(xθ(0))W∗
0(xθ(0)).
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Furthermore, π∗k : Xθ → U for k = Ns − 1, Ns − 2, . . . , 0,
is such that ∀xθ ∈ Xθ:

π∗k(xθ)=arg max
u∈U

Euxθ
[
1K(xt+1

θ )+1γA\K(xt+1
θ )W∗

k+1(xt+1
θ )

]
and π∗ = (π∗0 , π

∗
1 , . . . , π

∗
Ns−1) is the optimal Markov policy

for the discounted probabilistic reach-avoid. �
Proof: The proof follows from that for probabilistic

reach-avoid properties given in [15] and [16, Theorem 6].
The above proposition shows that there exists an opti-

mal policy for the discounted reach-avoid problem that is
deterministic. This implies that for every state xθ of Σθ
the optimal policy delivers a single control input, instead
of a probability distribution over the set of possible control
actions. This means that the set of deterministic Markov
policies Π is sufficiently exciting for the experiment design
problem.

The computation of s∗x0
(K,A) is based on Ns recursions

given in Proposition 4, which can be denoted by a dy-
namic programming operator T such that W∗

k = TW∗
k+1.

Therefore the value of the optimal γ-discounted proba-
bilistic reach-avoid property can be written as the compo-
sition of Ns mappings as s∗xθ(0)(K,A) = 1K(xθ(0)) +

1γA\K(xθ(0))
(
TNsW∗

Ns

)
(xθ(0)). Let us qualitatively com-

ment on the behaviour of the backwards recursions from
W∗

k+1 to W∗
k. Employing a γ-discounting, T is a contractive

mapping, which allows tapping on typical results in stochas-
tic optimal control [10]. As a result of this contractivity
property, the mapping TNsW∗

Ns
will converge, for increas-

ing values of Ns, to a unique value function associated to a
corresponding infinite horizon problem. Hence, for problems
over a long time horizon Ns, we expect to obtain a stationary
policy [10], leading to the practical use of a time-independent
and deterministic policy for the experiment design problem.
Computed offline, this policy can then be implemented online
during the identification experiment.

D. Computational aspects

Although we have attained a formal characterisation of the
experiment design problem by a stochastic optimal control
formulation, the computation of the exact solution is seldom
analytical. This is not only because the backwards recursions
T cannot be in general expressed explicitly, but also because
the target set K will often not have an analytical expression.
Instead, the associated stochastic dynamic programming
problem ought to be solved approximately.

This might lead to high computational costs of finding
an accurate optimal policy. But these computations can
be done offline, before the identification experiment, and
approximation errors do not influence the validity of the
confidence in a property of the system, they only change
the optimality and hence the time that the experiment will
take to complete. Approximate solutions can be obtained via
numerical procedures or via sample-based algorithms. For a
reduction of high computational costs related to the state-
space dimensionality, one could consider a policy iteration
scheme, which computes the solution to the associated

infinite horizon problem [17], or a policy search scheme.
Especially methods that rely on local dimensionality reduc-
tion to solve the problem approximately represent an area of
interest for future work.

IV. ANALYSIS OF THE EXPERIMENT DESIGN PROBLEM

In this section we will look at a case study with a
one-dimensional parameterised model. This allows us to
analyse and clarify in depth the stochastic optimal control
reformulation of the experiment design problem. This one-
dimensional problem leads to an optimisation problem over
a three-dimensional MDP.

Consider the parameterised model:

M(θ) : x(t+ 1) =
1

2
x(t) + u(t), y0(t) = θx(t),

with measurements taken as

ỹ(t) = y0(t) + e(t), e(t) ∼ N (0, 0.5).

Assume that the feasible set of parameters is given as
Θψ = [−1, 1] (the details of property ψ not being of interest
here). The objective is to design an experiment such that the
confidence in the decision whether S � ψ or S 6� ψ based on
the posterior probability distribution is at least 1 − δ, with
δ = 0.01. Consider a given set of allowed inputs for the
experiment, E = {−1, 0, 1}, and a maximal experiment time
of Ns = 10. Since the state transitions of M(θ) are strictly
stable, no additional requirements are raised on the allowed
range of x(t). Hence the safe set is chosen as A = Xθ. At
the start of the experiment the prior uncertainty is given as
N (µ0, R0), i.e. µ(0) := µ0 and R(0) := R0, and the system
is initialised at x(0) = x0 which, with no loss in generality,
is assumed to be x0 = 0.

A. Standard iterative experiment design

The standard approach to experiment design from the liter-
ature [11] would be to synthesise inputs over the whole time
horizon uNs before performing the experiment, based on an
approximation of the posterior p

(
θ | ỹNs ,uNs

)
chosen as

N (µ(0), R(Ns))). Note that R(Ns) is the variance obtained
after applying uNs over the time horizon. The objective to
design an experiment such that max{P

(
Θψ|ỹNs ,uNs

)
, 1−

P
(
Θψ|ỹNs ,uNs

)
} ≥ 1− δ would then be approximated as

max{P
(
θ̂ ∈ Θψ

)
, 1−P

(
θ̂ ∈ Θψ

)
} ≥ 1− δ,

with θ̂ ∼ N (µ(0), R(Ns))).

At certain values of µ0 the used approximation max{P
(
θ̂ ∈

Θψ

)
, 1 − P

(
θ̂ ∈ Θψ

)
} decreases monotonically for de-

creasing values of R(Ns). This behaviour can especially be
observed at the edges of the feasible set Θψ , that is for
µ0 = 1 or µ0 = −1, but it also affects µ0 close to these
edges. The decrease in maximal confidence for µ0 ∈ {−1, 1}
can be explained as follows. When starting the experiment
the confidence in S 6� ψ is strictly larger than 0.5. Since µ0

is located on the edge of Θψ , decreasing the variance gives
a confidence in the feasible set that tends to 0.5. Hence for
a decreasing variance, the maximal confidence tends to 0.5.
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Considering (4d), the design that optimises this confidence
is the one that keeps R(Ns) ≈ R(0), which translates to
a design that minimises x(t), and that for x(0) = 0 applies
u(t) = 0 for all t. A required confidence of 1−δ > 0.5 would
never be attained with this standard approach. We contrast
this outcome with the new approach, elucidated next.

B. Stochastic optimal control formulation

Consider a reformulation of the experiment design prob-
lem for a discounted probabilistic reach-avoid problem over
an MDP. We again consider the case where we stop the
experiment when a confidence of at least 1 − δ is attained.
We select a rather high discount factor γ = 0.6, since we
expect the average time that the experiment takes to be short.

Based on the proposed MDP reformulation of the ex-
periment design problem we obtain a three-dimensional
MDP with state (x, µ,R) for the discounted reach-avoid
problem. The stochastic optimal control problem is solved
approximately via fitted value iteration [18]. In this algorithm
the integration action in the backwards mapping is replaced
by samples and the value functions are fitted with a neural
network. We have chosen a network with 2 layers, with
respectively 15 and 10 neurons, and tansig functions for
all neurons. Within the 10 backwards mappings applied to
obtain the outcomes plotted in Fig. 3 and 4, the approximate
value function iteration has already converged. Notice that
the approximate function is denoted by Ŵ∗

0 , in contrast to the
exact value function W∗

0 . Extending the time horizon beyond
Ns = 10 will not change the value function Ŵ∗

0 , hence the
value functions Ŵ∗

0 in Figures 3 and 4 additionally display
the approximate solution to an infinite horizon problem.

Notice in Fig. 4 that for decreasing variance an increasing
amount of the state space has a value equal to one. These
are the states for which S |= ψ can be accepted or rejected
with confidence at least 1− δ = 0.99.

The optimal policy can now be computed as in Proposition
3 by selecting at each state xθ = (x, µ,R) ∈ A\K the action
that maximises the expected value function. Notice in Fig.
3 and 4 that when starting the experiment at x = 0 and
with µ initialised at the edges of the feasible set, i.e. µ = 1
and µ = −1, it can be observed that the function is locally
convex hence the optimal control action is either equal to 1 or
to −1. More precisely, not applying an input (i.e. u(0) = 0)
would mean that µ and R would not change over time. But
any input different than zero will excite the system, therefore
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Fig. 3: Slice of the discounted optimal reach-avoid probability over the
values of µ for the given parameters R = 0.3, x = 0.
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Fig. 4: Surface plot of the γ-discounted reach-avoid probability 1K +
1γ
A\KŴ∗

0 for x(0) = 0 evaluated over varying values of the posterior
mean µ(0) and covariance R(0). The light yellow area in the plot is in the
target set K.

decrease the variance and create a stochastic transition kernel
with a non-singular variance for µ. Hence with probability
1 the value at the next time step will improve.
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