
Multi-Objective Optimal Control with Safety as a Priority

Kendra Lesser
Dept. of Computer Science

University of Oxford
kendra.lesser@cs.ox.ac.uk

Alessandro Abate
Dept. of Computer Science

University of Oxford
aabate@cs.ox.ac.uk

ABSTRACT
This work develops a lexicographic approach to multi-objective
optimal control on models for cyber-physical systems, en-
compassing in particular stochasticity, limited access to model
variables (partial observations), and possibly hybrid (contin-
uous and discrete) dynamics (with the finite state POMDP
framework as a known special instance). The technique is
showcased in two new case studies in the area of buildings
automation systems. Technically, the main achievements of
this work are: The application of the lexicographic frame-
work to multi-objective optimization including quantitative
probabilistic safety requirements, thus leading to a princi-
pled and scalable integration of correct-by-design synthe-
sis for safety and optimal synthesis for performance; the
novel extension of the lexicographic framework to partially-
observed stochastic models with continuous (possibly hy-
brid) dynamics; the emphasis on computational aspects, in-
cluding the use of compact and approximate representations
of value functions combined with the quantification of error
bounds on model abstractions.

1. INTRODUCTION
Cyber-physical systems (CPS) are frequently safety-critical,

and hence require stringent guarantees that the embedded
control processes governing their operation do not lead to
unsafe configurations. Smart-energy buildings, infrastruc-
ture networks, and electricity grids are all examples of CPS
that integrate digital control signals with underlying con-
tinuous physical processes, and for which failure to operate
safely would be prohibitively costly. Rather than checking
if safety specifications are met after a controller is designed
(known as validation), one way to achieve safety guarantees
is to enforce safety requirements during the control design
process (called “correct-by-design” control), either by treat-
ing safety as a constraint that must be satisfied or by reduc-
ing it as the objective of an optimal control problem.

Because of their intrinsic complexity, CPS models are of-
ten subject to uncertainties, either due to inaccuracies in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the model or to environmental influences (weather-related,
delays, or presence of humans in the loop) that cannot be
predicted exactly. CPS are further characterised by infor-
mation exchange to the controllers about the system, often
done through sensors that a) may not be ubiquitous, and
cannot measure all necessary information, and b) may intro-
duce noise, and hence inaccuracies, into their measurements.
Partially observable stochastic models, such as finite state
partially observable Markov decision processes (POMDPs)
or partially observable stochastic hybrid systems (POSHS),
with both discretely and continuously evolving states, pro-
vide a fitting and realistic modelling framework for CPS.

The inclusion of stochasticity leads to regarding safety
probabilistically - it is difficult, when not overtly conserva-
tive, to guarantee it with certainty, that is with probability
equal to one. If we want to design a safe controller, we
could synthesise a controller that maximises the probability
of safety, as done in [2] for fully observable stochastic hybrid
systems, and in [8, 13, 14] for POSHS. The major drawback
to this approach is that safety is rarely the only concern
when designing controllers for CPS: stabilisation, tracking,
or costs minimisation are just some of other possible objec-
tives of interest. We are thus led to a heterogeneous multi-
objective optimisation setup, where we not only want to de-
sign a controller that maximises the safety of the system,
but also takes into account these additional performance-
related objectives. In order to tackle this synthesis goal, one
option is to synthesise a permissive controller, which pro-
vides a set of control inputs that satisfy a given requirement
(i.e. safety), so that some other objective can be optimised
over the set of available inputs. This is done for finite state
Markov decision processes (MDPs) in [9], and for partially
observable (but otherwise deterministic) discrete event sys-
tems, in [12, 24], although none actually consider a second
control objective. Another possibility is to treat safety as
a constraint to be enforced in the optimisation of a differ-
ent objective, as in [21], which specifically considers enforce-
ment with probability one, and only for finite state MDPs.
Multi-objective optimisation of stochastic games is consid-
ered in [6] for complex objectives, such as safety, although
partial observability is not considered.

None of the above multi-objective approaches are eas-
ily extended to general partially-observable stochastic sys-
tems, which are more generally rarely considered in the con-
text of verification and formal synthesis (notable exceptions
are: [25] introducing verification of hidden Markov mod-
els, [11] considering synthesis over POMDPs for qualitative

(yes/no) specifications, and [5] discussing decidability re-
sults for POMDPs).

Over partially observable models, we would further like
the possibility to explore the trade-off between safety and
other objectives, which is not possible when we require safety
to be enforced with probability one. We therefore take a lex-
icographic optimisation approach, and apply it to the for-
mulation of safety as a unique specification presented for
POSHS in [8,13]. Lexicographic optimisation utilises multi-
ple objective functions and assigns a preference (or priority)
to each. A set of control inputs is generated that produces
outcomes within a tolerance from the optimal solution, and
that subset is then used as the set of possible inputs over
which the next objective is optimised, thus taking a hierar-
chical approach to controller synthesis. This technique was
first introduced in [15], and more recently elaborated upon
for MDPs in [23] and for POMDPs in [22]. In [22], however,
results are only presented for finite state models, and some
details are overlooked, so that the results are not applicable
to complex objectives such as safety.

Our contributions are several. First, we extend the lex-
icographic optimisation framework to multi-objective opti-
misation with safety requirements, thus integrating correct-
by-design synthesis and synthesis for optimal performance.
Second, we apply the lexicographic framework to partially
observable stochastic systems, with an extension to mod-
els with continuous or hybrid dynamics. Third, we provide
an approximate computational technique to solve the lexi-
cographic optimisation problem based on point-based value
iteration (PBVI) [17], and quantify error bounds for this
approximation, as well as error bounds on the abstraction
necessary to reduce stochastic continuous or hybrid systems
to finite state POMDPs. Finally, throughout the article we
apply our theoretical work on two case studies in the area
of buildings automation systems.

2. BACKGROUND

2.1 POMDP Model
We consider systems that can be modelled as partially ob-

servable Markov decision processes (POMDPs). A standard
POMDP has discrete states, actions, and observations, and
is studied over an additive cost function.

Definition 1. A POMDP is a tuple J = (S,U ,Y, T, Y,R),
where

1. S is a finite set of states

2. U is a finite set of possible control inputs

3. Y is a finite set of observations

4. T : S × S × U → [0, 1] is a state transition function
that assigns a probability measure to state sn+1 given
state sn and control un for all n: T (sn+1|sn, un)

5. Y : Y × S × U → [0, 1] is an observation function that
assigns a probability measure to observation yn given
state sn and control un−1 for all n: Y (yn|sn, un−1)

6. R : S → [0, 1] is an initial probability measure over the
state space S: R(s)

In this model the state is in general not accessed, and is
therefore not available for control. Instead, a controller has
access to all past observations and control inputs, which are
stored in an information vector in = (u0, . . . , un−1, y1, . . . , yn) ∈
In = Un × Yn. A control input is thus selected via a pol-
icy π, which maps the available information to the set of
possible controls – more precisely:

Definition 2. A policy π for a POMDP J over a time
horizon N is a sequence of functions, π = (π0, . . . , πN−1),
such that πn : In → U .

We consider only non-randomised policies (each input in
produces a single output un) and the set of all possible non-
randomised policies is denoted by Π. Typically, a control
policy is obtained as the argument that minimises an ex-
pected sum of costs associated with the state and control
input, namely

π∗ = arg min
π∈Π

Eπ
[

N∑
n=0

C(sn, un)

∣∣∣∣∣R
]
. (1)

The execution of a POMDP proceeds as follows. At time
n = 0, state s0 is produced from the initial distribution
R : s0 ∼ R(·). At each subsequent time step n > 0, the
state is sn. An observation yn is produced according to yn ∼
Y (·|sn, un−1). This observation is added to the list of past
observations and control inputs to produce in = (u0, . . . ,
un−1, y1, . . . , yn). A new control input is chosen according
to un = πn(in) (obtained solving (1)), and cost C(sn, un)
is accrued. At the final time step, when no control input is
needed, the cost function C(sN , uN) is modified to C(sN , 0).

2.1.1 Case Study: Optimised Boiler Maintenance
To illustrate how a POMDP can model a physical system,

consider a simplified maintenance problem for a single boiler
that heats a building1. The boiler operates with a certain
level of efficiency that is captured through a degradation
model. The degradation level slowly increases in time as
a result of normal use, which we model using a stochastic
difference equation as

sn+1 = sn + vn, (2)

with sn denoting the degradation level at discrete time step
n, and vn a random variable taking only non-negative values
from the set V(sn), i.e. vn ∈ V(sn) for all n, where the set is
a function of the current state sn. The probability that vn =
v̄ ∈ V(s̄) is defined through the probability mass function
Pv, so that P(vn = v̄|sn = s̄) = Pv(v̄, s̄). The degradation
level is restricted to the finite set sn ∈ {0, . . . , 100} = S: at
sn = 0 the boiler is perfectly clean and operates efficiently,
whereas at sn = 100 the boiler cannot operate (e.g., it is fully
clogged). The dependence of the domain of V on sn ensures
that sn+1 does not leave S, e.g. if sn = 99, V(99) = {0, 1}.

The degradation level is determined by a number of fac-
tors, and can be estimated as the ratio of power demanded
(as a function of the desired temperature) to the power

1Optimal predictive maintenance is well motivated. Main-
tenance costs contribute between 15 and 60 percent of the
cost of goods produced [16], and an efficient maintenance
policy can reduce operational costs by 5 to 40 percent [1].
Although optimal maintenance is often treated as a simple
case study in dynamic control texts [4], [10], there are few
specialized publications [3].

output of the boiler. These quantities are not known ex-
actly, but rather may be measured by possibly noisy sensors.
We model this uncertainty through an observed degradation
level,

yn = sn + wn, (3)

where the true degradation level sn is corrupted by a noise
term wn ∈ W(sn), where the noise is stochastic and takes
values within the set W(sn), again dependent on the actual
degradation level. The probability that wn = w̄ given sn =
s̄ is defined by the probability mass function Pw, namely
P(wn = w̄|sn = s̄) = Pw(w̄, s̄). Because we know that
sn ∈ {0, 100}, the observations are also restricted to the set
Y = {0, . . . , 100}.

The control actions available at each time step are twofold:
either to clean the boiler, which resets its degradation level,
or to do nothing. In the first instance, the difference equa-
tion (2) for a single time step changes to

sn+1 = zn, (4)

with zn a random variable taking values in Z = {0, . . . , 5}
with probabilities given by a distribution Pz.

We can therefore model the dynamical system (2), (3),
and (4) as a POMDP with state space S, observation space
Y, and control space U = {Clean,NoClean}. The transition
function T is derived from (2) and Pv, so that

T (s′|s, u) =

Pv(s′ − s, s), if s′ − s ∈ V(s), u = NoClean

Pz(s
′), if s′ ∈ Z, u = Clean

0, otherwise.

(5)
The observation function is derived from (3) and Pw as

Y (y|s) =

{
Pw(y − s, s), if y − s ∈ W(s)

0, otherwise.
(6)

We will assume that the initial distribution R is concen-
trated at a single point s0, i.e. R(s0) = P(s0 = s0) = 1,
although any well-defined probability mass function over S
is acceptable.

2.2 Optimal Control of POMDPs
The optimal policy that minimises an expected sum of

costs, as in (1), can be synthesised via dynamic program-
ming, much like for a Markov decision process (MDP), in
which the state sn is known completely [4]. A value function
over the fully observed state, which represents the expected
sum of costs accrued from time n to time N given the state
at time n, is set and optimised backward-recursively for each
time step n. The optimal policy for a POMDP is found by
redefining the state space as something that is fully observ-
able, and thus reformulating the POMDP as an MDP [4].

One way to redefine the POMDP as an MDP is to treat
the information vector in as the fully observed state of the
system. The information vector, however, increases in size
with n, and can thus be difficult to store. A common alter-
native is to instead use a belief state, which is a sufficient
statistic for the information vector, and therefore condenses
the information stored in in without sacrificing the ability to
construct optimal policies. For an additive objective func-
tion like (1), the belief state is a distribution that describes
the probability of being in state s, given all past observations
and actions [4], namely b(sn) = P[sn|u0, . . . , un−1, y1, . . . , yn].

By treating the belief state as the true state of the system,
(1) can be equivalently solved by generating and recursively
solving a value function over the belief state, namely

V ∗n (b) = min
u∈U

{∑
s

C(s, u)b(s) +
∑
y

V ∗n+1 (My,ub)P(y|b, u)

}
,

(7)
initialised at N as V ∗N (b) =

∑
s C(s, u)b(s), with the transi-

tion operator My,ub that provides the next belief state bn+1

given the current observation, action, and belief state ac-
cording to a Bayesian update

(My,ub) (s′) =
Y (y|s′, u)

∑
s∈S T (s′|s, u)b(s)

P(y|b, u)
, (8)

with the likelihood of the observation given by

P(y|b, u) =
∑
s∈S

b(s)
∑
s′∈S

T (s′|s, u)Y (y|s′, u). (9)

An optimal policy π∗ for the POMDP is then defined in
terms of the belief state, and maps beliefs to actions: π∗ :
B → U (B denotes the space of all beliefs). The optimal
policy π∗ is obtained directly from the value function as
π∗n(b) = arg minu∈U V

u
n (b).

The value function in (7) for a POMDP is often repre-
sented in an alternate form that makes it conceptually eas-
ier to solve. If we pose the problem as a maximization (i.e.
maximize the sum of costs multiplied by −1), then for a fi-
nite horizon N < ∞, the value function at each time n is
piecewise-linear and convex in the belief state [19], and thus
can be expressed as

V ∗n (b) = max
αn∈Γn

∑
s

αn(s)b(s). (10)

The functions αn ∈ R|S|, or“α-vectors”, represent a bounded
portion of the value function, and characterise the current
value of being in each state s ∈ S, given a specific action u
is taken, plus the expected sum of future rewards assuming
that all subsequent actions are chosen optimally. Because
each α-vector is associated with a specific action, by pick-
ing the α-vector maximising

∑
s αn(s)b(s) we also define the

optimal policy for belief b at time n. The collection of α-
vectors needed to exactly represent the value function Vn at
time n is finite and represented by a set denoted as Γn.

The α-vectors at time n are computed recursively from the
α-vectors known at time n + 1. For each action, we access
one of |Y| observations (where | · | indicates the cardinality
of the set), and for each observation there is a subsequent

α-vector defined at time n + 1, resulting in |U||Γn+1||Y| α-
vectors at time n. Rather than computing and storing an
exponentially growing set of α-vectors, one option is to use
point-based value iteration (PBVI), which is a sampling-
based method used to approximate value functions [18].

There are many variants of PBVI around a basic algo-
rithm. A finite subset B ⊂ B is generated through some
form of sampling, and for each b ∈ B, the value func-
tion is estimated by producing a single α-vector for each
sampled belief state at each iteration. Therefore, if B =
(b0, b1, . . . , bm), then Γ̃n = (α0

n, α
1
n, . . . , α

m
n) for all n, and

the collection of α-vectors does not increase in size at each
iteration. For a finite horizon problem, we distinguish the
belief state at different times, so that B =

⋃N
n=0 Bn, with

Bn = {b1n, . . . , bmn
n } and B0 = {R}, the initial distribution

of the POMDP of interest.
For an additive objective function, the α-vectors are com-

puted as in [17]. First, for each belief state bk and at each
time step n, a set of intermediate α-vectors αjn,y,u are com-

puted recursively from Γ̃n+1

αjn,y,u(s) = C(s, u) +
∑
s′

αjn+1(s′)Y (y|s′)T (s′|s, u) (11)

for αjn+1 ∈ Γ̃n+1. Then, for each y and bk we define y(k) =

arg maxj
∑
s α

j
n,y,u(s)bk(s). The final α-vectors associated

with a single control input and belief state are given as

αkn,u(s) =
∑
y

αy(k)
n,y,u(s) (12)

and αkn = αkn,u∗(s), with u∗ = arg maxu∈U
∑
s α

k
n,u(s)bk(s),

is added to Γ̃n.
An α-vector αjn corresponding to bj will likely apply to

all belief points in a region around bj (i.e. for any b in a
neighborhood of bj the same action will likely be optimal).
Hence the value at some b not necessarily in B can be ap-
proximated by V ∗n (b) ≈ maxαi

n∈Γ̃n

∑
s α

i
n(s)b(s) as in (10)

but with the restricted set Γ̃n ⊂ Γn. The PBVI algorithm
then consists of selecting a set of belief points {Bn}, and
computing αkn for each bkn ∈ Bn.

The convexity of the value function guarantees that by
storing only a subset Γ̃n of α-vectors, the approximation
provides a lower bound to the maximum expected cost at
any belief state (or an upper bound to the minimum), i.e.
maxαi

n∈Γ̃n

∑
s α

i
n(s)b(s) ≤ maxαi

n∈Γn

∑
s α

i
n(s)b(s) for any

b ∈ B.

2.3 Safety Objectives for POMDPs
Rather than only minimising an expected sum of costs

as in (1), we consider the specific task of generating safety-
preserving controllers (where safety is preserved with maxi-
mal probability), with the additional objective of minimising
the associated costs. This is a multi-objective goal with het-
erogeneous components (safety and performance). The tech-
niques presented can, however, be extended to more than
two separate objectives, and also to other complex specifi-
cations beyond safety (reach-avoid, reachability, etc.).

Specifically, consider a safe or desired subset of the state
space, denoted K ⊂ S, in which we would like the state
sn to remain over a finite time horizon n = 0, . . . , N . We
would like to design a control policy that maximises the
probability that sn ∈ K for n = 0, . . . , N and to determine
the value of that maximal probability – this task is known
as “quantitative verification.” In other words, we would like
to find

pNsafe(π,R;K) = Pπ [s0 ∈ K, . . . , sN ∈ K|R] , (13)

π∗safe = arg max
π∈Π

pNsafe(π,R;K). (14)

We can express (13) using standard stochastic optimal con-
trol notation (i.e. the cost objective is an expected value of
a function of one-step costs) by recalling that for a random
variable s and set K, the probability that s ∈ K is equal to
the expected value of the indicator function over that event,

E[1K(s)] [2]. Hence, (13) is equal to

pNsafe(π,R;K) = Pπ
[

N∏
n=0

1K(sn)

∣∣∣∣∣R
]
.

To maximise the probability of safety is therefore equiva-
lent to maximizing a multiplicative objective function (rather
than additive, as discussed in Section 2.2). The belief state
b(sn) = P[sn | in] is no longer sufficient when the objec-
tive is multiplicative, because the costs accrued at previous
time steps must also be considered, as they affect the cur-
rent possible cost (i.e. if any previous state left the safe set,
the system can not in subsequent time steps be considered
safe). Two options to construct an equivalent MDP and
value function over a fully observable state to compute (14)
are 1) To derive a sufficient statistic and to redefine the be-
lief state directly over the multiplicative objective function,
as in [13], or 2) To reformulate the POMDP so that (13) can
be framed as an additive objective function, as in [7]. We
will present the second option, as it will subsequently allow
us to use a lexicographic approach for the multi-objective
problem.

To express (13) as an expected value over a sum of costs,
an additional binary state variable qn is introduced (which
is not observed),

qn =

n−1∏
i=0

1K(si). (15)

The variable qn keeps track of whether the state of the sys-
tem has remained within K up to the previous time step,
thus keeping track of the previous “costs” incurred (where
the cost is simply equal to one or zero, depending on whether
the system has remained safe or not).

The new state of the system is s̄ = (s, q) ∈ S×{0, 1} = S̄,
and the safety objective can be rewritten as

max
π∈Π

Eπ
[

N∏
n=0

1K(sn)

∣∣∣∣∣R
]

= max
π∈Π

Eπ
[
1K×{1}(sN , qN)

∣∣R] .
(16)

The cost function C(sn, un) from n = 0, . . . , N−1 is C(s̄n, un) =
0, and at time N , C(s̄N , uN) = 1K×{1}(sN , qN), and so (16)
is an additive objective function with zero costs accrued un-
til the final time step.

The transition probability function T is replaced by T̄ :
S̄ × S̄ × U → [0, 1], with

T̄ (s′, q′|s, q, u) =

T (s′|s, u), if q = q′ = 0

0, if q = 0, q′ = 1

1S\K(s)T (s′|s, u), if q = 1, q′ = 0

1K(s)T (s′|s, u), if q = q′ = 1

.

(17)
We also transform Y (y|s) to Ȳ (y|s̄), such that Ȳ (y|s, q) =
Y (y|s), which is independent of q, and similarly transform
R(s) to R̄(s, q) = R(s).

Therefore, the problem of maximizing the probability of
safety for a POMDP J can be posed equivalently as an ad-
ditive cost problem over a different POMDP J̄ = (S̄,Y,U ,
T̄ , Ȳ , R̄). The belief state is now the conditional probability
distribution of the current state of the system conditioned
on all past observations and control inputs, only now the
current state is s̄ rather than just s: b̄(s̄n) = P[sn, qn|in].

3. PROBLEM FORMULATION

We would like to consider the problem of maximising the
probability that the state of a POMDP remains safe over
a finite time horizon, while simultaneously minimising an
expected sum of costs. It may be the case that the control
policy π∗ from (14) that produces the highest probability
that the system remains safe is simply not feasible to imple-
ment from a cost perspective. It may also be the case that a
small sacrifice in the optimal safety level (or probability) of
the system leads to a significant reduction in costs. Depend-
ing on the requirements on safety-criticality of the system
at hand, we can define a tolerance η, which indicates how
much we are willing to lower the probability of safety from
the optimal one, in order to attempt to reduce the expected
cost by implementing a (sub-)optimal policy.

We will denote by Π̃ the set of control policies that pro-
duce a probability of safety within the desired tolerance (no
more than η below the maximum), namely

Π̃ = {π : pNsafe(π∗safe, R;K)− pNsafe(π,R;K) ≤ η}. (18)

We would then like to find the policy π̃∗ ∈ Π̃ that min-
imises the expected sum of costs:

π̃∗ = arg min
π∈Π̃

Eπ
[

N∑
n=0

C(sn, un)

∣∣∣∣∣R
]
. (19)

We therefore have a multi-objective optimisation problem
of a hierarchical nature, where one objective takes priority
over the other, and whose cost functions are inherently dif-
ferent.

Problem 1. Given a POMDP J , a safe set K ⊂ S, a
cost function C(s, u), a time horizon N < ∞, and a toler-
ance η, we would like to synthesize a control policy π̃∗ that

1. Guarantees that the probability that the system state sn
remains in K for all n = 0, . . . , N (13) is no less than
η below the maximum possible safety probability, i.e.

pNsafe(π∗safe, R;K)− pNsafe(π̃∗, R;K) ≤ η, (20)

2. Guarantees that the expected cost using policy π̃∗ is
minimal over all policies that produce a safety proba-
bility within η of the optimal, i.e. π̃∗ is the solution to
(19).

3.0.1 Case Study Continued
Returning to the boiler maintenance problem, we have

two main objectives. The first is to ensure that the boiler
degradation level does not reach 80, at which point the boiler
is essentially broken and would result in excessive mainte-
nance costs and possible loss of heat over an extended period
of time. To avoid this unsafe outcome, the preventive main-
tenance action “Clean” may be taken, which also incurs a
cost but is less costly than if the boiler were to break.

In addition, the higher the degradation level, the less ef-
ficient the boiler is, and the more expensive it is (the more
fuel required) for the boiler to maintain a set temperature.
It is therefore preferable to do preventive maintenance, and
to clean the boiler before the degradation level grows too
high both to avoid a breakdown, and also to reduce fuel
costs.

The total cost at each time step, assuming the degradation
level has not reached 80, is given by the function

C(s, u) = 0.05 ∗ sn + 100 ∗ 1Clean(u). (21)

The first term captures efficiency costs associated with the
degradation level, and the second gives the cost of cleaning
the boiler (100 Euros) if u = Clean is selected.

Rather than assigning a cost to the event that the degra-
dation level reaches 80, we treat the set Kc = {80, . . . , 100}
as an unsafe set that we would like to avoid, and we wish
to find a cleaning policy (at what point the boiler should be
cleaned) that maximises the probability that the unsafe set
is not reached. We would further like to know this probabil-
ity, so that we can provide guarantees on the safety of the
boiler under the policy we propose.

If we were to only consider safety, an intuitive optimally
safe policy would be to clean the boiler all the time, re-
gardless of the degradation level. From a cost standpoint,
however, this is not practical, and we should also factor in
the fuel costs as well as costs associated with cleaning when
designing a safe policy.

4. LEXICOGRAPHIC OPTIMAL CONTROL
We consider now multiple objective functions to be max-

imised concurrently: we shall employ the same belief state,
which by definition does not depend on the cost function so
long as the costs incurred are additive at each time step, as
the input to multiple value functions, one for each cost objec-
tive. We can then set up a POMDP with lexicographic op-
timization criteria, introduced in [22], with k cost functions
{C1, . . . , Ck} and with tolerance parameters {η1, . . . , ηk−1}
associated with the first k−1 cost functions. The cost func-
tions are ordered so that C1 is the most important to op-
timise, and Ck the least important. Each cost function Ci
is optimised using the value function Vn,i, defined as in (7)
with C replaced by Ci.

The idea behind the lexicographic approach is to pro-
gressively limit the set of control inputs available to opti-
mise the value functions Vn,i(b) at each time step n, and
for each belief state, according to the preference ordering.
The restricted set of control inputs available to value func-
tion Vn,i+1(b) for a specific belief state b, denoted Un,i(b), is
chosen such that the value function V un,i(b) (evaluated at a
specific u ∈ Un,i−1) is within η̄i, the one step slack allowance
(as opposed to ηi, which is the total slack allowance over the
entire time horizon), of V ∗n,i(b), and thus ultimately ensures
that the policy π̃∗ generated by selecting the optimal control
input u∗n ∈ Un,k−1(b) for any belief b at any time n, is within

Π̃.
The actual procedure is as follows. Starting at the final

time step N , we construct V uN,i(b) =
∑
s Ci(s, u)b(s) for all

i = 1, . . . , k. For each b ∈ B, we then construct the set of
permissible control inputs UN,i(b) for all i = 1, . . . , k − 1,
defined as follows:

UN,i(b) =

{
u ∈ U : V uN,i(b)− min

ū∈UN,i−1

V ūN,i(b) ≤ η̄i
}
.

(22)
How to choose η̄i under various conditions will be described
subsequently. The set UN,0 is simply U .

Once UN,k−1(b) is computed, we find u∗ = arg minu∈UN,k−1

V uN,k(b). We then set V ∗N,i(b) =
∑
s Ci(s, u

∗)b(s). The pro-
cess is repeated for all b ∈ B, and for all time steps n =
N − 1, . . . , 0, using the value function in (7) with each cost
function Ci, and with the restricted control inputs Un,i(b).

The α-vector representation of the value function associ-
ated with a POMDP allows us to alternatively characterise

the lexicographic preferences through sets of α-vectors, rather
than the sets of control inputs Un,i(b). Similar to the sets
Un,i(b), we generate sequential sets Γ̄n,i ⊂ Γn,i, with the dif-
ference being that the sets Γ̄n,i are not generated separately
for each belief state. For time N , we set Γ̄N,1 = ΓN,1, and

for n < N , Γ̄n,1 = Γ̂n,1, where Γ̂n,1 is the full set of α-vectors
(for all possible control inputs) computed recursively from
Γ̄n+1,1. For i = 2, . . . , k,

Γ̄n,i =

{
α ∈ Γ̂n,i : ∃ b ∈ B s.t. max

α′∈Γ̄n,i−1

α′ · b− α′′ · b ≤ η̄i

with α′′ ∈ Γ̄n,i−1, and uα = uα′′

}
. (23)

The notation uα refers to the control input associated with
vector α. In other words, the control inputs allowed when
generating the α-vectors for Γ̄n,i are restricted to those asso-
ciated with α-vectors in Γ̄n,i−1 such that there exists some
b ∈ B for which the inner product between the α-vector and
b is within η̄i of the optimal. We no longer compute and
store all α-vectors for each value function Vn,i, but rather
prune according to whether they meet the tolerance specifi-
cation for the previous cost function.

4.1 Application to a Prioritised Safety Objec-
tive

The lexicographic optimal control approach can be used
when the priority is a safety objective in (13) by using the
additive objective formulation that relies on including the bi-
nary variable qn as part of the state, as described in Section
2.3. This formulation allows us to use the same belief states
for the value functions associated with both the safety and
cost objectives. The value functions for the safety objective
are

V uN,1(b̄) =
∑
s,q

1K×{1}(s, q)b̄(s, q),

V un,1(b̄) =
∑
s,q

V ∗n+1,1(M̄y,ub̄)P(y|b̄, u),
(24)

with M̄ and P(y|b̄, u) defined as in (8) and (9), only with
T replaced by T̄ , Y replaced by Ȳ , and summations over s̄.
The value function for minimizing the cost function C is

V uN,2(b̄) =
∑
s,q

C(s, u)b̄(s, q),

V un,2(b̄) =
∑
s,q

C(s, u)b̄(s, q) +
∑
y

V ∗n+1,2(M̄y,ub̄)P(y|b̄, u).

(25)
Notice that the variable qn is essentially ignored in the value
function Vn,2, and b̄(s̄) is reduced to b(s) by treating b(s) as
the marginal distribution, namely b(s) =

∑
q b̄(s, q).

Problem 1 can then be solved in theory using the above
belief state and value functions, and by applying the lexico-
graphic approach described above with k = 2 separate cost
functions, and a single tolerance parameter η (and also a sin-
gle one-step tolerance parameter η̄). As seen with a single
objective function, however, (24) and (25) cannot be solved
exactly, but instead approximated using a modification of
PBVI.

4.2 Approximate Solution using PBVI
In order to use PBVI in a lexicographic setting with both

a safety and a cost objective, we need to compute two sets of

α-vectors, one for the safety objective, and one for the cost,
which we denote αkn,1 and αkn,2, respectively. The doubly

restricted sets of α-vectors, denoted ˜̄Γn,i (restricted because
we compute less α-vectors for the PBVI algorithm, and be-
cause we store different α-vectors depending on the tolerance
parameter η) are generated according to the standard PBVI
algorithm, with two modifications.

The first modification is in computing the index y(k). If
we were to compute the exact solution, the α-vectors for
all possible combinations of observations and control inputs
would be generated, independently of the belief state, and
therefore the selection of the optimal index y(k) is not neces-
sary. However, when applying PBVI, we must be careful to

ensure that the index y(k) computed for α
y(k)
n,y,u,1 and α

y(k)
n,y,u,2

is the same, i.e. the same α-vector α
y(k)
n+1, and hence the same

optimal policy at subsequent time steps, is associated with
both αkn,1 and αkn,2. Otherwise, different optimal policies
would be associated with the safety and cost objectives, im-
plying the selection of different control inputs for the same
belief state at time n + 1 depending on which objective is
considered. Since the idea is to select a single control input
to simultaneously optimize both objectives, this cannot be
allowed.

Further, the term
∑
s′ α

j
n+1(s′)Y (y|s′)T (s′|s, u) in (11) is

proportional to
∑
s′ α

j
n+1(s′)bn+1(s′). Hence when y(k) is

selected, we are actually optimizing the value function at
time n + 1. The bn+1 produced by (11) may not, how-
ever, be one of the elements in Bn+1, and so the exact op-
timal αjn+1 likely has not been computed. The implication
when performing the lexicographic optimization is that the
(sub)optimal αjn+1 designed to maximize the safety objec-
tive to within η̄ of the optimal, and minimize the cost objec-
tive, likely has also not been computed. Therefore the lex-
icographic optimization must be redone for the belief state
b̄n+1 generated by αjn,y,u,i, and the tolerance preference η̄
must once again be enforced. The modified index, denoted
ȳ(k), is computed according to Algorithm 1, with inputs
{αjn,y,u,1}j , {α

j
n,y,u,2}j , b̄k, and S̄. Although PBVI is men-

tioned as an approximation algorithm for the lexicographic
optimization of POMDPs in [22], they fail to mention this
subtle difference from the standard, single objective PBVI
algorithm.

The α-vectors αkn,1 and αkn,2 are defined as follows:

αkN,u,1(s̄) = 1K×{1}(s̄), ∀ b̄k ∈ B̄N

αkn,u,1(s̄) =
∑
y∈Y

∑
s̄′∈S̄

α
ȳ(k)
n+1,1(s̄′)Ȳ (y|s̄′)T̄ (s̄′|s̄, u), ∀ b̄k ∈ B̄n,

∀n = N − 1, . . . , 0
(26)

αkN,u,2(s̄) = C(s, u), ∀ b̄k ∈ B̄N

αkn,u,2(s̄) = C(s, u) +
∑
y∈Y

∑
s̄′∈S̄

α
ȳ(k)
n+1,u,2(s̄′)Ȳ (y|s̄′)T̄ (s̄′|s̄, u),

∀ b̄k ∈ B̄n, ∀n = N − 1, . . . , 0
(27)

The second modification is the same as for the exact lex-
icographic solution described in Section 2.2. Once the com-
plete sets of α-vectors αkn,u,i are computed according to (26)

and (27), the sets ˜̄Γn,i are generated by first constructing the
set Un(b̄k), which can be expressed in terms of the α-vectors

Algorithm 1 LexicOpt

Input: {αi1}Mi=1, {αi2}Mi=1, b, η̄
Output: i∗, optimal index associated with α1, α2

1: i∗ ← arg maxi
∑
s∈S α

i
1(s)b(s)

2: maxSafe←
∑
s∈S α

i∗
1 (s)b(s)

3: minCost←
∑
s∈S α

i∗
2 (s)b(s)

4: for i = 1, . . . ,M do
5: newSafe←

∑
s∈S α

i
1(s)b(s)

6: newCost←
∑
s∈S α

i
2(s)b(s)

7: if maxSafe− newSafe ≤ η̄ then
8: if newCost < minCost then
9: i∗ ← i

10: minCost←
∑
s̄∈S α

i∗
2 (s)b(s)

11: end if
12: end if
13: end for

as

Un(b̄k) =

{
u ∈ U : max

ū∈U

∑
s̄

αkn,ū,1(s̄)b̄k(s̄)

−
∑
s̄

αkn,u,1(s̄)b̄k(s̄) ≤ η̄

}
. (28)

The optimal control input u∗ is chosen as

u∗ = arg min
u∈Un(b̄k)

∑
s̄

αkn,u,2(s̄)b̄k(s̄), (29)

and αkn,1 = αkn,u∗,1 and αkn,2 = αkn,u∗,2 are added to ˜̄Γn,1 and
˜̄Γn,2, respectively. Algorithm 2 summarizes the entire proce-
dure for solving Problem 1 using PBVI and a lexicographic
approach.

Note that Algorithm 2 returns the sets {˜̄Γn,1}Nn=0 and

{˜̄Γn,2}Nn=0, which in turn provide the multi-objective policy
π̃∗. The optimal control input at time n, for any belief state
b̄ ∈ B̄, is found again according to Algorithm 1, with inputs
˜̄Γn,1, ˜̄Γn,2, and b̄. Using the returned index i∗, u∗ is equal

to the control input associated with both αi
∗
n,1 and αi

∗
n,2,

which is guaranteed to be the same based on the structure
of Algorithm 2.

The probability that the system remains safe, if policy π̃∗

is implemented, and the expected cost associated with the
policy, are bounded by

pNsafe(π̃∗, R;K) ≥
∑
s̄

α1
0,1(s̄)R̄(s̄)

Eπ̃
∗
[

N∑
n=0

C(sn, π̃
∗
n(b̄n))

∣∣∣∣∣R
]
≤
∑
s̄

α1
0,2(s̄)R̄(s̄),

(30)

since b̄1 = R̄.

4.3 Bound on the One-Step Tolerance
We next discuss how to select the one step tolerance η̄

to ensure that the approximate safety probability returned
by PBVI is within tolerance η of the exact optimal safety
probability, pNsafe(π∗safe, R;K). The proof is similar to that
in [22], although without the modifications to the PBVI al-
gorithm discussed in the previous section, the claims in [22]

Algorithm 2 LexicoPBVI

Input: {Bn}Nn=0, K, C(·, ·), N , J , η̄

Output: {˜̄Γn,1}Nn=0, {˜̄Γn,2}Nn=0

1: ˜̄ΓN,1 = ∅, ˜̄ΓN,2 = ∅
2: αN,1(·) = 1K(·), ˜̄ΓN,1 = ˜̄ΓN,1

⋃
{αN,1}

3: for all b ∈ BN do
4: u∗ = arg minu∈U

∑
s∈S C(s, u)b(s)

5: αN,2(·) = C(·, u∗), ˜̄ΓN,2 = ˜̄ΓN,2
⋃
{αN,2}

6: end for
7: for n = N − 1, . . . , 0 do

8: ˜̄Γn,1 = ∅, ˜̄Γn,2 = ∅
9: for all bk ∈ Bn do

10: for all u ∈ U do
11: αkn,u,1 = 0, αkn,u,2 = 0
12: for all y ∈ Y do

13: for j = 1, . . . , |˜̄Γn+1,1| do
14: Compute αjn,y,u,1, αjn,y,u,2 according to (26)

and (27), respectively
15: end for
16: j∗ = LexicOpt({αjn,y,u,1}j , {α

j
n,y,u,2}j , bk, η̄)

17: αkn,u,1 = αkn,u,1 + αj
∗

n,y,u,1

18: αkn,u,2 = αkn,u,2 + αj
∗

n,y,u,2

19: end for
20: end for
21: u∗ = LexicOpt({αkn,u,1}u, {αkn,u,2}u, bk, η̄)

22: ˜̄Γn,1 = ˜̄Γn,1
⋃
{αkn,u∗,1}, ˜̄Γn,2 = ˜̄Γn,2

⋃
{αkn,u∗,2}

23: end for
24: end for

are incorrect. We first derive the one-step tolerance needed
to guarantee an overall tolerance η, if we were able to solve
the lexicographic optimization exactly (without PBVI).

Proposition 1. For time horizon N , initial distribution
R, and total desired tolerance η, setting the one step toler-
ance η̄ to η̄ = η

N
ensures that the safety probability found

by exactly solving the lexicographic POMDP optimization,
denoted V η0,1(R̄) satisfies pNsafe(π∗, R;K)− V η0,1(R̄) ≤ η.

As an extension, in order to ensure that the selected tol-
erance is not exceeded when using PBVI, we must also take
into account the error introduced in the PBVI algorithm
when maximising the safety objective. This error is given
in [14] and is a straightforward extension of the standard
PBVI error presented in [17]. First, we employ parame-
ter δB to denote how densely the belief space B̄ has been
sampled to produce B̄, defined as the maximum Hausdorff
distance with respect to n between B̄n and B̄n:

δB = max
n

{
max{ sup

˜̄bn∈B̄n

inf
b̄n∈B̄n

‖˜̄bn − b̄n‖1,

sup
b̄n∈B̄n

inf
˜̄bn∈B̄n

‖˜̄bn − b̄n‖1}

}
. (31)

Denoting V Bn as the optimal value function for a single ob-
jective at time n computed using PBVI, and V ∗n as the exact
optimal value function, then

V ∗n (b̄)− V Bn (b̄) ≤ (N − n)δB (32)

for all b̄ ∈ B̄, and for all n = 0, . . . , N . We obtain:

Proposition 2. For time horizon N , initial distribution
R, and total desired tolerance η, if η

N
− δB ≥ 0, setting the

one step tolerance η̄ to η̄ = η
N
− δB ensures that the safety

probability found by solving the lexicographic POMDP opti-
misation using PBVI, denoted V η,B0,1 (R̄) satisfies pNsafe(π∗,K;R)−
V η,B0,1 (R̄) ≤ η.

Proposition 2 guarantees that the safety probability re-
turned using Algorithm 2 will be within η of pNsafe(π∗,K;R),
as long as the error NδB incurred as a result solely from the
PBVI algorithm is not too large (i.e. does not exceed η).
Fortunately, the PBVI error is tunable, and δB decreases to
zero as the sampled set B approaches B. Unfortunately, the
more points b ∈ B that are generated, the more computa-
tion time is required for Algorithm 2, so there is an inherent
trade-off between the accuracy of the PBVI algorithm and
hence our ability to satisfy the tolerance specification η, and
the amount of time required to compute the optimal policy
for both the safety and cost objectives.

5. EXTENSION TO CPS MODELS
By definition, cyber-physical systems typically comprise

processes evolving in a continuous space (the physical sys-
tem), in combination with processes evolving in a discrete
fashion (the “cyber”, or computational component embed-
ded in the physical process). They are therefore often mod-
eled within a hybrid system framework, with a state space
S = X × Q, X ⊆ Rn, and Q = {q1, . . . , ql} a finite set of
modes. A partially observable hybrid system may also have
a combination of continuous and discrete observations, so
that Y = Yx × Yq, Yx ⊂ Rm and Yq = {yq1 , . . . , yqp}.

5.0.1 Case Study: Parsimonious Temperature Regu-
lation

As an example of a CPS, consider the task of controlling a
boiler to switch on or off to heat a single room in a building.
The safe temperature range is between 17.5 and 22 degrees
Celsius, and the safety objective is to construct a control
policy to maximize the probability that the temperature in
the room does not leave this range. Simultaneously we would
like to limit the amount of time that the heater is on, to
reduce operational costs, i.e. we want to minimize the cost
function

∑N
n=0 C(un), with C(0) = 0 and C(1) = 1.

The temperature evolution is approximated by an affine
stochastic difference equation, as presented in [2]:

xn+1 = (1− a)xn + bun + axa + vn, (33)

where xn is the temperature at time step n, xa is the ambi-
ent temperature (assumed constant), a and b are constants
representing the heat loss rate to the external environment
and the rate of heat supplied by the heater respectively, and
{vn} is a sequence of i.i.d. Gaussian random variables with
zero mean and variance ν2 representing stochastic distur-
bances to the temperature.

While the temperature evolution is a continuous process,
and the state takes values in X = R, the control input is a
discrete signal u ∈ U = {0, 1} telling the boiler to switch on
or off; 0 indicates the boiler is off, and 1 that it is on. The
control input effectively renders the temperature evolution
as a hybrid process that switches between two modes, one

when the heater is on, and the other when it is off. So we can
alternately think of the hybrid state space S = R× {0, 1}.

Additionally, the temperature is measured and communi-
cated to the controller by a sensor that is subject to noise,
represented by yn = xn + wn, with {wn} an i.i.d. sequence
of Gaussian random variables with zero mean and variance
ω2. The control input is assumed known, and hence we only
consider the continuous observation process, Y = Yx = R.

5.1 Abstraction to POMDP
The discussed PBVI algorithm requires as input a POMDP

with a finite set of states, observations, and control inputs.
In order to apply Algorithm 2 to a partially observable hy-
brid system, we must first create a finite state abstraction of
the original hybrid system, to approximately represent it as
a POMDP as in Definition 1. We are interested in the use
of abstractions with guaranteed behaviours, since the ab-
straction introduces an additional error into the evaluation
of safety probabilities using the PBVI algorithm, because
we are now evaluating safety probabilities over a different
system. Formal abstractions are discussed in [20] and, for
models with partial observations, in [14].

For safety critical systems, quantifying the probability
that the system remains safe is crucial. When approxima-
tions are introduced, we must quantify the effect of the ap-
proximation on the safety probabilities being computed. We
have already done this in Section 4.3, where the one step
tolerance bound η̄ is adjusted as a function of the error in-
troduced by the PBVI algorithm, to ensure that the safety
probability returned by Algorithm 2 is no more than a pre-
specified distance η from the maximum. We can repeat this
process to get a new one step tolerance η̄ that also takes into
account the error from the abstraction as in [14].

To create an abstraction of a partially observable stochas-
tic hybrid system, the continuous spaces X and Yx are par-
titioned into cells, and a representative point is assigned to
each cell. For a certain class of stochastic hybrid systems,
the error introduced by this partitioning, in combination
with a PBVI algorithm, has been shown to be a linear func-
tion of the size of the partitions, and hence decreases to zero
as the partitions are made smaller. A detailed description
of the abstraction process, as well as the error it incurs, is
provided in [14].

Here we will simply assume that the error introduced by
the abstraction is known, and equal to δa, i.e. we know
that |V B0 (R̄) - V B0,δ(R̄δ)| ≤ δa. The subscript δ indicates
that the abstraction is being used (both when computing the
value functions, and also because the probability densities
for the original system must be mapped to probability mass
functions, hence R̄→ R̄δ).

Proposition 3. For time horizon N , a POMDP abstrac-
tion Jδ of a partially observable stochastic hybrid system H
with abstraction error δa, and total desired tolerance η, if
η
N
− 2δa

N
− δB ≥ 0, setting the one step tolerance to η̄ =

η−2δa

N
− δB ensures that the safety probability found by solv-

ing the lexicographic POMDP optimization using PBVI and
the abstraction Jδ, denoted V η,B0,1,δ(R̄δ) satisfies pNsafe(π∗,K;R)−
V η,B0,1,δ(R̄) ≤ η.

6. APPLICATIONS TO BUILDINGS AUTOMA-
TION SYSTEMS

We now consider two case studies. The first is the finite
state boiler maintenance problem introduced in 2.1.1, and
the second is the hybrid state temperature regulation prob-
lem introduced in 5.0.1. In each case we must utilize sensor
measurements to design safe, cost-efficient control policies
for building operation.

6.1 Optimised Boiler Maintenance
We apply the lexicographic approach in combination with

PBVI to the boiler maintenance problem described in Sec-
tions 2.1.1 and 3.0.1. We would like to maximise the prob-
ability that the boiler does not reach a degradation level
of 80 or above, while simultaneously minimising the costs
associated with maintaining and operating the boiler. To
use Algorithm 2, we use inputs K = {0, . . . , 79}, the cost
function C given in (21), and the POMDP J presented in
Section 2.1.1 extended to include binary variable q discussed
in Section 2.3. We consider a time horizon N = 30.

A set of 50 belief states Bn is generated sequentially for
each time step. At initial time 0, the 50 belief states are
initialised by randomly selecting the state in which the sys-
tem starts with probability one, i.e. bi0(s) = 1si(s) with si

selected uniformly at random from {0, . . . , 79} (we are not
interested in starting from the unsafe set). The action ui0
is also chosen at random, and an observation yi is sampled
from P(y|bi0, ui0) (9). The next belief state bi1 is generated
according to My,ub in (8). This is done repeatedly for all
i = 1, . . . , 50 and n = 1, . . . , 30.

Next, the one step tolerance must be computed in order
to guarantee that the overall tolerance is η = 0.1, i.e. that
the probability that the boiler does not break down while
minimising costs is not more than 0.1 below the maximum
probability, obtained when costs are disregarded. To pro-
vide an exact bound on the tolerance requires incorporating
the error δB from PBVI, which is difficult to compute and
can be quite conservative. We therefore disregard the error
δB , for two reasons. First, PBVI guarantees a lower bound
to the actual value function when we use the lexicographic
approach, and therefore although we do not have an exact
guarantee on the distance from the optimal safety probabil-
ity, we know that the safety probability is at least as high
as the estimate we produce. Second, for this example PBVI
returns safety probabilities that are equal to one, and there-
fore the PBVI solution is exact, since the probabilities are
both lower and upper bounded by one, thus δB = 0. Hence,
we set η̄ = η

N
= 1

30
.

The probability that the degradation level sn does not
reach 80 or above over the considered time horizon, given
varying starting degradation levels s0, is presented in Fig.
1a, using the lexicographic PBVI algorithm (Alg. 2) as well
as PBVI for the single safety objective (without minimizing
costs). Similarly, Fig. 1b shows the expected costs over 30
days when only safety is considered versus using the lexico-
graphic algorithm. Fig. 1b shows that the policy returned
by Algorithm 2 (lexicographic case) is a threshold policy,
since the expected cost increases by 100 (the cost of clean-
ing) for s0 > 26, meaning that over 30 time steps, if the
initial degradation level is below 26, we should not clean
the boiler, and if it is greater than 26, the boiler should be
cleaned only once. In a region below the threshold level of
26, there is a small sacrifice in the probability of safety (as
seen in Fig. 1a) that does not exceed the tolerance η = 0.1,
and is therefore deemed acceptable. If we were to shrink

the tolerance level, the threshold degradation level at which
cleaning should be performed would be lower (s0 < 26).

We also test each policy (safety only and safety plus costs)
by simulating 1000 trajectories of the degradation level un-
der each policy. Fig. 2 shows the average control input
(clean or do not clean) at each time step over the 1000 tra-
jectories under each policy, starting from s0 = 30. Under
the safety only policy, the boiler is cleaned at least every
other day (which clearly does not make sense from a practi-
cal standpoint) whereas the lexicographic policy cleans the
boiler once, at the first day, and does not clean it again.

Figure 2: Simulated policy averaged over 1000 trials, starting
from s0 = 30, generated using Algorithm 2 (blue, solid line)
and PBVI with a single safety objective (turquoise, dashed line).
When costs are not considered, the boiler is cleaned more than
half of the time, versus a single cleaning using the lexicographic
policy.

6.2 Parsimonious Temperature Regulation
Switching from boiler maintenance, consider now the par-

simonious temperature regulation problem introduced in Sec-
tion 5.0.1.

To use Algorithm 2, we first abstract the system to a finite
state POMDP by discretizing S and Y (for details see [?]).
We only need to discretize the set K rather than all of R,
because once the temperature leaves K, we are not inter-
ested in its actual value. For the observations, we discretize
K̄ = [16, 23.5], because the probability of observing y out-
side of K̄ given s ∈ K is ε � 1 (specifically, ε = .0027 for
ω2 = 25). We use a grid spacing of δs = .01 to create the
finite set of states S = {17.5, 17.51, . . . , 21.99}, and a grid
spacing of δy = .25 to create the finite set of observations
Y = {16, 16.25, . . . , 23.25}.

The probability distributions T and Y are constructed as
for the boiler maintenance example, only now T (s′|s, u) is
derived from a Gaussian density function with mean (1 −
a)s+ bu+ asa and variance ν2, and Y (y|s) is derived from
a Gaussian density with mean s and variance ω2. For in-

stance, T (s′|s, u) =
∫ s′+δs
s′ φ(x; (1 − a)s + bu + asa, ν

2) dx

and similarly for Y (here φ(x;µ, σ2) is the Gaussian density
with mean µ and variance σ2 evaluated at x).

We compute the error bound δa on the abstraction using
formulas derived in [14]. We only quantify the error from the
state space discretisation; discretising the observations leads
to an under-approximation of the safety probability (or over-
approximation of the expected cost) similarly to the PBVI
algorithm itself. As in the previous example, rather than

(a) (b)

Figure 1: Comparison of safety probabilities (a) and expected total operational plus cleaning costs (b), over varying initial degradation
levels s0 and for N = 30 days, without considering the cost of fuel/cleaning (black, dashed line) and using Algorithm 2 to also minimize
costs (red, solid line). The policy produced by maximizing safety alone leads to cleaning the boiler many times, whereas the lexicographic
algorithm returns a policy that cleans the boiler at most once, with minimal effect on the probability of safety.

(a) (b)

Figure 3: Comparison of safety probabilities (a) and expected number of time steps the heater is turned on (b), over varying initial
temperatures s0 and for N = 5 time steps, without considering the cost of turning the heater on (black, solid line) and using Algorithm 2
to also minimize the number of time steps the heater is on (blue, dashed line). Allowing the probability of remaining within the desired
temperature range to drop slightly can lead to using the heater almost half as often.

incorporating the error from under-approximation explicitly,
we rely on the fact that having a lower bound on the actual
safety probability is desirable in itself.

For δs = 0.01, and setting ν2 = 0.2, ω2 = 0.25, we obtain
δa = 0.027. For a time horizon of N = 5 time steps, and de-
sired tolerance η = 0.3, the one step tolerance is η̄ = 0.006.
We generate a set of 75 belief states in the same manner as
the previous example, and apply Algorithm 2. Fig. 3a com-
pares the maximal probability of safety (as underestimated
by PBVI) to the under-estimated safety probability when
using the lexicographic approach as a function of the ini-
tial temperature. Although the desired tolerance was made
large in order to guarantee a non-zero one-step tolerance,
Fig. 3a shows the actual distance from the maximal safety
probability never exceeds 0.1 (because the error estimate δa

is conservative). In fact, the safety probabilities produced
by the lexicographic approach are quite close to the opti-
mal, and even equal when the initial temperature is greater
than 21, while the number of time steps the heater is on is
lowered (cf. Fig. 3b). For an initial temperature between
17.5 and 18.5, the drop in likelihood of safety is around 0.1,

while the number of time steps the heater is likely to be on
drops by more than one.

7. CONCLUSIONS AND FUTURE WORK
With focus on partially observable stochastic models, pos-

sibly with continuous and hybrid dynamics, this work has
discussed the application of a lexicographic framework for
multi-objective optimisation to problems with safety require-
ments, thus integrating correct-by-design synthesis for safety
and optimal synthesis for performance. Computationally,
the work has leveraged the use of compact representation
of belief states, of sampling-base techniques (PBVI), and of
formal abstractions, and showcased the results on two case
studies in the area of buildings automation systems.

Methodologically, we are interested in exploring further
connections with algorithms for approximate dynamic pro-
gramming, and in furthering the usability of error bounds
for formal abstractions [14,20]. In the area of modelling and
control for smart buildings, we are interested in extensions
to hybrid models of boiler degradation, and in developing
and employing realistic models derived from real data.

APPENDIX

Proof Proof of Proposition 1. We first show by in-
duction that V ∗n (b̄) − V ηn,1(b̄) ≤ (N − n)η̄ for any b̄ ∈ B̄,
with V ∗n the value function that returns the true maximal
safety probability, i.e. V ∗0 (R̄) = pNsafe(π∗,K;R). At time
N , V ∗N (b̄) =

∑
s̄ 1K×{1}(s̄)b̄(s̄), which does not depend on

the control input, and so V ∗N (b̄) = V ηN,1(b̄) for all b̄, and the
result is satisfied.

Next assume V ∗n+1(b̄)−V ηn+1,1(b̄) ≤ (N −n−1)η̄. At time
n,

V ∗n (b̄)− V ηn,1(b̄) = V ∗n (b̄)− V u
∗

n,1(b̄) + V u
∗

n,1(b̄)− V ηn,1(b̄)

with V u
∗

n,1 the value function that uses the same optimal con-
trol input u∗ at time n as V ∗n , but is defined recursively
through the lexicographic value function V ηn,1 (this is the
same notation as used in the definition of UN,i(b) (22)).
Then,

V ∗n (b̄)− V ηn+1(b̄) ≤ V ∗n (b̄)− V u
∗

n,1(b̄) + η̄

≤
∑
y

V ∗n+1(M̄y,u∗ b̄)P(y|b̄, u∗)

−
∑
y

V ηn+1,1(M̄y,u∗ b̄)P(y|b̄, u∗) + η̄

≤ (N − n− 1)η̄
∑
y

P(y|b̄, u∗) + η̄

≤ (N − n)η̄.

The first line follows from the definition of the one step
tolerance (see (22)), the second to last line by the induc-
tion hypothesis, and the last line because

∑
y P(y|b̄, u) =

1. Since V ∗0 (b̄) − V η0,1(b̄) ≤ Nη̄ for all b̄, we can achieve

V ∗0 (b̄)− V η0,1(b̄) ≤ η by setting η̄ ≤ η
N

. �

Proof Proof of Proposition 2. First, because the PBVI
algorithm is designed to produce a value function that is a
lower bound on the actual value function, V η,B0,1 ≤ V

η
0,1. Fur-

ther, by (32), we know that V ∗0 (b̄) ≤ NδB + V B0 (b̄). Then,

V ∗0 (R̄)− V η0,1(R̄) ≤ V ∗0 (R̄)− V η,B0,1

≤ V B0 (R̄) +NδB − V η,B0,1 (R̄).

Next, because we are enforcing the one step tolerance η̄ be-
tween maxu∈U V

η,B
n,1 (b̄) and V η,Bn,1 (b̄), we can use the same

argument as in the proof of Prop. 1 to show that V B0 (R̄)−
V η,B0,1 (R̄) ≤ Nη̄. Therefore

V ∗0 (R̄)− V η,B0,1 (R̄) ≤ NδB +Nη̄

and we can guarantee that V ∗0 (R̄)−V η,B0,1 (R̄) ≤ η by setting

η̄ ≤ η
N
− δB . Intuitively, as the error from PBVI decreases

to zero, the one step tolerance approaches that required in
the case of having an exact solution. �

Proof Proof of Proposition 3. As in the proof of Propo-
sition 2, recall that V η,B0,1 ≤ V

η
0,1 and V ∗0 (b̄) ≤ NδB +V B0 (b̄).

Also note that when we enforce the one step tolerance, we
are enforcing it between maxu∈U V

η,B
n,1,δ and V η,Bn,1,δ, and there-

fore by the same argument as for Proposition 1, V B0,δ(R̄) −

V η,B0,1,δ(R̄) ≤ Nη̄. Then,

V ∗0 (R̄)− V η0,1(R̄) ≤ V B0 (R̄) +NδB − V η,B0,1 (R̄)

≤ V B0 (R̄) +NδB − V B0,δ(R̄) + V B0,δ(R̄)

− V η,B0,1,δ(R̄) + V η,B0,1,δ(R̄)− V η,B0,1 (R̄)

≤
∣∣∣V B0 (R̄)− V B0,δ(R̄)

∣∣∣+ V B0,δ(R̄)− V η,B0,1,δ(R̄)

+
∣∣∣V η,B0,1,δ(R̄)− V η,B0,1 (R̄)

∣∣∣+NδB

≤ δa +Nη̄ + δa +NδB

Hence V ∗0 (R̄)−V η0,1(R̄) ≤ η if we can enforce η̄ ≤ η−2δa

N
−δB ,

which is true if η−2δa

N
− δB ≥ 0. �

A. REFERENCES
[1] Studies show: Hvac system maintenance saves energy,

2012.

[2] A. Abate, M. Prandini, J. Lygeros, and S. Sastry.
Probabilistic reachability and safety for controlled
discrete time stochastic hybrid systems. Automatica,
44(11):2724–2734, 2008.

[3] J. Berka and K. Macek. Effective maintenance of
stochastic systems via dynamic programming. In
Proceedings of 19th Technical Computing Prague
Conference, Prague, Czech Republic, 2011.

[4] D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 1. Athena Scientific, 2005.

[5] K. Chatterjee, M. Chmelik, and M. Tracol. What is
decidable about partially observable Markov decision
processes with omega-regular objectives. In Computer
Science Logic 2013 (CSL 2013), CSL 2013, September
2-5, 2013, Torino, Italy, pages 165–180, 2013.

[6] T. Chen, V. Forejt, M. Z. Kwiatkowska, A. Simaitis,
and C. Wiltsche. On stochastic games with multiple
objectives. In Mathematical Foundations of Computer
Science 2013 - 38th International Symposium, MFCS
2013, Klosterneuburg, Austria, August 26-30, 2013,
pages 266–277, 2013.

[7] J. Ding, A. Abate, and C. Tomlin. Optimal control of
partially observable discrete time stochastic hybrid
systems for safety specifications. In American Control
Conference, pages 6231–6236, 2013.

[8] J. Ding and C. Tomlin. Robust reach-avoid controller
synthesis for switched nonlinear systems. In IEEE
Conference on Decision and Control, pages 6481–6486,
2010.

[9] K. Dräger, V. Forejt, M. Z. Kwiatkowska, D. Parker,
and M. Ujma. Permissive controller synthesis for
probabilistic systems. In Tools and Algorithms for the
Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, pages
531–546, 2014.

[10] J. Dupačová and K. Sladký. Comparison of multistage
stochastic programs with recourse and stochastic
dynamic programs with discrete time. ZAMM -
Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik,
82(11-12):753–765, 2002.

[11] S. Giro and M. N. Rabe. Verification of
partial-information probabilistic systems using
counterexample-guided refinements. In Proc. on

Automated Technology for Verification and Analysis,
LNCS, pages 333–348. Springer, 2012.

[12] W. Kuijper and J. van de Pol. Compositional control
synthesis for partially observable systems. In
M. Bravetti and G. Zavattaro, editors, CONCUR 2009
- Concurrency Theory, volume 5710 of Lecture Notes
in Computer Science, pages 431–447. Springer Berlin
Heidelberg, 2009.

[13] K. Lesser and M. Oishi. Reachability for partially
observable discrete time stochastic hybrid systems.
Automatica, 50(8):1989–1998, 2014.

[14] K. Lesser and M. Oishi. Finite state approximation for
verification of partially observable stochastic hybrid
systems. In Hybrid Systems: Computation and
Control, 2015.

[15] L. G. Mitten. Preference order dynamic programming.
Management Science, 21(1):43–46, 1974.

[16] R. Mobley. An Introduction to Predictive Maintenance.
Plant Engineering. Elsevier Science, 2002.

[17] J. Pineau, G. Gordon, and S. Thrun. Anytime
point-based approximations for large POMDPs.
Journal of Artificial Intelligence Research, 27:335–380,
2006.

[18] G. Shani, J. Pineau, and R. Kaplow. A survey of
point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems, 27(1):1–51, 2013.

[19] E. Sondik. The optimal control of partially observable
Markov processes. PhD thesis, Stanford University,
1971.

[20] S. Soudjani and A. Abate. Adaptive and sequential
gridding procedures for the abstraction and
verification of stochastic processes. SIAM Journal on
Applied Dynamical Systems, 12(2):921–956, 2013.

[21] M. Svorenova, I. Cerna, and C. Belta. Optimal control
of MDPs with temporal logic constraints. In
Proceedings of the 52nd IEEE Conference on Decision
and Control, CDC 2013, December 10-13, 2013,
Firenze, Italy, pages 3938–3943, 2013.

[22] K. H. Wray and S. Zilberstein. Multi-objective
POMDPs with lexicographic reward preferences. In
International Joint Conference on Artificial
Intelligence, 2015. To Appear.

[23] K. H. Wray, S. Zilberstein, and A.-I. Mouaddib.
Multi-objective MDPs with conditional lexicographic
reward preferences. In International Conference on
Artificial Intelligence, pages 3418–3424, 2015.

[24] X. Yin and S. Lafortune. Synthesis of maximally
permissive non-blocking supervisors for partially
observed discrete event systems. In IEEE Conference
on Decision and Control, pages 5156–5162, 2014.

[25] L. Zhang, H. Hermanns, and D. N. Jansen. Logic and
model checking for hidden Markov models. In Proc. on
Formal Techniques for Networked and Distributed
Systems, pages 98–112. Springer, 2005.

