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Abstract—The increased relevance of renewable energy sources
has modified the behaviour of the electrical grid. Some renewable
energy sources affect the network in a very distributed manner:
whilst each unit has little influence, a large population can
have a significant impact on the global network, particularly
in the case of synchronised behaviour. This work investigates the
behaviour of a large, heterogeneous population of photovoltaic
panels connected to the grid. We employ Markov models to
represent the aggregated behaviour of the population, while the
rest of the network (and its associated consumption) is modelled
as a single equivalent generator, accounting for both inertia
and frequency regulation. Analysis and simulations of the model
show that it is a realistic abstraction, and quantitatively indicate
that heterogeneity is necessary to enable the overall network to
function in safe conditions and to avoid load shedding.

Index Terms—photovoltaic panels, heterogeneity, frequency,
population models, Markov models

I. INTRODUCTION

Over the last few years the penetration of renewable energy
considerably increased all over the world [1], [2], [3]. As a
consequence, their contribution to the electric grid significantly
gained importance both for power generation and network
reliability. Advances of this technology, decreases in price, and
subsidies have been prompting their installation and sustaining
their use. In many European countries solar panels have
prioritised connection onto the network over other energy
generation sources [4].

Wind, solar and geothermal power are also broadly referred
to as “distributed generation”, meaning that the corresponding
generation devices are dispersed over a large area. This is
in contrast with conventional power generation systems, and
results in a variety of small power-generating systems rather
than single machines.

Further heterogeneity is due to their extended employment:
over years of use the performance of such devices natu-
rally degrades, manufacturers modify production materials and
standards for new devices, and countries change regulations
and requirements. Up to a few years ago, distributed energy
sources were subjected to connection requirements respecting
the operational principles of the distribution network, which

was modelled around passive loads and a small number of
large power generation units. This led to a number of electrical
incidents in areas with a significant amount of distributed
generation, which could not be handled with those regulatory
designs [5]. With newer regulations [6] instead, every power
generation unit is subject to the same requirements: as such,
both conventional and renewable sources must be operative in
a larger interval of network frequency. New requirements do
not hold over household solar devices have been installed for
decades, many of which have been manufactured following
previous regulations.

In this work we present a modelling framework for large
populations of photovoltaic (PV) panels connected to the grid.
Each panel is characterised with a frequency sensor and an
internal clock. It samples the local grid frequency to ensure
that it lies inside a predefined interval of allowed values, and
it clocks the amount of time the frequency remains inside
the given interval. Two components are key to model the
behaviour of a panel connected to the grid: the working
interval of grid frequency, and the time delay necessary to
perform a safe connection to the network. In [7] we built
two models to describe the aggregation of a large population
of photovoltaic panels connected to the grid. Both are built
as discrete time Markov chains, and are shown to be good
representation of the system of interest, and to be prone to
analysis and scalable simulations. In this paper we address
the issue of evaluating the relationship between the permitted
working interval and the stability of the electrical network. The
aim of this work is assessing the risk of load shedding with a
growing photovoltaic population: we focus especially on the
disconnection and reconnection thresholds of solar devices.
Simulations display the validity of our approach, and further
provide evidence for the need of implementation of a larger
working interval of frequencies for PV panels connected to
the grid.

In the remainder of the paper, we describe the behaviour
in frequency of a PV panel (Section II). Thereafter in Section
III we describe two Markov chain models for the aggregation
of a large population of devices, encompassing their intrinsic



heterogeneity. Section IV introduces a grid model for Conti-
nental Europe, based on ENTSO-E work [8]. In Section V we
present several case studies to understand connections between
population heterogeneity and stability of the network. Finally,
the conclusions of this paper are drawn in Section VI.

II. MODEL OF A SINGLE PV PANEL

A physical description of photovoltaic panels connected to
the electric network may be found in literature, see e.g. [9].
We report it here for clarity and completeness. We consider
mainly household devices, i.e. installed on the roof of a
common house. This sort of population is more prone to
heterogeneity, due to different manufacturers, ages, weather
conditions, regulations. A panel is connected to the electrical
grid and samples it at a fixed sampling time. The panel can
be either ON or OFF; the switching among these two states
depends on two quantities: the network frequency f(·) and
a safety time delay τr. Table I resumes the behaviour of a
PV panel considering the combination of the condition on
the frequency signal and the time delay. Regulations impose
the panel to work, i.e. being in the ON state, when the grid
frequency f belongs to the interval If , a neighbourhood of
the nominal frequency f0 = 50 Hz. If the frequency exits If ,
the panel must disconnect, i.e. be in the OFF state.

We assume the ON-to-OFF transition to be instantaneous,
while this assumption does not hold for the symmetric tran-
sition OFF-to-ON. The ON-to-OFF transition should in fact
be taken as soon as the network in considered not stable.
In order to guarantee the safety of the device, a solar panel
only connects to a supposed stable network. The network is
considered to be stable if the frequency lies within If for a
predefined amount of time, τr. The panel is equipped with
an internal counter τ(·) that is increased with time. It is then
compared to the time threshold τr, so that when τ(·) ≥ τr
the panel will turn ON. However, whenever the frequency
signal exits the interval If the counter is reset and the panel
must wait again τr time instants to turn ON. A photovoltaic
panel senses the frequency thanks to a digital sensor, so it is
reasonable to assume τr is a quantity defined in number of
samples. For this reason τ(·) can be considered as a counter,
and as such will be modelled in the present work. In many
practical applications, sampling time is in the order of 200ms
while τr results around 20 s.

Note that If and τr are not homogeneous across a popu-
lation of panels. Our network setting – a continental grid or
part of it – comprehends various norms along several countries.
Even in the same country regulations may differ year by year
leading to inhomogeneity in the frequency interval If and in
the time delay τr. Furthermore, digital system are sensitive
to noise in the measurements and suffer from ageing of its
components: different panels sample the same frequency signal
but they may obtain different values for it.

A single PV panel has a negligible effect when connected to
the grid. However as the size of populations of these devices
is growing, the total power injected on the grid may have
important effects on the network frequency dynamics. This in

TABLE I
SWITCHING BEHAVIOUR OF A SINGLE PHOTOVOLTAIC PANEL WITHIN THE

POWER NETWORK AT TIME k.

State q(k) Frequency measurement Delay State q(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON

ON f(k) ∈ If − ON

ON f(k) /∈ If − OFF

OFF f(k) ∈ If τ(k) < τr OFF

turn directly influences the behaviour of single panels, in a
feedback fashion. The aim of this work is to develop a model
for a large population of photovoltaic panels, and perform
simulation to show its predictive value. The model needs
to address the underlying heterogeneity arisen from different
manufacturers, makes, age, regulations.

Another challenging feature of real power systems is the
unpredictability of the power output: solar irradiance is the
source of the photoelectric effect but weather conditions are
often difficult to forecast. In this work we focus on a constant
power production. This is a reasonable assumption over small
time scales (seconds) and during a clear sunny day. However,
this assumption might not hold during a cloudy day: as
observed in [10], individual solar plants can significantly vary
their outputs over the course of seconds. Weather should be
encompassed in the model to have a better description a real
system: we plan to add weather behaviour to our model as a
stochastic process, as in [11], at a later stage.

III. MODEL OF A POPULATION OF PV PANELS

In Section II we have considered the behaviour of a single
panel, depending on its sampling of the frequency signal.
This consideration suggests a discrete time framework as a
natural approach to modelling. Further, in order to handle the
stochastic nature of the system we utilise a Markov chain
model. This enables to analyse the behaviour of the population
of panels in a reliable and effective manner. In this section we
briefly describe the model a large population of photovoltaic
panels – for more details, please refer to [7].

A Markov model without delays

We assume that disconnection and reconnection thresholds
are different for each panel, meaning that a panel connects or
disconnects at different frequency values than others. Given
a large population of PV panels, we consider the thresholds
continuously distributed according to a predefined probability
distribution function, that arises from the interpolation of data
gathered across Europe.

We now introduce a shift in perspective: from the single
PV panel with a deterministic transition from ON to OFF
(and viceversa) we move towards a population of PVPs where
panels have a probability to transition from ON to OFF (and
viceversa). The switching probability at time k is obtained
integrating the probability distribution functions: we introduce
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Figure 1. A time inhomogeneous Markov chain model for the aggregated
dynamics, without delays.

a(·) as the disconnection probability, and b(·) as the re-
connection probability. More formally,

a(k) =

∫ f(k)

−∞
pdfd(u)du, b(k) =

∫ ∞
f(k)

pdfr(u)du,

where pdfd is the probability density function of a random
variable modelling the transition from ON to OFF, and con-
versely for pdfr. Note that the value of frequency f(k) is one
of the two extrema of the integral.

Our model allows to use a two-state Markov chain: a(·) is
the ON-to-OFF probability and (1−a(·)) is the ON-to-ON one
– similarly for b(·) and state OFF. We introduce x(k) as the
probability of being in the ON state at time k and (1− x(k))
as the probability of being in the OFF state. This allows to
write the update equation as

x(k + 1) = (1− a(k))x(k) + b(k)(1− x(k)). (1)

The expression in Equation (1) shows the time-update of the
probability of being ON. Figure 1 shows the Markov chain
under consideration.

A Markov model with delays

We now introduce delays in the model: these are fundamen-
tal components in the real behaviour of PV panels. We assume
that each panel has an internal counter for the OFF-to-ON
transition, which allows the switch after a given delay. We
consider to sample the delays from a predefined probability
distribution function that provides us with the probability
transition values τi. The value τi represents the probability
of switching to state ON given that the panel is waiting for i
time instants. In other words, it characterises the probability
of transition to state ON when the frequency lies inside the
working threshold for i time instants. We expand the model in
the previous section with n states (cf. Fig. 2), each representing
the i-th waiting instant, defined as Wi, i = 1, . . . , n. The value
n can be chosen as the maximum delay expected for a panel
to perform the OFF-to-ON transition.

In each one of the n delay states there are three outgoing
transitions: one towards the ON state, one towards state i+ 1,
and one back to the OFF state. The probability associated
with the third transition is 1 − b(k), which is the probability
of sensing the network frequency outside of the working
interval. The first outgoing transition has probability τib(k):
τi is the probability to have a time delay that permits the
panel to go from state Wi to state ON, which can happen
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... Wn
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1− b(k)
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Figure 2. A Markov model for the aggregated dynamics, with delays.

only if the frequency is within the working interval (hence
the multiplication by b(k)). We assume that ∀i, τi ≥ τi+1

and that
∑

i τi = 1, so the terms resemble a geometric
distribution describing an arrival process or a waiting-time
random variable.

Notice that we have tacitly assumed that the probability
distributions of the frequency thresholds and time delay are
independent. There can be, in reality, some correlation between
these two quantities, in which case we need to compute
integrals of joint probability distributions – for simplicity in
this paper we assumed the uncorrelated case. The dynamics
of the Markov chain in Fig. 2 can be summarised as
x(k + 1) = (1− a(k))x(k) + b(k)

∑n
i=1 τiwi(k)

w1(k + 1) = b(k) [1− x(k)−∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1− τi−1)wi−1(k)

wn(k + 1) = b(k)[(1− τn−1)wn−1(k) + (1− τn)wn(k)],

(2)

where x(k) and wi(k) represent the probability of being in the
ON state and in state Wi respectively, at time k. We consider
the quantity x(·) as the portion of panels ON; similarly, wi(k)
is the portion of panels waiting to turn ON for i time steps;
the quantities a(k), b(k) are the integrals of the distributions
of frequency thresholds in the population of panels.

Let us stress an important detail of the model in Equa-
tion (2). Tests on real devices [12], [13] have evidenced an
interval of time in which no panel switches on; after this
interval, panels switch on according to a roughly geometric
probability distribution. The latter probabilistic occurrences
are characterised with the Wi states. On the other hand, in
order to model the first time interval – around 20 s – we can
include new “pure-waiting” states (their number depending on
the minimum delay PV panels switch on). Formally, these
states have τi = 0, namely zero probability to transition to the
ON state. We may add these new states - and corresponding
dynamical equations - to the model, without invalidating its
analysis. However for simplicity and brevity we will continue
the formal analysis of the model without them, and directly
insert them in the case studies.
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Figure 3. Abstraction of the Markov model in Fig. 2, with dynamics of
aggregated delays.

An abstraction of the Markov model with delays

The model described in the previous section is complete,
descriptive and reliable [7], however can present a large
number of states, namely (n+ 2): n waiting states, and states
ON and OFF. In order to overcome potential computational
overheads, we propose a further abstraction: we lump the n
waiting states into a single state that encapsulates the entire
portion of the PV panels waiting to turn on. We express this
lumping with a new variable y obtained as the sum of the
probabilities wi(·), i.e. y(·) =

∑
i wi(·).

Equation (2) can be accordingly modified aggregating the
corresponding dynamics, which leads to the simplified system{

x(k + 1) = (1− a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1− x(k))− b(k)εky(k),

(3)

where we have introduced a time-varying term εk such that
n∑

i=1

τiwi(k) = εk

n∑
i=1

wi(k), thus εk =

∑n
i=1 τiwi(k)∑n
i=1 wi(k)

.

This simplification leads to a smaller three-state Markov chain,
depicted in Figure 3, where the transition probabilities are
obtained by the multiplication of the terms a(·) and b(·) by
the new quantity εk. The new model is smaller, easier to
analyse, and arguably less expensive to simulate. Interestingly,
if we assume to know the (n+ 2)-state model but are unable
to measure the term εk, we are able to estimate εk just
from network frequency measurements. This fact, and more
generally the analysis of the stability properties of the model
can be found in [7].

IV. MODEL OF THE NETWORK DYNAMICS

The feedback interconnection of the overall system com-
prises both the population of PV panels and the underlying
network frequency dynamics.

In the previous sections we built a model for the population
of solar panels and discussed how the grid frequency influ-
ences its dynamics. We now focus on how the population of
panels affects the frequency dynamics. It is usual in the power
systems to describe the network frequency dynamics via the
rotating mass equation in continuous time. However the pro-
posed model naturally unfolds in a discrete time framework:

we will show that this modelling choice is also reliable and
provides accurate empirical results.

We obtain a continuous-time model of the electric network
from the indications contained in the ENTSO-E report [8].
The model includes also the primary control of the grid
(designed as an internal feedback loop), in order to simulate
a realistic approximation of the network dynamics, where the
contribution of PV panels is added. The self-regulation of the
load is assumed to be 1%/Hz, the average network power
frequency characteristic of primary control 15000 MW/Hz,
and the system start time 10 seconds.1

We obtain a second-order transfer function, relating the
photovoltaic power (as input) to the frequency change (as out-
put). We discretise the model via the step response invariance
method, which guarantees perfect matching of the continuous-
time signal with the discrete-time signal at sampling times. We
then obtain a second-order discrete transfer function that can
be written as

∆f(k + 1) =
c1z + c2

z2 + d1z + d2
PPV (k), (4)

where ∆f(k) = f(k)−f0, f0 represents the nominal value of
the network frequency, f(k) is the value of the frequency at
time k, while PPV (k) is the power output of the population
of PV panels at time k. We set

PPV (k) = p̄Nx(k),

where p̄ is assumed to be the constant power output of a
single PV panel, and N is the total number of panels. Note
that we utilise a direct proportional relation between power
output and portion of panels on. However, considering it
to be homogeneous across the whole population might be
restrictive. This unique value simplifies the formal analysis
on the feedback systems presented in Equations (5) and (6).
In the future we plan to integrate topological data on solar
irradiance over the region of interest.

Embedding the frequency description in Equation (4) within
the dynamics of the Markov chain with n waiting states (2)
results in

f(k + 1) = α1f(k) + α2f(k − 1)+
+β1x(k) + β2x(k − 1)

x(k + 1) = (1− a(k))x(k) + b(k)
∑n

i=1 τiwi(k)
w1(k + 1) = b(k) [1− x(k)−∑n

i=1 wi(k)]
wi(k + 1) = b(k)(1− τi−1)wi−1(k)
wn(k + 1) = b(k)[(1− τn−1)wn−1(k)+

+(1− τn)wn(k)],

(5)

and into the Markov chain with three states (3) to leads to
f(k + 1) = α1f(k) + α2f(k − 1)+

+β1x(k) + β2x(k − 1)
x(k + 1) = (1− a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1− x(k)− εky(k)).

(6)

1The self regulation of the load is the sensitivity of consumers demand to
variations in the system frequency (e.g., a decrease of the frequency results
in a decrease of the load), and is generally expressed as %/Hz [14]. The
system start time is the time that a device needs to accelerate from zero to
the working speed.



The models described by Equations (5) and (6) are utilised
in the following Case Studies. They will be compared against
a realistic model, where panels are described explicitly, to test
their effectiveness.

V. SIMULATION AND TESTING VIA CASE STUDIES

In this section we employ the developed aggregated models
for the population of PV panels in several scenarios. Previously
[7], the quality of the aggregated models has been tested on a
simulation benchmark, which has shown their precision.

The present objective is to study the consequences of a
“normal incident” (as defined shortly) under varying levels of
penetration of solar energy in the network, and under different
assumptions on the distribution of the frequency thresholds
over the population. In order to simulate this setup, we inject a
negative (or positive) step in the frequency loop corresponding
to the selected incident.

The Operation Security Network Code [15] divides inci-
dents into three categories: normal, exceptional, and out-of-
range. After a normal incidents the function of the system must
be maintained without violations of technical limits. Normal
incidents are classified as a loss of up to 2 GW of load, and as
a loss of up to 3 GW of power generation. In our simulations
we utilise the maximum value defining these incidents, namely
a loss of load of 2 GW and a loss of power generation of
3 GW, and test the response of the network under different
circumstances, as described next. Notice that the loss of
load experiments are performed assuming the initial network
frequency to be 50.1 Hz instead of the canonical 50 Hz. In [5],
the authors proved that there is low risk of load shedding in
case of a loss of load when f0 = 50 Hz. Our simulations (not
reported here) confirm their initial findings: in many scenarios,
the 2 GW load loss is not sufficient to reach the 50.2 Hz
threshold, and no panels disconnect. When instead 50.2 Hz is
reached, few panels disconnect, the grid frequency decreases
and stabilizes. The load-shedding risk with f0 = 50 Hz and
in case of a load loss incident is minimum. We simulate two
working points for the network: a low consumption scenario
(220 GW) and a high consumption scenario (440 GW), in
accordance with [5]. In both cases we consider three degrees of
penetration of solar energy production in the network, namely
10%, 20%, 40%.

As a reference, a realistic model is implemented, where the
N panels in the population are individually modelled, with
their corresponding frequency thresholds and time delay. This
explicit model is employed as “ground truth” and compared
against the two abstract models, the (n+2)-state and the three-
state model, presented in the previous sections.

Different regulations on solar inverters behaviour exist for
a network such as that in continental Europe. As an example,
many countries [5] allow solar inverters to connect and discon-
nect at ranges of ±200 mHz around the nominal frequency,
while others around ±600 mHz. In order to encompass this
variability in our scenarios, we utilise Gaussian (normal) distri-
butions with different values of mean and variance. Selecting a
normal distribution to describe the thresholds of the population

TABLE II
TEST RESULTS FOR THE 2 GW LOAD LOSS SCENARIO WITH SEVERAL

THRESHOLDS, VALUES OF VARIANCE, PENETRATION OF PV. THE
NETWORK LOAD SCENARIO WAS 220 GW.

% PV Mean under Mean over Variance Load Shedding

10÷40 47.5 51.5 0.1÷0.5 no

10, 20 49.5 50.5 0.05÷0.25 no

40 49.5 50.5 0.05÷0.25 var. 0.25

∼ 10% 49.8÷ 49.0 50.2 1÷9 var. 1

TABLE III
TEST RESULTS FOR THE 3 GW POWER LOSS SCENARIO WITH SEVERAL

THRESHOLDS, VALUES OF VARIANCE, PENETRATION OF PV. THE
NETWORK LOAD SCENARIO WAS 220 GW.

% PV Mean under Mean over Variance Load Shedding

10÷40 47.5 51.5 0.1÷0.5 no

10, 20 49.5 50.5 0.05÷0.25 no

40 49.5 50.5 0.05÷0.25 yes

∼ 10% 49.8÷ 49.0 50.2 1÷9 var. 1÷6

allows to account for the following device characteristics: we
consider the ageing, the different manufactures of devices,
and assume a random deterioration of the performance of
the panels; furthermore we can describe a noisy network
where each panel samples the frequency imprecisely, under
an additive disturbance.

Time delays are modelled so that the minimum amount
of time for a panel to turn on is 20 seconds, whereas its
maximum is strictly fixed at 40 seconds. Whilst the latter
maximum is handled as a deterministic quantity, the 20-second
side of the range is described via a geometric distribution,
which can be considered as the discrete-time analogue of the
continuous-time exponential distribution. In other words, a
PV panel has a positive probability of switching to state ON
over a time horizon bound by 40 seconds: at each time step
of this horizon, the specific probability is extracted from the
geometric distribution.

Special attention is given to value of 49.2 Hz, according
to requirements in [8]. In particular, if the frequency trips
below the limit of 49.2 Hz an automatic procedure of load-
shedding must be activated. Whilst we did not designed any
load shedding procedure in our models, we checked when
the network frequency tripped below this critical value, and
implicitly assumed that dedicated control systems cause the
activation of the load shedding procedure.

TABLE IV
TEST RESULTS FOR THE 2 GW LOAD LOSS SCENARIO WITH SEVERAL

THRESHOLDS, VALUES OF VARIANCE, PENETRATION OF PV. THE
NETWORK LOAD SCENARIO WAS 440 GW.

% PV Mean under Mean over Variance Load Shedding

10÷40 47.5 51.5 0.1÷0.5 no

10, 20 49.5 50.5 0.05÷0.25 no

40 49.5 50.5 0.05÷0.25 var. 0.25

∼ 5% 49.8÷ 49.0 50.2 1÷9 var. 1, 2



TABLE V
TEST RESULTS FOR THE 3 GW POWER LOSS SCENARIO WITH SEVERAL

THRESHOLDS, VALUES OF VARIANCE, PENETRATION OF PV. THE
NETWORK LOAD SCENARIO WAS 440 GW.

% PV Mean under Mean over Variance Load Shedding

10÷40 47.5 51.5 0.1÷0.5 no

10, 20 49.5 50.5 0.05÷0.25 no

40 49.5 50.5 0.05÷0.25 yes

∼ 5% 49.8÷ 49.0 50.2 1÷9 no

We test three thresholds scenarios, ranging from the newly
published European regulation to a narrow working frequency
interval, and finally a composite scenario of three Gaussian
distributions. Tables II, III, IV, V show the results of our
tests, as a function of the percentage of solar penetration
in the network, and of the mean value and variance of the
distributions. When the network frequency trips below 49.2
Hz we assume the procedure of load shedding is activated and
we report it in the Load Shedding column. When this happens
in experiments with a specific variance, we report its value.
In the following we describe the outcomes of four different
practical scenarios of thresholds distribution.

A. European regulation Scenario: We follow the European
Community guidelines [6] as the safest possible scenario.
According to these guidelines, inverters should work within the
interval [47.5, 51.5] Hz, so we set these two values as the mean
for the under- and over- thresholds distributions, respectively.
In order to simulate decreasing noisy measurements of the
frequency we set five experiments, with different variances
for the distributions, from 0.1 to 0.5 Hz2 with a step of 0.1
for each experiment. Such frequency threshold values ensure
a stable network in every tested configuration and for both the
power generation loss and load loss incidents. In Figure 4 the
frequency response is shown with 40% of solar penetration
and in the case of a 2 GW load loss.

B. Narrow interval Scenario: We set the thresholds around
the values of 49.5 Hz and 50.5 Hz, resulting in a 500 mHz
band around the nominal frequency. Five scenarios for the
variance are investigated, with values ranging from 0.1 to 0.25
Hz2 with a step of 0.05 (step values are smaller compared to
the previous scenario, in view of the proximity of the average
with the nominal frequency). These experiments show that
only in the case of a 40% of solar production there is a risk of
load shedding, both in the power loss and load loss incident.
Figure 5 shows the frequency drop in case of the 3 GW power
generation failure. Cases where solar production is set to 10%
or 20% do not lead to load shedding events.

C. A more realistic Scenario: In order to achieve a more
faithful description of the heterogeneity of the grid, we slightly
modify the settings used in the previous two scenarios. In this
case we employ data from European countries [5] as a starting
point. We assume to have a given amount of panels that are
activated according to the regulation of the installation year,
as shown in Table VI. We assume also that the condition to
comply with the regulations is to have a threshold equal to

TABLE VI
PARTITION OF UNDERFREQUENCY THRESHOLDS AND ASSOCIATED LOAD

IN MEGAWATTS.

Underfrequency threshold 49.8 49.7 49.5 49.0 47.5

Overfrequency threshold 50.2 50.2 50.2 50.2 50.2

MW 1000 2000 4500 4000 8500
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Figure 4. Simulations for a load loss of 2 GW with several values of
variance of the Gaussian distribution for the thresholds. The mean value for the
distributions are 47.5 Hz and 51.5 Hz in underfrequency and overfrequency,
respectively, with a 40% penetration of solar power generation.

the limit or further away from the nominal frequency. As an
example, panels installed with the 49.5 Hz underfrequency
limit can have a threshold fuf ≤ 49.5. Similarly, panels are
allowed to have fof ≥ 50.2 in the 50.2 Hz overfrequency
case. In order to probabilistically describe a similar situation
we utilise a χ2 distribution. In contrast with the previous
scenarios, the χ2 distribution is not symmetric around its
average value. We set a limit value using values of Table VI
and distribute the corresponding amount of MW according
to the probability distribution. The total amount of MW is
close to 10% of solar penetration in the 220 GW load demand,
5% in the 440 GW. We test five values of variance, ranging
from 1 to 9 Hz2 , with a step of 1. Note that increasing
variance leads to distributing the population thresholds away
from the nominal frequency. Simulations show that increasing
the variance enhances the reliability of the grid, as depicted
in Figure 6 for the 3 GW generation loss. Small values of
variance cause the network to trip below the 49.2 Hz limit,
leading to a load shedding; higher values, that is higher
heterogeneity, keep the electric grid away from failure.

VI. DISCUSSION AND CONCLUSIONS

In this paper we discussed two Markov models for the
frequency behaviour of a large heterogeneous population of
photovoltaic panels. We pair these models with a discrete-time
equation representing the frequency dynamics of the electric
grid: this allows to consider the feedback interconnection
between the panels and the grid. Having established this mod-
elling framework, in this work we focus on testing the stability
of a network representing the EU Continental grid. In two
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Figure 5. Simulations for a power generation loss of 3 GW with several
values of variance of the Gaussian distribution for the thresholds. The mean
value for the distributions are 49.5 Hz and 50.5 Hz in underfrequency and
overfrequency, respectively, with a 40% penetration of solar power generation.
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Figure 6. Simulations for a power generation loss of 3 GW with several
values of variance of the χ2 distribution for the thresholds. The solar power
penetration is around 10% in a 220 GW load demand network.

scenarios of generation loss and load loss, we run experiments
with different distributions of population thresholds.

Experiments show a dependence between load shedding
and the variance of the chosen distributions. A Gaussian
distribution has a symmetric shape around its average value.
When its variance increases, the tails on both sides spread
out. If frequency thresholds are distributed according to a
Gaussian, increasing the variance of the thresholds distribution
cause a higher number of panels (represented by the tails of
the distribution) to have thresholds further from the average
value. As a consequence, we observe more panels with a
narrow working interval around the nominal frequency. As
more panels have a narrow working interval, the network
is more likely to fail, i.e. the frequency to trip below 49.2
Hz. This issue will increase with the number of photovoltaic
devices installed, unless new panels have a larger working
interval. Note that we assumed a noiseless frequency signal,
which is not the case in practice. Probabilistic thresholds
can be thought as a description of a device with a constant
threshold but a noisy sensor. In this sense, the Gaussian
distribution is the most appropriate choice. The χ2 are more
useful to set a minimum target of performance (minimum
working interval) leaving room for noise at values of frequency

further from f0. In case of the χ2 distribution, increasing
variance corresponds to larger thresholds. Experiments show
that increased heterogeneity guarantees a reliable network,
while a significant portion of panels with a fixed threshold
value complying old regulations might jeopardize the regular
operation of the network. In this sense, if countries follow
the new European regulations, the risk of frequency tripping
below a critical value is dramatically reduced, regardless of
whether a power generation or a load loss incident happen.

We conclude by advocating the need for heterogeneous
thresholds, towards having larger working intervals, in order
to guarantee the stability of the electric network in case
of normal incidents. Household solar devices have already
been quite widespread in the market: this population is rarely
participant in the retrofit programs proposed by the European
Community, and we imagine them less frequently serviced
than industrial installations. The ageing process will bring less
reliable devices that generate noisy frequency samples which
influence the population behaviour. It is then vital to install
new devices compliant with the new European regulations.

Future development in the modelling of population of solar
panels should consider PV devices with different power output,
encompassing the network topology, local weather conditions,
and their different sizes. Furthermore, panels should not only
react to the frequency, but also be able to interact with it
actively. Existing approaches from the wind power area, such
as synthetic inertia, may be installed in the photovoltaics via
a distributed control architecture.
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