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Abstract. State-of-the-art belief space planning (BSP) approaches assume data as-
sociation to be solved or given. Some of the current authors have recently pro-
posed a relaxation of this assumption, resulting in a more general framework of
belief space planning where data association is incorporated within the belief (DA-
BSP). Unfortunately, this can quickly become intractable under non-myopic plan-
ning. In this work, we seek to harness recent approaches in formal methods (specif-
ically, linear temporal logic in the context of planning under uncertainty), to ob-
tain formal-DA-BSP, an approach that incorporates high-level domain knowledge,
to obtain more tractable planning. Thanks to generalised form of specification,
the framework can also incorporate other complexities including explicit collision
probability and determining planning horizon. The initial concepts are shown in an
abstracted example of a robot janitor lost in one of the two floors.

Keywords. belief space planning, data association, probabilistic inference, formal
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1. Introduction

Belief space planning (BSP) seeks to solve a planning problem on an underlying par-
tially observable state space, through Markovian assumption i.e. a partially observable
Markov decision process (POMDP). As is common in the literature(see [1]), we shall
denote the observation by z and underlying unobservable states as x. Both of these are
commonly assumed to be continuous variables. Evolution of x – the motion model –
and of z conditioned on x – the observation model, are assumed to be given, along with
an additive white Gaussian noise. Here, the belief is actually a probability distribution
over states (strictly speaking a probability density and probability mass for continuous
and discrete state cases respectively, with appropriate Lebesgue measure for the former),
and the posterior of such a distribution is expressed as a function of control actions and
of statistics (mean and covariance) of both the models mentioned before. Maximising
the log-likelihood of this posterior, and averaging over all observations, planning could
be framed as an optimisation problem in control actions. In general, this optimisation is
multi-objective, catering to different needs such as reaching the goal state(s), reducing
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the overall uncertainties, avoiding the collision with obstacles etc. State-of-the-art BSP
approaches assume data association to be solved i.e., when an observation z is obtained
while observing any scene Ai from unobservable pose x, we assume this Ai is known
and given. This along with the Gaussian form of models, ensures that under maximum
likelihood assumption, the posterior P(x|z) is still a Gaussian. Naturally, such a succinct
representation is one of the prominent reason for scalable applications of these BSP ap-
proaches (as compared against the general POMDP approaches). However, assuming
data association solved is a significant restriction which we seek to relax in an approach
called data-association aware BSP or in short, DA-BSP (see [17]). But the focus of the
current work is not DA-BSP, but rather how formal methods could be harnessed to pro-
vide a robust DA-BSP, where robustness implies both more scalable DA-BSP as well as
being resilient to further complications such as wrong associations, presence of obstacles
or infeasible planning under given parameters.

Effect of growing uncertainty (of state) could be implicitly incorporated in a cost
model (see for e.g., [20]) or it could be (additionally) constrained to lie within a thresh-
old determined apriori. Setting such a threshold is non-trivial as it often will be an arte-
fact of the domain considered; for e.g., as discussed in [12] recently. Similarly, the ef-
fect of collision with the obstacles can be dealt either within the objective function (first
proposed in [7]) or as a hard-constraint or even in probabilistic terms (called chance
constraints [4]). Latter is more suitable when a completely collision-free path - one that
deterministically avoids collision [8] - is hard (or impossible) to find and where a suf-
ficiently safe (w.r.t. a threshold on collision probability) control strategy is acceptable.
Recent instances of such an approach are [2], [3], [6], [22]. As a corollary, it is possible
that for an arbitrarily small threshold, no safe control strategy exists.

In order to incorporate effect of uncertainty as well as of collision within the objec-
tive function, most current approaches take a convex combination of these two objectives
where the weights are determined apriori. Though this results in an efficient method to
the solution, it is undesirable (and even inaccurate) in many scenarios. Note that the con-
straints over uncertainty may render a particular desired plan infeasible, and it is only im-
plicitly seen in quality of the plans. Consider, safety-first scenario where it would make
more sense to have constraints, possibly probabilistic ones, based on collision. Another
limitation of such approaches is that collision is often determined in simplistic low-level
abstraction, for e.g. based on area of overlap of the two polyhedral shapes (see [19]).
This is in contrast with high-level definition of safety that would be provided in many
real-world robotics applications for e.g. a robot in the kitchen that needs to pass through
several known objects, and avoid other objects with different degrees of caution (i.e.
collision threshold is object dependent). Moreover, the presence of obstacles, may also
assist in planning through more informed localisation (such as using the fact that cur-
rent belief can not penetrate a dense obstacle or that complete occlusion implies that the
object can not lie outside the shadows of the occluding obstacle).

When data association is considered within the belief space planning, the resulting
belief is no longer a Gaussian and is in fact a Gaussian Mixture Model (GMM). As a
result, maintaining parametric representation of posteriors, especially under non-myopic
planning becomes intractable quite quickly. Though usual techniques of pruning (say
based on observation likelihood of z that generated the posterior) can ameliorate the
problem, more efficient solutions can be obtained by harnessing semantic relations be-
tween the scenes against which data association is sought. Again, this can be represented
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in a principled approach using formal methods and some of the recent techniques, that
we will be mentioning here.

Hence in this preliminary work, we propose to harness formal methods (such as for-
mal verification and model-checking) to obtain a general framework to tackle challenges
of BSP mentioned above, especially in the context of beliefs being GMM. Firstly, it is a
more general approach for BSP, freeing the designer of the burden of low-level planning
details. Secondly, it is a principled approach to reason about the belief in efficient as well
as explicit fashion. Lastly, it can be easily extended to more complex domains (such as
belief-space being a non-gaussian) as well as more expressive specifications for plan-
ning and its objective. [15] was one of the prominent work to utilise temporal logic for
synthesising correct plan. In this approach, a high-level task specification based correct-
ness is ensured for a low-level motion planning based control policy. [11] and [13] seeks
to revise the plans as more information about a partially known environment is made
available or sensor noise is accounted for, while [23] ensures robustness by considering
interval MDP. Synthesis with linera temporal logic (LTL) for optimal control of MDP is
proposed by [5] whereas [10] analyze this from probably approximately correct (PAC)
setting. Very recently, [16] consider using co-safe LTL to synthesise infeasible plans by
allowing for violations and obtaining least violating plans. [9] uses similar approach,
though under active semantic SLAM, where the motion model is deterministic but the
semantic map is uncertain. They convert the problem of partially observable landmarks
(hence with uncertain pose after the inference step), to a deterministic problem over set
of trajectories that lie within a δ -confidence region, that satisfies the specification.

Structure of the paper: First, we briefly draw link between POMDP and usual BSP
as well as data association aware BSP (DA-BSP). Thereafter, we frame a more general
form of belief space planning that harnesses formal methods approaches and techniques,
named formal-DA-BSP. Here we also note its particular importance for DA-BSP, and
summarise the over all algorithm. Finally, we take a simple but illustrative example of
the kidnapped robot problem, analysing various facets of formal-DA-BSP.

2. Belief space planning and data association

A POMDP is a tuple 〈S ,A ,Ω,T,O,r,b0〉 where symbols stand for state space, action
space, observation space, transition function, observation function, reward function and
initial belief (see any standard text or works like [14]). Since at any time-step k, the actual
underlying state is unknown, the system should reason about probability distribution over
all states. The belief of being in state x, is represented as b(x). After each observation
this belief (assuming ′ denotes succession in the time-step) is updated as:

bu,z(x′) =
O(x′,u,z)
P(z|u,b) · ∑

x∈S

T (x,u,x′)b(x) (1)

which implies:

bu,z(x′) ∝ O(x′,u,z) · ∑
x∈S

T (x,u,x′)b(x) (2)

Note that in the notations followed in this paper, this can be written as:
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b[Xk+1|zk+1,uk] ∝ P(zk+1|xk+1) ·P(xk+1|xk,uk)P(xk) (3)

where Xk denotes all states up to the step k.
Thus, BSP can then be viewed as a special case of belief MDP where due to Gaussian

nature of the prior P(xk+1|xk) and the likelihood P(zk+1|xk+1), the posterior P(xk+1|zk+1)
remains Gaussian as well. This affords us an efficient and scalable method to perform
(local) belief updates.

2.1. Updating belief locally

Due to the Gaussian assumption on motion model and observation model (denoted by f
and h respectively), we can write the belief as:

b[X0:k]P(xk+1|xk,uk)P(zk+1|xk+1)
.
= N (X̂0:k+1|k,Σ0:k+1|k)

where .|k denotes history of control actions, poses and observations up to the step k.
The maximum a posteriori (MAP) estimate of belief is then obtained as:

X∗
k = argmin

Xk

(‖ Xk − X̂k ‖2
Λ0

+ ‖ f (xk,uk)− xk+1 ‖2
Ωw

+ ‖ h(xk)− zk+1 ‖2
Ωω

)
(4)

here {Λ0,Ωw,Ωω} are information matrices for goal attainment, motion model and ob-
servation model, respectively while ‖y‖. denotes Mahalanobis norm of y with respect to
these matrices.

Using first order Taylor expansion around the nominal point X̂k, we have first term
from Xk = X̂ +ΔXk, while the second approximates to ‖ ( f (x̂k,uk)+∇x f (x̂k+1)Δxk)−
(x̂k+1+Δxk+1) ‖2 and similarly the third to ‖ (h(x̂k+1)+∇xh(x̂k+1)Δxk+1)−zk+1 ‖2. Now
rearranging this in matrix notation gives us an L2-norm minimisation of form:

⎛
⎜⎜⎝

Λ0
1
2 0

Ω
1
2
w∇x fk+1 −1

0 Ω
1
2
v ∇xhk+1

⎞
⎟⎟⎠
(

ΔXk
Δxk+1

)
−

⎛
⎜⎝

0

Ω
1
2
w( f (x̂k,uk)− x̂k+1)

Ω
1
2
v (h(x̂k+1)− zk+1)

⎞
⎟⎠

Dropping the indices for clarity, we denote the minimisation as ‖ A ΔX −b ‖2, and
use left inverse to get the solution as: ΔX = (A T A )−1A T b. Furthermore, ΔX is a func-
tion of both z as well as u where as A is independent of z. Since X̂ is also a nominal

point, the right most term becomes,

⎛
⎜⎝ 0

0

Ω
1
2
v (h(x̂k+1)− zk+1)

⎞
⎟⎠.

Thus, any belief can be updated in the view of the control action uk and the resulting
future observation zk+1. Once that is done, an objective function can be defined over such
a belief. More precisely:

J(uk)
.
=
∫

zk+1

(a)︷ ︸︸ ︷
P(zk+1 | H −

k+1) c

⎛
⎜⎝

(b)︷ ︸︸ ︷
P(Xk+1|H −

k+1,zk+1)

⎞
⎟⎠ (5)
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Intuitively, for a particular value of zk+1, (a) represents likelihood of such an observation
when both the history H (denoting past observations and controls) and control uk are
known, while (b) is a conditioned posterior belief given this specific zk+1.

2.2. Incorporating data association within BSP

We can now summarise the effect of considering data association within BSP. This re-
laxation under assumption of a unimodal prior and a GMM prior was proposed in [18]
and [17] respectively. This section summarises parts taken from [17]. Note that the term
(a) of the eq. 5 can be computed using the observation model and the motion model. In
fact,

P(zk+1|H −
k+1) =

∫
x
P(zk+1|x,AtrH −

k+1)b[x
−
k+1=x]. (6)

where H −
k+1 denote history of control actions and of observations up to the step k, b[x−k+1]

is the propagated belief (utilising the motion model P(xk+1|xk)) and Atr denotes the true
data association i.e., indeed Atr is the correct scene which when viewed from xk+1 would
likely result in the observation zk+1. Similarly, the posterior i.e., the term (b) in the eq. 5
can be computed as:

b[Xk+1] ∝ b[Xk+1]P(zk+1 | xk+1,Atr) = N (X̂k+1,Σk+1) (7)

If we do not assume the data association to be solved, then in BSP the conditioning
(of posterior in eq. 5) has important consequences; there is no longer a single true scene
Atr. Instead, we have to reason over all possible scenes, Ai ∈ {AN}. It can then be shown
that these terms (such as eq. 7) are not a Gaussian but a mixture of Gaussians. Thus, the
posterior is a Gaussian Mixture Model (GMM).

Therefore, for a single planning step, the objective function (5) can be re-written as

J(uk) =
∫

zk+1

( ∑
i∈{AN}

wi
k+1) · c

(
Mk+1

∑
r

ξ r
k+1b[Xr+

k+1]

)
. (8)

where {AN} is the set of all possible data-associations while the prior b[Xk+1] is a GMM
with Mk+1 components. The scalar weights wi

k+1 denote observation likelihood due to
the data association with Ai. In order to make DA-BSP practical, it is crucial to keep the
number of components, Mk low. However, this also depends on the degree of perceptual
aliasing in the environment.

Note that, if we consider the belief at planning time k to be a Gaussian b[Xk] =
N (X̂k,Σk), then under this setting, each of the components b[Xi+

k+1] in the mixture pdf
can be written as b[Xi+

k+1] ∝ b[Xk]P(xk+1 | xk,uk)P(zk+1 | xk+1,Ai). It can be easily shown
that the above belief is a Gaussian b[Xi+

k+1] = N (X̂ i
k+1,Σ

i
k+1) and one can find its first

two moments via MAP inference. Hence, the mixture of posterior beliefs in the cost c(.)
from Eq. (8) is now a mixture of Gaussians:

∑
i

w̃ib[Xi+
k+1] = ∑

i
w̃iN (X̂ i

k+1,Σ
i
k+1). (9)
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2.3. Designing a Specific Cost Function

Standard cost functions typically have terms related to control actions cu, distance to goal
cG and uncertainty cΣ, see e.g. [21,12]. In contrast with usual BSP, the posterior belief in
DA-BSP is a GMM ∑i w̃iN (X̂ i

k+1,Σ
i
k+1), see Eq. (9). Hence, based on different criteria

to evaluate such mixtures, we can have different types of cost function, such as, taking the
worst-case covariance among all covariances Σi

k+1 in the mixture, e.g. Σ = maxi{tr(Σi)},
or collapsing the mixture into a single Gaussian N (.,Σ) (see e.g. [1]) while maintaining
the cost due to uncertainty as cΣ = trace(Σ̂).

In the presence of possibly multi-modal beliefs, we can prefer control actions that
lead to unambiguous situation, by penalising those actions that lead to ambiguity. For a
fixed number of modes, this cost to ambiguity should penalise a distribution for being
closer to a uniform distribution. One such method is to take Kullback-Leibler divergence
KLu({w̃i}) of these weights, with respect to the uniform distribution such as by consid-
ering cw({w̃i}) .

= 1
KLu({w̃i})+ε where 0 < ε � 1 is to make the term well-defined. For

a variable number of modes, higher cost should be associated with higher number of
modes in a belief. With user-defined weights Mu,MG,MΣ and Mw, the overall cost then
can be defined as a combination

c .
= Mucu +MGcG +MΣcΣ +Mwcw, (10)

3. Formal methods in belief space planning

Till now, we assumed that from the perspective of planning, all scenes {AN} are equally
significant, and naturally this leads us to computational hardships. However, explicit rea-
soning of these association would enable our optimisation routine to harness richer infor-
mation available. For e.g., in search and rescue mission, it might be more important to as-
sociate humans or objects likely used by them, than to get natural features. We now first
describe how a formal methods based approach can be augmented with the belief space
planning in general and then in DA-BSP in particular. Let us first define very briefly the
syntax and semantics of such a formal specification.

Syntactically, a set of LTL formula over a finite set of atomic propositions AP, is
defined as:

• p ∈ AP .
= p is LTL formula.

• if Ψ and Φ are LTL formula ¬Ψ,Φ∨Ψ,X Ψ and ΨU Φ are LTL formulae.
• Boolean operators are ¬,∨,∧,�,⊥.

Semantics of an LTL formula is defined over infinite traces over 2AP and satisfaction
relation |= is defined over an ω-word w = a0,a1, . . . (and w1 = a1, . . . ) as follows:

• w |= p if p ∈ a0
• w |= ¬Ψ if w |= Ψ
• w |= Φ∨Ψ if w |= Φ∨w |= Ψ
• w |= X Ψ if w1 |= Ψ
• w |= ΦU Ψ, ∃i, i ≥ 0 s.t. wi |= Ψ∧∀k, 0 ≤ k < i, wk |= Φ
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Additional operators are �φ = �U φ (eventually) and �φ = ¬ �¬φ (globally). Note
that, if reaching the task is defined as being in the vicinity of a goal state xG under a
metric d(.), then the corresponding LTL formula becomes φ = �(‖x− xG‖d < δ ) where
δ ∈ R defines the neighbourhood. Analogously, a safety requirement could be avoiding
a collision at all times of the trajectory. The corresponding LTL formula then can be
φ =�

(‖x− xobs,x‖d > δ
)

where δ ∈R is the safe distance from the closest (in the sense
of metric d) obstacle to x denoted by xobs,x. Usually, a labeling function L : X �→ 2AP is
defined over the states, to define set of states where the atomic proposition evaluates to
true. This can be done analogously to the non-standard case such as in [9] where labels
operate over set of all possible maps as well, or here, where labels operate over belief
states.

Another consequence of Gaussian beliefs in BSP is that certain properties like 95%
confidence region for a simple reachability, can be determined efficiently and analyti-
cally. Therefore, in contrast with the cost function mentioned in Sec. 2.3, we can frame
a more general optimisation problem as:

minimize
u

J(bL
u ,Ψ1)

subject to bk
u |= Ψ2, k ∈ {1,2, . . . ,L}

(11)

where bi
u represents a belief at step i, under control action u. In other words, we incorpo-

rate a hard-constraint via an LTL formula Ψ2 whereas infeasible formula Ψ1 may have
an associated cost included explicitly in the objective function.

3.1. Incorporating collisions

Under the presence of obstacles, the local optimisation approach mentioned earlier in
Sec. 2.1, needs to consider the homotopy class of non-colliding trajectories. This, like
many other approaches, considers collision implicitly. The basic idea is to ensure no
collision along a given control trajectory; one computes analytically the probability of
remaining safe (i.e., away from collision) and maximises it for the path. Like in most
multi-objective optimisation, a convex combination of this along with other costs can
be taken. In order to improve the efficiency, [21] considers second-order approximation
of this analytical function. They also relax the maximum likelihood assumption when
incorporating the observation. Since in DA-BSP, each posterior conditioned on a specific
association, is still a Gaussian (see eq. 9), this can be done similarly.

However, we suggest that this can be generalised using formal methods, where the
objective or the constraints or both are specified using LTL. For e.g., [5] uses this ap-
proach for optimal planning in MDP considering LTL constraints. Taking cue from that,
in BSP, when the underlying POMDP is viewed as the belief-MDP, a rich set of reacha-
bility properties can be defined in LTL. Thus, at any planning iteration, given the com-
posed belief b[Xk], we can define the LTL formula Ψ which encapsulates such notion
of safety. For e.g., to ensure that the belief is safe within 2-standard deviation from the
nominal value, one creates a corresponding labelling function for each node of belief-
MDP. In case of DA-BSP, this corresponds to conjunction Λ

i∈{AN}
φ(b[Xk+1|H ,Ai]) where

labelling can be computed efficiently due to Gaussian nature of the conditional probabil-
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Figure 1. Schematic of an infeasible planning problem. The landmark uncertainty is high enough to deny
the robot sufficient localization after loop-closure, while moving directly towards the goal fails to contain the
uncertainty within a maximum allowed limit.

ity distribution. This is similar to the numerous approaches that seek to integrate high-
level specification-based task planner and low-level motion planning. More specifically,
the automaton encoding the LTL specification is composed with the underlying system
dynamic. Planning in this product space, can then yield conformant plans.

3.2. Incorporating uncertainty budget and infeasibility

In many scenarios, the objective function has competing goals of uncertainty reduction
and reaching to the target as soon as possible. For e.g., a robot may be able to reduce its
pose uncertainty by visiting a landmark, whereas it might need to move away from this
landmark in order to reach the target. As is seen in the Fig. 1, under a maximum uncer-
tainty budget allowed for any control trajectory, simultaneously achieving these two ob-
jectives might be infeasible. Recognising this, [12] suggests ad-hoc approach of setting
the budget apriori. Very similar to the approach mentioned previously in Sec. 3.1, this
can be obtained through integration of high-level task planner (where such requirements
are specified formally) and low-level motion planner.

In more interesting case, when such a specification is infeasible, a recently proposed
approach of co-safe LTL can be harnessed to obtain least violating policy (see e.g., [16]
in this context). [9] propose it for active semantic SLAM i.e., where the classes as well
as probability distribution of uncertain landmarks are known, but the objective is local-
ization of the pose as well as these landmarks. They show that the general stochastic op-
timization problem, similar to eq. 5 with an additional scalar term proportional to prob-
ability of satisfying the specification, can be transformed into a deterministic optimiza-
tion when the candidate paths belong to a δ -confidence region of nominal positions of
these landmarks (such that the nominal path satisfies the specification). This approach is
applicable where the only source of uncertainty is in the location of landmarks. In case
of DA-BSP, the uncertainty arises out of motion model, and in absence of this uncer-
tainty, data association can be resolved trivially. However, like in [9], we can convert
a multi-objective (convex in objectives) optimization problem to one over general cost
minimization and probabilistic satisfaction of the safety specification.

3.3. Reasoning over the associations

Note that since labelling of the belief does not require either a specific formula (as long
as it is within the language) or a specific structure of the belief (though assuming such
a structure could make labelling easier), the formal methods approach can be harnessed
to also reason over data association. As before, if certain specification in terms of data
association is infeasible, we can resort to co-safe LTL specification to obtain minimally
violating control policy.
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3.4. Summary of formal BSP

In summary of the discussion on formal BSP and also DA-BSP, we note that LTL spec-
ification can be incorporated into belief space planning, to account for collisions, uncer-
tainty budget, infeasibility as well as various data association. Table 1 shows how each of
them can be specified. Note that the state x̂ denotes the mean value around which the cur-
rent belief is distributed. Here, xi

Ob denotes the position of ith obstacle while σ. denotes a
threshold fixed a-priori. Even though the belief is over entire state space of x, its succinct
Gaussian form enables us to compute these labels over the belief, quite efficiently. In the
case of DA-BSP, since the belief is a GMM, the properties would need to be changed
slightly. For e.g., reachability to the goal, may become pgoal = min

j
‖x̂ j,xG‖d < σg, im-

plying one of the modes is close enough to the goal state. In addition to this, DA-BSP
allows us to reason about the associations directly within the belief state. For e.g., to al-
low active disambiguation, the LTL specification should guide towards unimodal beliefs.
Similarly, to avoid having numerous data-association beliefs, a safety specification of the
form ppruned |{AN}|< σN , σN ∈ N can be used.

Table 1. Examples of formal BSP and DA-BSP

Planning Property LTL-formula Comment Example

BSP

Reaching target �pgoal eventually the goal is reached pgoal = ‖x̂− xG‖d < σg

Avoiding obstacle �psa f e obstacles are avoided at each step psa f e = min
i

‖x̂− xi
Ob‖d > σsa f e

Bounded uncertainty �punc pose uncertainty within a bound punc = tr(Σx)< σΣ

DA-BSP

Reaching target �pgoal goal is reached pgoal = min
j

‖x̂ j,xG‖d < σg

Avoiding obstacle �psa f e obstacles are avoided at each step psa f e = min
i, j

‖x̂ j − xi
Ob‖d > σsa f e

Active disambiguation �pdisamg eventually, disambiguation pdisamg = |{AN}|= 1
Efficient propagation �ppruned parsimonious data association ppruned |{AN}|< σN

3.5. Overall algorithm

The algorithm that incorporates DA-BSP as well as formal methods approaches is shown
in Alg. 1. For brevity, it is shown for a single step of planning, though it is straight-
forward to apply it in non-myopic setting by calling it recursively. First the given prior is
composed with the motion model to obtain the propagated belief. The observations are
samples drawn from this propagated belief. The cost function is set to 0 and specification
is assumed to be initially satisfied. Consequently, for each sampled observation, all pos-
sible data association in the current step k and future k+1 is considered, resulting in the
nested loops shown. The weights are computed as described before. Each conditioned
posterior is a Gaussian belief against which specification could checked and appropriate
labels be attached. Finally, when all associations are considered, we obtain a multi-modal
mixture for each observation z.

4. Simulated examples to illustrate formal DA-BSP

We consider a janitor robot that is lost within one of the two office floors, as shown in
the Fig. 2. Each floor has cubicles at the top corners (close to B and D) and the elevator
(close to F) at the bottom middle. The two floors are significantly aliased, except the left-
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Algorithm 1 Formal and data association aware belief-space planning (formal-DA-BSP)

Input: Current GMM belief b[Xk] at step-k, history Hk , action uk , scenes {AN}, event likelihood P(Ai | Hk,x)
for each Ai ∈ {AN}, labelling Fφ1 ,Fφ2

1: b[X−
k+1] ← b[Xk]P(xk+1 | xk,uk)

2: {zk+1} ← SimulateObservations(b[X−
k+1], {AN})

3: J ← 0
4: Fφ1 ←�
5: for ∀zk+1 ∈ {zk+1} do

6: ws ← 0
7: for i ∈ [1 . . . |A|] do

8: � compute weight
9: wi

k+1 ← CalcWeights(zk+1,P(Ai | H −
k+1,x),b[X

−
k+1])

10: ws ← ws +wi
11: for ∀ j ∈ [1, . . . ,Mk] do

12: � compute weight w̃i j
k+1 for each GMM component

13: w̃i j
k+1 ← CalcWeights(zk+1,P(Ai | H −

k+1,x),b[X
j−

k+1])
14: ξ i j

k+1 ← ξ j
k w̃i j

k+1

15: � Calculate posterior of b[X j−
k+1], given Ai

16: b[Xi j+
k+1] ← UpdateBelief(b[X j−

k+1],zk+1,Ai)
17: Fφ1 ,k+1 ← Check(b[X j−

k+1],zk+1,Ai)
18: Fφ1 ← Fφ1 ∧Fφ1 ,k+1
19: end for

20: end for

21: Prune components with weights ξ i j
k+1 below a threshold

22: Construct b[X+
k+1] from the remaining Mk+1 components

23: Fφ2 ← Check(b[X+
k+1])

24: c ← CalcCost(b[X+
k+1],Fφ1 ,Fφ2 )

25: J ← J+ws · c
26: end for

27: return J

middle of corridor which has a unique feature (a sofa) in the second floor. The objective
of the robot is to localise itself, both within the floor (intra-floor) and between the floors
(inter-floor). Initially, there are two intra-floor nominal positions at each floor, shown
with letters A and C. In other words, the prior for robot pose is a multi-modal Gaussian
with 4 modes. The set of robot control actions consist of U = {u f wd ,ubwd ,ul f t ,urgt}.
For simplicity, these actions are assumed to be suitably abstracted so that non-holonomic
constraints are not looked into. Also the nominal positions out of such control actions
are in close vicinity of {A,B, . . . ,F}.

This simplistic example is sufficient to illustrate the effect of DA-BSP and formal
reasoning, both in qualitative sense (through this schematics) as well as quantitative
sense (through actual planning in a similar Gazebo based robotic world). For realistic
simulation of the problem, we use Gazebo simulator along with the Pioneer robotic plat-
form. This is also to facilitate the experiment with real Pioneer robot, which is planned
in the future works. With reference to the examples in Table 1, note how each aspect
of this example, can be framed using formal BSP and DA-BSP. For e.g., to ensure that
the uncertainty is within the narrow corridor, a safety property �

(‖x̂− x0‖d < wcorr
2

)
is

sufficient.
Adapting planning horizon: Initially, given an approximate map of the environment

(say from pervious SLAM session), the robot could decide to plan for multiple steps
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Figure 2. Schematics of a lost janitor robot (figure not to scale). The prior belief is a multimodal Gaussian,
with 4 modes, two each floor. Note that there is significant aliasing between the floors.

before actually taking an action. If there were no inference involved, each motion would
increase the uncertainty of the position and this may even have significant overlap with
the narrow corridors. However, note that, in such planning scenario, inference is often
called as a sub-routine and thereby reducing the uncertainty. Since in each planning step,
we consider all possible data-association, such a collision is envisioned in some of the
modes of the multi-modal posterior belief. This proves to be quite easy to be incorporated
using the labelling function described in the section 3; for e.g. using L2-norm as the
metric. Once an appropriate safety criteria is formulated, the optimisation is performed
within this feasible space of policies. In case of Fig. 2, this means that rather than moving
from A to B (or C to D) in one planning action, the robot may perform smaller actions, to
attain better localisation. However, due to the particular nature of the problem, this will
not make planning infeasible in the sense of conflicting goals and uncertainty budget,
discussed in Sec. 3.2.

5. Conclusion

Usual belief space planning assumes data association to be solved. However, in realistic
applications such as navigation under significant uncertainty and perceptual aliasing, this
is too restrictive an assumption and can also lead to catastrophic failure. Unfortunately,
considering data association within belief space planning results in posterior becoming a
non-Gaussian multi-modal distribution. Though under realistic assumption of mild per-
ceptual aliasing, this approach can still be tractable, we propose using formal methods
based approach to harness a richer class of dependency between scenes and differen-
tiating important association from unimportant ones. Interestingly, this also provides a
framework for a more general class of belief space planning where the cost function is
aware of obstacles as well as the uncertainty budget, thereby avoiding infeasible plan-
ning. Though interesting, this is a very preliminary work towards an integrated approach
of formal-DA-BSP, hence the future work is targeted towards application of these ideas
on a real robotic platform while fully harnessing recent advances in formal methods in
the context of path planning and advances in generalisation of belief space planning.
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