
Safety Guarantees for Iterative Predictions with Gaussian Processes

Kyriakos Polymenakos, Luca Laurenti, Andrea Patane, Jan-Peter Calliess,
Luca Cardelli, Marta Kwiatkowska, Alessandro Abate & Stephen Roberts

Abstract— Gaussian Processes (GPs) are widely employed in
control and learning because of their principled treatment of
uncertainty. However, tracking uncertainty for iterative, multi-
step predictions in general leads to an analytically intractable
problem. While approximation methods exist, they do not
come with guarantees, making it difficult to estimate their
reliability and to trust their predictions. In this work, we derive
formal probability error bounds for iterative predictions with
GPs. Building on GP properties, we bound the probability
that random trajectories lie in specific regions around the
predicted values. Namely, given a tolerance ε > 0, we compute
regions around the predicted trajectory values, such that GP
trajectories are guaranteed to lie inside them with probability
at least 1 − ε. We verify experimentally that our method
tracks the predictive uncertainty correctly, even when current
approximation techniques fail. Furthermore, we show how the
proposed bounds can incorporate a given control law, and
effectively bound the trajectories of the closed-loop system.

I. INTRODUCTION

Gaussian processes (GPs) have been extensively used for
modelling due to the variety of suitable properties they
possess: they are probabilistic models, providing uncertainty
estimates on their predictions; they are non-parametric, effec-
tively adjusting the model complexity to the data, and finally
they are usually data-efficient [1]. In plenty of scenarios
(e.g. planning, forecasting, and time-series modelling) one
needs to make several, possibly correlated, predictions at
once (the second prediction is made before the first one can
be evaluated versus a ground truth, and so on). For this we
can discern two options: either train multiple models, each
one predicting at different time-scales, or use a single model,
that iteratively computes predictions that get in turn fed back
as input to the model in the next step. We refer to the latter
as iterative predictions and iterative planning.

Of particular interest for the iterative planning scenario
is the model-based reinforcement learning setting, where a
GP model is used to evaluate a candidate control policy on
the system. The evaluation requires the model to provide
predictions for the system’s state over multiple time-steps
under the proposed policy. It is important in these cases to
have a realistic assessment of the error on the predictions,
as this allows quantification of the risk of costly system
failures, like collisions with obstacles or financial losses, and
analysis of safety-critical applications. In such settings, we
require predictions that are not only accurate on average, but
also provide robust, (probabilistically) guaranteed worst-case
accuracy.

Unfortunately, as GP models output probability distribu-
tions, iterative planning poses the problem of prediction over
successive noisy inputs (i.e. with a distribution placed over

the input space). This leads to an analytically intractable
problem for such non-linear input-output mappings. While
several approximation techniques have been proposed [2,
3], to the best of our knowledge, none of them provides
guarantees, in the form of formal error bounds on their
estimations, making it difficult to estimate reliability and trust
predictions in application scenarios.

In this work we provide a probabilistic bound for iterative
predictions with GPs and develop a method for its explicit
computation. Given a user-defined tolerance ε > 0, our
method works by computing probabilistic bounds at each
prediction step and propagating them over multiple time-
steps in the form of intervals. The GP trajectories are
guaranteed to lie inside these intervals at each time step
with probability at least 1 − ε. In practice, this allows us
to perform long-term predictions for the GP trajectory with
the prediction provably staying within known bounds with
a specified probability. We further show how the bound can
be used within a reinforcement learning scenario, in order to
guarantee the safety of proposed control policies. We provide
an algorithmic framework for the explicit computation of
every value involved in the bound calculation, directly and
efficiently from data, so that the bound can be explicitly
computed independently of the form of the learned GP.

On a set of case studies, we show how our method can
correctly provide probabilistic bounds that account for the
GP uncertainty over its trajectories. Finally, we illustrate how
our bound can be successfully employed to verify both open
loop and feedback policies and therefore guarantee the safety
of proposed controllers for the learned GP. In summary, the
paper makes the following main contributions:

• We develop a formal bound, for iterative prediction
settings, on the probability that the trajectories of a
GP lie inside a specific region. We provide explicit
computational techniques for calculating the bound.

• We incorporate control laws and take into account their
effects in the model’s trajectories.

• We provide experimental validations of our method,
highlighting cases in which a competitive state-of-the-
art method fails to properly propagate the GP uncer-
tainty. We provide case studies on certification of open-
loop and feedback policies.

II. RELATED WORK

Performing iterative predictions, and using them for plan-
ning, is an extensively studied problem across various model
types [4, 5, 6, 7].

In particular, GP multi-step-ahead prediction is gener-
ally achieved using heuristic approximations [2]. The most
widely used approach is Moment Matching (MM) which
computes a Gaussian approximation over the (non-Gaussian)
output distribution of a GP for a noisy input [2, 8]. The uncer-
tainty estimated in this fashion can then be leveraged to learn
control policies in frameworks such as PILCO (Probabilistic
Inference for Learning COntrol) [9, 10]. During the last few
years, various extensions of PILCO have been proposed [11,
12, 13, 14]. For example, in [15] GPs have been replaced
with neural networks, while in [16] an emphasis on safety
is given. However, building on Gaussian approximations,
all the cited approaches inherently fail to take into account
multi-modal behaviour and tend to underestimate uncertainty.
As such, the synthesised policies are not guaranteed to be
safe. Our method on the other hand comes with probabilistic
guarantees that allow us to compute the subregions of the
input space in which the trajectories of the analysed GP
are bound to lie with high probability. As such it provides
formal, guaranteed bounds on the GP trajectories and makes
no particular assumptions on the GP model, enabling its use
in safe reinforcement learning scenarios [17].

Numerical approximations exist for multi-step-ahead pre-
dictions [3] where the output distribution is directly ap-
proximated by using quadrature formulas and, in principle,
worst-case scenario error bounds could be computed using
existing techniques for numerical quadrature [18]. However,
the analysis that leads to the bounds proposed in [18] is
focused on stability, with the assumption that trajectories
monotonically decrease the distance to a target state, and the
authors explicitly exclude trajectories that move away from
the target state before eventual convergence and stabilisation.
In [3], where more general tasks are solved, no formal
bounds are provided. Our algorithm instead provides valid
probabilistic bounds for the general case.

Interestingly, [19] focus on bounding the modelling error,
that is the difference between the underlying system dy-
namics and the learnt GP model, which is a complementary
problem to the one tackled in this work, and employ moment-
matching to propagate the uncertainty for multiple time-
steps. In order to compute error bounds they assume that
the underlying function describing the system dynamics, that
is approximated by the GP, has a bounded RKHS norm
and use existing results for this setting [20]. However, their
bounds require the computation of constants very difficult
to compute in practice. In contrast, in this paper we assume
that the underlying function is a sample from a GP (and
hence we do not consider any possible model mismatch) and
derive formal bounds whose required constants are directly
computed.

Formal and probabilistic guarantees for GPs have been dis-
cussed in [21] and [22] for regression and classification with
GPs, respectively. Albeit formal, these methods cannot be
directly applied to multi-step-ahead predictions scenarios as
they are designed for GPs over single input points. Whereas,
our method, by propagating probabilistic bounds through
each time step is applicable to multi-step ahead prediction

scenarios and can be used in reinforcement learning settings
to verify controller safety.

III. BOUNDS FOR MULTI-STEP AHEAD PREDICTIONS
WITH GAUSSIAN PROCESSES

Given an input space U ⊂ Rm and a time horizon [0, H],
for t ∈ {0, . . . ,H − 1} ⊂ N we consider a stochastic
dynamical system1

xt+1 = f(xt, ut), ut ∈ U, (1)

where we assume that for x ∈ X ⊂ Rn, f(x, ut) ∼
N (µf

x,Σ
f
x,x) that is, f(x, ut) is normally distributed with

mean vector µf
x and covariance matrix Σf

x,x
2. Mean and

variance of f i(x, ut), the i-th component of f(x, ut), are
denoted with µf ,i

x and Σ
f ,(i,i)
x,x . Intuitively, xt is a discrete-

time stochastic process, whose time evolution depends on an
input signal taking values in U. A parametric memory-less
and deterministic policy πθ : X → U with parameters θ is a
function that assigns a control input given the current state.
By iterating Eqn. (1), we have that, for t > 0, xt is a random
variable as it is the output of process f . As such multi-step
ahead predictions pose the problem of predicting over noisy
inputs.

A. Prediction over noisy inputs

For a given x ∈ X,u ∈ U we have that f(x, u) is
a Gaussian random variable. However, if xt is a random
variable itself (which is the case for prediction over noisy
inputs), then f(xt, u) is generally not Gaussian anymore
and its distribution is in general analytically intractable. In
particular, we have that

f(xt, u) ∼
∫
p(xt+1|x, u)p(xt = x)dx,

where p(xt+1|x, u) is the (normal) distribution of f(x, u)
and p(xt = x) is the distribution of xt. As a consequence,
the predictive distribution for xt+1 is not Gaussian and
approximations are required [2].

In this paper, given xt, we consider a predictor x̂t for xt,
such that

x̂t = g(x̂t−1, ut−1), (2)

where g(x̂t−1, ut−1) is a deterministic function. That is,
x̂t is a deterministic process that predicts the value of xt.
For instance, we could have that x̂t equals to the mean of
xt, as estimated with moment matching techniques [2], but
any other deterministic function will work for the results
presented in this paper.

In what follows, in Theorem 1 we compute a probabilistic
bound on the error between x̂t and xt. The bound has a
recursive structure, as the uncertainty needs to be propagated
over multiple prediction steps. Please note that this is not a
modelling error, coming from the GP imperfectly capturing

1Throughout the paper bold math symbols are used for random vari-
ables.

2For simplicity we drop the dependence on ut in both mean vector and
covariance matrix.

the behaviour of an underlying system, but comes solely
from propagating the uncertainty while performing iterative
predictions. Then, in Corollary 1 we show that, given an
ε > 0, this bound can be used to build a tube around x̂t such
that at each time step the trajectories of xt are guaranteed
to be within such tube with probability at least 1 − ε. For
any safe region S ⊂ X we can hence produce certificates on
whether GP trajectories will lie inside that region with high
probability or not.

B. Bounds for Multi-Step Ahead Predictions

Consider the random variable on the error at time t, i.e.
et = |xt − x̂t|1 and a constant Kt > 0. In Theorem 1 we
compute P (et > Kt), that is the probability that the error
between xt and x̂t is greater than Kt.

Theorem 1. For any K > 0 and x∗ ∈ X , let IKx∗ = {x ∈
X : |x∗ − x|1 ≤ K}. Assume x0 ∼ N (µ0,Σ0,0). Then, for
arbitrary constants Kt+1,Kt > 0, it holds that

P (et+1 > Kt+1) ≤P (sup
x∈IKtx̂t

|x̂t+1 − f(x, ut)|i > Kt+1)

P (et ≤ Kt) + P (et > Kt),

with P (e0 > K0) = 1 −
∫
I
K0
x̂0

N (z |µ0,Σ0,0)dz for any
K0 > 0, µ0 and Σ0,0 are the mean and covariance of x0.

The proof of the above theorem is reported in Section
V. The resulting bound in Theorem 1 is recursive. Hence,
in order to estimate the prediction error at time t, we
need to compute the prediction error at the previous time
steps, which is propagated over time through the bound.
The recursion terminates as the distribution for x0, that is
the initial condition, is given. Intuitively Kt is a parametric
cutoff threshold for the distance at time t, and the resulting
bound at time t+1, that is et+1, is the sum of the contribution
given by assuming that et ≤ Kt and by the contribution
when assuming et > Kt (and remains valid for any value of
Kt).

Note that the bound in Theorem 1 requires the computation
of P (sup

x∈IKtx̂t

|g(x̂t, ut) − f(x, ut)|1 > Kt+1) that is, the
probability that the supremum of a stochastic process is
greater than a given threshold. This is in general a difficult
problem [23]. However, f(x, ut) is a Gaussian process and
g(x̂t, ut) a constant. Therefore, we can use the result from
[21], where bounds for the supremum of a GP have been
derived. These are extended to the current setup in the
following proposition.

Proposition 1. Let µ(x, x̂t) = g(x̂t, ut) − µf
x. Assume IKtx̂t

is a hyper-cube with side length D. For i ∈ {1, ..., n} let

η̄i =
Kt+1 − sup

x∈IKtx̂t

|µ(x, x̂t)|1
n

−

12

∫ λi

0

√√√√ln

((√NLix̂tD
z

+ 1
)n)

dz,

with λi = 1
2 supKtx1,x2∈Ix̂t

d
(i)
x̂ (x1, x2) and n being the di-

mension of the state space. For each i ∈ {1, ..., n} assume
η̄i > 0. Then, it holds that

P (sup
x∈IKtx̂t

|g(x̂t, ut)− f(x, ut)|1 > Kt+1) ≤ 2

n∑
i=1

e
− (η̄i)2

2ξ(i) ,

where ξ(i) = sup
x∈IKtx̂t

Σ
f ,(i,i)
x,x ,

d
(i)
x̂t

(x1, x2) =

√
E[(f i(x2, ut)− µf ,i

x2 − (f i(x1, ut)− µf ,i
x1))2]

and Lix̂t is a local Lipschitz constant for d(i)x̂t
.

By using the upper bound of Proposition 1 in Theorem 1
we can propagate the bound through time for any value of
Kt > 0, t = 0, . . . ,H . This give us the degree of freedom
necessary to iteratively select, given Kt, the values for Kt+1

that meet an a-priori specified probabilistic error ε > 0. To do
this it suffices to evaluate the one-step bound resulting from
the combination of Proposition 1 and Theorem 1, and choose
the smallest value of Kt+1 such that P (et+1 > Kt+1) < ε.

Corollary 1. (of Theorem 1) For any ε > 0 pick the smallest
K0, ...,KH such that for any t ∈ {0, ...,H} we have that
P (et > Kt) < ε. Then, this implies that

∀t ∈ {0, ...,H}, P (xt ∈ IKtx̂t) > 1− ε.

As a result we can compute a sequence of subsets IKtx̂t of
the state space such that the GP trajectories are bounded to
stay inside them with probability at least 1− ε at each time
step. Given a safe region S ⊆ X we can hence produce
a certificate on the GP trajectories lying inside S with
probability at least 1−ε by checking the intersection between
the IKtx̂t and S.

Notice that the bound in Proposition 1 requires the com-
putation of sup

x∈IKtx̂t
|µi(x, x̂t)|1, ξ(i), Lix̂t and λ1, which

are related to the extrema of the mean and variance of
the GP f in IKtx̂t and to a Lipschitz constant on d

(i)
x̂t

. In a
Bayesian learning setting, these can be computed by relying
on the methods discussed in [21] and applying them to
the GP of Eqn. (1). Interestingly these methods can be
straightforwardly extended to the setting of this paper, by
taking into account the extra input dimensions coming from
a deterministic control strategy π(x) = u, without increasing
the size of the branch and bound search space, that is without
significantly changing the computational time 3.

C. Using the Safety Guarantees for PILCO

In this section we briefly examine how the safety guaran-
tees can be used in conjunction with a safe, model-based
policy search algorithm, which extends the Safe PILCO
framework [16]. PILCO’s goal is to control an unknown
dynamical system throughout a task, by efficiently optimising
the parameters θ of a feedback control policy πθ, imple-
mented originally as a linear controller or a sum of radial

3For further discussion of the computational complexity of the bound
please see the extended version of this paper at https://arxiv.org/
abs/1912.00071.

https://arxiv.org/abs/1912.00071
https://arxiv.org/abs/1912.00071

basis functions. In Safe PILCO, safety considerations are
added, with the introduction of constraints, that demand the
system to stay in a safe subset of the state space S ⊆
X with high probability. Specifically, after a controller is
trained using a learned GP model, and before the controller
is applied to the controlled system, the probability that
this controller violates the constraints is estimated using
moment matching. Since MM is an approximation that
might lead to underestimating the true uncertainty of the
iterative predictions (as we show below) controllers that
violate the constraints can be allowed to be implemented.
We therefore suggest to replace this step, referred to in ([16])
as a safety check, with the bounds estimated from Corollary
1. This replacement is straightforward and provides better
protection from unsafe controllers used in possibly safety
critical applications.

IV. EXPERIMENTS

In this section we use the bound from Theorem 1 with
the L1 norm, that is with d = 1, on GPs with SQE kernels,
trained from data. First we explicitly compare our formal,
guaranteed bounds with the probability estimation obtained
by Moment Matching (MM) in two iterative prediction
scenarios (with no control involved). We then investigate
in the Mountain Car application [24] the behaviour of our
methodology for certification of a given control policy.
Finally we show how to compute bounds for the behaviour
of closed-loop systems for a given controller GPs are trained
with the GPML package, using maximum marginal like-
lihood for hyperparameter selection. Control policies are
either arbitrarily selected for the purpose of demonstration
or obtained from PILCO. They are linear or linear squashed
through a sine wave to constrain the input magnitude [9].

A. Iterative Prediction

We analyse the behaviour of our method in a one-
dimensional synthetic dataset where the system dynamics
are distributed as a Gaussian at each time step. Further,
we assume that the initial state of the system is Gaussian,
that is x0 ∼ N (µ0,Σ0), with mean and variance given by
µ0 = 0 and Σ0 = 0.01. We compute predictions and bound
the trajectory for an horizon of H = 10 time steps. We use
ε = 0.05, that is we require bounds holding with probability
at least 95%. For MM, we use intervals of two standard
deviations around the mean, which, when the dynamics
are effectively Gaussian, also correspond to bounds at 95%
probability.

Results for this analysis are given in Figure 1, where our
bound is depicted with a thick red solid line, and MM results
are represented by the green shaded area. Further, we extract
100 trajectories from the GP, which are depicted with thin
colored lines, to provide statistical validation for the results.
Notice that the latter are almost entirely within the bounds
provided by our method, and also within the MM shaded
area. In fact, since the system dynamics are fully Gaussian
at each time step, that is xt is Gaussian for each t, then

Fig. 1: A set of 100 trajectories sampled from a GP (thin coloured
line). The green shaded area corresponds to plus/minus two standard
deviations of the moment matching prediction. The thicker red lines
delimit the area with 95% probability according to Theorem 1.

the approximation made by MM is almost exact and well
behaved.

Notice that MM succeeds in bounding the GP trajectories
as it is well suited for the example above. However, as soon
as this does not hold anymore, the results obtained with
MM fail to bound the actual GP trajectories. As an example,
consider a system with dynamics given by:

h(x) =

{
sign(x)x4, if |x| < 1

x, otherwise.
(3)

We train a GP on data sampled from this system. With the
function being non-linear, we have that xt is non-Gaussian
for t > 0, which implies that MM will introduce unaccounted
approximation errors. Furthermore, the specific dynamics
chosen are such that the MM variance prediction will in-
evitably shrink, leading to a systematic underestimation of
the actual region in which GP trajectories are located. In
fact when the initial position of the trajectory, x0, is greater
than 1, then the trajectory will constantly be at x0. As such,
assuming x0 ∼ N (µ0,Σ0), for a big enough Σ0, the majority
of the GP trajectories will start with |x0| > 1. However, after
finitely-many time steps MM variance will wrongly shrink
to values very close to zero, hence failing to account for the
majority of the probability mass of the GP.

Empirical results for this system using ε = 0.05 are plotted
in Figure 2, for values of initial variance Σ0 going from 0.1
to 0.6. In accordance with the discussion above, if the initial
variance is small enough, then the overwhelming majority
of GP trajectories converge to zero. However, as the initial
variance grows, more and more trajectories don’t converge.
MM fails to account for this behavior, and the variance
predicted by MM fails to mirror the actual dynamics of the
GP under analysis. Our method, being guaranteed to provide
correct results, is able to successfully bound (up to 1 − ε
probability) the actual trajectory of the GP, independently of
the initial variance.

Fig. 2: As the initial variance increases, more trajectories, having an initial state |x0| > 1, do not converge to 0. Moment matching fails
to account for this fact (green shaded area showing two standards deviations). Our bound (red line) grows appropriately. Thinner colored
lines represent 100 sampled trajectories from the GP.

B. Open-loop control for Mountain Car

In this Section we show how our method can be used to
certify a control input for a dynamical system. The envi-
ronment we are considering is a version of the continuous
mountain car problem [24]. Briefly, a car has to go up a hill
to its right, with a goal state on top of the hill. Because it
does not have enough power to climb the hill directly, it has
to go up a hill to the left first to gather momentum. The state
space has two dimensions (position and velocity of the car),
and the control input is one dimensional and corresponds to
a force applied to the car.

As previously, we train a GP on data generated from
the environment, in this case following a random policy.
We assume we have access to an initial normal distribution
for the starting state and we want to evaluate a proposed
sequence of actions. Specifically, we want to perform pre-
dictions about the sequence of states (position and velocity)
of the car, and to provide high probability bounds for these
predictions. The trained GP model has a 3-dimensional input
space, as it takes (xt, ut) pairs as inputs, corresponding to
the two state-space variables and the control input, and 2D
outputs, that correspond to xt+1. The two output dimensions
are modelled by two independent GPs, each one predicting
a state variable. However, the predictions of each model are
based on the previous predictions of both models. In more
detail, assume a state xt ∈ X ⊂ R2, where both components
of xt are bounded. These form a tuple [x1t , x

2
t , u], where

x1t ∈ [lb1, ub1], and x2t ∈ [lb2, ub2], and the exact value of
u is known (as we are verifying an arbitrary, fixed control
policy). This tuple is the input to the two GP models, with
one of them providing the predicted position x1t+1, with its
new lower and upper bound, and the other one providing the
same quantities for the velocity x2t+1.

We train the GP model on a dataset of 500 mountain car
state transitions for random actions. Now, for a proposed
sequence of actions, we can bound the predicted trajectories,
using our method with ε = 0.1 (90% probability bound).
Results from a typical run are presented in Table I. Drawing
1000 trajectories from the mountain car system we verify
that more than 90% (91.6%) of them stay within the bounded
area around the predictions obtained by our bound.

t Control u x1 x2 Bound x1 Bound x2

1 1.85 -0.50 0.00 0.020 0.020
2 -0.97 -0.38 0.53 0.030 0.080
3 1.39 -0.37 -0.49 0.055 0.125
4 0.17 -0.53 -0.20 0.105 0.220
5 -1.95 -0.57 -0.02 0.130 0.405
6 - -0.87 -0.05 0.225 0.595

TABLE I: Predictions along with 90% probability bounds for
a sequence of 5 actions applied to the mountain car. Columns
x1 and x2 report the mean value of position and velocity of
the car. Columns Bound x1 and Bound x2 report the computed
the interval around x1 and x2 containing at least 90% of the
trajectories.

C. Closed-loop control of linear and quadratic systems

Here we use the proposed method to predict the closed-
loop behaviour of several dynamical systems for a proposed
feedback controller. The systems are either linear, or linear
with an added quadratic term, of the general form:

ẋi = Aix+ xTQix+Biu,

where xi is the i-th component of the state vector x. We
assume a dataset D = {xi, ui, yi} of transitions is provided,
where yt = xt+1 = f(xt, ut) and a candidate controller C.
We train the GP model on 300 data points, and the bounds
are calculated with ε = 0.1 (90% probability bounds). The
controller is either linear, or linear squashed by a sine func-
tion, as in PILCO [9]. The reference point is the origin and
the starting region is a hypercube around the origin with size
0.1650 for each dimension. In this setting the mean of the
predicted states for the system is of secondary importance (in
the linear case it’s trivially zero) and our interest is focused
on the width of the bounds on the prediction error. Shrinking
bounds can be interpreted as similar to a probabilistic notion
of stability for the GP model: shrinking bounds indicate that
with the current controller and initial conditions, the model,
with high probability, will stay in a (shrinking) region around
the origin.

For each scenario, once the data and candidate controller
is provided we:
• Train a GP model on the provided dataset.
• Assuming that the model is accurate, use the presented

method to make bounded iterative predictions

System 1 System 2 System 3 System 4 System 5
t/Bounds for: x, W=0 x, W=-0.2 x1 x2 x1 x2 x1 x2 x1 x2 x3

t=1 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650 0.1650
t=2 0.1695 0.1645 0.1610 0.1605 0.1620 0.1610 0.1430 0.1585 0.1650 0.1605 0.1650
t=3 0.1735 0.1640 0.1570 0.1580 0.1595 0.1575 0.0415 0.1525 0.1645 0.1545 0.1650
t=4 0.1775 0.1635 0.1525 0.1540 0.1580 0.1545 0.0090 0.1465 0.1620 0.1530 0.1650
t=5 0.1815 0.1630 0.1485 0.1505 0.1565 0.1520 0.0050 0.1405 0.1590 0.1515 0.1650
t=6 0.1855 0.1625 0.1450 0.1475 0.1540 0.1500 0.0050 0.1340 0.1565 0.1470 0.1650

Viol. ratio 0.0732 0.0902 0.0841 0.0957 0.0347 0.0659

TABLE II: Calculated bounds for different systems over an episode with 5 transitions. As ”Viol. ratio”, violations ration,
we denote the fraction of transitions for which the bounds (calculated with a tolerance ε = 0.10) were violated out of the
1000 sampled trajectories for each system.

• Statistically verify that the bounds are valid by sampling
trajectories from the real system (verifying both that the
learned model is accurate enough, and that the predicted
bounds quantify uncertainty correctly).

All results are presented in Table II. The exact parameters
values for each system are available at: https://arxiv.
org/abs/1912.00071.

1) System 1, 1-dimensional state space, 1 control input,
linear: In this simple case, we start with a linear, one-
dimensional system with one control input. The parameters
take the following values A = 0.05, Q = 0, B = 1.0. We use
a linear controller for this case, so u = Wx. For the system
to be asymptotically stable, we need A+BW < 0⇔W <
−A. We estimate the bounds with no control, W = 0, and
for a controller that stabilises the system, W = −0.2. In the
first case the bounds must be getting wider (since our bounds
are conservative), while in the second, the bounds should be
getting narrower around the origin but that’s not guaranteed.
Results show that without a controller the bounds indeed get
wider, while with the controller the bounds get narrower.

2) System 2, 2-dimensional, 1 control input, linear:
Here we make bounded predictions for a linear system
with 2 dimensions and a single control input. This only
incrementally harder than the previous example, since the
two dimensions have independent dynamics and the con-
troller stabilises the first dimension only while the second
dimension has inherently convergent dynamics. The bounds
on both dimensions contract with time.

3) System 3, 2-dimensional, 2 control inputs, linear: Next
we work with a system that’s still 2-dimensional with state
variables that are not independent, but two control inputs
available. the bounds contract in this case too (Table II).

4) System 4, 2-dimensional, 1 control input, quadratic
dynamics, controller from PILCO: Here we train a linear
controller squashed by a sine function (effectively bounding
the control inputs between −1 and 1) with PILCO [9] and
then we calculate the bounds for the resulting system. The
estimated bounds verify convergence.

5) System 5, 3-dimensional system, 2 control inputs, lin-
ear: In this example the system is linear and has 3 dimen-
sions and 2 control inputs. Notice that for the third state
variable, even though the system is contractive (by inspecting
A), the bound does not contract (it coincidentally stays

constant). Overall the results indicate that the bounds can
correctly identify contractive behaviour due to the controller.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we derived a new formal probabilistic bound
for iterated predictions with a GP model, without control, in
open-loop and in closed-loop scenarios. Our approach does
not make any further assumptions on the properties of the
GP, other than knowledge of the kernel hyperparameters,
learnt through maximum marginal likelihood, and every in-
termediate quantity used is calculated directly from the data.
The experimental results show that our method is able to
correctly propagate uncertainty even when existing heuristic
approaches fail. Furthermore, they showcase how our method
can be used to certify the safety of proposed controllers
on GP models. In future work, we want to quantify the
modelling error (i.e. the error performed in learning the
ground truth in the GP training) and its effect on the proposed
bounds, and further integrate our approach with a model-
based reinforcement algorithm like Safe PILCO.

ACKNOWLEDGMENTS

This work has been partially supported by the EU’s
Horizon 2020 program under the Marie Skłodowska-Curie
grant No 722022, EPSRC AIMS CDT grant EP/L015987/1,
the ERC under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 834115),
the EPSRC Programme Grant on Mobile Autonomy
(EP/M019918/1) and Schlumberger.

REFERENCES

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian
processes for machine learning, 2006.

[2] A. Girard, C. E. Rasmussen, J. Q. Candela, and R.
Murray-Smith, “Gaussian process priors with uncer-
tain inputs application to multiple-step ahead time
series forecasting,” in Advances in neural information
processing systems, 2003, pp. 545–552.

[3] J. Vinogradska, B. Bischoff, J. Achterhold, T. Koller,
and J. Peters, “Numerical quadrature for probabilistic
policy search,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, 2018.

https://arxiv.org/abs/1912.00071
https://arxiv.org/abs/1912.00071

[4] A. Abate, “Formal verification of complex systems:
Model-based and data-driven methods,” in Proceed-
ings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design,
2017.

[5] M. Green and D. J. Limebeer, Linear robust control.
Courier Corporation, 2012.

[6] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S.
Levine, “Uncertainty-aware reinforcement learning for
collision avoidance,” vol. abs/1702.01182, 2017.

[7] T.-L. Vuong and K. Tran, “Uncertainty-aware
model-based policy optimization,” arXiv preprint
arXiv:1906.10717, 2019.

[8] J. Q. Candela, A. Girard, J. Larsen, and C. E. Ras-
mussen, “Propagation of uncertainty in Bayesian ker-
nel models-application to multiple-step ahead fore-
casting,” in IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP’03),
2003.

[9] M. P. Deisenroth and C. E. Rasmussen, “PILCO:
A model-based and data-efficient approach to policy
search,” in In Proceedings of the International Con-
ference on Machine Learning, 2011.

[10] M. P. Deisenroth, “Efficient reinforcement learning
using Gaussian processes,” PhD thesis, Karlsruhe In-
stitute of Technology, 2010.

[11] M. P. Deisenroth, C. E. Rasmussen, and D. Fox,
“Learning to control a low-cost manipulator using
data-efficient reinforcement learning,” in Robotics:
Science and Systems, 2011.

[12] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox,
“Multi-task policy search for robotics,” in 2014 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2014, pp. 3876–3881.

[13] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and
G. Neumann, “Data-efficient generalization of robot
skills with contextual policy search,” in Twenty-
Seventh AAAI Conference on Artificial Intelligence,
2013.

[14] R. McAllister and C. E. Rasmussen, “Data-efficient
reinforcement learning in continuous state-action
gaussian-pomdps,” in Advances in Neural Information
Processing Systems 30, 2017.

[15] Y. Gal, R. T. McAllister, and C. E. Rasmussen,
“Improving PILCO with Bayesian neural network dy-
namics models,” in Data-Efficient Machine Learning
workshop, vol. 951, 2016, p. 2016.

[16] K. Polymenakos, A. Abate, and S. Roberts, “Safe
policy search using Gaussian process models,” in Pro-
ceedings of the 18th International Conference on Au-
tonomous Agents and Multi Agent Systems, IFAAMS,
2019, pp. 1565–1573.

[17] J. Garcı́a and F. Fernández, “A comprehensive survey
on safe reinforcement learning,” Journal of Machine
Learning Research, vol. 16, pp. 1437–1480, 2015.

[18] J. Vinogradska, B. Bischoff, D. Nguyen-Tuong, A.
Romer, H. Schmidt, and J. Peters, “Stability of con-

trollers for gaussian process forward models,” in In-
ternational Conference on Machine Learning, 2016,
pp. 545–554.

[19] T. Koller, F. Berkenkamp, M. Turchetta, and A.
Krause, “Learning-based model predictive control for
safe exploration and reinforcement learning,” CoRR,
vol. abs/1803.08287, 2018. arXiv: 1803.08287.

[20] N. Srinivas, A. Krause, S. M. Kakade, and M. W.
Seeger, “Information-theoretic regret bounds for gaus-
sian process optimization in the bandit setting,” IEEE
Transactions on Information Theory, vol. 58, no. 5,
pp. 3250–3265, 2012.

[21] L. Cardelli, M. Kwiatkowska, L. Laurenti, and A.
Patane, “Robustness guarantees for Bayesian inference
with Gaussian processes,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019,
pp. 7759–7768.

[22] A. Blaas, A. Patane, L. Laurenti, L. Cardelli, M.
Kwiatkowska, and S. Roberts, “Adversarial robustness
guarantees for classification with gaussian processes,”
International Conference on Artificial Intelligence and
Statistics, pp. 3372–3382, 2020.

[23] R. J. Adler and J. E. Taylor, Random fields and
geometry. Springer Science & Business Media, 2009.

[24] A. W. Moore, “Efficient memory-based learning for
robot control,” PhD thesis, University of Cambridge,
1990.

PROOFS

Proof of Theorem 1 First we prove the following Lemma:

Lemma 1. Let f(x) be a stochastic process. Consider
measurable sets A and B Then, it holds that

P (f(y) ∈ A|y ∈ B) ≤ P (sup
y∈B

f(y) ∈ A).

Proof: (Sketch) To prove Lemma 1 it is enough to note
that for each realization of f , y ∈ B, and measurable g
we have that g(f(y)) ≤ supy∗∈B g(f(y∗)). Hence, we can
conclude by taking the expectation.

Now the following calculations follow

P (et+1 > Kt+1)

=P (|g(x̂t, ut)− f(xt, ut)|1 > Kt+1)

(By Marginalising with the events et > Kt, et ≤ Kt)
≤P (|g(x̂t, ut)− f(xt, ut)|1 > Kt+1 | et ≤ Kt)P (et ≤ Kt)

+ P (et > Kt)

(By Lemma 1)
≤P (sup

x∈IKtx̂t

|g(x̂t, ut)− f(x, ut)|1 > Kt+1)P (et ≤ Kt)

+ P (et > Kt)

(By the fact that P (et ≤ Kt) = 1− P (et > Kt))
=P (sup

x∈IKtx̂t

|g(x̂t, ut)− f(x, ut)|1 > Kt+1)(1− P (et > Kt))

+ P (et > Kt).

https://arxiv.org/abs/1803.08287

	Introduction
	Related Work
	Bounds for Multi-step Ahead Predictions with Gaussian Processes
	Prediction over noisy inputs
	Bounds for Multi-Step Ahead Predictions
	Using the Safety Guarantees for PILCO

	Experiments
	Iterative Prediction
	Open-loop control for Mountain Car
	Closed-loop control of linear and quadratic systems
	System 1, 1-dimensional state space, 1 control input, linear
	System 2, 2-dimensional, 1 control input, linear
	System 3, 2-dimensional, 2 control inputs, linear
	System 4, 2-dimensional, 1 control input, quadratic dynamics, controller from PILCO
	System 5, 3-dimensional system, 2 control inputs, linear

	Conclusions and Future Work

