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Abstract—This work is concerned with the generation of
finite abstractions of general Stochastic Hybrid Systems,at be
employed in the formal verification of probabilistic properties
by means of model checkers. The contribution employs an
abstraction procedure based on a partitioning of the state
space, and puts forward a novel adaptive gridding algorithm
that is expected to conform to the underlying dynamics of the
model and thus at least to mitigate the curse of dimensionai
related to the partitioning procedure. With focus on the study of
probabilistic safety over a finite horizon, the proposed adptive
algorithm is first benchmarked against a uniform gridding
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them over MC abstractions via available probabilistic Mode
checkers [5], [6], with explicit error bounds.

From a different perspective and over classes of continu-
ous time probabilistic hybrid models, [7] has developed an
approach based on satisfiability modulo theory to attain the
verification of similar probabilistic properties, but witht
necessitating a state-space partitioning procedure I&8Iini
[8] has looked at the concept of probabilistic reachability
for continuous time models and put forward approximation

approach from the literature, and finally tested on a known

oac techniques for its computation.
applicative case study.

This work looks at extending the applicability of the
technique developed in [4] by addressing its known bottle-
neck: the issue of state-space scalability of the abstracti
which is limited by the “curse of dimensionality” related
to the partitioning procedure. In contrast to [4], which has

Stochastic Hybrid Systems (SHS) are dynamical modieveraged a uniform partitioning algorithm based on the
els with interleaved discrete, continuous, and probalilis quantification of a global error, this work puts forward
dynamics. Motivated by their application in a number of an adaptive procedure that exploits the knowledge of lo-
diverse domains, the study of SHS has recently flourishedal quantities. This procedure is expected to adapt to the
and has witnessed interesting advances at the intersation underlying dynamics of the SHS, which is characterized
the fields of Systems and Control and of Formal Verification.by a (set of) stochastic kernels. Furthermore, this work

In particular, [1] has characterized the concept of probalooks at the implementation of the adaptive procedure: the
bilistic reachability for discrete time SHS, proposing dn a choice of the shape of the partitioning sets, the execution
gorithm to compute this quantity. Theoretically, the comne of the refinement step in the adaptive generation of the
tion between the solution of problems related to probatilis grid, as well as the generation of the transition probaddit
reachability and the verification of PCTL properties hasover the partitioning sets (which involves a marginaliaati
been investigated in [2] and extended to general automatprocedure), are discussed.
properties in [3]. On the other hand, from a computational The article is structured as follows. Initially, SectiorAl
perspective, [4] has looked at the numerical evaluation ofyoduces the SHS model, whereas Section I1-B presents the
the specifications discussed in [1]. This evaluation can beoplem of probabilistic invariance. Section Il discussee
achieved by a formal abstraction approach that is basegpsiraction of a SHS as a MC. Furthermore, with focus on
on the partitioning of the state space, which originates gne propabilistic invariance problem, the quantificatiothe
(discrete time) Markov chain (MC) from the original SHS. oy in the abstraction procedure is presented in Section |
The approach is formal in that it allows for the computation,nqer three different assumptions on the underlying dynam-
of explicit bounds on the error associated with the abstracics section V deals with the generation of the abstraction

tion. In the end, this technique allows to express classes Qfng elaborates on a number of choices. Finally, Section VI
probabilistic specifications [3], [4] over SHS and to con®ut geyelops two numerical studies: a benchmark compares the
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adaptive approach versus the uniform procedure; and a case
study from the SHS literature tests the scalability of the
adaptive approach.



Il. PRELIMINARIES

A. Model: Stochastic Hybrid System (SHS)

We consider discrete time Markov processes defined over Pso

a general state space, characterized by a(gaif), where

of &, associated with the initial conditiosy, € S, remains
within set A during the finite time horizoifo, NJ:

(A) :== P{s(k) € Aforall k € [0,N],s(0) = so}.

The following theorem provides a theoretical framework to

« S is the continuous state-space, which we assume tstudy the above problem.
be endowed with a metric and to be Borel measurable.

We denote by(S, B(S), P) the probability structure on
S, with B(S) the associated sigma algebra, aRda
probability measure to be characterized shortly;

« Ty is a conditional stochastic kernel that assigns to each

point s € S a probability measur&(-|s), so that for
any setA € B(S),Ps(A) = [, Ts(ds|s), where P,
denotes the conditional probabilify(-|s).

In this work we focus on a particular state space that is

“hybrid” in nature [1], namely we select

§ = Upeofa} x R7®

to be the disjoint union of continuous domains over a finite,

discrete set of locations (or mode®) = {q1,q2,..-,qm}-
The continuous domains have a dimensiofy) that is
mode-dependent and characterized by a funatio® — N.

Given a points = (¢,z) € S and a Borel measurable set
A = Ugeo{q} x Ay, A € B(S), the stochastic kerndy is
further specified as follows [1]:

T.({d'} x Ay (g, )

=Ty(q'|(g,z)) x {

1)
To(Agl(g, ),  if ¢ =gq,
TT(Aq'l(Q7x)7 q/)v if q/ #q.

Here T, : O x & — [0,1] assigns to eaclks € S
a discrete probability distributio,(-|s) over Q. If the
selected locationy’ coincides with the current mode,
then T, : B(R*()) x S — [0,1] assigns to eack € S
a probability measur&,(:|s) over the continuous domain
associated withy € Q. On the other hand, i§’ # ¢, then
T, : BR")) x § x Q — [0,1] assigns to eack € S and
q' € Q a probability measur&,.(-|s, ¢’) over the continuous
domain associated with € Q.

Finally, the initial condition for the model is sampled from
Init : B(S) — [0,1], a probability measure o&. We

shall denote such a discrete-time stochastic hybrid mod

with & = (Q,n, Init, Ty, T,,T;), and refer the reader to
[1] for technical details on its topological and measuiiapil
properties and for an algorithmic definition of its execatio

B. Problem: Probabilistic Invariance

Theorem 1([1]). Consider value functiongj, : S — [0, 1],
k=0,1,...,N, computed through the backward recursion:

Vk(s)

initialized with:

1A(s)/Vk+1(sk+1)TS(dsk+1|s), se S,
S

1, ifsecA,

{O, else.
Thenp,, (4) = Vo(so).

This result characterizes finite horizon probabilisticairiv
ance as a dynamic programming problem. However, since its
explicit solution is rarely available, the actual compigaif
the quantityp,,(A) requiresN numerical integrations over
the whole setA. This is usually performed with techniques
based on state space discretization, which leads to twormajo
questions: whether the numerical output can be precisely
related to the actual solution; and whether the approach is
scalable. In the next section we answer the first question
by introducing a numerical approximation of the original
model, and by explicitly computing the error related to the
computation of finite-horizon probabilistic reachabilit§th
the abstraction. Furthermore, by focusing on the algoiithm
implementation of the abstraction, we investigate theascal
bility properties of the proposed approach (computational
complexity, memory usage), thus addressing the second
question.

IIl. ABSTRACTION BY A FINITE STATE MARKOV CHAIN

We recall a procedure presented in [4] to approximate a
SHS 6 = (S§,Ts), by a finite state Markov chain (MC)
B = (P,T,). Here P = {n1,n2,...,n,} is a finite set of
states and, : P x P — [0, 1] is a probability matrix, such
that T),(n2|n1) = Py, (n2) characterizes the probability of
transitioning from stater; to staten, and thus induces a

onditional probability distribution over the finite spa@e

Consider the safe set € B(S), A = Useo{q} x A,
with A, € B(R™@). Algorithm 1 provides a procedure to
abstract a SH® by a finite state MCL. In Algorithm 1,= :

A, — 2 represents a set-valued map that associates to any
representative poinfg, v,;) € A4 € P the corresponding

The problem of finite horizon probabilistic invariance can partition setA,; C S. Furthermore, the map: A — A,
be formalized as follows: consider a compact Borel setassociates to any pointe A of the SHS the corresponding
A € B(S), representing a set of safe states (we shall thusliscrete state iP. Additionally, notice that the absorbing
alternatively refer to the problem of “probabilistic safgt set ¢ is added to the definition of the M in order to
Characterize and compute the probability that an executiorender the probability matri¥;, stochastic.



Algorithm 1 Abstraction of SHSS by MC Lemma 1. Consider the safe setl = U,cq{q} x A,
Require: input SHSG& Then the following inequality holds for all = (¢, z), s’ =
1: For allq € Q, select a finite:,-dimensional) partition (¢, z’) € A:
of set4, asA4, = U;"4 A,; (A, are non-overlapping)

2: For each A,;, select a single representative point [Vie(s) = Vie(s)|
(Q7Uq,i) € Aq,i < / _ _ _ /
3: DefineAp _ {(q,’l}q,i),i =1, ey Mg, q € Q} and take = A, |Tz(dI|(an)) Tm(d$|(q7$ ))|
P = A,U{¢} as the finite state space of the MC _ _ p
4: Compute the transition probability matrik, for 5B as: + ;2 ITa(dl(a, — Tolal(g, )]
q
T.(Z(2")|2), z'e A, ze A, _ "o
, 1= Yen T(E(E)2), 2 =6,z€4, +Z/ (dzl(g @), 9) = T-(dzl(,2"), ).
T,(2'|2) = 1, » Y — = a#q
0, 2 €Ay z=10¢ The following continuity conditions restrict the genetgli

Ensure: output MCJ of the stochastic kernels characterizifigin (1).

Assumption 1. Assume that the kernelg,, T, admit den-
sities t,, t,. respectively, and that the following continuity

Remark 1. Algorithm 1 can be applied to abstract a general @ssumptions are valid:

SHS by a finite state MC, regardless of the specifics of th _

e . e . ,x)) =T, )| < h , -
probabilistic invariance problem studied in this work, §ths ﬂ Ty(al(g, @ o(al(g2)| 1(¢,.9) [lz = 'l
regardless of the particular safe sdf) by assumingd = S. Vi, 2 € Aq i

The quantification of the abstraction error, to be carriedou [t2(Z|(q, z)) — t+(Z|(¢,2"))| < ha(g,i,7) ||z — 2|,
in Section IV, will however require that the hybrid sétis = qu7vx7$ € Ay,
bounded (namely, a disjoint union of bounded sets). (2|, 2), @) — t(2|(q, 2), @)| < hs(q, @i, ) |2 — 2|

Given a general finite state, discrete time Markov Chain 7 ¢ vz Ag iV, 2’ € Ay,
B = (P,TI,) and considering a “safe” sed,, C P, the
probabilistic invariance problem evaluating the prokbgpil where ¢,q € Q;i,j = 1,...,mg;k = 1,...,mg; and
that an execution associated with the initial conditigre 7 h1(-), h2(-), h3(-) are finite positive constants.
remains within the safe set, during the time horizoff0, N|
can be stated as:

Ppo(Ap) = P{p(k) € Ay for all k € [0, N], p(0) = po}- Theorem 3. Suppose that the stochastic kernels of the
We now formulate the discrete version of Theorem 1. SHS & satisfy Assumption 1. Then the value functions
Vi + § — [0, 1], characterizing the probabilistic invariance
problem for & over A € B(S), satisfy the following
Lipschitz continuityk € [0, N

Given this assumption, a continuity property can be es-
tablished on the value functiorlg, for the SHSG.

Theorem 2 ([4]). Consider value function§’? : P —
[0,1],k = 0,1,...,N, computed through the backward
recursion:

VE) = 1a,(2) 5 V2L (T(]e), =€ P, Vi((g.2)) = Vi((a,2")] < Ky lle = /]|,

ser Vo,o' € Agi = E(E(@)),i € {1,...,mq}, where the

initialized with: constantk, ; is given by:

1, if A
VP (2) 1AP(Z)={ ) | z € Ap, mg
O, |f Z = QZS ICq,i = Z h?(Q727¢7)$(Aq7J) + Z hl (qa 672)
Thenp,, (4,) = Vi (po). =L - 7<Q
It is of interest to provide a quantitative comparison + Z Z h3(q,q,1, k)L (Ag.k),
between the finite outcome obtained by Theorem 2 and the q#q k=1

continuous solution in Theorem 1. The following section

accomplishes this goal. and whereZ(B) denotes the Lebesgue measure of any set

B € B(S).
IV. QUANTIFICATION OF THE ABSTRACTION ERROR
We first introduce a technical lemma discussing a bound
on the distance between evaluations of the functiprt =
0,1,...,N. The result is inspired by [4, Theorem 1].

The result in Theorem 3 can be employed to quantify the
error between the valug,,(A,) for the MC from p,,(A)
for the SHS.



Theorem 4. Assume that Assumption 1 holds. Then theB. Special case: uniform gridding
invariance probabilityp,,(A) for the SHSGS, initialized at

P We now further relax Assumption 2 and connect with
so € A, satisfies:

the results presented in [4], which have inspired most of
IDso (A) = Ppo (Ap)| < max{v,,idqgili = 1,...,mq,q € O}, this work. The new assumption; entail continuity resuli an
(2)  bounds that can be again obtained from those above.

wherep,,(Ap) is the invariance probability for the M3,  Assumption 3. Assume that the kernelg,, T, admit den-
initialized at the discrete statgy = ¢(so) € A,, Whered,;  sitiest,,t, respectively, and that the following holds for a

is the diameter of the set,; C A, namely choice of finite positivéy;, ho, hs:

O0i = maxdle —a'l|[z,2" € Aga} IT(al(a,2)) = Ty(al(a.2))| < ha o = 'l
and the constants, ; are specified as,;, = N, ;, as per Vg€ Q,Y(q,x), (¢, 2') € A,
Theorem 3. | ta(7 (g, 2)) — ta(3l (g, 2"))] < o [l — 2|,
A. Relaxation of Assumption 1 Y(q,2), (¢, %), (q,2') € A

We propose a simplification of Assumption 1 and tailor (2] (g, 2), @) — - (Z|(q,2"), §)| < hs ||z — ||

Theorems 3, 4 accordingly. The new assumption is simpler, ve e v T A ’
less tight, however the error bounds are more conservative. q#q€Q,Y(g2),(q,2),(q,7) € A

Assumption 2. Assume that the kernel,, 7, admit den-  1heorem 7 ([4], Theorem 2) Under Assumption 3 the
sities,, ¢, respectively, and that the following holds for a invariance probabilityp;, (A) for the SHSE initialized at

choice of finite positivéy; (-), ha(-), hs(-): so € A satisfies:
|Ta(@l(g, 2)) — Ta(al(g, 2"))| < ha(g,4) [z — 2], [Pso (A) = ppy (Ap)] < 76, 4)
VG e Q,Va,a' € Ay, where p,,(4,) is the invariance probability for the MC
[t:(Z|(q,2)) — ta(Z|(q,2"))| < ha(q, i) ||z — /||, B initialized at the discrete statp, = &(so) € As. The
Vi € Ay, Vo, 2’ € Ay, constanty = N, where
tr(%((g, %), @) — t-(%((g, %), Q)| < h3(g, i) [lx — 2], K =mhy +max Z(Ag) (ha + (m = 1)hs)
Vi #q € Qa2 € Ay, VT € Ay, o _ N
_ and whered is the largest diameter of the partition sets
whereq € Q;i=1,...,mq.

Agi C A0 =maxgeQi=1,...m ||z — 2| |z, 2" € Agi}.

Theorem 5. Suppose the stochastic kernels of the SHS
satisfy Assumption 2. Then the value functiéfs: S —
[0,1], characterizing the probabilistic invariance problem  In the previous sections we considered arbitrary parttion
for the & over A € B(S), satisfy the following Lipschitz of the state space and, with focus on finite time probalilisti
continuity, & € [0, N]: invariance over a sefl, we derived bounds between the
, , exact valuep,,(A) and the approximatiop,,, (4,), based
Vil(g, %)) = Villg, )] < Ky |z = 2], respectively on the SH& and on its MC abstractiofg. In

V. ALGORITHMS FORABSTRACTION

Ve, o' € A, = E((z)),1 € {1,...,mg}, where the this section we focus on a few alternatives for the genaratio
constantiC, ; is given by: of the abstractio)d = (P,T,) from & = (S,T;). The
. . . abstraction procedure consists of two main steps:

Kq.i=mhi(q,1) + ho(q,1)L(A,) + hs(q, i ZL(Az), T )

- 1(a,9) 2(4,0)Z(4,) 34 )% (4a) 1) partitioning ofS, which leads tgP; and
and wherem is the number of discrete modes aifl(B) 2) marginalization off’,, which leads taf,
denotes the Lebesgue measure of anyBset B(S). A. Algorithms for Grid Generation
Theorem 6. Under Assumption 2 the invariance probability — Let us first focus on the state space partitioning, which in-
Dso (A) for the SHSS, initialized at sy € A, satisfies: volves a grid generation. The grid can be either uniform and

. generated instantaneously [4], or be variable and gerterate
[Pso (A4) = Ppo (Ap)] < max{yq,i0g,ili =1, ..., mq 4 € Q(}é) adaptively. More precisely, for the problem at hand the gen-
eration of a uniform grid leverages the explicit knowledge
wherep,, (4,) is the invariance probability for the M@ of the global error of Theorem 7 and is thus instantaneous.
initialized at the discrete statg, = £(so) € Ay, the con- On the other hand, the adaptive partitioning requires the
stantsy, i = NK,i, as per Theorem 5, and wheig; is the  nowledge of errors that are local to the existing partition
diameter of the sefly; C A: 6, = max{[|z —2|[|z,2" €  gets (see Theorems 4 and 6) and proceeds via a progressive
Agi}- refinement of the grid. We will thus perform adaptive



gridding either under Assumption 1 or under Assumption 2Algorithm 2 Generation of the adaptive grid
(less tight) over the existing partition, whereas Assuompti Require: SHS & = (S,7s) under Assumption 1 over
3 will be associated with the generation of uniform gridding current partition; error threshold
[4]. Comparing Assumption 1 against Assumption 2, we will 1: set initial partition over the hybrid state spaSe
argue that the first ensures tighter error bounds (whichslead 2: compute the erroe according to (2) in Theorem 4
to smaller cardinality of the partition), but requires @rro 3: if e > ¢ then
updates for possibly all the cells during each refinemept ste 4.  refine the partition by splitting along its main axis the
(whereas the second will perform just local updates) and is single cell with maximum local error
thus computationally more complex. 5. go to step 2

Let us discuss a few details about the adaptive grid gener-6: end if
ation. Consider for the sake of discussionradimensional Ensure: P, errore
model. Given a grid, there are two main options over the
shape of its cells [9], [10]:n-dimensional simplices, or . - - -
Cartesian hyper-rectangles. The first option Ilzads to th@lgon_thm 3 Generation of the adaptive grid
known Kuhn triangulation [10] and is widely used in nu- Require: SHS & = (S,T;) under Assumption 2 over
merical solution of partial differential equations. Thesed current partition; error threshold
approach generates hyper-rectangular cells aligned with t 1: Set initial partition over the hybrid state spage
main axes which, for our problem at hand, appears to be2: compute the erroe according to (3) in Theorem 6
advantageous. Cartesian cells in fact better accommodaté: if ¢ > ethen N _ _
the subsequent step that involves the marginalization of4:  refine the partition by splitting along its main axis all

probability laws, which generatég;. (Marginalization over the cells with error greater than thresheld
general convex polygons is known to be a computationally 5 90 10 step 2
expensive problem [11].) 6. end if

With focus on the refinement step, consider a singleEnsure: P, errore
Cartesian cell. We are again presented with two options
for partitioning it: replace the cell witi2” smaller cells

by splitting it along its centroid; or replace the cell with evaluated at the representative points, over the partits

2 smaller cells by partitioning along one axis. The secondyhile the complexity of the procedure is highly dependent
approach is also known as variable resolution approach [9bn the shape of the kernéls, we have attempted to alleviate
While the first approach decreases the error (which depends 1) by working with hyper-rectangular partitions, 2) by
on the cell diameter, see Theorems 4 and 6) faster than th&ploiting vectorial representations of the quantitiesirof
Second, it is also associated with the generation of thl terest, and 3) by |everaging as much as possib|e the Sparsity
with larger cardinality. Since we aim at economizing overof the manipulated matrices. The sparsity of the generated
the memory usage, we opt for the second option. Basegtansition probability matrix (number of its non-zero éas)

on this choice, the convergence speed of the procedure igepends on the kernels underlyifiy, particularly on their
optimized by selecting the longest axis for the partitignin variance terms. Interestingly, there is a tradeoff betwtaen
This leads to the following result. sparsity of the transition probability matrix and its sias,a

Proposition 1. For an n-dimensional model, the error function of the variance terms in the underlying dynamics:
convergence rate for a partitioning procedure based on gndeed, both are increased by small variance terms, which

Cartesian grid, which proceeds by splitting the longessaxi &€ related both to dynamics that are _spatially “concesdrat _
(and thus sparser), as well as to higher error bounds via

the Lipschitz constants. It is possible to use and tune of

The grid generation procedures are formally presented ia tolerance threshold in the marginalization step, below
Algorithms 2, 3, 4. which the transition probabilities are approximated wighaz

s terms. As a last remark, notice that in the uniform case the

B. Marginalization marginalization procedure is greatly simplified, given the

The generation of a grid and the choice of representaregular arrangement of the partition cells.
tive points (¢, vq,;) for each of the resulting partition sets

Agii = 1,...,mq,q € Q (let us recall that the choice
of representative points is arbitrary), fully charactesz A. Numerical Benchmark

the state space” of the MC B. The second step in et us consider ann-dimensional linear, controlled
the generation of the abstraction involves the computatiogtochastic difference equation

of the transition probability matriX},. This computation

necessitates the marginalization of the stochastic kérpnel w(k +1) = Az(k) + Bu(k) + w(k), k€N,

is lower bounded by the factqr/1 — %.

VI. CASE STUDIES



Algorithm 4 Generation of the uniform grid

Require: SHS & = (S,7s) under Assumption 3; error . ‘ ‘ ‘ ‘ ‘ T
thresholde
1: pick partition diametes based on bound (4) in Theorem
7 and on threshold
2: perform partitioning ofS into uniformly-packed hyper-
cubes
Ensure: P, errore =€
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wherew(k), k > 0, is the process noise, taken to be Normal 7 . -
i.i.d. with zero mean and covarian®®: w(k) ~ N(0, W). TrennTIesten.,.

The initial conditionz(0) is independent ofv(k),k > 0, 0 05 oa o 0t 0T o oaeteso”
and Normal with zero mean and covariange: z(0) ~ €

N(0,X). Inputu(k) € R™ k > 0, is designed according
to a state feedback law minimizing the following quadratic
cost function of the state and of the input:
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with properly sized weighting matrice8 = 0 and R > 0.

The optimal control law for this stochastic control problem
(also known as stochastic linear quadratic regulator, dR).Q

is given as a stationary linear state feedba@k) = K,z (k),
where K represents the steady-state LQR feedback gain
matrix K, = — (R + BTPSB)_1 BTP,A, and P, is the
solution of the following matrix equation:
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The closed loop system can be represented as (b)n=3

2(k+1) = (A + BK)a(k) + w(k), keN, ———————————————0

which is a stochastic difference equation oWt. Given
any pointz € R™ at any time, the distribution at the next
time can be characterized by a transition probability kerne
Ts(-|z) ~ N(:; (A + BK)z, W). The computation of the
Lipschitz constant of this kernel can be adapted from [4].
With focus on the closed loop model, let us consider
the probabilistic invariance problem over a safe det=
[-1,1]", namely a hypercube pointed at the origin, and a
time horizon|[0, N]. For the LQR cost function, we have 1. =
selected the weighting matriced = I,,xn, R = Luxm
(henceforth,T;«;,I € N, will denote the [-dimensional
identity matrix). The control dimension has been chosen ' ' ‘ e
to be m = 1 and the time horizon has been fixed to
N = 10. The state and control matrice$ and B have
been randomly generated, addhas been further scaled so Figure 1. Numerical benchmark. For dimensions= 2 (a), n = 3 (b),
thatmax;—1 ., [N\i(A)| = 1, where);(A4) denotes the-th andn = 4 (c) and for different levels of the error threshaid partition
eigenvalue of matrix4. The variance of the initial condition izeu(;?g:r%egﬁg(;ﬁgs)(’ Aﬁ’ggﬁtrﬁrtﬁd4‘b>l'a%gﬁ£'vs_é@foggzmgﬁgg oy ;)

has been selected to B = 101, . required to generate the adaptive partitioning (AlgoritBmiabeled A-T)
(average over 30 runs).
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Figure 2.  Numerical benchmark. Errors obtained selectimg same
number of cells (same partition size), for dimensions= 2 (a), n = 3
(b), n = 4 (c), for the adaptive gridding of Algorithm 2 (labeled A) vs.
the uniform gridding of Algorithm 4 (labeled U).
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Numerical benchmark. Partition size (number dfsgefor
dimensionsn = 3 (a),n = 4 (b), n = 5 (¢), andn = 6 (d), generated by
the adaptive gridding of Algorithm 2 (labeled A1) vs. the jpiilze gridding
of Algorithm 3 (labeled A2), for different levels of errorrdsholde.
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Figure 4. Numerical benchmark. Simulation time, for dimensn = 3
(@),n =4 (b),n =5 (c), andn = 6 (d), required to generate the adaptive
partitioning of Algorithm 2 (labeled Al) and the adaptiveidgling of
Algorithm 3 (labeled A2), for different levels of error thateold ¢ (average

over 30 runs).
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1) Grid Generation:Let us select a noise variant® =
0.51,x,. Figure 1 compares the partition size (i.e., the
number of grid cells) generated by Algorithm 2 for the
adaptive gridding, and by Algorithm 4 for the uniform one.
The horizontal axis represents the threshglchamely the
upper bound for the abstraction error. The error is based on,
respectively, equation (2) in Theorem 4 and (4) in Theorem
7. This batch of simulations is performed for dimensions
n = 2,3,4. As expected, for the adaptive algorithm the
number of generated cells is always less than that for
the uniform procedure. Furthermore, the number of cells
becomes larger for smaller thresholds

Figure 1 also plots the simulation time required to gener-
ate the grid according to Algorithm 2 for the adaptive parti-
tioning. The horizontal axis represents again the threshol
on the error. This batch of simulations is also performed
for dimensionsn = 2,3,4 and the results are averaged
over 30 runs. The discontinuities in the plots are intrinsic
to the implemented refinement algorithm for the adaptive
partitioning. Notice that, as expected, the simulationetim
is larger for smaller thresholds. Recall that for the unifor
gridding the grid generation is a one-shot procedure.

Figure 2 compares the error obtained by generating the
adaptive gridding with Algorithm 2 (see Theorem 4) against
that obtained by generating the uniform gridding of Algo-
rithm 4 (see Theorem 7), given a fixed number of cells for
both methods (these values are represented on the hotizonta
axis). The simulations are again performed for dimensions
n = 2,3,4. It is easily observed that the error associated
to the uniform gridding approach is always higher than
that associated to the adaptive method. (Notice that, #®r th
probabilistic invariance problem under study, an erroatge
than one is not practically useful.)

Let us now select a noise variand® = 1,., and
benchmark the two adaptive gridding approaches. Figure
3 compares the number of cells generated by the adap-
tive gridding of Algorithm 2 vs. the adaptive gridding of
Algorithm 3. This batch of simulations is performed for
dimensionsn = 3,4,5,6. Similarly, Figure 4 compares
the simulation time required for generating the adaptive
partitioning of Algorithm 2 and the adaptive gridding of
Algorithm 3 (average over 30 runs). Figure 3 confirms that,
since the continuity bounds related to Assumption 2 are less
tight, Algorithm 3 ends up requiring a larger number of
cells, given any threshold. However, Algorithm 3 works
faster than Algorithm 2 in the partition refinement step,
since it requires a local error update for the partitionshwit
error greater than the given threshold, whereas Algorithm 2
requires in the worst case a global update of the error of
each cell. Thus, for smaller accuracy thresholahd larger
dimensions (and large number of generated cells) the method
based on Algorithm 3 ends being the faster (Figure 4).
Algorithm 2 can alternatively be made faster by substitytin
its refinement step (4:) with that of Algorithm 3.



error threshold 1 095 09 | 0.85| 0.8 | 0.75| 0.7 | 0.65 0.6 | 0.55| 0.5 | 0.45| 0.4 | 0.35/ 0.3 | 0.25] 0.2 | 0.15| 0.1

size uniform (per dimension) | 21 22 23 25 26 28 30 32 35 38 42 46 52 59 69 83 103 | 137 | 206
total size adaptive 28 | 30 [ 32 | 45 | 56 | 60 | 63 | 64 | 64 | 82 | 113| 124 221| 250| 256 | 447 | 864 | 1024 3447

total time adaptive [sec] 0.008 0.00B 0.00p 0.01] 0.0I] 0.01] 0.01] 0.01] 0.01] 0.02] 0.03] 0.04] 0.09] 0.09] 0.09] 0.74] 5.0 [ 7.4 | 266
grid generation, % time adaptive 46 46 47 42 47 42 46 43 45 45 | 49 49 50 43 36 19 96 | 41| 51

total time uniform [sec] 0.06/ 0.06] 0.07| 0.08] 0.09] 0.11| 0.13] 0.15] 0.19] 0.20| 0.26] 0.30{ 0.42| 0.56] 0.85| 1.34] 21 OooM| OOMm
@n=2
error thresholde 1 0.95 | 0.9 085 | 0.8 0.75 ] 0.7 0.65 | 0.6 055 | 0.5 045 ] 0.4 035 ] 0.3 0.25
size uniform (per dimension) | 39 41 43 45 48 51 55 59 64 70 77 85 96 110 128 153
total size adaptive 63 75 101 120 146 206 | 227 347 433 | 473 | 492 752 1209 | 1771 3327 | 3915

total time adaptive [sec] 002 | 002 004 ] 005| 009 | 013 | 0.14 | 0.66 | 1.3 17 1.8 5.8 19 31 190 | 275
grid generation, % time adaptive 44 41 44 44 54 51 43 25 17 15 12 15 13 16 11 6.5

®)n=3
error thresholde 1 0.95 | 0.9 0.85 | 0.8 0.75 | 0.7 0.65 | 0.6 055 | 0.5 045 | 0.4 035 | 0.3 0.25
size uniform (per dimension) | 41 43 46 48 51 55 59 63 68 75 82 91 102 117 136 163
total size adaptive 15 16 21 25 28 60 83 112 123 228 248 254 573 1127 | 1923 | 3868
total time adaptive [sec] 0.005( 0.006| 0.008| 0.01 | 0.01 | 0.02 | 0.03 | 0.05 | 0.06 | 0.17 | 0.18 | 0.21 | 3.1 18 40 255
grid generation, % time adaptive 6.0 21 34 27 42 40 42 47 a7 49 42 34 18 12 14 13
c©n=14
error thresholde 1 095 ] 0.9 085 ] 0.8 0.75 ] 0.7 0.65 | 0.6 055 ] 0.5 045 ] 0.4 035 ] 0.3 0.25
size uniform (per dimension) | 126 133 | 140 148 | 158 168 | 180 194 [ 210 | 229 | 252 | 280 | 315 | 359 | 419 | 503
total size adaptive 8 9 12 18 32 38 44 66 114 | 221 | 422 | 523 | 987 1119 | 3711 12411

total time adaptive [sec] 0.002| 0.002| 0.002| 0.003| 0.01 [ 0.01 | 0.01 | 0.02 | 0.05 | 0.18 | 0.83 | 1.6 4.9 5.9 139 2330
grid generation, % time adaptive 55 48 50 46 27 32 38 49 34 34 24 17 27 15 29 29

dn=5
error thresholde 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4
size uniform (per dimension) | 1289 1357 1432 1516 1611 1718 1841 1983 2148 2343 2577 2863 3221
total size adaptive 64 121 195 254 304 699 933 1609 1965 2985 4038 5121 14342
total time adaptive [sec] 0.03 0.05 0.09 0.15 0.20 1.0 3.2 11 14 29 87 111 1785
grid generation, % time adaptive 26 21 18 21 29 14 20 23 48 38 50 42 60
e)yn==~6
Figure 5. Numerical benchmark. Given a threshelir the error, the table reports for various dimensions=(2, ..., 6 from (a) to (e)) the number of

bins per dimension in the uniform abstraction (total piantitsize is itsn-th power), the total size of the adaptive abstraction (ating to Algorithm 2),
the total abstraction time for the adaptive approach wilp#rcentage for the gridding procedure, and the total adigin time for the uniform approach
(when not reported it is to be considered out of memoryDok). The reported figures are obtained by running averages Ii@rsimulations.

2) Marginalization: The outcomes of the marginalization constantsa;;, b;, c;, v, represent the average heat transfer

procedure are recapitulated by the data displayed on Figumate from roomi to roomj (a;;) and to the ambientb;),

5. These figures are obtained by running averages over 1GBe heat rate supplied by the heater to roen;), and
simulations. We focus on the adaptive gridding accordinghe ambient temperaturer,,). In this dynamical equation

to Algorithm 2, and compare the time spent generating théV (k) is the input noise, which is Gaussia(0, 12). The

grid to that needed in performing the marginalization. Ittransition kernel isl. (:|(q, z)) = N (-; 2+ Xz +T(q), u21).

can be observed that that the gridding procedure increas@he reset kernel i,.(-|(¢, z), ¢') = T:(:|(¢, z)). The heater

in relative importance as the dimensiengrows. A few  switches status based on the average temperature of the
outcomes of the uniform approach (far= 2), which soon  rooms: this is modeled by a discrete kerfie(q'|(¢,x)) =

runs into memory issues, are also displayed. Notice thaj Zle xi/h), if ¢ = OFF, and equal to the complement
the outcomes hinge on the actual dynamics (matriceB), (1= ) if ¢ = ON, and wherer(y) = y/(a® +y%),y € R.

which are newly generated for each of the 100 S|mulat|ons1.he Lipschitz constants of these kernels are derived in [4].

B. The Multi-Room Heating Problem For h = 2, Figure 8 displays the adaptive grid generated

. . with Algorithm 2 with ¢ = 0.5. The continuous domain
We test the adaptive abstraction procedure on a cas

§ [16,23] x [16,23] C R? for both modes. The selected
study with hybrid dynamics elaborated in [4]. ConSiderlpaEan;et(]er: ([alre; ]:Ca :oro 0%25?0 :eso 0376535 eie
h rooms controlled by a centralized heater, which can) o5 ¢, — 06512@ _ 2016 . _ 6’041: 19'5 d ’:210
Eebg\(/jvltch%d?\l and ?Fd\lﬂ;é dl_ls_ﬁrete n:_odes of ttfle Figure 8 also displays the invariance probability computed
ybrid mode ahreQ = N - © continuous stae o er the abstraction, for a time horiza¥i = 10 and noise
space lies inR" and evolves according to the equation variancey? = 1.3. We perform a comparison between the
x(ktf 12) - ﬁg@hfm’(’“zj F(q(f)t)h+ Wt(l?)’ wheie the  4daptive gridding technique (Algorithm 2) and the uniform
matfix . < . is made up of the entriefl];; = ai; 0 (Algorithm 4, as used in [4]) in Figure 6, where we
if & # j, and [X];; = —(b; + > 4y aix). The vector-

X b _ . match the errors obtained by selecting a comparable jpautiti
valued functionl’(¢(k)) € R" depends on the configuration size, for different numbers of roonis The total time for
of the heater. In particulall'(¢)]; = bixq + ¢i6(q). The



number of rooms h 1 2 3 4 5

total size uniform 2500 2500 2744 4096 1024

total size adaptive 2493 2501 2690 3913 1063
adaptive/uniform error | 0.0806 | 0.0178 | 0.0039 | 0.0007 | 0.0001
total time adaptive [sec]] 1.4 7.1 243 926 1287

Figure 6. The Multi-Room Heating Problem. Adaptive gridgliechnique
(Algorithm 2) vs. uniform one (Algorithm 4). For comparabpartition

sizes, over different numbers of rooms the ratio of the errors obtained

by the two approaches is displayed. The total time for theratison
procedure based on the adaptive technique is also repatedagje over
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number of rooms h 2 3 4 5 17 | 0015
error thresholde 0.5 0.5 0.5 0.5 T '
total size adaptive 213 1540 6033 15742 16 | 0.01
total time adaptive 29.57 [s] | 446[s] | 53 [m] | 126.4 [m] 1 o 18 19 .20 2 22 23
grid generation, % time 0.6 1.4 5.9 17.5 Temperature first roomj’C]

Figure 7.

The Multi-Room Heating Problem. The adaptive djrid (a) Discrete modeg = ON

technique (Algorithm 2) is tested, given a fixed error thoddhe, for an

increasing number of roonts. The table displays the size of the generated
abstraction, the time required to obtain it, and the peeg@bf time spent
on the gridding procedure.

the

also reported (average over 30 simulations). In Figure 7 the
adaptive gridding technique (Algorithm 2) is tested, gien
fixed error threshold, for an increasing number of rooms
h. The table displays the size of the generated abstraction,

the

spent on the gridding procedure.
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