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Abstract—This work is concerned with the generation of
finite abstractions of general Stochastic Hybrid Systems, to be
employed in the formal verification of probabilistic properties
by means of model checkers. The contribution employs an
abstraction procedure based on a partitioning of the state
space, and puts forward a novel adaptive gridding algorithm
that is expected to conform to the underlying dynamics of the
model and thus at least to mitigate the curse of dimensionality
related to the partitioning procedure. With focus on the study of
probabilistic safety over a finite horizon, the proposed adaptive
algorithm is first benchmarked against a uniform gridding
approach from the literature, and finally tested on a known
applicative case study.

Keywords-Stochastic Hybrid Systems, Markov Chains, Ab-
stractions, Approximations, Reachability and Safety

I. I NTRODUCTION

Stochastic Hybrid Systems (SHS) are dynamical mod-
els with interleaved discrete, continuous, and probabilistic
dynamics. Motivated by their application in a number of
diverse domains, the study of SHS has recently flourished
and has witnessed interesting advances at the intersectionof
the fields of Systems and Control and of Formal Verification.

In particular, [1] has characterized the concept of proba-
bilistic reachability for discrete time SHS, proposing an al-
gorithm to compute this quantity. Theoretically, the connec-
tion between the solution of problems related to probabilistic
reachability and the verification of PCTL properties has
been investigated in [2] and extended to general automata
properties in [3]. On the other hand, from a computational
perspective, [4] has looked at the numerical evaluation of
the specifications discussed in [1]. This evaluation can be
achieved by a formal abstraction approach that is based
on the partitioning of the state space, which originates a
(discrete time) Markov chain (MC) from the original SHS.
The approach is formal in that it allows for the computation
of explicit bounds on the error associated with the abstrac-
tion. In the end, this technique allows to express classes of
probabilistic specifications [3], [4] over SHS and to compute
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them over MC abstractions via available probabilistic model
checkers [5], [6], with explicit error bounds.

From a different perspective and over classes of continu-
ous time probabilistic hybrid models, [7] has developed an
approach based on satisfiability modulo theory to attain the
verification of similar probabilistic properties, but without
necessitating a state-space partitioning procedure. Similarly,
[8] has looked at the concept of probabilistic reachability
for continuous time models and put forward approximation
techniques for its computation.

This work looks at extending the applicability of the
technique developed in [4] by addressing its known bottle-
neck: the issue of state-space scalability of the abstraction,
which is limited by the “curse of dimensionality” related
to the partitioning procedure. In contrast to [4], which has
leveraged a uniform partitioning algorithm based on the
quantification of a global error, this work puts forward
an adaptive procedure that exploits the knowledge of lo-
cal quantities. This procedure is expected to adapt to the
underlying dynamics of the SHS, which is characterized
by a (set of) stochastic kernels. Furthermore, this work
looks at the implementation of the adaptive procedure: the
choice of the shape of the partitioning sets, the execution
of the refinement step in the adaptive generation of the
grid, as well as the generation of the transition probabilities
over the partitioning sets (which involves a marginalization
procedure), are discussed.

The article is structured as follows. Initially, Section II-A
introduces the SHS model, whereas Section II-B presents the
problem of probabilistic invariance. Section III discusses the
abstraction of a SHS as a MC. Furthermore, with focus on
the probabilistic invariance problem, the quantification of the
error in the abstraction procedure is presented in Section IV,
under three different assumptions on the underlying dynam-
ics. Section V deals with the generation of the abstraction
and elaborates on a number of choices. Finally, Section VI
develops two numerical studies: a benchmark compares the
adaptive approach versus the uniform procedure; and a case
study from the SHS literature tests the scalability of the
adaptive approach.



II. PRELIMINARIES

A. Model: Stochastic Hybrid System (SHS)

We consider discrete time Markov processes defined over
a general state space, characterized by a pair(S, Ts), where

• S is the continuous state-space, which we assume to
be endowed with a metric and to be Borel measurable.
We denote by(S,B(S), P ) the probability structure on
S, with B(S) the associated sigma algebra, andP a
probability measure to be characterized shortly;

• Ts is a conditional stochastic kernel that assigns to each
point s ∈ S a probability measureTs(·|s), so that for
any setA ∈ B(S), Ps(A) =

∫

A
Ts(ds|s), wherePs

denotes the conditional probabilityP (·|s).

In this work we focus on a particular state space that is
“hybrid” in nature [1], namely we select

S = ∪q∈Q{q} × R
n(q)

to be the disjoint union of continuous domains over a finite,
discrete set of locations (or modes)Q = {q1, q2, . . . , qm}.
The continuous domains have a dimensionn(q) that is
mode-dependent and characterized by a functionn : Q → N.

Given a points = (q, x) ∈ S and a Borel measurable set
A = ∪q∈Q{q} × Aq, A ∈ B(S), the stochastic kernelTs is
further specified as follows [1]:

Ts({q
′} ×Aq′ |(q, x)) (1)

= Tq(q
′|(q, x))×

{

Tx(Aq′ |(q, x)), if q′ = q,

Tr(Aq′ |(q, x), q
′), if q′ 6= q.

Here Tq : Q × S → [0, 1] assigns to eachs ∈ S
a discrete probability distributionTq(·|s) over Q. If the
selected locationq′ coincides with the current modeq,
then Tx : B(Rn(·)) × S → [0, 1] assigns to eachs ∈ S
a probability measureTx(·|s) over the continuous domain
associated withq ∈ Q. On the other hand, ifq′ 6= q, then
Tr : B(Rn(·)) × S × Q → [0, 1] assigns to eachs ∈ S and
q′ ∈ Q a probability measureTr(·|s, q′) over the continuous
domain associated withq′ ∈ Q.

Finally, the initial condition for the model is sampled from
Init : B(S) → [0, 1], a probability measure onS. We
shall denote such a discrete-time stochastic hybrid model
with S = (Q, n, Init, Tq, Tx, Tr), and refer the reader to
[1] for technical details on its topological and measurability
properties and for an algorithmic definition of its execution.

B. Problem: Probabilistic Invariance

The problem of finite horizon probabilistic invariance can
be formalized as follows: consider a compact Borel set
A ∈ B(S), representing a set of safe states (we shall thus
alternatively refer to the problem of “probabilistic safety”).
Characterize and compute the probability that an execution

of S, associated with the initial conditions0 ∈ S, remains
within setA during the finite time horizon[0, N ]:

ps0(A) := P{s(k) ∈ A for all k ∈ [0, N ], s(0) = s0}.

The following theorem provides a theoretical framework to
study the above problem.

Theorem 1 ([1]). Consider value functionsVk : S → [0, 1],
k = 0, 1, ..., N, computed through the backward recursion:

Vk(s) = 1A(s)
∫

S

Vk+1(sk+1)Ts(dsk+1|s), s ∈ S,

initialized with:

VN (s) = 1A(s) =

{

1, if s ∈ A,

0, else.

Thenps0(A) = V0(s0).

This result characterizes finite horizon probabilistic invari-
ance as a dynamic programming problem. However, since its
explicit solution is rarely available, the actual computation of
the quantityps0(A) requiresN numerical integrations over
the whole setA. This is usually performed with techniques
based on state space discretization, which leads to two major
questions: whether the numerical output can be precisely
related to the actual solution; and whether the approach is
scalable. In the next section we answer the first question
by introducing a numerical approximation of the original
model, and by explicitly computing the error related to the
computation of finite-horizon probabilistic reachabilitywith
the abstraction. Furthermore, by focusing on the algorithmic
implementation of the abstraction, we investigate the scala-
bility properties of the proposed approach (computational
complexity, memory usage), thus addressing the second
question.

III. A BSTRACTION BY A FINITE STATE MARKOV CHAIN

We recall a procedure presented in [4] to approximate a
SHS S = (S, Ts), by a finite state Markov chain (MC)
P = (P , Tp). HereP = {n1, n2, . . . , np} is a finite set of
states andTp : P ×P → [0, 1] is a probability matrix, such
that Tp(n2|n1) = Pn1

(n2) characterizes the probability of
transitioning from staten1 to staten2 and thus induces a
conditional probability distribution over the finite spaceP .

Consider the safe setA ∈ B(S), A = ∪q∈Q{q} × Aq,
with Aq ∈ B(Rn(q)). Algorithm 1 provides a procedure to
abstract a SHSS by a finite state MCP. In Algorithm 1,Ξ :
Ap → 2A represents a set-valued map that associates to any
representative point(q, vq,i) ∈ Aq,i ∈ P the corresponding
partition setAq,i ⊂ S. Furthermore, the mapξ : A → Ap

associates to any points ∈ A of the SHS the corresponding
discrete state inP . Additionally, notice that the absorbing
set φ is added to the definition of the MCP in order to
render the probability matrixTp stochastic.



Algorithm 1 Abstraction of SHSS by MC P

Require: input SHSS
1: For all q ∈ Q, select a finite (mq-dimensional) partition

of setAq asAq = ∪
mq

i=1Aq,i (Aq,i are non-overlapping)
2: For each Aq,i, select a single representative point

(q, vq,i) ∈ Aq,i

3: DefineAp = {(q, vq,i), i = 1, ...,mq, q ∈ Q} and take
P = Ap ∪ {φ} as the finite state space of the MCP

4: Compute the transition probability matrixTp for P as:

Tp(z
′|z) =















Ts(Ξ(z
′)|z), z′ ∈ Ap, z ∈ Ap

1−
∑

z̄∈Ap
Ts(Ξ(z̄)|z), z′ = φ, z ∈ Ap

1, z′ = z = φ
0, z′ ∈ Ap, z = φ

Ensure: output MCP

Remark 1. Algorithm 1 can be applied to abstract a general
SHS by a finite state MC, regardless of the specifics of the
probabilistic invariance problem studied in this work, (that is
regardless of the particular safe setA) by assumingA = S.
The quantification of the abstraction error, to be carried out
in Section IV, will however require that the hybrid setA is
bounded (namely, a disjoint union of bounded sets).

Given a general finite state, discrete time Markov Chain
P = (P , Tp) and considering a “safe” setAp ⊂ P , the
probabilistic invariance problem evaluating the probability
that an execution associated with the initial conditionp0 ∈ P
remains within the safe setAp during the time horizon[0, N ]
can be stated as:

pp0
(Ap) := P{p(k) ∈ Ap for all k ∈ [0, N ], p(0) = p0}.

We now formulate the discrete version of Theorem 1.

Theorem 2 ([4]). Consider value functionsV p
k : P →

[0, 1], k = 0, 1, ..., N , computed through the backward
recursion:

V p
k (z) = 1Ap

(z)
∑

z′∈P

V p
k+1(z

′)Tp(z
′|z), z ∈ P ,

initialized with:

V p
N (z) = 1Ap

(z) =

{

1, if z ∈ Ap,

0, if z = φ.

Thenpp0
(Ap) = V p

0 (p0).

It is of interest to provide a quantitative comparison
between the finite outcome obtained by Theorem 2 and the
continuous solution in Theorem 1. The following section
accomplishes this goal.

IV. QUANTIFICATION OF THE ABSTRACTION ERROR

We first introduce a technical lemma discussing a bound
on the distance between evaluations of the functionVk, k =
0, 1, ..., N . The result is inspired by [4, Theorem 1].

Lemma 1. Consider the safe setA = ∪q∈Q{q} × Aq.
Then the following inequality holds for alls = (q, x), s′ =
(q, x′) ∈ A:

|Vk(s)− Vk(s
′)|

≤

∫

Aq

|Tx(dx̄|(q, x)) − Tx(dx̄|(q, x
′))|

+
∑

q̄∈Q

|Tq(q̄|(q, x)) − Tq(q̄|(q, x
′))|

+
∑

q̄ 6=q

∫

Aq̄

|Tr(dx̄|(q, x), q̄)− Tr(dx̄|(q, x
′), q̄)| .

The following continuity conditions restrict the generality
of the stochastic kernels characterizingTs in (1).

Assumption 1. Assume that the kernelsTx, Tr admit den-
sities tx, tr respectively, and that the following continuity
assumptions are valid:

|Tq(q̄|(q, x)) − Tq(q̄|(q, x
′))| ≤ h1(q, q̄, i) ‖x− x′‖ ,

∀x, x′ ∈ Aq,i,

|tx(x̄|(q, x)) − tx(x̄|(q, x
′))| ≤ h2(q, i, j) ‖x− x′‖ ,

∀x̄ ∈ Aq,j , ∀x, x
′ ∈ Aq,i,

|tr(x̄|(q, x), q̄)− tr(x̄|(q, x
′), q̄)| ≤ h3(q, q̄, i, k) ‖x− x′‖ ,

q̄ 6= q, ∀x̄ ∈ Aq̄,k, ∀x, x
′ ∈ Aq,i,

where q, q̄ ∈ Q; i, j = 1, . . . ,mq; k = 1, . . . ,mq̄; and
h1(·), h2(·), h3(·) are finite positive constants.

Given this assumption, a continuity property can be es-
tablished on the value functionsVk for the SHSS.

Theorem 3. Suppose that the stochastic kernels of the
SHS S satisfy Assumption 1. Then the value functions
Vk : S → [0, 1], characterizing the probabilistic invariance
problem for S over A ∈ B(S), satisfy the following
Lipschitz continuity,k ∈ [0, N ]:

|Vk((q, x)) − Vk((q, x
′))| ≤ Kq,i ‖x− x′‖ ,

∀x, x′ ∈ Aq,i = Ξ(ξ(x)), i ∈ {1, . . . ,mq}, where the
constantKq,i is given by:

Kq,i =

mq
∑

j=1

h2(q, i, j)L (Aq,j) +
∑

q̄∈Q

h1(q, q̄, i)

+
∑

q̄ 6=q

mq̄
∑

k=1

h3(q, q̄, i, k)L (Aq̄,k),

and whereL (B) denotes the Lebesgue measure of any set
B ∈ B(S).

The result in Theorem 3 can be employed to quantify the
error between the valuepp0

(Ap) for the MC from ps0(A)
for the SHS.



Theorem 4. Assume that Assumption 1 holds. Then the
invariance probabilityps0(A) for the SHSS, initialized at
s0 ∈ A, satisfies:

|ps0(A)− pp0
(Ap)| ≤ max{γq,iδq,i|i = 1, ...,mq, q ∈ Q},

(2)

wherepp0
(Ap) is the invariance probability for the MCP,

initialized at the discrete statep0 = ξ(s0) ∈ Ap, whereδq,i
is the diameter of the setAq,i ⊆ A, namely

δq,i = max{‖x− x′‖ |x, x′ ∈ Aq,i},

and the constantsγq,i are specified asγq,i = NKq,i, as per
Theorem 3.

A. Relaxation of Assumption 1

We propose a simplification of Assumption 1 and tailor
Theorems 3, 4 accordingly. The new assumption is simpler,
less tight, however the error bounds are more conservative.

Assumption 2. Assume that the kernelsTx, Tr admit den-
sities tx, tr respectively, and that the following holds for a
choice of finite positiveh1(·), h2(·), h3(·):

|Tq(q̄|(q, x)) − Tq(q̄|(q, x
′))| ≤ h1(q, i) ‖x− x′‖ ,

∀q̄ ∈ Q, ∀x, x′ ∈ Aq,i,

|tx(x̄|(q, x)) − tx(x̄|(q, x
′))| ≤ h2(q, i) ‖x− x′‖ ,

∀x̄ ∈ Aq, ∀x, x
′ ∈ Aq,i,

|tr(x̄|(q, x), q̄)− tr(x̄|(q, x
′), q̄)| ≤ h3(q, i) ‖x− x′‖ ,

∀q̄ 6= q ∈ Q, ∀x, x′ ∈ Aq,i, ∀x̄ ∈ Aq̄,

whereq ∈ Q; i = 1, . . . ,mq.

Theorem 5. Suppose the stochastic kernels of the SHSS

satisfy Assumption 2. Then the value functionsVk : S →
[0, 1], characterizing the probabilistic invariance problem
for the S over A ∈ B(S), satisfy the following Lipschitz
continuity,k ∈ [0, N ]:

|Vk((q, x)) − Vk((q, x
′))| ≤ Kq,i ‖x− x′‖ ,

∀x, x′ ∈ Aq,i = Ξ(ξ(x)), i ∈ {1, . . . ,mq}, where the
constantKq,i is given by:

Kq,i = mh1(q, i) + h2(q, i)L (Aq) + h3(q, i)
∑

q̄ 6=q

L (Aq̄),

and wherem is the number of discrete modes andL (B)
denotes the Lebesgue measure of any setB ∈ B(S).

Theorem 6. Under Assumption 2 the invariance probability
ps0(A) for the SHSS, initialized at s0 ∈ A, satisfies:

|ps0(A)− pp0
(Ap)| ≤ max{γq,iδq,i|i = 1, ...,mq, q ∈ Q},

(3)

wherepp0
(Ap) is the invariance probability for the MCP

initialized at the discrete statep0 = ξ(s0) ∈ Ap, the con-
stantsγq,i = NKq,i, as per Theorem 5, and whereδq,i is the
diameter of the setAq,i ⊆ A: δq,i = max{‖x− x′‖ |x, x′ ∈
Aq,i}.

B. Special case: uniform gridding

We now further relax Assumption 2 and connect with
the results presented in [4], which have inspired most of
this work. The new assumptions entail continuity results and
bounds that can be again obtained from those above.

Assumption 3. Assume that the kernelsTx, Tr admit den-
sities tx, tr respectively, and that the following holds for a
choice of finite positiveh1, h2, h3:

|Tq(q̄|(q, x)) − Tq(q̄|(q, x
′))| ≤ h1 ‖x− x′‖ ,

∀q̄ ∈ Q, ∀(q, x), (q, x′) ∈ A,

|tx(x̄|(q, x)) − tx(x̄|(q, x
′))| ≤ h2 ‖x− x′‖ ,

∀(q, x̄), (q, x), (q, x′) ∈ A,

|tr(x̄|(q, x), q̄)− tr(x̄|(q, x
′), q̄)| ≤ h3 ‖x− x′‖ ,

∀q̄ 6= q ∈ Q, ∀(q, x), (q, x′), (q̄, x̄) ∈ A.

Theorem 7 ([4], Theorem 2). Under Assumption 3 the
invariance probabilityps0(A) for the SHSS initialized at
s0 ∈ A satisfies:

|ps0(A)− pp0
(Ap)| ≤ γδ, (4)

where pp0
(Ap) is the invariance probability for the MC

P initialized at the discrete statep0 = ξ(s0) ∈ Aδ. The
constantγ = NK, where

K = mh1 +max
q∈Q

L (Aq) (h2 + (m− 1)h3) ,

and whereδ is the largest diameter of the partition sets
Aq,i ⊂ A: δ = maxq∈Q,i=1,...,mq

{‖x− x′‖ |x, x′ ∈ Aq,i}.

V. A LGORITHMS FORABSTRACTION

In the previous sections we considered arbitrary partitions
of the state space and, with focus on finite time probabilistic
invariance over a setA, we derived bounds between the
exact valueps0(A) and the approximationpp0

(Ap), based
respectively on the SHSS and on its MC abstractionP. In
this section we focus on a few alternatives for the generation
of the abstractionP = (P , Tp) from S = (S, Ts). The
abstraction procedure consists of two main steps:

1) partitioning ofS, which leads toP ; and
2) marginalization ofTs, which leads toTp.

A. Algorithms for Grid Generation

Let us first focus on the state space partitioning, which in-
volves a grid generation. The grid can be either uniform and
generated instantaneously [4], or be variable and generated
adaptively. More precisely, for the problem at hand the gen-
eration of a uniform grid leverages the explicit knowledge
of the global error of Theorem 7 and is thus instantaneous.
On the other hand, the adaptive partitioning requires the
knowledge of errors that are local to the existing partition
sets (see Theorems 4 and 6) and proceeds via a progressive
refinement of the grid. We will thus perform adaptive



gridding either under Assumption 1 or under Assumption 2
(less tight) over the existing partition, whereas Assumption
3 will be associated with the generation of uniform gridding
[4]. Comparing Assumption 1 against Assumption 2, we will
argue that the first ensures tighter error bounds (which leads
to smaller cardinality of the partition), but requires error
updates for possibly all the cells during each refinement step
(whereas the second will perform just local updates) and is
thus computationally more complex.

Let us discuss a few details about the adaptive grid gener-
ation. Consider for the sake of discussion ann-dimensional
model. Given a grid, there are two main options over the
shape of its cells [9], [10]:n-dimensional simplices, or
Cartesian hyper-rectangles. The first option leads to the
known Kuhn triangulation [10] and is widely used in nu-
merical solution of partial differential equations. The second
approach generates hyper-rectangular cells aligned with the
main axes which, for our problem at hand, appears to be
advantageous. Cartesian cells in fact better accommodate
the subsequent step that involves the marginalization of
probability laws, which generatesTs. (Marginalization over
general convex polygons is known to be a computationally
expensive problem [11].)

With focus on the refinement step, consider a single
Cartesian cell. We are again presented with two options
for partitioning it: replace the cell with2n smaller cells
by splitting it along its centroid; or replace the cell with
2 smaller cells by partitioning along one axis. The second
approach is also known as variable resolution approach [9].
While the first approach decreases the error (which depends
on the cell diameter, see Theorems 4 and 6) faster than the
second, it is also associated with the generation of partitions
with larger cardinality. Since we aim at economizing over
the memory usage, we opt for the second option. Based
on this choice, the convergence speed of the procedure is
optimized by selecting the longest axis for the partitioning.
This leads to the following result.

Proposition 1. For an n-dimensional model, the error
convergence rate for a partitioning procedure based on a
Cartesian grid, which proceeds by splitting the longest axis,

is lower bounded by the factor
√

1− 3
4n .

The grid generation procedures are formally presented in
Algorithms 2, 3, 4.

B. Marginalization

The generation of a grid and the choice of representa-
tive points (q, vq,i) for each of the resulting partition sets
Aq,i, i = 1, . . . ,mq, q ∈ Q (let us recall that the choice
of representative points is arbitrary), fully characterizes
the state spaceP of the MC P. The second step in
the generation of the abstraction involves the computation
of the transition probability matrixTp. This computation
necessitates the marginalization of the stochastic kernelTs,

Algorithm 2 Generation of the adaptive grid

Require: SHS S = (S, Ts) under Assumption 1 over
current partition; error thresholdǫ

1: set initial partition over the hybrid state spaceS
2: compute the errore according to (2) in Theorem 4
3: if e > ǫ then
4: refine the partition by splitting along its main axis the

single cell with maximum local error
5: go to step 2
6: end if

Ensure: P , errore

Algorithm 3 Generation of the adaptive grid

Require: SHS S = (S, Ts) under Assumption 2 over
current partition; error thresholdǫ

1: set initial partition over the hybrid state spaceS
2: compute the errore according to (3) in Theorem 6
3: if e > ǫ then
4: refine the partition by splitting along its main axis all

the cells with error greater than thresholdǫ
5: go to step 2
6: end if

Ensure: P , errore

evaluated at the representative points, over the partitionsets.
While the complexity of the procedure is highly dependent
on the shape of the kernelsTs, we have attempted to alleviate
it 1) by working with hyper-rectangular partitions, 2) by
exploiting vectorial representations of the quantities ofin-
terest, and 3) by leveraging as much as possible the sparsity
of the manipulated matrices. The sparsity of the generated
transition probability matrix (number of its non-zero entries)
depends on the kernels underlyingTs, particularly on their
variance terms. Interestingly, there is a tradeoff betweenthe
sparsity of the transition probability matrix and its size,as a
function of the variance terms in the underlying dynamics:
indeed, both are increased by small variance terms, which
are related both to dynamics that are spatially “concentrated”
(and thus sparser), as well as to higher error bounds via
the Lipschitz constants. It is possible to use and tune of
a tolerance threshold in the marginalization step, below
which the transition probabilities are approximated with zero
terms. As a last remark, notice that in the uniform case the
marginalization procedure is greatly simplified, given the
regular arrangement of the partition cells.

VI. CASE STUDIES

A. Numerical Benchmark

Let us consider ann-dimensional linear, controlled
stochastic difference equation

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N,



Algorithm 4 Generation of the uniform grid

Require: SHS S = (S, Ts) under Assumption 3; error
thresholdǫ

1: pick partition diameterδ based on bound (4) in Theorem
7 and on thresholdǫ

2: perform partitioning ofS into uniformly-packed hyper-
cubes

Ensure: P , errore = ǫ

wherew(k), k ≥ 0, is the process noise, taken to be Normal
i.i.d. with zero mean and covarianceW : w(k) ∼ N (0,W ).
The initial conditionx(0) is independent ofw(k), k ≥ 0,
and Normal with zero mean and covarianceX : x(0) ∼
N (0, X). Input u(k) ∈ R

m, k ≥ 0, is designed according
to a state feedback law minimizing the following quadratic
cost function of the state and of the input:

J = lim
N→∞

1

N
E

(

N−1
∑

k=0

(

xT (k)Qx(k) + uT (k)Ru(k)
)

)

,

with properly sized weighting matricesQ � 0 andR ≻ 0.
The optimal control law for this stochastic control problem
(also known as stochastic linear quadratic regulator, or LQR)
is given as a stationary linear state feedbacku(k) = Ksx(k),
whereKs represents the steady-state LQR feedback gain
matrix Ks = −

(

R +BTPsB
)−1

BTPsA, and Ps is the
solution of the following matrix equation:

Ps = Q+ ATPsA−ATPsB
(

R+BTPsB
)−1

BTPsA.

The closed loop system can be represented as

x(k + 1) = (A+BKs)x(k) + w(k), k ∈ N,

which is a stochastic difference equation overR
n. Given

any pointx ∈ R
n at any time, the distribution at the next

time can be characterized by a transition probability kernel
Ts(·|x) ∼ N (·; (A + BKs)x,W ). The computation of the
Lipschitz constant of this kernel can be adapted from [4].

With focus on the closed loop model, let us consider
the probabilistic invariance problem over a safe setA =
[−1, 1]n, namely a hypercube pointed at the origin, and a
time horizon [0, N ]. For the LQR cost function, we have
selected the weighting matricesQ = In×n, R = Im×m

(henceforth,Il×l, l ∈ N, will denote the l-dimensional
identity matrix). The control dimension has been chosen
to be m = 1 and the time horizon has been fixed to
N = 10. The state and control matricesA and B have
been randomly generated, andA has been further scaled so
thatmaxi=1,...,n |λi(A)| = 1, whereλi(A) denotes thei-th
eigenvalue of matrixA. The variance of the initial condition
has been selected to beX = 10 In×n.
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(c) n = 4

Figure 1. Numerical benchmark. For dimensionsn = 2 (a), n = 3 (b),
and n = 4 (c) and for different levels of the error thresholdǫ, partition
size (number of cells), generated by adaptive (Algorithm 2,labeled A-Ps)
vs. uniform gridding (Algorithm 4, labeled U-Ps), and simulation time,
required to generate the adaptive partitioning (Algorithm2, labeled A-T)
(average over 30 runs).
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Figure 2. Numerical benchmark. Errors obtained selecting the same
number of cells (same partition size), for dimensionsn = 2 (a), n = 3

(b), n = 4 (c), for the adaptive gridding of Algorithm 2 (labeled A) vs.
the uniform gridding of Algorithm 4 (labeled U).
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Figure 3. Numerical benchmark. Partition size (number of cells), for
dimensionsn = 3 (a), n = 4 (b), n = 5 (c), andn = 6 (d), generated by
the adaptive gridding of Algorithm 2 (labeled A1) vs. the adaptive gridding
of Algorithm 3 (labeled A2), for different levels of error thresholdǫ.
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Figure 4. Numerical benchmark. Simulation time, for dimensions n = 3

(a),n = 4 (b), n = 5 (c), andn = 6 (d), required to generate the adaptive
partitioning of Algorithm 2 (labeled A1) and the adaptive gridding of
Algorithm 3 (labeled A2), for different levels of error threshold ǫ (average
over 30 runs).

1) Grid Generation:Let us select a noise varianceW =
0.5 In×n. Figure 1 compares the partition size (i.e., the
number of grid cells) generated by Algorithm 2 for the
adaptive gridding, and by Algorithm 4 for the uniform one.
The horizontal axis represents the thresholdǫ, namely the
upper bound for the abstraction error. The error is based on,
respectively, equation (2) in Theorem 4 and (4) in Theorem
7. This batch of simulations is performed for dimensions
n = 2, 3, 4. As expected, for the adaptive algorithm the
number of generated cells is always less than that for
the uniform procedure. Furthermore, the number of cells
becomes larger for smaller thresholdsǫ.

Figure 1 also plots the simulation time required to gener-
ate the grid according to Algorithm 2 for the adaptive parti-
tioning. The horizontal axis represents again the threshold ǫ
on the error. This batch of simulations is also performed
for dimensionsn = 2, 3, 4 and the results are averaged
over 30 runs. The discontinuities in the plots are intrinsic
to the implemented refinement algorithm for the adaptive
partitioning. Notice that, as expected, the simulation time
is larger for smaller thresholds. Recall that for the uniform
gridding the grid generation is a one-shot procedure.

Figure 2 compares the error obtained by generating the
adaptive gridding with Algorithm 2 (see Theorem 4) against
that obtained by generating the uniform gridding of Algo-
rithm 4 (see Theorem 7), given a fixed number of cells for
both methods (these values are represented on the horizontal
axis). The simulations are again performed for dimensions
n = 2, 3, 4. It is easily observed that the error associated
to the uniform gridding approach is always higher than
that associated to the adaptive method. (Notice that, for the
probabilistic invariance problem under study, an error greater
than one is not practically useful.)

Let us now select a noise varianceW = In×n and
benchmark the two adaptive gridding approaches. Figure
3 compares the number of cells generated by the adap-
tive gridding of Algorithm 2 vs. the adaptive gridding of
Algorithm 3. This batch of simulations is performed for
dimensionsn = 3, 4, 5, 6. Similarly, Figure 4 compares
the simulation time required for generating the adaptive
partitioning of Algorithm 2 and the adaptive gridding of
Algorithm 3 (average over 30 runs). Figure 3 confirms that,
since the continuity bounds related to Assumption 2 are less
tight, Algorithm 3 ends up requiring a larger number of
cells, given any thresholdǫ. However, Algorithm 3 works
faster than Algorithm 2 in the partition refinement step,
since it requires a local error update for the partitions with
error greater than the given threshold, whereas Algorithm 2
requires in the worst case a global update of the error of
each cell. Thus, for smaller accuracy thresholdǫ and larger
dimensions (and large number of generated cells) the method
based on Algorithm 3 ends being the faster (Figure 4).
Algorithm 2 can alternatively be made faster by substituting
its refinement step (4:) with that of Algorithm 3.



error thresholdǫ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1
size uniform (per dimension) 21 22 23 25 26 28 30 32 35 38 42 46 52 59 69 83 103 137 206

total size adaptive 28 30 32 45 56 60 63 64 64 82 113 124 221 250 256 447 864 1024 3447
total time adaptive [sec] 0.008 0.008 0.009 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.09 0.09 0.09 0.74 5.0 7.4 266

grid generation, % time adaptive 46 46 47 42 47 42 46 43 45 45 49 49 50 43 36 19 9.6 4.1 5.1
total time uniform [sec] 0.06 0.06 0.07 0.08 0.09 0.11 0.13 0.15 0.19 0.20 0.26 0.30 0.42 0.56 0.85 1.34 21 OOM OOM

(a) n = 2

error thresholdǫ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25
size uniform (per dimension) 39 41 43 45 48 51 55 59 64 70 77 85 96 110 128 153

total size adaptive 63 75 101 120 146 206 227 347 433 473 492 752 1209 1771 3327 3915
total time adaptive [sec] 0.02 0.02 0.04 0.05 0.09 0.13 0.14 0.66 1.3 1.7 1.8 5.8 19 31 190 275

grid generation, % time adaptive 44 41 44 44 54 51 43 25 17 15 12 15 13 16 11 6.5
(b) n = 3

error thresholdǫ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25
size uniform (per dimension) 41 43 46 48 51 55 59 63 68 75 82 91 102 117 136 163

total size adaptive 15 16 21 25 28 60 83 112 123 228 248 254 573 1127 1923 3868
total time adaptive [sec] 0.005 0.006 0.008 0.01 0.01 0.02 0.03 0.05 0.06 0.17 0.18 0.21 3.1 18 40 255

grid generation, % time adaptive 6.0 21 34 27 42 40 42 47 47 49 42 34 18 12 14 13
(c) n = 4

error thresholdǫ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25
size uniform (per dimension) 126 133 140 148 158 168 180 194 210 229 252 280 315 359 419 503

total size adaptive 8 9 12 18 32 38 44 66 114 221 422 523 987 1119 3711 12411
total time adaptive [sec] 0.002 0.002 0.002 0.003 0.01 0.01 0.01 0.02 0.05 0.18 0.83 1.6 4.9 5.9 139 2330

grid generation, % time adaptive 55 48 50 46 27 32 38 49 34 34 24 17 27 15 29 29
(d) n = 5

error thresholdǫ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4
size uniform (per dimension) 1289 1357 1432 1516 1611 1718 1841 1983 2148 2343 2577 2863 3221

total size adaptive 64 121 195 254 304 699 933 1609 1965 2985 4038 5121 14342
total time adaptive [sec] 0.03 0.05 0.09 0.15 0.20 1.0 3.2 11 14 29 87 111 1785

grid generation, % time adaptive 26 21 18 21 29 14 20 23 48 38 50 42 60
(e) n = 6

Figure 5. Numerical benchmark. Given a thresholdǫ for the error, the table reports for various dimensions (n = 2, . . . , 6 from (a) to (e)) the number of
bins per dimension in the uniform abstraction (total partition size is itsn-th power), the total size of the adaptive abstraction (according to Algorithm 2),
the total abstraction time for the adaptive approach with its percentage for the gridding procedure, and the total abstraction time for the uniform approach
(when not reported it is to be considered out of memory, orOOM). The reported figures are obtained by running averages over100 simulations.

2) Marginalization: The outcomes of the marginalization
procedure are recapitulated by the data displayed on Figure
5. These figures are obtained by running averages over 100
simulations. We focus on the adaptive gridding according
to Algorithm 2, and compare the time spent generating the
grid to that needed in performing the marginalization. It
can be observed that that the gridding procedure increases
in relative importance as the dimensionn grows. A few
outcomes of the uniform approach (forn = 2), which soon
runs into memory issues, are also displayed. Notice that
the outcomes hinge on the actual dynamics (matricesA,B),
which are newly generated for each of the 100 simulations.

B. The Multi-Room Heating Problem

We test the adaptive abstraction procedure on a case
study with hybrid dynamics elaborated in [4]. Consider
h rooms controlled by a centralized heater, which can
be switchedON and OFF. The 2 discrete modes of the
hybrid model areQ = {ON,OFF}. The continuous state
space lies inRh and evolves according to the equation
x(k + 1) = x(k) + Σx(k) + Γ(q(k)) + W (k), where the
matrix Σ ∈ R

h×h, is made up of the entries[Σ]ij = aij
if i 6= j, and [Σ]ii = −(bi +

∑

k 6=i aik). The vector-
valued functionΓ(q(k)) ∈ R

h depends on the configuration
of the heater. In particular[Γ(q)]i = bixa + ciδ(q). The

constantsaij , bi, ci, xa represent the average heat transfer
rate from roomi to room j (aij) and to the ambient(bi),
the heat rate supplied by the heater to roomi (ci), and
the ambient temperature(xa). In this dynamical equation
W (k) is the input noise, which is GaussianN (0, µ2). The
transition kernel isTx(·|(q, x)) = N (·;x+Σx+Γ(q), µ2I).
The reset kernel isTr(·|(q, x), q

′) = Tx(·|(q, x)). The heater
switches status based on the average temperature of the
rooms: this is modeled by a discrete kernelTq(q

′|(q, x)) =

σ
(

∑h

i=1 xi/h
)

, if q′ = OFF, and equal to the complement

(1−σ) if q′ = ON, and whereσ(y) = yd/(αd+ yd), y ∈ R.
The Lipschitz constants of these kernels are derived in [4].
For h = 2, Figure 8 displays the adaptive grid generated
with Algorithm 2 with ǫ = 0.5. The continuous domain
is [16, 23] × [16, 23] ⊂ R

2 for both modes. The selected
parameters area12 = a21 = 0.0625, b1 = 0.0375, b2 =
0.025, c1 = 0.65, c2 = 0.6, xa = 6, α = 19.5, d = 10.
Figure 8 also displays the invariance probability computed
over the abstraction, for a time horizonN = 10 and noise
varianceµ2 = 1.3. We perform a comparison between the
adaptive gridding technique (Algorithm 2) and the uniform
one (Algorithm 4, as used in [4]) in Figure 6, where we
match the errors obtained by selecting a comparable partition
size, for different numbers of roomsh. The total time for



number of rooms h 1 2 3 4 5
total size uniform 2500 2500 2744 4096 1024
total size adaptive 2493 2501 2690 3913 1063

adaptive/uniform error 0.0806 0.0178 0.0039 0.0007 0.0001
total time adaptive [sec] 1.4 7.1 243 926 1287

Figure 6. The Multi-Room Heating Problem. Adaptive gridding technique
(Algorithm 2) vs. uniform one (Algorithm 4). For comparablepartition
sizes, over different numbers of roomsh, the ratio of the errors obtained
by the two approaches is displayed. The total time for the abstraction
procedure based on the adaptive technique is also reported (average over
30 simulations).

number of rooms h 2 3 4 5
error thresholdǫ 0.5 0.5 0.5 0.5
total size adaptive 213 1540 6033 15742
total time adaptive 29.57 [s] 446 [s] 53 [m] 126.4 [m]

grid generation, % time 0.6 1.4 5.9 17.5

Figure 7. The Multi-Room Heating Problem. The adaptive gridding
technique (Algorithm 2) is tested, given a fixed error threshold ǫ, for an
increasing number of roomsh. The table displays the size of the generated
abstraction, the time required to obtain it, and the percentage of time spent
on the gridding procedure.

the abstraction procedure based on the adaptive technique is
also reported (average over 30 simulations). In Figure 7 the
adaptive gridding technique (Algorithm 2) is tested, givena
fixed error thresholdǫ, for an increasing number of rooms
h. The table displays the size of the generated abstraction,
the time required to obtain it, and the percentage of time
spent on the gridding procedure.
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