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Modeling and Simulation of a Microgrid
as a Stochastic Hybrid System

Martin Střelec, Karel Macek, Alessandro Abate

Abstract—Microgrids (MGs) are small-scale local energy grids.
While dedicated to cover local power needs, their structure
and operation is usually quite complex. Complexity arises due
to a number of factors: in the first instance, a variety of
operational modes – among them, MGs can be considered
to be operated autonomously whenever the main distribution
grid is not available; furthermore, the heterogeneity of energy
types in a MG – not exclusively electrical energy, but also
thermal for instance; also, the different functions that a MG
energy management system has to fulfill – like coordination
and dispatching of multiple generation, transfer, transformation
and storage devices; finally, the external and internal random
factors that affect operations. All these aspects make control and
scheduling of a MG quite a challenging task. On the other hand,
this widespread complexity leaves much room for improvement
on the current state of the art. An advancement on the state
of the art requires the development of a realistic model of the
system at hand. This work puts forward a model of a MG that
is based on the framework of Stochastic Hybrid Systems (SHS).
SHS models can capture the interaction between probabilistic
elements and discrete and continuous dynamics, and thus promise
to be able to tame the complexity of the systems discussed
above. This work displays the outcomes of model simulations and
discusses potential development of general analysis and synthesis
approaches over SHS models (e.g., based on model checking and
on approximate dynamic programming) for typical challenges in
MGs.

Index Terms—Microgrids, Stochastic Hybrid Systems, Model-
ing, Simulation

I. INTRODUCTION

Modeling of MGs for control and scheduling purposes has
been widely investigated [1], [2], [3] and others. Control prob-
lems deal with low-level management of particular devices
of a microgrid (e.g., primary voltage control of a turbine)
and usually relate to algorithms that operate on the scale of
milliseconds. On the other hand, scheduling problems involve
the optimal operation at the level of the whole microgrid,
which is achieved by coordination and dispatching of various
generation, consumption, and storage elements connected to
the grid. Scheduling algorithms operate on a minute or hourly
scale. Most of the modeling approaches found in the literature
are mainly focused on capturing some particular aspects of
a given MG, rather than the system as whole: the very
concept of MG has been defined in somewhat formal terms
in various works [4], each of which has then focused on the
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description of particular parts and operations of a MG. For
instance, a MG concept based on distributed generation and
consumption devices has been introduced in [5]. Furthermore,
the contributions in [6], [7] have defined a MG via an oriented
graph, where edges represented power flows and nodes stood
for particular devices.

This paper extends the contribution in [8], where a formal
graphical representation of a MG and its relationship with a
SHS model has been described in generality. In this paper, we
focus on a more formal description of the relationship between
the model of a MG and SHS theory. After a discussion on SHS
models in Section II, the focus is brought to more practical
aspects of MG modeling (Section III) and simulation (Section
IV), both of which are demonstrated on a particular example
and for specific operational conditions. The paper concludes in
Section V with a discussion on potential uses and extensions
of the model.

II. STOCHASTIC HYBRID SYSTEMS

Stochastic Hybrid Systems (SHS) are a class of probabilistic
and hybrid dynamical systems. We introduce here a model
in continuous-time [9], which is characterized by a hybrid
state space defined by two components: discrete modes and
continuous states. SHS capture the probabilistic dynamics and
the interactions between the two components.

A formal definition of a SHS is introduced in [9], [10],
where the model is defined as the collection

G = (Q, n,A,B,Γ, RΓ,Λ, RΛ, π),

where
• Q = {q1, q2, . . . , qm},m ∈ N is a countable set of

discrete modes representing the discrete state space,
• n : Q → N is a map that determines the dimension of

the continuous state space associated with each mode. For
q ∈ Q, the continuous state space is the Euclidean space
Rn(q). The hybrid state space is then H = ∪q∈Q{q} ×
Rn(q),

• A = {a(q, ·) : Rn(q) → Rn(q), q ∈ Q} is the collection
of drift terms of the SDEs governing the continuous
dynamics,

• B = {b(q, ·) : Rn(q) → Rn(q), q ∈ Q} is the collection
of diffusion terms of the SDEs governing the continuous
dynamics,

• Γ is a subset of the hybrid state space H defined as Γ =
∪q∈Q{Γq}q , where Γq = ∪q′ 6=q∈Qγqq′ is a closed set
composed of m− 1 disjoint guard sets γqq′ , which cause
forced transitions from mode q to mode q′ 6= q,

• RΓ : B(Rn(·)) × Q × H → [0, 1] is the reset stochastic
kernel associated with Γ. Specifically, RΓ(·|q′, (q, x))
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is a probability measure defined on Rn(q′)\Γq′ , which
describes the probabilistic reset of the continuous state
when a jump from mode q to q′ occurs from x ∈ γqq′ ,

• Λ : H\Γ × Q → R+ is the transition intensity function
governing spontaneous transitions. Specifically, for any
q 6= q′ ∈ Q, λqq′(x) := Λ((q, x), q′) is the jump rate
from mode q to mode q′ when x ∈ Rn(q)\Γq ,

• RΛ : B(Rn(·))×Q×H\Γ→ [0, 1] is the reset stochastic
kernel associated with Λ. In particular, RΛ(·|q′, (q, x))
is a probability measure defined on Rn(q′)\Γq′ that de-
scribes the probabilistic reset of the continuous state when
a jump from mode q to q′ occurs from x ∈ Rn(q)\Γq ,

• π : B(H) → [0, 1] is a probability measure concentrated
on H\Γ that describes the initial state distribution.

Trajectories are initialized randomly according to a prob-
ability distribution π. Within any given mode q ∈ Q, the
evolution of the continuous variables is characterized as the
solution of a stochastic differential equation of the form

dx(t) = a(q(t), x(t))dt+ b(q(t), x(t))dw(t) ,

where w(t) is a standard, n(q)-dimensional Wiener process
(considering a driving Wiener process with a different dimen-
sion is also possible). Mode changes are due to events related
to trajectories entering the deterministic spatial guard set Γ,
or alternatively to random arrivals due to Poisson processes
with a spatially-dependent rate Λ. Upon changing the discrete
mode, trajectories are reset probabilistically according to the
measures RΓ and RΛ, respectively.

Further details about the syntax, semantics, and properties
of a SHS can be found in [9], [10]. In particular, we refer to
the cited literature for the measure-theoretical properties of the
model, and for the elucidation of related concepts such as the
σ-algebra B over a probability space. With a more practical
objective, specific terms of the model will be discussed more
in depth, within the context of a MG, in Sections III and IV.

III. MODELING OF A MICROGRID
AS A STOCHASTIC HYBRID SYSTEM

A. The system under study

Figure 1 displays the configuration of the considered MG.
The MG is connected to the main distribution grid, which
feeds the local power network with electricity. In this work
we assume that the main distribution grid is operated by a
transmission and system operator (TSO) – more generally,
depending on many factors such as electricity market structure,
geographical location, etc., other subjects or participants to
the electricity market (e.g., an electric utility company) can
perform as the main grid operator. Two local generation
sources are additionally considered: a microturbine and a wind
turbine. A microturbine is controllable device that consumes
natural gas from a gas pipeline (gas utility) and that produces
not only electrical but thermal energy (heat) as well. Thermal
energy is thereafter transported to the heating system. In
this article, for the sake of simplicity only the electrical
component of the microturbine will be considered. A wind
turbine represents an uncontrollable generation device with a
stochastic behavior. Furthermore an electrical energy storage

Fig. 1. Example of a microgrid, taken as a case study for this work.

serves for the startup of the microturbine whenever in island
mode1, as well as for power balancing during energy peak
periods. Furthermore, several electrical loads are connected to
the local power network. These loads are stochastic in nature
and cannot be rescheduled or curtailed.

B. Discrete components and dynamics

Single MG elements have characteristic discrete modes that
affect not only their own continuous behavior, but also the
behavior of whole MG. The following list summarizes the
discrete modes of the single devices:
• Local Power Network (L) = {On: 1, Off: 0}
• Distribution Grid (G) = {Connected: 1, Disconnected: 0}
• Microturbine (M) = {Off: 0, Start: 1, On: 2, Shut down:

-1}
• Wind Turbine (W) = {Connected: 1, Disconnected: 0}
• Electrical Energy Storage (E) = {Supply: 1, Store: 0,

Load: -1}
• Electrical Loads (D) = {Connected: 1, Disconnected: 0}

The set Q of discrete modes of the whole MG is given as
a subset of the cross product of the discrete models of the
devices L×G×M×W×E×D. Figure 2 shows explicitly an
automaton-like structure, characterizing the discrete dynamics
of the considered system. The nodes of the graph represent the
discrete modes q ∈ Q, whereas the edges represent transitions
among the discrete modes. Each node is labeled by unique
number, which denotes the corresponding discrete mode in
the model.

The edges of the graph denote possible discrete jumps and
can be of two kinds: either due to guard conditions in Γ,
or due to spontaneous jumps in Λ. More specifically, guard
conditions γq,(·) constitute forced transitions from mode q
to other discrete modes, which occur when the continuous
dynamics enter the set γq,(·). For example, the system jumps
from mode [1,1,1,1,0,1] (microturbine in Start mode) to the
mode [1,1,2,1,0,1] (microturbine in On mode) when the an-
gular speed of the turbine ω is greater than or equal to its
nominal speed ωnom, namely γ4,7 : ω ≥ ωnom. On the other

1A local electric network is said to be in island mode when it is not
connected to the main distribution grid (e.g. because of a blackout) nor to
other local grids, but it is still able to operate autonomously.
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Fig. 2. Automaton-like representation of the discrete components of the MG.
The left column refers to the grid in the connected mode (G=1), whereas the
right one to the disconnected one (island model, G=0). Rows in the figure
refer to operational modes of specific devices (namely, E and M). The rates
and guards appearing by the edges are discussed in the text.

hand spontaneous jumps λq,(·) ∈ Λ represent probabilistic
events that may occur anywhere within the continuous state
space Rn(q) of a given discrete mode q ∈ Q. The probability
associated to a spontaneous jump from the current discrete
mode q to another one is given by a non-homogeneous ex-
ponential distribution, characterized by the intensity function
λq,(·), which can depend on the continuous state in Rn(·) and
on time t. Examples of intensity functions are given in Section
IV.

There are further spontaneous transitions to the Off mode
of the LPN (L = 0), depicted as the top mode on the right of
Figure 2 (the incoming rates λ(.),0 are not explicitly shown –
an example will be given in Section IV). Namely, the system
can jump to a failure mode from any other mode due to the
following two causes:
• an abrupt failure has happened, for some reason (often

exogenous to the system). This case represents a sponta-
neous transition that is defined by a probabilistic function.

• a large power unbalance has occurred in the power
network of the local MG, which leads to the activation of
power protections and to the disconnection of the local
power network. This event can be characterized by a
conditional probability function, where the probability to
jump grows as the power unbalance rises.

In both cases, within mode L = 0 an internal clock associated
to the failure state is reset to zero, t = 0. The clock dynamics
is defined by the simple differential equation ṫ = 1 and,
together with the transition rates λ0,3 and λ0,6, characterizes
the dwelling time within the failure mode.

When the system jumps to a new discrete mode q ∈ Q, the
continuous state can be reset probabilistically over the target
mode, that is over Rn(q). Probabilistic kernels are used for the
reset of the continuous state, namely RΓ is used after forced
transitions, whereas RΛ is used after spontaneous jumps.

While in general state resets can be useful in situations such
as when the grid goes from a Connected to a Disconnected
mode and some of the electrical loads get off line, in this work
for the sake of simplicity we assume that both reset maps are
deterministic and equal to the identity map, which indicates
that the continuous state does not change value upon mode
switches.

C. Continuous components and dynamics

Each discrete mode q ∈ Q is endowed with specific
continuous dynamics, which are characterized by the physical
properties of the specific elements in the given mode.

1) Power balance equation: This equation determines the
relationship between power generation and the power on the
demand side. The power unbalance ∆P can be written as the
following algebraic equation

∆P = PG + PM + PW + PE − PD, (1)

and expressed in the differential form as follows

∆Ṗ = ṖG + ṖM + ṖW + ṖE − ṖD, (2)

where PG represents the grid power, PM is the microturbine
power, PW characterizes the wind turbine power, PE is the
power transfered to/from the electrical storage, and PD is the
power demanded by the loads. Equation (2) inherits specific
terms that depend on the current discrete mode, as per Figure
2. Within each discrete mode, the drift term A and the diffu-
sion term B are determined based on the continuous dynamics
and on the uncertainty for particular terms of Equation (2). In
the following, specific terms of Equation (2) are described in
more detail.

2) Grid Power: Whenever the MG is connected to the
main distribution grid, the grid power PG compensates the
power unbalance ∆P by a feedback mechanism, which can
be defined as follows:

ṖG = kG ·∆P, (3)

where kG is a proportional coefficient. The feedback in
Equation (3) is mainly implemented via primary frequency
control [11]. If the MG is operating in island mode, then the
power PG is constantly equal to zero.

3) Microturbine: A microturbine element is considered as
small gas turbine, the behavior of which can be characterized
by a number of discrete modes [12] and by related continuous
dynamics. As mentioned above, a gas turbine distinguishes the
following four modes:
• Off - the turbine is in the off mode.
• Start - the turbine is starting up. The power generator is

used for the rotation of the turbine. Whenever the turbine
reaches a predefined RPM level, it starts the fuel ignition.
Then the turbine is first warming up, and afterwards is
synchronized with the distribution grid. In this stage the
turbine is consuming electricity and some fuel, however
it is not producing power yet.

• On - the turbine is connected to the grid, consumes
natural gas, and generates power.
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Fig. 3. Switching sequence for the discrete modes of the microturbine.

• Shut down - the ignition process has been stopped, the
generator is spinning over the turbine at constant RPM,
and the turbine is cooling down. After a predefined time,
the generator is switched off and the turbine is smoothly
decelerated.

The microturbine changes its discrete modes according to the
scheme in Figure 3. The microturbine model jumps from the
Off to the Start mode when a Start signal is active. The
model remains in the Start mode until the rotational speed
ω of the turbine is lower than nominal speed ωnom (condition
γ4,7 is valid). Afterwards, the microturbine commutes into the
On mode, where it stays until a Stop signal becomes active.
Thereafter the system jumps to the Shut down mode, where it
spends a predefined time, after which it switches back to the
Off mode.

In the literature it is common to refer to two kinds of
gas turbine models, based respectively on a model by Rowen
[13] and on one by the IEEE [14]. Both dynamical models
incorporate mechanical, combustion, and electrical dynamics,
and are too complex for our demonstrative purposes. We
thus adopt simpler, non-linear dependencies, where the turbine
mechanics represents its only dynamics, which can be captured
by the following first order differential equation:

J · dω
dt

= (TM − TE − FV ), (4)

where J is the moment of inertia, ω denotes the angular ve-
locity, TE refers to the electrical torque, TM is the mechanical
torque, FV is the force due to viscous friction and finally ω
represents the angular speed. The above mechanical part (4)
is the same for all the four discrete modes considered for the
microturbine. For all the discrete modes, the viscous friction
is FV = −kv · ω, where kv is the viscous coefficient.

In the Start mode, a power generator is used as an electric
motor and is increasing the turbine velocity to a predefined
RPM. In this configuration the mechanical torque is taken
to be equal to zero – TM = 0 – because the minimal fuel
flow maintains the combustion process but does not produce
a mechanical torque. Thus the electrical torque represents the
driving force for the rotation of the turbine, and is defined as

TE = a0 + a1 · PM + a2 · P 2
M , (5)

where a0, a1, a2 are real constants. Since the generator in this
mode is connected to the electric motor, PM represents the
consumed power. When the turbine is rotating at a predefined
and nominal RPM ωnom, it starts to ignite fuel, warms up,
and is synchronizing its voltage phase and frequency with
the local power grid, however it still does not supply the
microgrid with power. Afterwards the turbine is switched to
the operational On mode, where the generator produces power

and the microturbine is driven by a combustion process. The
mechanical torque represents the driving force for the rotation
of the turbine, and can be characterized with the following
polynomial:

TM = a3 + a4 ·mf + a5 ·m2
f − a6 · ω, (6)

where a3, a4, a5, a6 are real constants, mf is the fuel flow
and ω is the angular velocity. The electrical torque acts along
the mechanical one, and is decelerating the turbine angular
velocity. The electrical torque can be defined by a second-
order polynomial

TE = a7 + a8 · ω + a9 · ω2, (7)

where a7, a8, a9 are real constants and ω is the current angular
velocity. The generated power depends on the angular velocity
and can be expressed as

PM = a10 + a11 · ω + a12 · ω2, (8)

where a10, a11, a12 are real constants. For the sake of sim-
plicity, no power electronics (e.g. rectifier, inverter etc.) have
been considered – a more complex model of the generator can
be found in [15]. Besides electricity, the gas turbine produces
energy from heat, which is subsequently transfered to a hot
water circuit. The amount of produced heat energy is defined
by the function

QM = a13 + a14 ·mf + a15 ·m2
f , (9)

where mf is the fuel flow, and a13, a14, and a15 are real
constants.

The Shut down mode has a behavior that is analogous to
the Start mode: the fuel combustion is stopped, the generator
is spinning the turbine on a predefined RPM, and the turbine
is smoothly cooling down. After a given time, the generator
is switched off and the turbine speed is naturally decelerated
to zero.

4) Wind Turbine: We adopt a standard nonlinear static
model that is widely adopted in the literature [11]:

PW =
1

2
· ρ ·R2 · u3 · Cp(η, θ), (10)

where ρ denotes the air density, R is the blade radius, u
denotes the wind speed, and Cp is an efficiency function
depending on θ (the wind direction) and on the parameter
η = ωR

u , where ω is the speed of the blade tip. A differ-
ential relation can be obtained from (10), cfr. Appendix A.
A hybrid automaton model for the wind turbine has been
introduced in [16], and has been characterized by a number
of discrete modes. For the sake of simplicity, we consider
only two discrete modes: Connected and Disconnected. In
the Connected mode, we consider the wind turbine to be
connected to the local power network and to be operating in
the power optimization area2. When on the other hand the
wind turbine is disconnected from the local power network,
then it does not feed the microgrid with power.

2The turbine is in the power optimization area when the speed of its blade
tip that is less than a maximal tip speed.
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5) Electrical Energy Storage: This device can store electri-
cal energy over time. We consider a simplified storage model
inspired by [1], which expresses the stored energy PES as

dPES

dt
= −η · PE − PLOSS , (11)

where η denotes power exchange efficiency, PE is the power
exchanged between the storage device and the local power
network, and PLOSS denotes power losses associated to the
storage. Notice that the variable PES is the state variable
determining the energy level stored in the storage device,
whereas the variable PE denotes an input variable quantifying
the power supplied (loaded) from (over) the storage device in
connection with the local power network.

The power exchange efficiency parameter is defined as

η =

 ηs, for the Supply mode (PE > 0),
0, for the Store mode (PE = 0),
ηl, for the Load mode (PE < 0).

(12)

6) Electrical Loads: Electrical loads are characterized by
dynamics that are stochastic in nature and can be modeled
by stochastic differential equations. The Uhlenbeck-Ornstein
model is a suitable candidate [17] for the modeling of the
continuous dynamics of electrical loads in the Connected
mode:

dPD = α · (m− PD) · dt+ σD · dW, (13)

where m is a given load profile, α represents a tracking
coefficient, σD is a variation coefficient, and dW denotes the
Wiener process. In the case of the Disconnected mode, the
dynamics of electrical loads is trivial as

PD = 0, dPD/dt = 0. (14)

D. Uncertainty
There are two entities in the model that are affected by

stochasticity in the considered case study: the dynamics of
the electrical loads and the wind turbine power. The elec-
trical loads are modeled as systems with no input, and the
stochasticity acts endogenously over the power dynamics, as
per (13). On the other hand, the wind turbine is considered as a
deterministic system as in (10), but it is affected by stochastic
inputs. These input depend on the wind direction θ and the
wind speed u. There are several modeling approaches in the
literature encompassing these two inputs. Modeling of wind
variability via discrete Markov chains is described in [18],
whereas [19] has introduced a weather prediction model based
on Bayesian networks. Alternative approaches are based on
time series models [20]. When considering optimal placement
of the wind turbine, then generated power depends on the
wind speed u only. In this latter case, wind speed u can
be modeled as simple one-dimensional stochastic differential
equation [21], such as

du(t) = −u(t)− ū(t)

T
· dt+ κ · ū(t) ·

√
2/T · dW (t) , (15)

where ū denotes hourly averages of wind speed, κ is factor
depending on the geographical location of the wind turbine,
and the parameter T = L/ū, where L is the turbulence length
scale [21].

E. Model initialization

The presence of uncertainty leads to limited information
about the initial condition of the model. The initialization of
a trajectory of the model over the hybrid state space (this
involves both the initial discrete mode and the initial value
of the continuous state) is given by a probabilistic measure π
(i.e., a uniform probability distribution over a subset of H).
Different initial conditions of the model can lead to different
trajectories of the system G over the hybrid state space H.

IV. SIMULATION OF A MICROGRID
BY A STOCHASTIC HYBRID SYSTEM

This section begins with a description of a possible oper-
ation of the system and continues with an illustration of the
model from the perspective of stochastic hybrid systems the-
ory. Thereafter, a simulation of the microgrid in the considered
operation is shown and discussed.

A. System operation

Let us outline a possible condition occurring in the MG.
The MG starts in the operation mode (L = 1, G = 1) and is
connected to the main distribution grid. The wind turbine and
electrical devices are initially connected to the local power
network. Suddenly a blackout of the main distribution grid
occurs and the MG is consequently disconnected from the
main distribution grid (G = 0), and the electrical loads are
been supplied by the wind turbine and by the electrical energy
storage device. Within this situation, the microturbine starts to
operate again, and is switched to its On mode after it reaches
its nominal RPM. When the microturbine is in operational
mode, it feeds the electrical loads and the electrical energy
storage device is disconnected. From this situation, assume
that the electrical loads excess the maximal performance of the
microturbine (a power unbalance occurs): the power difference
between consumption and generation side has augmented and
the local power network is shut down (L = 0).

B. Formulation of the system operation by a SHS model

The considered operation of the MG is now explained in
terms of a stochastic hybrid system model.

At the outset of the case study the MG is connected to the
grid. The wind turbine and the electrical loads are connected to
the local power network. Therefore the system is in the discrete
mode3 [1,1,0,1,0,1], which is represented by node 3 in Figure
2. Associated to this mode is a continuous domain, defined
by the variable X = (∆P , PG, PM , ω, PW , CP , PES , PD, u).
According to the equations described in Section (III-C), it
is possible to explicitly write out the drift terms A and the
diffusion terms B for the continuous dynamics, as reported
in Table I. These terms fully characterize the evolution of the
system state over the continuous state space. In this table, the
number i, i = 1, . . . , 9 indexes a particular position of the
continuous vector variable for the given discrete mode 3.

3Recall that a mode is characterized by the discrete value of the vector [Lo-
cal Power Network, Distribution Grid, Microturbine, Wind Turbine, Electrical
Energy Storage, Electrical Loads].
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TABLE I
DRIFT (A) AND DIFFUSION (B) TERMS FOR THE CONTINUOUS DYNAMICS

WITHIN DISCRETE MODE [1, 1, 0, 1, 0, 1] (MODE 3).

A(3,X) B(3,X)

a1(3, X) = ṖG + ṖW − ṖD b1(3, X) = 0

a2(3, X) = kG ·∆P b2(3, X) = 0

a3(3, X) = 0 b3(3, X) = 0

a4(3, X) = −FV b4(3, X) = 0

a5(3, X) = 3
2
· ρ ·R2 · u2 · du

dt
· Cp(η, θ) b5(3, X) = 0

+ 1
2
· ρ ·R2 · u3 · dCp(η,θ)

dt

a6(3, X) =
dCp

dη
· dη
dt

+
dCp

dθ
· dθ
dt

b6(3, X) = 0

a7(3, X) = −PLOSS b7(3, X) = 0

a8(3, X) = α · (m− PD) b8(3, X) = σD
dW
dt

a9(3, X) = −u−û
T

b9(3, X) = κū
√

2
T
dW
dt

After some time, a blackout occurs in the main distribution
grid. This leads to the MG operating in island mode (namely,
disconnected from main distribution grid). The loads are
supplied energy by the wind turbine and by the electrical
energy storage, whereas the microturbine is in the Start mode
and is accelerating towards the nominal angular velocity ωnom.
Dynamically, the model has jumped from the discrete state
[1, 1, 0, 1, 0, 1] to [1, 0, 1, 1, 1, 1] (mode 6 in Figure 2), in
a spontaneous manner. Such a spontaneous occurrence can
be modeled by a Poisson arrival with constant rate λ3,6 as
in Figure 2. This simple arrival process can be generalized
in many ways: for instance, λ3,6 can be assumed to be a
function of weather, external conditions, or other relevant
factors; alternatively, the transition rate can be a function of the
frequency of the main grid, where the frequency is modeled
as a stochastic process.

Within the new discrete mode [1, 0, 1, 1, 1, 1], the continuous
domain is the same (and has the same dimension) as in the
previous mode (in general, by definition it could be different).
However, the associated drift and diffusion terms have to be
updated – they are not described here for the sake of space: for
more details, we refer the reader to the Appendix A, where
the continuous dynamics for the various discrete modes are
schematically captured within a graphical structure.

Recall that the microturbine is accelerating: when it reaches
the nominal angular velocity ωnom, it is switched to the
On mode and the model commutes from the discrete mode
[1, 0, 1, 1, 1, 1] to mode [1, 0, 2, 1, 0, 1] (mode 8 in Figure 2).
This jump is forced and is captured by the guard γ6,8, which
is written out explicitly as the following condition: ω ≥ ωnom.
(Incidentally, notice that γ6,8 = γ4,7, as introduced in Section
III-B.) Within the new mode, the microturbine takes over the
balance of the power difference ∆P in the MG, while the
wind turbine supports the MG with a power generation that
is stochastic in nature. The electrical loads are now connected
to the MG, while on the other hand the main distribution grid
and the energy storage are disconnected.

Let us now consider a spontaneous jump from this discrete
mode to the failure mode [0, 0, 0, 0, 0, 0], namely mode 0 in
Figure 2, characterized by L = 0, which is caused by a
large power unbalance – this occurrence was mentioned in
subsection III-B. The probability associated to this event can

Fig. 4. Transition rate λ8,0(PM ,∆P ) and sample path (green line).

be modeled as a function of the actual power difference ∆P
and of the actual power generated by the microturbine PM .
The transition rate function λ8,0(∆P, PM ) is explicitly defined
as the following positive quantity:

λ8,0(∆P, PM ) =
[
∆P cos

( π
24

)
− (16)(

PM −
PM,max

2

)
sin
( π

24

)]2(∆P

3

)2

,

where PM,max is the maximal possible power that can be
generated by the microturbine. Figure 4 shows graphical
representation of the transition rate function λ8,0(∆P, PM ).
Whenever the load is smaller than the power generated, the
term ∆P is positive. If in this situation the microturbine
is generating a power level that is close to zero, it is not
able to compensate the positive ∆P via generation reduction,
consequently the jump likelihood into the failure mode is
rising. An analogous situation occurs if the power difference
∆P is negative and the turbine operates close to the maximal
performance. Figure 4 displays a sample path, marked by a
green line, overlaid on the rate function. The microturbine is
increasing the generation according to the rising load. When
the microturbine reaches its maximal generation limit, the
power difference ∆P is increasing and the probability of the
jump into the failure mode is rising, until this event occurs.

C. Simulation of the SHS model of the microgrid

There exist a number of simulation tools for deterministic
hybrid systems. However, only some of them can feature
stochastic components. For example, Ptolemy II [22] is able
to capture probabilistic continuous and discrete dynamics –
the only limitation is that the transitions are only based on
guards and the consequent reset is exclusively deterministic.
Therefore this tool can be useful only for the simulation of a
subclass of SHS. Similar comments hold for other simulation
tools, like CheckMate [23], and the Ellipsoidal Toolbox [24]:
they often allow for uncertain (rather than probabilistic) com-
ponents. There is the need for a tool aimed at general SHS
simulations.

In this work we have employed a Simulink environment
for the simulation of the developed MG model. The Simulink
model of the MG was created based on the equations described
in Section III-C. We have simulated the behavior described
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Fig. 5. Power composition in the MG for the situation under study.

Fig. 6. Transition Rate Function λ8,0(PM ,∆P ) and sample outputs.

in (the previous) Section IV-A. Figure 5 displays the power
composition in the MG (loaded and generated power) over one
hour of simulation. The grid power PG is marked with gray
color, whereas the blue color denotes the power from electrical
energy storage PE , and red is for the power generated by the
microturbine PM , green color marks the power from the wind
turbine PW , and finally and the black line is the electrical load
PD. The simulation output for the power is divided into four
intervals, which are marked with roman numerals in Figure
5. These intervals represent the results of the simulation for
the specific discrete modes described in the previous section.
In the intervals I − III , the MG is in operational mode and
can fully supply the connected electrical loads. In the interval
IV , the electrical loads have a higher capacity than that of the
generators, and the probability of entering the failure mode is
rising.

Figure 6 displays the shape of the transition intensity func-
tion λ8,0 and sample outputs of selected continuous variables
(inclusive of the value of λ8,0) in time. These samples of
the continuous variables are taken from time interval where
the microturbine performance reaches its maximum and the
electrical load PD (and the power difference ∆P ) is still rising.
Before this time interval, the electrical load is covered by the
local generation devices or by the main distribution grid and
the value of the transition rate function λ8,0 is close to zero.
After this time interval, the system is likely to jump to the
failure state with a probability that depends on transition rate

function λ8,0. On the left-hand side of the figure, the values
of the function λ8,0 are displayed over one sample path of the
electrical load (a sample path is one realization of the load
profile in Equation (13)), which is marked with a magenta
line. On the right-hand side, the evolution of the transition rate
function λ8,0, as well as the trends of the independent variables
∆P and PM , are displayed. According to (16), the intensity
function λ8,0 rises when the power difference ∆P is becoming
more negative and the microturbine power PM is close to its
maximal performance. In this situation the probability of a
spontaneous jump into failure mode increases as well.

Due to space limitations we do not display here the dynam-
ics of other variables of the model in their different operation
modes. Based on the underlying initial probability distribution
and stochastic components, it is possible to obtain traces of
executions by resorting to known Monte-Carlo techniques.

V. POTENTIAL STUDIES AND APPLICATIONS

There are many practical problem formulations that can be
considered in a MG. A suitable choice of the modeling frame-
work can play a significant role in tackling such problems: we
argue that SHS models can contribute to such a framework.

Generation scheduling constitutes a typical problem to be
solved within a MG. An important goal of a MG energy
management system is to minimize the operational costs, under
satisfaction of supplies to all the loads. This can be achieved
by suitable scheduling and utilization of internal and external
energy sources. The adoption of a SHS framework for the
modeling of MGs can allow leveraging methods from SHS the-
ory, e.g. stochastic optimal control and dynamic programming,
for scheduling problems. To attain scheduling optimality we
also envision using randomized approaches like the scenario
approach [25]. These techniques can help optimizing over
random quantities such as wind speed (15) or power loads (13).
Furthermore, model checking methods, for instance invariance
analysis, can assess the probability that the system under study
satisfies the supply to all the loads.

A MG can participate in demand response programs and this
can offer the opportunity to look into partial load reduction to
the TSO for contracted award. For the TSO, demand response
(in particular real-time demand response) represents an alter-
native to the traditional ancillary services for distributed grid
stabilization. A MG reaction to a demand response event can
be computed based on methods like dynamical programming,
randomized techniques, etc. Model checking methods like
reachability analysis can further quantify the probability that
the system under study reaches any undesired state, such as
poor operation schedule or inappropriate reaction to a demand
response events, which can lead to large power unbalance in a
MG, and as a consequence to the collapse of the local power
network and to the system entering a failure mode.

VI. CONCLUSIONS

This work has presented a novel approach to modeling MGs,
with SHS as promising modeling framework. An SHS model
instance of a MG has been introduced and simulations of an
operational condition for the MG has displayed that the model
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exhibits a reasonable behavior. This suggests that the model
can be used as a framework for more advanced analysis and
control synthesis problems.

Further research is intended to be developed towards adding
other elements to the model and to design an optimized control
and scheduling mechanism for MG energy optimization.
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Fig. 7. The continuous dynamics (shaded blocks) associated to the devices (green rectangles) in the MG and their discrete modes of operations (red labels).

APPENDIX A
CONTINUOUS DYNAMICS OF THE MODEL

This section describes the continuous dynamics of the
system captured by the graphical model shown in Figure 7.
The root of the graph includes the power balance equation,
where its terms refer to the devices incorporated in the MG.
The continuous dynamics of the whole MG composes of the
dynamics of the specific devices, represented in the vector
[L G M W E D] – the value of this vector characterizes
the global discrete modes of the SHS model, as discussed
below. (also compare the vector value with Figure 2). Each
green rectangular node represents a particular device in the
MG. The leaves in the graph are explicitly associated to the
continuous dynamics of a specific device, and thus contribute
to the power balance equation at the root. For each leaf, the
red label denotes the discrete operation mode and the number
within brackets denotes the numerical code associated to that
mode.

As an example, the global discrete mode [1 0 1 2 0 1] is
obtained as follows. The distribution grid (G) is Disconnected
from the MG, which is denoted as (G = 0). The label (G)
relates to a green node and its value (0) determines the leaf
of that node. The continuous dynamics for the grid is then

PG = 0, dPG/dt = 0.

The microturbine is in its On mode (M = 1) and the corre-
sponding continuous dynamics is captured in the device and

in the leaf as follows:
dω

dt
=

1

J
· (TM − TE − FV ) ,

FV (ω) = kv · ω,
dPM

dt
= a11 ·

dω

dt
+ 2 · a12 · ω ·

dω

dt
,

TE(ω) = a7 + a8 · ω + a9 · ω2,

TM (mf ) = a3 + a4 ·mf + a5 ·m2
f − a6 · ω.

The wind turbine is Connected to the MG (W = 1) and its
corresponding continuous dynamics are

dPW

dt
=

3

2
· ρ ·R2 · u2 · du

dt
· Cp(η, θ),

+
1

2
· ρ ·R2 · u3 · dCp(η, θ)

dt
,

dCp(η, θ)

dt
=

dCp

dη
· dη
dt

+
dCp

dθ
· dθ
dt
,

du(t) = −u(t)− ū(t)

T
dt+ κū

√
2/TdW (t).

The electrical energy storage device is disconnected from the
MG and is storing the energy (E = 0, Store mode). The
continuous dynamics for this mode are

dPES

dt
= −PLOSS .

Finally, an electrical load is Connected to the local power
network (D = 1) and its dynamic is driven by the following
stochastic differential equation:

dPD = α · (m− PD) · dt+ σD · dW.


