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Abstract— The presence of absorbing sets within the contin- Il. PRELIMINARIES
uous state space of a Markov process plays a crucial role in A. Notation
the verification of properties of the process over infinite tme )
horizons. Specifications such as probabilistic invariancereach- Let (£',p) be a Polish space, namely a complete and
ability, and reach-avoid have been characterized and comged  separable metric space [5], amd its Borel o-algebra. A
based on this structural property of the model. This paper Markov kernel T is such that for allB € 2, x — T(B|X)

extends these results by investigating stability properés of the . . ] . o
model over absorbing sets. Theoretical results are develep to is @ measurable function oft”; and T(-[x) is a probability

study attractivity properties of such sets within the statespace Mmeasure of.2", %) for anyxe 2". The event space is given
of a Markov process. The outcomes are applied over a case by Q = 2™ with Ng = NU {0} and.Z is a producto-

study. algebra omQ.
The kernelT yields the unique family of probability mea-
I. INTRODUCTION sures(Px)xe 2, which defines the discrete-time homogeneous
Markov proces (see [9, Chapter 1.2]) such that
Markov processes provide a powerful framework to model Py{X1 € B} = T(B|x)

phenomena in diverse areas such as biology, finance, engi-

neering etc. Such a framework allows one to incorporate tHer anyx e 2" andB € %. We denote by the Banach space
structured randomness affecting the system under study, i all bounded measurable functioris 2° — R, endowed
the price to pay for this modeling capability is the increasewith a sup-norm|f[| = sup|f(x)|. On this space we define

complexity related to its analysis [6]. the Markov operator given for an§/ € B by
An important topic in the analysis of dynamical systems is

that of stability and of attractivity [7], which deals withe Zf(x) = / f(y)T(dy|x).

limiting behavior of trajectories over infinite horizonsor- x

probabilistic models one can either think of stability oeth ., ; geB we write f < g if f(x) <g(x)

limiting (invariant) distribution of the state [6], or coder For the subset of8 of upper (lower) semi-continuous
the convergence of the process to an attractor set [4]. lysualfunctions we use a shorthand u.s.c. (1.s.c.) [5]. EerB we
results in this arena are given with binary probability,¢hu denotef, = inf{f(x):xe 2} and f* = sup{f(x) :x€ 2}.
restricting the class of models under consideration. In the same way:
In this work, we are interested in path properties of the
process, rather then in stability over an invariant distign. Mt = {x€ X: f(x) = f.} andM; = {xe 2" : f(x) = f"}.
In particular, we look at the problem of computing the actugt, anyr € R we denotef; = {xe 2 : f(x) <r}.
value of the probability that the process converges to a set, ¢ open ball of the radius > 0 at a poi_ntx c 2 is
with an explicit bound on the computation error. denoted by (x) = {y e 2 : p(x,y) < €}. ForAC 2 the
The contribution puts forward a definition of stochasticetB is said it be a neighborhood @ if there is an open
attractivity over subsets of the state space, and studiggtp’ such thatA C B' C B. The spacé.2’,p) is said to be
conditions under which sets are attractive. Over such8®s, |ocally compact if for any poink € 2" there is a compact
work provides methods to compute the associated probabiligeighborhood ok. For AC 2 its closure is denoted b.
of convergence, which further leads to the characterinatio ]
of domains of attraction over the whole state space. B. Convergence and attractive sets
Technically, the work leverages the concept of absorbing In this section we discuss the notions of convergence and
set [6], [12], the use of PCTL as a modal logic to ex-attractivity for discrete-time Markov processes. First, X €
press infinite-horizon properties [2] for discrete-timerktav 2~ andA C 2" we definep(x;A) = inf{p(x,y) 1y € A}.
processes, and the use of operator theory and of Be"mﬁéfinition 1. For a sequenceéx,)
equations to characterize such properties. The theoreti%ady that x — A with n—s oo if an
results are elucidated through a case study.

for all xe 2.

n>0 Of elements of?", we
d only iflim p(Xn,A) = 0.
If for f € B it holds that i = c = const then the notation

lim f(x) = c denotes that () — c for any x» — A. Equiv-
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Remark 1. We notationally distinguish between,Xvhich We need three basic properties, called probabilistic reach
stands for the value of the process X at moment n, arat x ability, invariance and reach-avoid. In order to define them
X, which denote simple points on the state sp&ethat we use the notion of the first hitting time. Given a set
could, as an example, represent initial conditions for thd8 € 4, its first hitting time is the random variablgs =
process X. inf{n > 0 : X, € B}, so thattg : Q — NgU {e}. The n-

The definition of an attractive s& C 2" for a classical horizon reach_ab_lll_ty oB IS the event{a_)_: Ta(w) <nj C %
whereas the infinite-horizon reachability {sg(w) < o}

deterministic dynamical system [7] requires the Aet) to We introduce the reachability value functions(x;B) —

be closed, 2) to be invariant under the flow of the syste oy .
and 3) to to have a neighborhood with the property that IP:EX{TB <N} andv(x;B) = Px{Ts < co}, respectively. Clearly,

system, starting within this neighborhood, never leavasit v(x;B) = lim v (x; A),

converges to the sé The set of all points in2” which are o . .

initial points for trajectories converging t is called the Where the convergence is monotonically non-decreasirig [11
domain of attraction of\. We argue that, when dealing with  Invariance is the dual property of reachability, e.g. the
systems that are affected by a stochastic uncertainty, sugfizon invariance oA is {Tac > n} whereA® = 27\ A. We
requirements may be in general too conservative, whictsleaflenote the associated value functionupyx; A) = Px{Tac >

to the following. n} and introduce

Definition 2. We call the set & 2" stochastically attractive UG A) = lim un(xA) = Px{Tac = o}

for a process X if Finally, the n-horizon reach-avoid event over the sets

lim Py {Xm — A} = 1. (1) ABeAis {18 <min(n,1ac)}, Whereas over the infinite time
XA horizon it is given by{ g < Tac, Tg < }. The corresponding
This definition is formal since the probability in (1) is value functions are denoted lw(x; A, B) for the finite time

well-defined, as we show below. The meaning of (1) is thforizon andw(x; A, B) for the infinite one. The convergence
following: selecting an initial conditiox closer toA makes v, — w is monotonically non-decreasing [8].
the probability of the event that “the proceXsconverges  For the described three problems, numerical methods
to A” closer to 1. ThUS, Definition 2 is a modified VerSionbased on Bellman-like dynamic programming iterations have
of the condition 3) above. Also, it captures the closurgeen developed for the bounded time horizon: see [1] for
property: if (1) holds for the seA then it holds as well for reachability and invariance, and [8] for reach-avoid. The
its closureA. However, it does not imply that within some work in [1] has provided a discretization technique, which
neighborhood of se the probability to stay always within ajlows one to compute efficiently such value functions with
this neighborhood is close to 1 (invariance). Moreover, thgxplicit bounds on the error of approximation. On the other
notion of being invariant required in deterministic systemhand, infinite time horizon problems appear to be much more
and here interpreted as in Definition 3 is too restrictivetifiar Cha"enging and there is no genera| method to solve them.
discrete-time stochastic framework (we enlighten it beilow The contributions in [11], [12] deal with problems that can
Example 2) — this is the reason why such a requirement e solved with explicit bounds on the error — some of these
not included in Definition 2. methods will be also employed below.
Finally, we introduce a value function for the convergence

event: {X, — A}. Clearly, unlike the properties above, it

The definition of stochastic attractivity leads to studyingy < ot have a finite horizon version. We start by defining

probabilities related to events, as in (1). In contrast 9 other closely related event. For a get 2° and¢ > 0
deterministic dynamical systems, where the study is Oﬂet'ﬂe £—ba’ll of Ais O(A) = {xe % (X A)_< £}. By direc’t
£ — . ) .

restricted to the attractivity of equilibria and closed itsp pplication of the definition of limit, we have thag — A
in this work we embrace a more general approach Whiq and only if for any m e N there’ isN € N. such that
first selects potentially attractive subsets®fand thereafter Xn € Oy/m(A), for all n > N. We call the propérty that. for
verifies their attractivity. A special focus is given to coaep omeB/Cm% ’there is arN such that, € B for all n > N “’Xn
subsets of2", thus excluding possible divergent behaviors o s eventTJaIIy always iB” and denote it a%, & B._No,vv, if

the proces. Due to this reason we introduce appropriatg( : ;
; . &+ B then obviouslyx, — B andx, — B if for any me N,
value functions that depend both on the poimt 2" and on " & 61/m(B) al " y
m(B).

the setA € #. Such value functions, in general, allow one nFor a 'setA € % the event{X, &> A} C Q is measurable

to study prqperties of the proceXswhich can be expressed Indeed, it is first the complement of the evedd, ‘visits A° .

as events,_ I.e. measurable subsets of the event Q_xace infinitely often,” which is used to characterize propersesh
Alternanvely,_ .othgr approaches exXpress dynamical PrORs transience and recurrence, and is proven to be measurable

erties as spemﬂcauons in a modal ng.|c, such as .F.).CTL %]. Secondly, this event is invariant, i.e. it is indepentde

probabilistic LTL [2], and proceed verifying the specifiicat on any finite prefix of the sequencé,. For more detailed

of interest over the model. In this work, we do not reStriCHiscussion see [6, Section 15] and [9, Section 3.3]. As a
ourselves to any particular class of logic and specify prop- ’ ’ ' e

erties directly via subsets @. LFurther on, we omit the argument in the definitions of events.

C. Properties, specifications and related functions



result, it is legitimate to introduce the value function defi the least harmonic majorant af and (6) holds, there are

ash(x A) := Py{Xn & A}. cases whem(x;A) > u(x;A) for all xe 2.
Let us now introduce a value function for the convergence These remarks emphasize possible difficulties related to
probability: c(x; A) = Px{Xn — A}. We have finding the functionh. Moreover, recall that the problem of
® finding the invariance function (and thusZ?"u) is difficult
{Xn— A} = ﬂ {Xn e ﬁl/m(A)}v by itself [11]. On the other hand, although the functiom
m=0 general cannot be computed with any accuracy, we show that

hence the probability in (1) is well defined. Furthermore: there are cases when this problem has a solution. Also, this
_ work provides techniques that allow one to find the value of
c(xA)=limh (% O1m(A) (2)  h directly, without calculatings in advance.

; 2 andAc Z. A it (1) valent t With focus on the functiore, its evaluation is even more
oranyxe andA€ %. As a result, (1) is equivalent to difficult: from a computational perspective view we havettha
Jim,ceaA) =1 3 c(x A) = lim limlim (#1.78) 10,0, @)
. . . i
Functionsc andh play a prominent role in our paper.

for all xe 2°,A € %, and whereO; = 0y(A). In order to
[1l. ANALYSIS AND COMPUTATION OF VALUE FUNCTIONS tackle this problem, we show how to eliminate the limit with

FOR CONVERGENCE AND ATTRACTIVITY respect ta, which leads to the calculation of functidn

A. Characterization through harmonic functions B. Absorbing sets

We provide a formal way to derivie through the invari-  ajthough it is in general hard to find an analytical expres-
ance value function. First of all, let us define an invariance sion for h(x;A), given anx € 2 and anA € %, in some

operator./o: B — B as cases it is possible. We characterize such instances using t

Iat(X) = 1a(X) 2 (X), notion of absorbing set.

where % is the indicator function of: 1a(x) = 1 if x € A, Definition 3. The setAe_% is called absorbing ifI'(_A|x) =1

otherwise A(x) = 0. We obtain: for all x € A For_a given set B _the set (g B is called
its largest absorbing subset if A is absorbing and for any

{un+1(x;A) = FaUn(XA), forn>0, absorbing set AC B it holds that AC A.
UW(A)  =1a(x), Absorbing sets of Markov processes are analogues of equi-

and, as discussed in [11], librium points, closed orbits and more generally, of ingati

manifolds for classical deterministic dynamical systeifis [
U A) = JaU(XA). (4)  The next lemma further highlights this similarity.

Let us further name the functiohe B superharmonic if Definition 4. The Markov process X is said to be weakly
f > 221, subharmonic iff < Zf, and harmonic iff = Zf.  continuous if#f is continuous for any continuous f.

Clearly, the functioru is subharmonic: ik € A then ) ) _
Lemma 1. If the process X is weakly continuous and A is

U A) = AaU(A) = Z2u(x;A), absorbing them is absorbing.
whereas ifx € A°, then 0= u(x;A) < Lu(x;A), since the  We denote with .ls.(A) the largest absorbing subset of a
right-hand side is non-negative. given setA € A. It is well-defined: first let us denote
Theorem 1. For all x € 2" and Ac # it holds that An={xeA:un(xA) =1} (8)
h(x;A) = IiLn PU(xA), (5) In[11] it was proved that the sequen€An)ncn, is non-

- _increasingAn1 C A, and the for limit set we have
so that h= Zh and c= £c. Moreover, if f is a harmonic

funption and f>u then f>h,i.e.h i.s the smallest harmonic Ay = m An=l.as(A).

majorant of the function u. In particular, n—0
inf |h(x;A) —u(x;A)| = 0. (6) This set also admits the following characterization:
xeZ

Let us raise some remarks. First, the converge#Ce — las(A)={xe 2 ubcA) =1} ©)
h is monotonically non-decreasingZu > u, becauseu is Moreover, the following more general statement holds.
subharmonic, furthermore?™u > 2"y, because? is a . . .

Lemma 2. For a superharmonic f, the setsnis absorbing.

monotone operator. On the other hand, the convergence may
not be uniform, which makes it difficult to find the bounds As a corollary, we have that for a subharmonic functfon
on the quantity|| 2?"u— h||. Second, the equation= 22h  the setM; is absorbing, and furthermore thatfifis harmonic
is called theLaplace equatiorand admits infinitely many bothm; andM; are absorbing. Let us show how these results
solutions, e.g. any constant function. Finally, althougls are employed to find functioh.



Theorem 2. For any set Ac # the function @x;A) is
harmonic if and only if m= {x€ 2 : u(x;A) =0} is
absorbing. In that case(l;A) = u(x;A).

Theorem 2 implies that if the set, is absorbing then the

problem of findingh is reduced to that of finding. Although

the analytical expression far is in general hard to obtain

and thus the verification of absorbancenaf is not a trivial
problem, there exist cases with an analytical solution.

C. Non-attractive sets

We show which measurable subsets®f are essentially

not attractive. First, since equation (4) is linear, it awa

subharmonic function, hence the existence of the limit is
insured by the martingale convergence theorem [3].

Lemma 5. For any xe 2" and Ac # we have
Py {IiLn U(X; A) = liminf 1A(xn)} ~1

an

Py {IiLn h(Xn; A) = Iimninf 1A(Xn)} =1
In particular,

h(x;A) = Px {IiLn U(Xn; A) = 1} - PX{IiLn h(Xn; A) = 1}.

admits a trivial zero solution, though this may happen whehemma 6. If X is weakly continuous and A is a compact set,
u(x;A) is not a constant zero function — a simple examplthenlim u(Xn; A) — Limplies x — l.as.(A), for any sequence

being A= 2. Due to this reason, iti(x;A) = 0 we say
that the sefA is trivial. We say that the seA is simpleif
l.as.(A)=0.

(Xn)n>o0 Of elements ofZ".

Lemmas 5 and 6 show that, provided weak continuitX of
and compactness & X, — l.as.(A) is a necessary condition

Lemma 3. [11, Theorem 3] For a weakly continuous procesSor X, e+ A, Py-a.s. for allx € .2". On the other hand, this is

X, a compact set is trivial if and only if it is simple.

Lemma 4. For a weakly continuous process X and a

not a sufficient condition in general. Due to this reason we
introduce the concept aftableabsorbing set.

compact set A, the function(yA) is u.s.c. and the set pefinition 5. An absorbing set A& 2 is called stable if

l.as.(A) is compact.

We raise criteria foh(x; A) andc(x; A) to be equal to zero

based on the simplicity of the sét

Theorem 3. For a set Ac 4 it holds that:
1) h(x;A) =0 if and only if A is trivial;

there exists a compact neighborhood of A such that A=
l.as.(Up) and

lim u(x;Ua) = 1.
X—A

(10)

Remark 2. The stability property of absorbing sets can be
related to the Lyapunov stability for classical determiigis

2) in particular, if X is weakly continuous and A is dynamical systems [7]. Indeeql0) means that if A is

compact, then (x;A) =0 if and only if A is simple;
3) if X is weakly continuous?” is locally compact, and
Ais compact, then(g; A) = 0if and only if A is simple.

Corollary 1. It follows that:

1) If A€ % and for somed > 0 the setds(A) is trivial,
then A is not stochastically attractive.

2) If Z is locally compact, X is weakly continuous, an
A is compact and simple, then A is not stochasticall

attractive.

a stable absorbing subset, then for aay> O there is a
neighborhood of A starting from which the process never
leaves such neighborhood with a probability at ledst €.

The compactness of sehplays a role in the following
result.

Theorem 4. If X is weakly continuous and A is a stable

absorbing set, then A is stochastically attractive and ¢her

xists a Me N such that for all xc .2 and m> M it holds
hat

h (x; ﬁl/m(A)) =h(x;Ua) =c(xA).

Corollary 1 provides conditions for sets not to be stochas-
tically contractive. Although the problem of verificatiori o  Let us discuss examples showing that some of the con-
simplicity or triviality of a given setA does not have ditions we have provided are sufficient but not necessary
a general (respectively analytical or computational) solun general. Let.Z = {i%}neNu{O} be endowed with
tion, there exist sufficient conditions. The first (analgt)c the Euclidean metric, which makes it a complete separable
conditions require super- or subharmonic functions to beompact (and locally compact) metric space. We first show
constants, implying thati(x;A) = 0 for all A# 2". The that the reverse statement of Theorem 4 does not hold.

;econq (computational) conditions require hgtas defined Example 1 (A stochastically attractive absorbing set is

in (8), Is empty for soma& € N [11, Theorem 2]. . not necessary stable}et T({0}|0) =1, T({—1}|1) =1,
So far we have discussed sets that do not satisfy thle({i}ﬁ):lforallneN\{l} andT ({1 1) =

given definition of stochastic attractivity. Next, the atien 1 fopfé" n € N. The corresponding dyna?r\ilcs is nclearly

is shifted over a class of sets that satisfies it. o . ;

deterministic, still it is a weakly continuous Markov prsse
This process converges to an absorbing set £0} starting
_ ) ) from any initial condition, so ©A) =1 and hence A is
~ We start with the following useful result. Notice thatsiochastically attractive. However, there is no such neigh
lim U(%n; A) existsRc-a.s. for allxe 27, sinceu is a bounded porhood W of A such that A=l.as.(Ua)

D. Stochastically attractive absorbing subsets



The second example shows that there may exist sAsetwhere w is the reach-avoid value function aad (0,1) is
such thatc(x;A) = 1, which in particular means tha is  arbitrary.
stochastically attractive, but it is not absorbing. Thistfa

relates to the discussion given after Definition 2. Let us raise some remarks on Theorem 5. First, the reach-

avoid value functiorw in (11) can be computed with explicit
Example 2 (A stochastically attractive set is not necesbounds on the error [11]. Combining such bounds with the
sary absorbing)In the previous example we only changeright-hand side in (11), we obtain an approximate value of
T({1}|0) = 1. We still have A= {0} stochastically attractive with a known precision. Second, weak continuityfand
since ¢x;A) =1 but now A is not absorbing. Note that thestability of A ensure that a necessary stabilizing pair exists
update in the dynamics leads to the lack of weak continuityy Lemma 7. Moreover, sincg(x; A) = h(x;Ua), it is either

of the process, thus this assumption cannot be relaxed &constant function equal to 1, or the &eéxists by Lemma
Theorem 3, statement 3). 8.

E. Domains of attraction of absorbing sets

Theorem 4 shows that the stability of an absorbing set
under mild conditions implies its stochastic attractivity

Moreover., it helps elim_inating t_he ogtermost limit in thethatp(x,d):lfor anyx K, with @ ¢ K being an auxiliary
computation of the function functiomas in (7). A Lyapunov- wgio\» state. The space” is Polish, compact and thus locally

like function can be used to prove the stability of ancompact We define two functions
absorbing set. ’

IV. CASE STUDY

Let us consider the spacg” = KU {d}, whereK =
[~2,2]2, and endowed with the Euclidian metric and such

Lemma 7. An absorbing set A is stable if and only if the f(x, %2, §,1) = 0.5%(3G+2G-05)

following stabilizing pair exists: + 0.6x1€ +0.6x217, (12)
« compact neighborhoodAof A such that A=l.a.s.(Ua); fo(X1,X2,&,1n) = 0.9%(2X2 + 4x1%, + 3x3 — 0.5)
« function fe B such that f=0, m; = A, )LerwAf(x) = + 0.6x1& + 0.6x21,

0
and there is a r 0 such that £ C U and f(x) > 4ng construct the Markov proce3s by the following re-

Qf(x) for all x.e fer. ] ) ) _currence relations. Firsf] is an absorbing state; second, if
If X is weakly continuous, A is stable if and only if there IS, £ 3, thenX, = (X,X2) € K and we set
a stabilizing pair with an I.s.c. function f. ’

1 _ 1 w2
We have provided conditions for an absorbing Ad¢b be X‘gl - fl(xi;’xkz’fk’nk) (13)
stable, and hence stochastically attractive, under thelicon Xer = F2(X0XE ko M)

tions of Theorem 4. With regards to its domain of attractionif both right-hand sides are ifi-2,2], whereasXc.1 —
: 9 ) +1 —

tklle slet Qf p(i)mts fo{;{wh'chA'tfildsswnh prob?bnny LIS therwise. Here(nk)k=0 and (&)k=0 are sequences of iid
clearly given by{x€ 2": ¢(x,A) = 1}. Sincec is a harmonic andard normal random variables. In practice, the process

. - ) st
fqtr;]ctlon,_tiuxh set '.fhltZ?f z;bsotrrt]) mgla_n d ?he ntce may comc@( evolves according to the update law (13) within thelsget
ertner wi or wi - =0, the claim thal CONVErgence ., .. it is reset in the sink stafewhenever it leaves.

must hold with probability 1 may be too conservative anéj The goal is to study the stochastic attractivity of the arjgi

instead one may considerdomains of attraction given by which is an absorbing set as per (12), and to findsits

{xe Z:c(xA) = 1_.8}' To chara_cten;e SUCh. d_omalns thedomains of attraction. We exploit Theorem 5, where we set
procedure of computing the functianwith explicit bounds

on the error is needed. E = 0 and where clearlyc(d;{0}) = 0. We are left with

. . the solution of the problem fox € K. Let us selectf (x) =
We show that the knowledge of a Lyapunov-like function 2(x,0): the pai(f-02s, f) is a stabilizing pair for the origin,

25 t|)n tLelmm]:a 7is nhot only US?thJ_l to ?Stath(;’l the stability Oﬁworeoverr — 0.25 as per Theorem 5. Sin@éd; {0}) — 0,

, but also for such a computational procedure. we obtain|c(x; {0}) — w(x. Der, for)| < € as per (11).

Lemma 8. For any set Ac & the following trichotomy Notice thatf is not a superharmonic function: let us set

holds: either for all xe A h(x;A) =0 or h(x;A) =1, or K=K U(K)® whereK'={xeK: Zf(x) < f(x)} is the

both conditionsinf h(x;A) = 0 and suph(x;A) =1 hold. largest subset oK where f has a superharmonic behavior.
xex xe& Since f is a square of the distance to the origin, one can

Theorem 5. Assume that X is weakly continuous, A is dmagine that the procesé has convergent behavionifc K’

stable absorbing set which admits a stabilizing p@iia, f)  and a divergent one in the complement. The functiéh— f

with an I.s.c. function f, and »> 0 is as in the statement measures how fast does the functibrdecreases along the

of Lemma 7. Assume also that there is an open set E sugiinamics of the process.

thatinfc(x; A) =0, UsNE =0, A= l.as.(E®) and put @ = The results on Figure 1 show the similarity of the level

(f< UE)C for all r’ € R. Then sets for the functions?f(x) — f(x) and c(x;{0}) on K.

B Moreover, the outcome shows thek; {0}) vanishes almost

) . (11) immediately outside of the sd¢’, which justifies our intu-

ition about the divergent behavior of the proc&sen (K')C.

|c(6A) =W (X; Der, f<r)| < maX<£,supC(y;A)
yeE
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(a) Level sets of the functiow” f — f, going from the value-1
until 1 (the furthest from the origin), with a step of20

L
15 2

(b) Level sets of the functioe, going from the value @5 until 1
(the closest to the origin), with a step 0f08.

Fig. 1. Level sets of functio”” f — f and of functionc for the case study.
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V. APPENDIX: PROOFS
Proof: [Proof of Theorem 1] First of all{X, &> A} =

O {1 1000 = 2} and e = o} = { 7 20000 = 2.

Thus

h(x;A) = Py{Xn & A} = Py G ﬁ 1a(%) =1
k=n

n=0

—1limPyd [11a0%) =1
m l!:ln A(X)

— I n 2 _ . H n .
—|I|[]n<@ Px kELlA(Xk) =1 —|I|[]n<@ u(x;A)

sinceu(x; A) = Px{Tac = o}.
The first part of the statement is proved, so for the next
part we mention that for abke 2", Ac 4

Zh(xA) = /IiLn 2"u(y; AT (dy|x)
z

= Iiﬂw/@”u(y;A)T(dwx)
Z
= lim 2™ u(x;A) = h(x;A)

where we used dominated convergence theorem [3] to inter-
change the limit and the integral operators.

Let f be a harmonic function such that> u. The operator
2 is clearly monotone, i.e. iff <g” then 2g < 22¢”, so
f = 22"f > 22"u for all n e Ny. The limit n — o yields:
f > h, soh is the least harmonic majorant of Suppose
that

e=inf |h(A) —u(xA)|>0
xeZ

thenh(x;A) > u(x;A) + € and hence
f(X) :=h(x;A) — > u(x;A)

being in addition a harmonic function. But it contradictgtwi
the fact thatf > h, so (6) holds.
With regards to the function, we have

ZC(xA) =2 lim h (% O1m(A)) (14)
= lim Zh (% Oym(A)) =c(x;A)  (15)
since functiongh are harmonic. O

Proof: [Proof of Lemma 1] Note thatT(Ax) =
P1a(x) =1 for all x € A, so it is sufficient to prove that
T(A|x) is continuous orA. Define

g(x) =min{p (x,A),1}

soge €. Put fn(x) = (1—g(x))" then f,(x) € [0,1] for all
x€ 2 ,n>0 andf, € ¢. Moreover,fy(x) = 1 for x€ A and
fn | 1z pointwise.



Now, since fh(X) > 1a(x) then Zfy(x) > P1a(X) =1 Now, &, (X) is compact for eack < n, as closed subsets
for all x € A. Since X is weakly continuous, a function of compact sets. Hence the set
Pt € ¢ and henceZ f,(x) > 1 for all x € A. By monotone

convergence theorem we obtaiff,(x) | 21z(x) = T(Ax), C=UCalx)

so T(Ax) =1 for all x e A, which proves the statement of k<n

the lemma. O is compact, an@, (A) C C whereg’ = rglingk. We only need
<n

Proof: [Proof of Lemma 2] If m; is empty, it is
absorbing by the definition. Hence, we assume that the
is at least onexe m¢. We have

pow to pick upM > 8—1, then 0y /v (A) is a compact as a
closed subset of a compact

Form>M we denoteBy = 0 /m(A) andBf, =1.a.s.(Bm).
0< f(X)* ng(X) _ /(f*f f(y))T(dYIX) <0 Then we haveﬁl/(ml)(A) - Bm+1 - ﬁ]_/m(A) and so

hm(X) < h(x;Bm) for all xe Z".

Second, let us show that thereNE > M such thatB,, is
where the left inequality holds sindeis superharmonic and simple for allm> M’. Suppose contrary: namely thf,
the right one holds becaude < f(y) for allye 2°. Asa ¢ for all m> M. By Lemma (4),Bl, are compact sets so

result, T({ye 2 : f(y) = f.}|x) = 1. Or in other words, for ,. A , s
anyx € my we haveT(m¢[x) = 1. 0 B':= N B;, C Ais not empty. For any € B’ it holds that

m=M
Proof: [Proof of Theorem 2] Ifu is harmonic therm, X € By, for all m> M, thusT(By|x) = 1. We have
is absorbing by Lemma 2. On the other hand, rigt be w
absorbing. Fox € A we haveu(x;A) = Zu(x;A). Now let TEX)=T ( ﬂ B,
x € A®, thenx € m, and so m=M

hich means that the s&t is a non-empty absorbing subset
A) = [uly; AT(dyix) = [ u(y; A)T(dyx) = w Py g
PUXA) J[u(y, UCLY /u(y, JT(dyx) =0 of A and contradicts with the simplicity o4.

my

Finally, since for someM’ > M sets By,,m > M’ are
s0 0=u(x;A) = Zu(x;A) and hencel is harmonic. Saris  compact and simpléh(x;Bm) = 0 by 2). On the other hand,
the least harmonic majorant of itself and hetce u. 0O 0= h(X;Bm) > hn(x) and soc(x;A) = lim hy(x) = 0. O
Proof: [Proof of Lemma 4] The functionup(x;A) = Proof: [Proof of Corollary 1] 1) For allm > 1/5 we
1a(x) is u.s.c. since it is an indicator function of a closed sehaveh(x; O1/m(A)) =0 and hence(x;A) =0 for all xe 2.
For weakly continuouX it holds that’f is u.s.c. whenever Ag a result, (3) does not hold fak.
f is u.s.c. [5]. As a resulti, is u.s.c. for alin> 0. 2) Follows directly from the statement 3), Theorem &1
Since the convergenei — U is pointwise non-increasing, Proof: [Proof of Lemma 5] Let us introduce an exces-
u(x;A) = inf un(x;A) and sou is u.s.c. Finally, by (9) we sive operator orB as 2f(x) = max{f(x), 2 f(x)}. From
have that las.(A) is a closed set and since it is a subset ofLl0, Lemma 6, Lemma 8, p. 43] it follows that ffc B and

x) = lim T(B/,|x) =1

a compact, it is itself a compact. O 9() = lim 2%(x) then
Proof: [Proof of Theorem 3] 1)ifA is trivial then

u(x;A) = 0 is harmonic and hende= u= 0. On the other px{"m a(Xn) = |imsupf(xn)} -1 (16)
hand, sinceh(x;A) > u(x;A) > 0 for all xe 27, the fact that n n
h=0 impliesu=0. We takef = 15 so by [11, Theorem 1] we obtain:

2) if X is weakly continuous and is compactA is trivial
if and only if it is simple, by Lemma 3. Hence in that case Px{"m V(Xp; A%) = IimsuplAc(Xn)} =1
2) easily follows from 1). n n

3) clearly, {X, €+ A} C {Xn — A}, thush(x;A) < c(xA)  Now we useu(x;A) = 1—Vv(x; A°) to obtain the first equality.
for all xe 2°. If c(x;A) =0 thenh(x;A) =0 and by 2) the Furthermoreh(xA) = lim 2"u(x; A) = lim 2"u(x,A) since
setAis simple. uis subharmonic#?"u are subharmonic for ati > 0. Hence,

In the other direction, let us assume tiats a compact g gn, — 9+ for all n > 0 and we obtain the second
and simple set. Denotian(x) = h (X; 01 /m(A)) so equality from (16). -

(X A) = lim hn(X) For any x, Px-a.s. we have that nIinm(Xn;A) =1 and
m IiLn h(Xn; A) =1 if and only if IimninflA(Xn) =1 and the latter

for all xe 27, and the idea is to show thbk, =0 formbig  statement if X, » A}. Recall of the definition of finishes
enough, provided\ is simple. the proof. 0

First, we show that there IiM i 0 such thatﬁl/b,;,, (A) Proof: [Proof of Lemma 6] Suppose, thaﬁ linfx,; A) =
is a compact set. Sinc&” is locally compact, eack € A 1 Aie i | A : ) —
has a compact neighborhood, so putA — R be such that andxy - A, 1.e. imsupo (xr,1-2s.(A)) > 0. Sinceu(x; A) =

n e
Oex)(X) is contained in some compact set. We have th& for allxe A%, we havex, & A. Exploiting the compactness
{Ocx(X) :xE A} is an open cover of, thus there is an of A we obtain that there is a convergent_subsequexf;l%
open subcovef T, (X) Heen With & := £(x). X' € A such that an(xf,,l.a.s(A)) > 0 but Ilgnu(x’n;A) =1



In Lemma 4 we proved that the functioiix; A) is u.s.c. so for all M > M andx € .2". Moreover,u(x,;Ua) — 1 if and
u(xX;A) =1 and henceld € l.as.(A) but p(X,l.as.(A)) >0 only if x, = A, soc(x;A) =h(x;Ua).
which leads us to a contradiction. O To finish the proof of the theorem we observe that
Proof: [Proof of Theorem 4] LetA € % be a stable h(x;m) > U(X;W) and for the latter we

absorbing set anta be as in Definition 5. Sinc&Ja is  proved that it converges to 1 on any sequence which con-
compact andh =l.as.(Ua) by Lemma 4 we obtain that is  yerges toA. As a resultA is stochastically attractive. O
compact too. Moreover, sindg, is a compact neighborhood Proof: [Proof of Lemma 7] Suppose that sudhand

of A, eachx € A has a compact neighborhood and similarlyy, exist. From the local version of Doob's inequality [11,
to the proof of Theorem 3 we pick ud such that?ym(A)  Theorem 6] it follows:

)

is a compact set. Thus for ath > M the setdy,(A) is 1
compact. u(x; f<r) > 1—=1f(x)
Let us consider anyn> M. By Lemma 6 we obtain that '

u (xn; ﬁl/m(A)) — 1 impliesxy — A. Let us show that the
reverse statement is also true. Singeis a metric space, it U f<r).

for all xe 2. As a result, Iigu(x; Ua) = 1 sinceu(x;Ua) >
X—

is equivalent to show that for any> 0 there isd(g) > 0 Now, let A be a stable absorbing set. Then there is an
such thatp(x,A) < &(g) implies compact neighborhootda of A such thatA = l.as.(Up).
Clearly (Ua,1—u(x;Ua)) is a stabilizing pair. O
u (x; ﬁl/m(A)) >1-—c¢. a7) Proof: [Proof of Lemma 8] Suppose that inrhf(x; A) >
xeZ

We fix € > 0 and denotd (x) := 1—u(x;Ua). Sincef isa 0. Clearly,Py {Am h(Xn, A) = 0} =0 and hence by Lemma
superharmonic function with a range iy 1], we obtain that 5 we obtainh(x;A) = 1. Applying the same argument to the
the procesgf(Xn)),>o iS @ non-negativey-supermartingale case sum(x;A) < 0 we obtainh(x;A) = 0.

9, H H f
for all xe 2" [10]. Hence, the Doob’s inequality [3] holds: Proof [Proof of Theorem 5] From the proof of The-

1 orem 4 we obtain that(x;A) = h(x;Ua). Moreover, since
ity (18) Iinlf(x) = 0 we obtain that there isn € N such that
X—

O1m(A) € f<r and since

PX{ supf(Xn) >r

neNp

for all xe 2 andr > 0. In the level sets notation, the

inequality (18) takes the form(x; f<;) > 1—1f(x). O1yminy(A) C f<r CUA
Let us show that the stability &% implies an existence of

r >0 such thatf<, C 0;/m(A). Indeed, if it would not be

true, then we were able to pick up a sequergcg Oy/m(A)

we obtain thaic(x; A) = h(x; f<r).
Let us denota® =inf{n>0:Xy € f<gr UE}. Then:

such thatf (xc) < 1/k. Clearly, h(X) = Px{Xn & f<;, T8 = 00} + Py {Xpn & f<, T < o0}.
IiLn U Up) =1— IiLn fx)=1 For the first term we have:
£ __ _ £ __ —
but d(x,A) > & which contradicts with Lemma 6. Px{Xn € T T = 00} = Py M € fr \ fer, T° = 00} =0,
It follows from the existence of that To prove it we show thatfo, \ f<g is trivial. Since

u(x;m) > U fer) > 1_%](()()- I|m f(x) = 0 there isme N such thatdym(A) C ngr S0
UA\ﬁl/m( ) is compact and simple, hence trivial. Hence

Leveraging the stability oA again, we obtain that there is f<; \ f<;r CUa\ O1/m(A) is trivial as well. For the second

0 > 0 such thatf(x) <re for all xe 05(A) and hence for term:

a”AS:Ch: tr;gslglf,quglrty E’iln7y) rr;OId;.M we obtain that Fx{Xn& fr T8 <°0}:/h(y)v(x,dy)+ / h(y)v(x,dy)

u (xn; ﬁl/m(A)) — 1 if and only if x, — A. Since E feer

wherev(x,B) = Px{Xe € B,7¢ < «}. We obtain:

h (X; ﬁl/mw) =Px {“ (X”; ﬁl/mw) - 1} =Pu{Xo = A} inf N(yY)WO Der, fer) < h(X) < SUph(y) + W Der, fer)
yeE

we obtain for alln/,m’ > M andx € 2": yelser
N N since infh(y) = 0. Now, h(x) > u(x; f<;) > 1—1f(x) and
h (x; ﬁl/m((A)) =h (x; 1z (A)) . yeE ' _’ .
hence for allx € f<¢ we haveh(x) > 1— ¢, which finishes
Furthermore, since the proof. (|

h (% G1m(A) = h (% O1m(A) = h (X T1/mi 0 (A))

for all m>M andxe 2, we obtain

c(:A) =limh (x;m) =h (x;m)



