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Abstract— The presence of absorbing sets within the contin-
uous state space of a Markov process plays a crucial role in
the verification of properties of the process over infinite time
horizons. Specifications such as probabilistic invariance, reach-
ability, and reach-avoid have been characterized and computed
based on this structural property of the model. This paper
extends these results by investigating stability properties of the
model over absorbing sets. Theoretical results are developed to
study attractivity properties of such sets within the statespace
of a Markov process. The outcomes are applied over a case
study.

I. I NTRODUCTION

Markov processes provide a powerful framework to model
phenomena in diverse areas such as biology, finance, engi-
neering etc. Such a framework allows one to incorporate the
structured randomness affecting the system under study, but
the price to pay for this modeling capability is the increased
complexity related to its analysis [6].

An important topic in the analysis of dynamical systems is
that of stability and of attractivity [7], which deals with the
limiting behavior of trajectories over infinite horizons. For
probabilistic models one can either think of stability of the
limiting (invariant) distribution of the state [6], or consider
the convergence of the process to an attractor set [4]. Usually,
results in this arena are given with binary probability, thus
restricting the class of models under consideration.

In this work, we are interested in path properties of the
process, rather then in stability over an invariant distribution.
In particular, we look at the problem of computing the actual
value of the probability that the process converges to a set,
with an explicit bound on the computation error.

The contribution puts forward a definition of stochastic
attractivity over subsets of the state space, and studies
conditions under which sets are attractive. Over such sets,the
work provides methods to compute the associated probability
of convergence, which further leads to the characterization
of domains of attraction over the whole state space.

Technically, the work leverages the concept of absorbing
set [6], [12], the use of PCTL as a modal logic to ex-
press infinite-horizon properties [2] for discrete-time Markov
processes, and the use of operator theory and of Bellman
equations to characterize such properties. The theoretical
results are elucidated through a case study.
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II. PRELIMINARIES

A. Notation

Let (X ,ρ) be a Polish space, namely a complete and
separable metric space [5], andB its Borel σ -algebra. A
Markov kernelT is such that for allB ∈ B, x 7→ T(B|x)
is a measurable function onX ; andT(·|x) is a probability
measure on(X ,B) for anyx∈X . The event space is given
by Ω = X N0 with N0 = N∪ {0} and F is a productσ -
algebra onΩ.

The kernelT yields the unique family of probability mea-
sures(Px)x∈X , which defines the discrete-time homogeneous
Markov processX (see [9, Chapter 1.2]) such that

Px{X1 ∈ B}= T(B|x)

for anyx∈X andB∈B. We denote byB the Banach space
of all bounded measurable functionsf : X → R, endowed
with a sup-norm‖ f‖= sup

x∈X

| f (x)|. On this space we define

the Markov operator given for anyf ∈ B by

P f (x) =
∫

X

f (y)T(dy|x).

For f ,g∈ B we write f ≤ g if f (x) ≤ g(x) for all x∈ X .
For the subset ofB of upper (lower) semi-continuous

functions we use a shorthand u.s.c. (l.s.c.) [5]. Forf ∈ B we
denotef∗ = inf{ f (x) : x∈ X } and f ∗ = sup{ f (x) : x∈ X }.
In the same way:

mf = {x∈ X : f (x) = f∗} andM f = {x∈ X : f (x) = f ∗}.

For anyr ∈ R we denotef≤r = {x∈ X : f (x) ≤ r}.
The open ball of the radiusε > 0 at a pointx ∈ X is

denoted byOε(x) = {y∈ X : ρ(x,y) < ε}. For A⊆ X the
set B is said it be a neighborhood ofA if there is an open
setB′ such thatA⊆ B′ ⊆ B. The space(X ,ρ) is said to be
locally compact if for any pointx ∈ X there is a compact
neighborhood ofx. For A⊆ X its closure is denoted byA.

B. Convergence and attractive sets

In this section we discuss the notions of convergence and
attractivity for discrete-time Markov processes. First, for x∈
X andA⊆ X we defineρ(x;A) = inf{ρ(x,y) : y∈ A}.

Definition 1. For a sequence(xn)n≥0 of elements ofX , we
say that xn → A with n→ ∞ if and only if lim

n
ρ(xn,A) = 0.

If for f ∈ B it holds that f|A = c≡ const, then the notation
lim
x→A

f (x) = c denotes that f(xn)→ c for any xn → A. Equiv-

alently, for anyε > 0 there isδ > 0 such that| f (x)−c|< ε
for all x ∈ Oδ (A).



Remark 1. We notationally distinguish between Xn, which
stands for the value of the process X at moment n, and xn or
x, which denote simple points on the state spaceX that
could, as an example, represent initial conditions for the
process X.

The definition of an attractive setA⊆ X for a classical
deterministic dynamical system [7] requires the setA 1) to
be closed, 2) to be invariant under the flow of the system
and 3) to to have a neighborhood with the property that the
system, starting within this neighborhood, never leaves itand
converges to the setA. The set of all points inX which are
initial points for trajectories converging toA is called the
domain of attraction ofA. We argue that, when dealing with
systems that are affected by a stochastic uncertainty, such
requirements may be in general too conservative, which leads
to the following.

Definition 2. We call the set A⊆X stochastically attractive
for a process X if

lim
x→A

Px{Xm → A}= 1. (1)

This definition is formal since the probability in (1) is
well-defined, as we show below. The meaning of (1) is the
following: selecting an initial conditionx closer toA makes
the probability of the event that “the processX converges
to A” closer to 1. Thus, Definition 2 is a modified version
of the condition 3) above. Also, it captures the closure
property: if (1) holds for the setA then it holds as well for
its closureA. However, it does not imply that within some
neighborhood of setA the probability to stay always within
this neighborhood is close to 1 (invariance). Moreover, the
notion of being invariant required in deterministic systems
and here interpreted as in Definition 3 is too restrictive forthe
discrete-time stochastic framework (we enlighten it belowin
Example 2) — this is the reason why such a requirement is
not included in Definition 2.

C. Properties, specifications and related functions

The definition of stochastic attractivity leads to studying
probabilities related to events, as in (1). In contrast to
deterministic dynamical systems, where the study is often
restricted to the attractivity of equilibria and closed orbits,
in this work we embrace a more general approach which
first selects potentially attractive subsets ofX and thereafter
verifies their attractivity. A special focus is given to compact
subsets ofX , thus excluding possible divergent behaviors of
the processX. Due to this reason we introduce appropriate
value functions that depend both on the pointx∈X and on
the setA∈ B. Such value functions, in general, allow one
to study properties of the processX which can be expressed
as events, i.e. measurable subsets of the event spaceΩ.

Alternatively, other approaches express dynamical prop-
erties as specifications in a modal logic, such as PCTL or
probabilistic LTL [2], and proceed verifying the specification
of interest over the model. In this work, we do not restrict
ourselves to any particular class of logic and specify prop-
erties directly via subsets ofΩ.

We need three basic properties, called probabilistic reach-
ability, invariance and reach-avoid. In order to define them
we use the notion of the first hitting time. Given a set
B ∈ B, its first hitting time is the random variableτB =
inf{n ≥ 0 : Xn ∈ B}, so that τB : Ω → N0 ∪ {∞}. The n-
horizon reachability ofB is the event{ω : τB(ω)≤ n} ⊆ Ω,
whereas the infinite-horizon reachability is{τB(ω) < ∞}1.
We introduce the reachability value functionsvn(x;B) =
Px{τB ≤ n} andv(x;B) = Px{τB < ∞}, respectively. Clearly,

v(x;B) = lim
n→∞

vn(x;A),

where the convergence is monotonically non-decreasing [11].
Invariance is the dual property of reachability, e.g. then-

horizon invariance ofA is {τAc > n} whereAc = X \A. We
denote the associated value function byun(x;A) = Px{τAc >
n} and introduce

u(x;A) = lim
n→∞

un(x;A) = Px{τAc = ∞}.

Finally, the n-horizon reach-avoid event over the sets
A,B∈B is {τB ≤min(n,τAc)}, whereas over the infinite time
horizon it is given by{τB < τAc,τB < ∞}. The corresponding
value functions are denoted bywn(x;A,B) for the finite time
horizon andw(x;A,B) for the infinite one. The convergence
wn → w is monotonically non-decreasing [8].

For the described three problems, numerical methods
based on Bellman-like dynamic programming iterations have
been developed for the bounded time horizon: see [1] for
reachability and invariance, and [8] for reach-avoid. The
work in [1] has provided a discretization technique, which
allows one to compute efficiently such value functions with
explicit bounds on the error of approximation. On the other
hand, infinite time horizon problems appear to be much more
challenging and there is no general method to solve them.
The contributions in [11], [12] deal with problems that can
be solved with explicit bounds on the error – some of these
methods will be also employed below.

Finally, we introduce a value function for the convergence
event: {Xn → A}. Clearly, unlike the properties above, it
does not have a finite horizon version. We start by defining
another, closely related event. For a setA⊆ X and ε > 0,
the ε-ball of A is Oε(A) = {x∈ X : ρ(x,A)< ε}. By direct
application of the definition of limit, we have thatxn → A
if and only if for any m ∈ N there is N ∈ N, such that
xn ∈ O1/m(A), for all n ≥ N. We call the property that, for
someB⊆X there is anN such thatxn ∈B for all n≥N, “xn

is eventually always inB,” and denote it asxn ∈→ B. Now, if
xn ∈→ B then obviouslyxn → B andxn →B if for any m∈N,
xn ∈→ O1/m(B).

For a setA∈ B the event{Xn ∈→ A} ⊆ Ω is measurable.
Indeed, it is first the complement of the event “Xn visits Ac

infinitely often,” which is used to characterize propertiessuch
as transience and recurrence, and is proven to be measurable
[6]. Secondly, this event is invariant, i.e. it is independent
on any finite prefix of the sequenceXn. For more detailed
discussion, see [6, Section 15] and [9, Section 3.3]. As a

1Further on, we omit the argumentω in the definitions of events.



result, it is legitimate to introduce the value function defined
ash(x;A) := Px{Xn ∈→ A}.

Let us now introduce a value function for the convergence
probability: c(x;A) = Px{Xn → A}. We have

{Xn → A}=
∞
⋂

m=0

{

Xn ∈→ O1/m(A)
}

,

hence the probability in (1) is well defined. Furthermore:

c(x;A) = lim
m

h
(

x;O1/m(A)
)

, (2)

for any x∈ X andA∈ B. As a result, (1) is equivalent to

lim
x→A

c(x;A) = 1. (3)

Functionsc andh play a prominent role in our paper.

III. A NALYSIS AND COMPUTATION OF VALUE FUNCTIONS

FOR CONVERGENCE AND ATTRACTIVITY

A. Characterization through harmonic functions

We provide a formal way to deriveh through the invari-
ance value functionu. First of all, let us define an invariance
operatorIA : B→ B as

IA f (x) = 1A(x)P f (x),

where 1A is the indicator function ofA: 1A(x) = 1 if x∈ A,
otherwise 1A(x) = 0. We obtain:

{

un+1(x;A) = IAun(x;A), for n≥ 0,

u0(x;A) = 1A(x),

and, as discussed in [11],

u(x;A) = IAu(x;A). (4)

Let us further name the functionf ∈ B superharmonic if
f ≥P f , subharmonic iff ≤P f , and harmonic iff =P f .
Clearly, the functionu is subharmonic: ifx∈ A then

u(x;A) = IAu(x;A) = Pu(x;A),

whereas ifx ∈ Ac, then 0= u(x;A) ≤ Pu(x;A), since the
right-hand side is non-negative.

Theorem 1. For all x ∈ X and A∈ B it holds that

h(x;A) = lim
n

P
nu(x;A), (5)

so that h= Ph and c= Pc. Moreover, if f is a harmonic
function and f≥ u then f≥ h, i.e. h is the smallest harmonic
majorant of the function u. In particular,

inf
x∈X

|h(x;A)−u(x;A)|= 0. (6)

Let us raise some remarks. First, the convergencePnu→
h is monotonically non-decreasing:Pu ≥ u, becauseu is
subharmonic, furthermorePn+1u ≥ Pnu, becauseP is a
monotone operator. On the other hand, the convergence may
not be uniform, which makes it difficult to find the bounds
on the quantity‖Pnu− h‖. Second, the equationh = Ph
is called theLaplace equationand admits infinitely many
solutions, e.g. any constant function. Finally, althoughh is

the least harmonic majorant ofu and (6) holds, there are
cases whenh(x;A)> u(x;A) for all x∈ X .

These remarks emphasize possible difficulties related to
finding the functionh. Moreover, recall that the problem of
finding the invariance functionu (and thusPnu) is difficult
by itself [11]. On the other hand, although the functionh in
general cannot be computed with any accuracy, we show that
there are cases when this problem has a solution. Also, this
work provides techniques that allow one to find the value of
h directly, without calculatingu in advance.

With focus on the functionc, its evaluation is even more
difficult: from a computational perspective view we have that

c(x;A) = lim
i

lim
j

lim
k

(

P
j
I

k
Oi

)

1Oi (x), (7)

for all x∈ X ,A∈ B, and whereOi = O1/i(A). In order to
tackle this problem, we show how to eliminate the limit with
respect toi, which leads to the calculation of functionh.

B. Absorbing sets

Although it is in general hard to find an analytical expres-
sion for h(x;A), given anx ∈ X and anA ∈ B, in some
cases it is possible. We characterize such instances using the
notion of absorbing set.

Definition 3. The set A∈B is called absorbing ifT(A|x)=1
for all x ∈ A. For a given set B the set A⊆ B is called
its largest absorbing subset if A is absorbing and for any
absorbing set A′ ⊆ B it holds that A′ ⊆ A.

Absorbing sets of Markov processes are analogues of equi-
librium points, closed orbits and more generally, of invariant
manifolds for classical deterministic dynamical systems [7].
The next lemma further highlights this similarity.

Definition 4. The Markov process X is said to be weakly
continuous ifP f is continuous for any continuous f .

Lemma 1. If the process X is weakly continuous and A is
absorbing thenA is absorbing.

We denote with l.a.s.(A) the largest absorbing subset of a
given setA∈ B. It is well-defined: first let us denote

An = {x∈ A : un(x;A) = 1}. (8)

In [11] it was proved that the sequence(An)n∈N0 is non-
increasing:An+1 ⊆ An and the for limit set we have

A∞ =
∞
⋂

n=0

An = l.a.s.(A).

This set also admits the following characterization:

l.a.s.(A) = {x∈ X : u(x;A) = 1}. (9)

Moreover, the following more general statement holds.

Lemma 2. For a superharmonic f , the set mf is absorbing.

As a corollary, we have that for a subharmonic functionf
the setM f is absorbing, and furthermore that iff is harmonic
bothmf andM f are absorbing. Let us show how these results
are employed to find functionh.



Theorem 2. For any set A∈ B the function u(x;A) is
harmonic if and only if mu = {x ∈ X : u(x;A) = 0} is
absorbing. In that case h(x;A) = u(x;A).

Theorem 2 implies that if the setmu is absorbing then the
problem of findingh is reduced to that of findingu. Although
the analytical expression foru is in general hard to obtain
and thus the verification of absorbance ofmu is not a trivial
problem, there exist cases with an analytical solution.

C. Non-attractive sets

We show which measurable subsets ofX are essentially
not attractive. First, since equation (4) is linear, it always
admits a trivial zero solution, though this may happen when
u(x;A) is not a constant zero function – a simple example
being A = X . Due to this reason, ifu(x;A) ≡ 0 we say
that the setA is trivial . We say that the setA is simple if
l.a.s.(A) = /0.

Lemma 3. [11, Theorem 3] For a weakly continuous process
X, a compact set is trivial if and only if it is simple.

Lemma 4. For a weakly continuous process X and a
compact set A, the function u(x;A) is u.s.c. and the set
l.a.s.(A) is compact.

We raise criteria forh(x;A) andc(x;A) to be equal to zero
based on the simplicity of the setA.

Theorem 3. For a set A∈ B it holds that:

1) h(x;A)≡ 0 if and only if A is trivial;
2) in particular, if X is weakly continuous and A is

compact, then h(x;A)≡ 0 if and only if A is simple;
3) if X is weakly continuous,X is locally compact, and

A is compact, then c(x;A)≡ 0 if and only if A is simple.

Corollary 1. It follows that:

1) If A ∈ B and for someδ > 0 the setOδ (A) is trivial,
then A is not stochastically attractive.

2) If X is locally compact, X is weakly continuous, and
A is compact and simple, then A is not stochastically
attractive.

Corollary 1 provides conditions for sets not to be stochas-
tically contractive. Although the problem of verification of
simplicity or triviality of a given setA does not have
a general (respectively analytical or computational) solu-
tion, there exist sufficient conditions. The first (analytical)
conditions require super- or subharmonic functions to be
constants, implying thatu(x;A) = 0 for all A 6= X . The
second (computational) conditions require thatAn, as defined
in (8), is empty for somen∈ N [11, Theorem 2].

So far we have discussed sets that do not satisfy the
given definition of stochastic attractivity. Next, the attention
is shifted over a class of sets that satisfies it.

D. Stochastically attractive absorbing subsets

We start with the following useful result. Notice that
lim

n
u(Xn;A) existsPx-a.s. for allx∈X , sinceu is a bounded

subharmonic function, hence the existence of the limit is
insured by the martingale convergence theorem [3].

Lemma 5. For any x∈ X and A∈ B we have

Px

{

lim
n

u(Xn;A) = lim inf
n

1A(Xn)
}

= 1

and
Px

{

lim
n

h(Xn;A) = lim inf
n

1A(Xn)
}

= 1.

In particular,

h(x;A) = Px

{

lim
n

u(Xn;A) = 1
}

= Px

{

lim
n

h(Xn;A) = 1
}

.

Lemma 6. If X is weakly continuous and A is a compact set,
thenlim

n
u(xn;A)→ 1 implies xn → l.a.s.(A), for any sequence

(xn)n≥0 of elements ofX .

Lemmas 5 and 6 show that, provided weak continuity ofX
and compactness ofA, Xn→ l.a.s.(A) is a necessary condition
for Xn ∈→ A, Px-a.s. for allx∈X . On the other hand, this is
not a sufficient condition in general. Due to this reason we
introduce the concept ofstableabsorbing set.

Definition 5. An absorbing set A∈ B is called stable if
there exists a compact neighborhood UA of A such that A=
l.a.s.(UA) and

lim
x→A

u(x;UA) = 1. (10)

Remark 2. The stability property of absorbing sets can be
related to the Lyapunov stability for classical deterministic
dynamical systems [7]. Indeed,(10) means that if A is
a stable absorbing subset, then for anyε > 0 there is a
neighborhood of A starting from which the process never
leaves such neighborhood with a probability at least1− ε.

The compactness of set UA plays a role in the following
result.

Theorem 4. If X is weakly continuous and A is a stable
absorbing set, then A is stochastically attractive and there
exists a M∈ N such that for all x∈ X and m≥ M it holds
that

h
(

x;O1/m(A)
)

= h(x;UA) = c(x;A).

Let us discuss examples showing that some of the con-
ditions we have provided are sufficient but not necessary
in general. LetX =

{

± 1
n

}

n∈N ∪ {0} be endowed with
the Euclidean metric, which makes it a complete separable
compact (and locally compact) metric space. We first show
that the reverse statement of Theorem 4 does not hold.

Example 1 (A stochastically attractive absorbing set is
not necessary stable). Let T({0}|0) = 1, T({−1}|1) = 1,
T
({ 1

n−1

}

|1
n

)

=1 for all n∈N\{1} andT
({

− 1
n+1

}

|− 1
n

)

=
1 for all n ∈ N. The corresponding dynamics is clearly
deterministic, still it is a weakly continuous Markov process.
This process converges to an absorbing set A= {0} starting
from any initial condition, so c(x;A) ≡ 1 and hence A is
stochastically attractive. However, there is no such neigh-
borhood UA of A such that A= l.a.s.(UA).



The second example shows that there may exist a setA
such thatc(x;A) ≡ 1, which in particular means thatA is
stochastically attractive, but it is not absorbing. This fact
relates to the discussion given after Definition 2.

Example 2 (A stochastically attractive set is not neces-
sary absorbing). In the previous example we only change
T({1}|0)= 1. We still have A= {0} stochastically attractive
since c(x;A) ≡ 1 but now A is not absorbing. Note that the
update in the dynamics leads to the lack of weak continuity
of the process, thus this assumption cannot be relaxed in
Theorem 3, statement 3).

E. Domains of attraction of absorbing sets

Theorem 4 shows that the stability of an absorbing set
under mild conditions implies its stochastic attractivity.
Moreover, it helps eliminating the outermost limit in the
computation of the function functionc as in (7). A Lyapunov-
like function can be used to prove the stability of an
absorbing set.

Lemma 7. An absorbing set A is stable if and only if the
following stabilizing pair exists:

• compact neighborhood UA of A such that A= l.a.s.(UA);
• function f∈ B such that f∗ = 0, mf = A, lim

x→A
f (x) = 0

and there is a r> 0 such that f≤r ⊆ UA and f(x) ≥
P f (x) for all x ∈ f≤r .

If X is weakly continuous, A is stable if and only if there is
a stabilizing pair with an l.s.c. function f .

We have provided conditions for an absorbing setA to be
stable, and hence stochastically attractive, under the condi-
tions of Theorem 4. With regards to its domain of attraction,
the set of points for which it holds with probability 1 is
clearly given by{x∈X : c(x;A) = 1}. Sincec is a harmonic
function, such set is itself absorbing and hence may coincide
either with A or with X . So, the claim that convergence
must hold with probability 1 may be too conservative and
instead one may considerε-domains of attraction given by
{x∈ X : c(x;A)≥ 1− ε}. To characterize such domains the
procedure of computing the functionc with explicit bounds
on the error is needed.

We show that the knowledge of a Lyapunov-like function
as in Lemma 7 is not only useful to establish the stability of
A, but also for such a computational procedure.

Lemma 8. For any set A∈ B the following trichotomy
holds: either for all x∈ A h(x;A) ≡ 0 or h(x;A) ≡ 1, or
both conditions inf

x∈X
h(x;A) = 0 and sup

x∈X

h(x;A) = 1 hold.

Theorem 5. Assume that X is weakly continuous, A is a
stable absorbing set which admits a stabilizing pair(UA, f )
with an l.s.c. function f , and r> 0 is as in the statement
of Lemma 7. Assume also that there is an open set E such
that inf

E
c(x;A) = 0, UA∩E = /0, A= l.a.s.(Ec) and put Dr ′ =

( f≤r ′ ∪E)c for all r ′ ∈ R. Then

|c(x;A)−w(x;Dεr , f≤r)| ≤ max

(

ε,sup
y∈E

c(y;A)

)

, (11)

where w is the reach-avoid value function andε ∈ (0,1) is
arbitrary.

Let us raise some remarks on Theorem 5. First, the reach-
avoid value functionw in (11) can be computed with explicit
bounds on the error [11]. Combining such bounds with the
right-hand side in (11), we obtain an approximate value ofc
with a known precision. Second, weak continuity ofX and
stability of A ensure that a necessary stabilizing pair exists
by Lemma 7. Moreover, sincec(x;A) = h(x;UA), it is either
a constant function equal to 1, or the setE exists by Lemma
8.

IV. CASE STUDY

Let us consider the spaceX = K ∪ {∂}, where K =
[−2,2]2, and endowed with the Euclidian metric and such
thatρ(x,∂ ) = 1 for anyx∈ K, with ∂ /∈K being an auxiliary
“sink” state. The spaceX is Polish, compact and thus locally
compact. We define two functions


















f1(x1,x2,ξ ,η) = 0.5x2(3x2
1+2x2

2−0.5)

+ 0.6x1ξ +0.6x2η ,
f2(x1,x2,ξ ,η) = 0.9x1(2x2

1+4x1x2+3x2
2−0.5)

+ 0.6x1ξ +0.6x2η ,

(12)

and construct the Markov processX by the following re-
currence relations. First,∂ is an absorbing state; second, if
Xk 6= ∂ , thenXk = (X1

k ,X
2
k ) ∈ K and we set

{

X1
k+1 = f1(X1

k ,X
2
k ,ξk,ηk)

X2
k+1 = f2(X1

k ,X
2
k ,ξk,ηk)

(13)

if both right-hand sides are in[−2,2], whereasXk+1 = ∂
otherwise. Here(ηk)k≥0 and (ξk)k≥0 are sequences of iid
standard normal random variables. In practice, the process
X evolves according to the update law (13) within the setK,
unless it is reset in the sink state∂ whenever it leavesK.

The goal is to study the stochastic attractivity of the origin,
which is an absorbing set as per (12), and to find itsε-
domains of attraction. We exploit Theorem 5, where we set
E = ∂ and where clearlyc(∂ ;{0}) = 0. We are left with
the solution of the problem forx∈ K. Let us selectf (x) =
ρ2(x,0): the pair( f≤0.25, f ) is a stabilizing pair for the origin,
moreoverr = 0.25 as per Theorem 5. Sincec(∂ ;{0}) = 0,
we obtain|c(x;{0})−w(x;Dεr , f≤r)| ≤ ε as per (11).

Notice that f is not a superharmonic function: let us set
K = K′ ∪ (K′)c, whereK′ = {x ∈ K : P f (x) ≤ f (x)} is the
largest subset ofK where f has a superharmonic behavior.
Since f is a square of the distance to the origin, one can
imagine that the processX has convergent behavior ifx∈ K′

and a divergent one in the complement. The functionP f − f
measures how fast does the functionf decreases along the
dynamics of the processX.

The results on Figure 1 show the similarity of the level
sets for the functionsP f (x)− f (x) and c(x;{0}) on K.
Moreover, the outcome shows thatc(x;{0}) vanishes almost
immediately outside of the setK′, which justifies our intu-
ition about the divergent behavior of the processX on (K′)c.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Level sets of the functionP f − f , going from the value−1
until 1 (the furthest from the origin), with a step of 0.2.
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(b) Level sets of the functionc, going from the value 0.05 until 1
(the closest to the origin), with a step of 0.05.

Fig. 1. Level sets of functionP f − f and of functionc for the case study.
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V. A PPENDIX: PROOFS

Proof: [Proof of Theorem 1] First of all,{Xn ∈→ A}=
∞
⋃

n=0

{

∞
∏

k=n
1A(Xk) = 1

}

and {τAc = ∞} =

{

∞
∏

k=0
1A(Xk) = 1

}

.

Thus

h(x;A) = Px{Xn ∈→ A}= Px

(

∞
⋃

n=0

{

∞

∏
k=n

1A(Xk) = 1

})

= lim
n
Px

{

∞

∏
k=n

1A(Xk) = 1

}

= lim
n

P
n

(

Px

{

∞

∏
k=0

1A(Xk) = 1

})

= lim
n

P
nu(x;A)

sinceu(x;A) = Px{τAc = ∞}.
The first part of the statement is proved, so for the next

part we mention that for allx∈ X ,A∈ B

Ph(x;A) =
∫

X

lim
n

P
nu(y;A)T(dy|x)

= lim
n

∫

X

P
nu(y;A)T(dy|x)

= lim
n

P
n+1u(x;A) = h(x;A)

where we used dominated convergence theorem [3] to inter-
change the limit and the integral operators.

Let f be a harmonic function such thatf ≥ u. The operator
P is clearly monotone, i.e. ifg′ ≤ g′′ thenPg′ ≤ Pg′′, so
f = Pn f ≥ Pnu for all n ∈ N0. The limit n → ∞ yields:
f ≥ h, so h is the least harmonic majorant ofu. Suppose
that

ε = inf
x∈X

|h(x;A)−u(x;A)|> 0

thenh(x;A)≥ u(x;A)+ ε and hence

f (x) := h(x;A)− ε ≥ u(x;A)

being in addition a harmonic function. But it contradicts with
the fact thatf ≥ h, so (6) holds.

With regards to the functionc, we have

Pc(x;A) = P lim
m→∞

h
(

x;O1/m(A)
)

(14)

= lim
m→∞

Ph
(

x;O1/m(A)
)

= c(x;A) (15)

since functionsh are harmonic.
Proof: [Proof of Lemma 1] Note thatT(A|x) =

P1A(x) = 1 for all x ∈ A, so it is sufficient to prove that
T(A|x) is continuous onA. Define

g(x) = min
{

ρ
(

x,A
)

,1
}

so g∈ C . Put fn(x) = (1−g(x))n then fn(x) ∈ [0,1] for all
x∈X ,n≥ 0 and fn ∈ C . Moreover,fn(x) = 1 for x∈ A and
fn ↓ 1A pointwise.



Now, since fn(x) ≥ 1A(x) then P fn(x) ≥ P1A(x) = 1
for all x ∈ A. Since X is weakly continuous, a function
P fn ∈C and henceP fn(x)≥ 1 for all x∈A. By monotone
convergence theorem we obtainP fn(x) ↓P1A(x) = T(A|x),
so T(A|x) = 1 for all x ∈ A, which proves the statement of
the lemma.

Proof: [Proof of Lemma 2] If mf is empty, it is
absorbing by the definition. Hence, we assume that there
is at least onex∈ mf . We have

0≤ f (x)−P f (x) =
∫

X

( f∗− f (y))T(dy|x)≤ 0

where the left inequality holds sincef is superharmonic and
the right one holds becausef∗ ≤ f (y) for all y∈ X . As a
result,T({y∈X : f (y) = f∗}|x) = 1. Or in other words, for
any x∈ mf we haveT(mf |x) = 1.

Proof: [Proof of Theorem 2] Ifu is harmonic thenmu

is absorbing by Lemma 2. On the other hand, letmu be
absorbing. Forx ∈ A we haveu(x;A) = Pu(x;A). Now let
x∈ Ac, thenx∈ mu and so

Pu(x;A) =
∫

X

u(y;A)T(dy|x) =
∫

mu

u(y;A)T(dy|x) = 0

so 0= u(x;A) = Pu(x;A) and henceu is harmonic. Sou is
the least harmonic majorant of itself and henceh= u.

Proof: [Proof of Lemma 4] The functionu0(x;A) =
1A(x) is u.s.c. since it is an indicator function of a closed set.
For weakly continuousX it holds thatP f is u.s.c. whenever
f is u.s.c. [5]. As a resultun is u.s.c. for alln≥ 0.

Since the convergenceun → u is pointwise non-increasing,
u(x;A) = inf

n≥0
un(x;A) and sou is u.s.c. Finally, by (9) we

have that l.a.s.(A) is a closed set and since it is a subset of
a compactA, it is itself a compact.

Proof: [Proof of Theorem 3] 1)ifA is trivial then
u(x;A) ≡ 0 is harmonic and henceh= u= 0. On the other
hand, sinceh(x;A)≥ u(x;A)≥ 0 for all x∈X , the fact that
h= 0 impliesu= 0.

2) if X is weakly continuous andA is compact,A is trivial
if and only if it is simple, by Lemma 3. Hence in that case
2) easily follows from 1).

3) clearly,{Xn ∈→ A} ⊆ {Xn → A}, thush(x;A) ≤ c(x;A)
for all x∈ X . If c(x;A)≡ 0 thenh(x;A)≡ 0 and by 2) the
setA is simple.

In the other direction, let us assume thatA is a compact
and simple set. Denotehm(x) = h

(

x;O1/m(A)
)

so

c(x;A) = lim
m

hm(x)

for all x∈X , and the idea is to show thathm= 0 for m big
enough, providedA is simple.

First, we show that there isM > 0 such thatO1/M(A)
is a compact set. SinceX is locally compact, eachx ∈ A
has a compact neighborhood, so putε : A→R be such that
Oε(x)(x) is contained in some compact set. We have that
{

Oε(x)(x) : x∈ A
}

is an open cover ofA, thus there is an
open subcover{Oεk(xk)}k≤n with εk := ε(xk).

Now, Oεk(xk) is compact for eachk≤ n, as closed subsets
of compact sets. Hence the set

C=
⋃

k≤n

Oεk(xk)

is compact, andOε ′(A)⊆C whereε ′ =min
k≤n

εk. We only need

now to pick upM > 1
ε ′ , then O1/M(A) is a compact as a

closed subset of a compactC.
For m≥ M we denoteBm=O1/m(A) andB′

m= l.a.s.(Bm).
Then we haveO1/(m+1)(A) ⊆ Bm+1 ⊆ O1/m(A) and so
hm(x)≤ h(x;Bm) for all x∈ X .

Second, let us show that there isM′ ≥ M such thatBm is
simple for allm≥ M′. Suppose contrary: namely thatB′

m 6=
/0 for all m≥ M. By Lemma (4),B′

m are compact sets so

B′ :=
∞
⋂

m=M
B′

m ⊆ A is not empty. For anyx∈ B′ it holds that

x∈ B′
m for all m≥ M, thusT(B′

m|x) = 1. We have

T(B′|x) = T

(

∞
⋂

m=M

B′
m

∣

∣

∣

∣

∣

x

)

= lim
m

T(B′
m|x) = 1

which means that the setB′ is a non-empty absorbing subset
of A and contradicts with the simplicity ofA.

Finally, since for someM′ ≥ M sets Bm,m ≥ M′ are
compact and simple,h(x;Bm) = 0 by 2). On the other hand,
0= h(x;Bm)≥ hm(x) and soc(x;A) = lim

m
hm(x) = 0.

Proof: [Proof of Corollary 1] 1) For allm≥ 1/δ we
haveh(x;O1/m(A)) = 0 and hencec(x;A) = 0 for all x∈X .
As a result, (3) does not hold forA.

2) Follows directly from the statement 3), Theorem 3.
Proof: [Proof of Lemma 5] Let us introduce an exces-

sive operator onB as Q f (x) = max{ f (x),P f (x)}. From
[10, Lemma 6, Lemma 8, p. 43] it follows that iff ∈ B and
g(x) = lim

n→∞
Qng(x) then

Px

{

lim
n

g(Xn) = limsup
n

f (Xn)

}

= 1. (16)

We take f = 1Ac so by [11, Theorem 1] we obtain:

Px

{

lim
n

v(Xn;Ac) = limsup
n

1Ac(Xn)

}

= 1.

Now we useu(x;A) = 1−v(x;Ac) to obtain the first equality.
Furthermore,h(x;A) = lim

n
Pnu(x;A) = lim

n
Qnu(x;A) since

u is subharmonic,Pnu are subharmonic for alln≥ 0. Hence,
QPnu = Pn+1u for all n ≥ 0 and we obtain the second
equality from (16).

For any x, Px-a.s. we have that lim
n

u(Xn;A) = 1 and

lim
n

h(Xn;A) = 1 if and only if liminf
n

1A(Xn) = 1 and the latter

statement is{Xn ∈→ A}. Recall of the definition ofh finishes
the proof.

Proof: [Proof of Lemma 6] Suppose, that lim
n

u(xn;A) =

1 andxn 9A, i.e. limsup
n

ρ(xn, l.a.s.(A))> 0. Sinceu(x;A) =

0 for all x∈Ac, we havexn ∈→A. Exploiting the compactness
of A we obtain that there is a convergent subsequencex′n →
x′ ∈ A such that lim

n
ρ(x′n, l.a.s.(A))> 0 but lim

n
u(x′n;A) = 1.



In Lemma 4 we proved that the functionu(x;A) is u.s.c. so
u(x′;A) = 1 and hencex′ ∈ l.a.s.(A) but ρ(x′, l.a.s.(A)) > 0
which leads us to a contradiction.

Proof: [Proof of Theorem 4] LetA ∈ B be a stable
absorbing set andUA be as in Definition 5. SinceUA is
compact andA= l.a.s.(UA) by Lemma 4 we obtain thatA is
compact too. Moreover, sinceUA is a compact neighborhood
of A, eachx∈ A has a compact neighborhood and similarly
to the proof of Theorem 3 we pick upM such thatO1/M(A)
is a compact set. Thus for allm≥ M the setO1/m(A) is
compact.

Let us consider anym≥ M. By Lemma 6 we obtain that
u
(

xn;O1/m(A)
)

→ 1 implies xn → A. Let us show that the
reverse statement is also true. SinceX is a metric space, it
is equivalent to show that for anyε > 0 there isδ (ε) > 0
such thatρ(x,A)< δ (ε) implies

u
(

x;O1/m(A)
)

≥ 1− ε. (17)

We fix ε > 0 and denotef (x) := 1−u(x;UA). Since f is a
superharmonic function with a range in[0,1], we obtain that
the process( f (Xn))n≥0 is a non-negativePx-supermartingale
for all x∈ X [10]. Hence, the Doob’s inequality [3] holds:

Px

{

sup
n∈N0

f (Xn)> r

}

≤
1
r

f (x) (18)

for all x ∈ X and r > 0. In the level sets notation, the
inequality (18) takes the formu(x; f≤r)≥ 1− 1

r f (x).
Let us show that the stability ofA implies an existence of

r > 0 such thatf≤r ⊆ O1/m(A). Indeed, if it would not be
true, then we were able to pick up a sequencexk /∈ O1/m(A)
such thatf (xk)≤ 1/k. Clearly,

lim
k

u(xk;UA) = 1− lim
k

f (xk) = 1

but d(xk,A)≥
1
m which contradicts with Lemma 6.

It follows from the existence ofr that

u
(

x;O1/m(A)
)

≥ u(x; f≤r)≥ 1−
1
r

f (x).

Leveraging the stability ofA again, we obtain that there is
δ > 0 such thatf (x) ≤ rε for all x∈ Oδ (A) and hence for
all suchx the inequality (17) holds.

As a result, for any m ≥ M we obtain that
u
(

xn;O1/m(A)
)

→ 1 if and only if xn → A. Since

h
(

x;O1/m(A)
)

=Px

{

u
(

Xn;O1/m(A)
)

→ 1
}

=Px{Xn → A}

we obtain for allm′,m′′ ≥ M andx∈ X :

h
(

x;O1/m′(A)
)

= h
(

x;O1/m′′(A)
)

.

Furthermore, since

h
(

x;O1/m(A)
)

≥ h
(

x;O1/m(A)
)

≥ h
(

x;O1/(m+1)(A)
)

.

for all m≥ M andx∈ X , we obtain

c(x;A) = lim
m

h
(

x;O1/m(A)
)

= h
(

x;O1/m′(A)
)

for all m′ ≥ M and x∈ X . Moreover,u(xn;UA)→ 1 if and
only if xn → A, so c(x;A) = h(x;UA).

To finish the proof of the theorem we observe that
h
(

x;O1/m′(A)
)

≥ u
(

x;O1/m′(A)
)

and for the latter we
proved that it converges to 1 on any sequence which con-
verges toA. As a result,A is stochastically attractive.

Proof: [Proof of Lemma 7] Suppose that suchf and
UA exist. From the local version of Doob’s inequality [11,
Theorem 6] it follows:

u(x; f≤r)≥ 1−
1
r

f (x)

for all x∈ X . As a result, lim
x→A

u(x;UA) = 1 sinceu(x;UA)≥

u(x; f≤r).
Now, let A be a stable absorbing set. Then there is an

compact neighborhoodUA of A such thatA = l.a.s.(UA).
Clearly (UA,1−u(x;UA)) is a stabilizing pair.

Proof: [Proof of Lemma 8] Suppose that inf
x∈X

h(x;A)>

0. Clearly,Px

{

lim
n→∞

h(Xn;A) = 0
}

= 0 and hence by Lemma

5 we obtainh(x;A)≡ 1. Applying the same argument to the
case sup

x∈X

h(x;A)< 0 we obtainh(x;A)≡ 0.

Proof: [Proof of Theorem 5] From the proof of The-
orem 4 we obtain thatc(x;A) = h(x;UA). Moreover, since
lim
x→A

f (x) = 0 we obtain that there ism ∈ N such that

O1/m(A)⊆ f≤r and since

O1/(m+1)(A)⊆ f≤r ⊆UA

we obtain thatc(x;A) = h(x; f≤r).
Let us denoteτε = inf {n≥ 0 : Xn ∈ f≤εr ∪E}. Then:

h(x) = Px{Xn ∈→ f≤r ,τε = ∞}+Px{Xn ∈→ f≤r ,τε < ∞} .

For the first term we have:

Px{Xn ∈→ f≤r ,τε = ∞}=Px{Xn ∈→ f≤r \ f≤εr ,τε = ∞}= 0.

To prove it we show that f≤r \ f≤εr is trivial. Since
lim
x→A

f (x) = 0 there ism∈ N such thatO1/m(A) ⊆ f≤εr so

UA \O1/m(A) is compact and simple, hence trivial. Hence
f≤r \ f≤εr ⊆ UA \O1/m(A) is trivial as well. For the second
term:

Px{Xn ∈→ f≤r ,τε < ∞}=

∫

E

h(y)ν(x,dy)+
∫

f≤εr

h(y)ν(x,dy)

whereν(x,B) = Px{Xτε ∈ B,τε < ∞}. We obtain:

inf
y∈ f≤εr

h(y)w(x;Dεr , f≤εr)≤ h(x)≤ sup
y∈E

h(y)+w(x;Dεr , f≤εr)

since inf
y∈E

h(y) = 0. Now, h(x) ≥ u(x; f≤r) ≥ 1− 1
r f (x) and

hence for allx∈ f≤εr we haveh(x)≥ 1− ε, which finishes
the proof.


