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Abstract— This work is devoted to the solution of the
stochastic reach-avoid problem over controlled discrete-time
Markov processes (cdt-MP) with general state and action
spaces. Whereas the finite time horizon case allows for the
use of discretization techniques that compute the quantities of
interest with any given precision under mild conditions on the
model, the infinite-horizon counterpart demands a more elab-
orate analysis. This contribution introduces control Lyapunov
functions over cdt-MP and shows how these functions help
solving the reach-avoid problem over the infinite time horizon.
As an example, we show how to apply these technique to the
ruin problem arising in the risk theory of insurance companies.

I. INTRODUCTION

General-space controlled discrete-time Markov processes
(cdt-MP) provide a rich modeling framework in such
application areas as engineering, robotics, system biology,
and finance [12], [8], In particular, discrete-time Stochastic
Hybrid Systems [?] is a subclass of cdt-MP. Such models
embed both the probabilistic uncertainty in the system and
the presence of a control structure. Most of the classical
literature in the cdt-MP theory [6], [9] has been focused on
the case of the additive costs, i.e. when at each discrete time
step a there is added a cost/reward which depends on the
current state of the system and on the implemented control
action. Such optimal control problems have been solved
using dynamic programming (DP) principles [5]. However,
other kinds of performance criteria have not been studied as
much in depth.

From a different perspective, research in computer sci-
ence, and particularly in the field of formal verification,
has tackled optimization problems over finite cdt-MP, also
known as Markov Decision Processes (MDP). This research
has targeted the maximization or the minimization of the
likelihood of certain events within the space of trajectories
of the process [4, Section 10.6]. Although these optimization
objectives do not allow for a direct formulation via additive
costs, solution methods have been found for most of these
problems. Moreover, by exploiting the finite structure of
the model, dedicated software [10], [?] has been developed
for the numerical solution of optimization problems over
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MDPs. Unfortunately, such methods are crucially hinging
on the discrete structure of MDP, thus further development
is required for the case of general cdt-MP.

The stochastic reach-avoid problem targets the quantifica-
tion of the probability that trajectories of a system reach
some goal set G within the state space of the system,
while staying within a safe set S before reaching G [?].
It represents a generalization of the known probabilistic
reachability problem [?]: as an example, in the risk theory
of insurance companies, ruin probabilities and two-barrier
ruin probabilities can be cast as reach-avoid problems [2].
Research on this topic has merged control theory approaches
[6] with methods developed within the computer sciences
[4], where the reach-avoid problem is known as “constrained
reachability.” In particular, [?] has developed DP for the
reach-avoid problem over a finite time horizon and the case
of Markov policies. The contribution in [?] has in turn
considered the infinite-horizon case. The recent work in
[16] has further extended the mentioned results and studied
quantitative verification of more general properties, such
as those expressed via automata. In particular, this work
has developed computational methods for the finite time
horizon case over history-dependent policies. The infinite
time horizon case, however, has been left untouched in [16]:
the present work focuses on this framework. We leverage
methods developed for the infinite time horizon reach-avoid
problem over uncontrolled models [?]. In particular, we
resort to Lyapunov-like techniques, similar to those used
in stochastic stability [11], in order to compute related
probabilities.

The structure of the rest of the paper is as follows: Section
II introduces the model framework and the reach-avoid
problem. To elucidate these concepts, it presents an example
taken from risk theory. Section III recapitulates known results
on DP for the reach-avoid case, and develops new techniques
to tackle the infinite time horizon case. Further, it applies
obtained results to the risk theory example. Section IV
concludes the work and discusses possible extensions.

II. PRELIMINARIES

A. Notation

Our notation is mostly standard and is inspired by the
one in [6, Chapters 7-9]. The set of real numbers is denoted
by R, whereas that of natural numbers by N. Furthermore,
we denote N0 := N ∪ {0} and N̄0 := N0 ∪ {∞}. Let us
emphasize that bA ◦(X) is a collection of bounded lower
semi-analytic functions on X , whereas f ∈ bA ∗(X) means



−f ∈ bA ◦(X). We further denote

{f ≤ c} = {x ∈ X : f(x) ≤ c}

for any set X , map f : X → R and c ∈ R. A map f
between two metric spaces (X, ρX) and (Y, ρY ) is called a
contraction with a modulus β ∈ [0, 1) if for all x′, x′′ ∈ X

ρY (f(x′), f(x′′)) ≤ β · ρX(x′, x′′).

We follow the convention that ∞+ 1 =∞.

B. Models

In this paper we work with cdt-MP [16], alternatively
known as Markov Control Models [9] or general Markov
Decision Processes (MDP) [?]. Here we define cdt-MP
according to the general Borel model studied in [6, Chapters
8,9]. More precisely:

Definition 1. A cdt-MP is a tuple D = (X,U,K,T), where
X and U are non-empty Borel spaces, K is an analytic subset
of X × U , and T : X × U →P(X) is a Borel measurable
stochastic kernel on X given X × U .

Given a cdt-MP D = (X,U,K,T) we say that X is
its state space and that U is its action space. Furthermore,
Kx := {u ∈ U : (x, u) ∈ K} is the set of actions that are
feasible in state x ∈ X , and T is the transition kernel of D.
The behavior of the cdt-MP D is defined via the following
semantics. Consider a time step k ∈ N0, and suppose that
the current state of D is xk. Depending on the chosen action
uk, the distribution of the next state is given by

xk+1 ∼ T(xk, uk). (1)

For example, every stochastic difference equation of the form

xk+1 = F (xk, uk, ξk), (2)

can be represented via (1) whenever (ξk)k∈N0
is a sequence

of iid random variables and F is a Borel measurable map.
Moreover, T can be found from F explicitly by

T(B|x, a) = µ({ξ ∈ R : F (x, a, ξ) ∈ B}),

for any B ∈ B(X), where µ is the distribution of ξ0.
Although any cdt-MP allows for a representation as a
stochastic difference equation (2), the proof of this fact is
not constructive and does not allow for the expression of
F given T [9, Section 2.3]. Due to this reason, and for
further notational convenience, we choose to deal with the
more “general” representation in (1). In the special case of
autonomous models, the action space is a singleton U = {u}
and we call D a discrete-time Markov process (dt-MP).

To formalize the discussion on behavior of cdt-MP, let
us introduce the notion of finite and infinite paths:

Definition 2. Given a cdt-MP D, an infinite path is an
infinite sequence

h = (x0, u0, x1, u1, . . . ), (3)

where xk ∈ X are the state coordinates and uk ∈ U are the
action coordinates of the path, and k ∈ N0. The Borel space

of all infinite paths H = (X × U)N0 , is called a canonical
sample space for the cdt-MP D. For n ∈ N0, a finite n-path
hn is a finite prefix of an infinite path ending in a state:

hn = (x0, u0, . . . , xn−1, un−1, xn),

where xk ∈ X and uk ∈ U . The Borel space of all n-paths
is denoted by Hn = (X × U)n ×X .

We define the state, action and information processes on a
sample space H . They are denoted respectively by (xn)n∈N0

,
(un)n∈N0 and (hn)n∈N0 , and are defined by the following
projections on spaces X , U and Hn for all n ∈ N0:

xn(h) := xn, un(h) := un

hn(h) := (x0, u0, . . . , xn−1, un−1, xn).

Finite paths hn are also called histories [9], as they represent
the past information about the cdt-MP, which is further used
to synthesize a new action. The above definition of paths
allows introducing the notion of control policy.

Definition 3. Given a cdt-MP D, a policy is a sequence
π = (πn)n∈N0 , where πn : Hn → U is a universally
measurable stochastic kernel satisfying

πn(A(xn)|hn) = 1. (4)

The space of all policies is denoted by Π.

Notice that for some elements of H and Hn it may
happen that un /∈ U(xn), which reflects the fact that action
coordinates may not be feasible: this is allowed for technical
reasons and later shown that the corresponding paths are of
measure zero. On the other hand, it clearly follows from (4)
that any policy π ∈ Π can only choose those actions that
are are feasible in the current state of the cdt-MP. There
are several subsets of Π that correspond to the important
classes of policies. In case when for all n ∈ N0 it holds
that πn(hn) depends only on the current state of the system
xn, we say that π = (πn)n∈N0 belongs to the class of
Markov policies. The collection of all Markov policies is
further denoted by ΠM . Notice that Markov policies do not
depend on the whole history, but can be time-dependent. Any
Markov policy satisfying πn+1(x) = π0(x) for all n ∈ N0

and x ∈ X is called stationary. It shall be clear that stationary
policies are exactly Markov, time-independent policies. The
collection of all stationary policies is denoted by ΠS .

For any π ∈ Π and any initial distribution α ∈ P(X),
there exists a unique path distribution Pπα ∈P(H) such that

Pπα(x0 ∈ B) = α(B),

Pπα(un ∈ C|hn) = πn(C|hn),

Pπα(xn+1 ∈ B|hn,un) = T(B|xn,un)

for any n ∈ N0 and any sets B ∈ B(X) and C ∈ B(U) [6,
Chapter 9]. In the case when α = δx for some state x ∈ X ,
we simply write Pπx rather than Pπδx .



Finally, let us introduce the following operator that acts
on the class U (X): for any π ∈ ΠS we define

Tπf(x) :=

∫
Kx×X

f(y)T(dy|x, u)π0(du|x),

and for the special case π(x) = δ{u}(·) we write Tu.

C. Stochastic reach-avoid problem

A reach-avoid problem [?] combines two requirements
over a trajectory of a process:

i. the trajectory of the process has to reach some goal set
G in a finite time;

ii. the trajectory of the process has to stay within the safe
set S until the moment it reaches G.

In case the process is deterministic, the goal of the deter-
ministic reach-avoid problem is to find a control policy that
makes the trajectory satisfy i. and ii. However, in case the
dynamics of the process is stochastic (as in case of cdt-
MP), in general there is no control policy that assures the
satisfaction of these constraints for any possible realization
of the process. On the other hand, one can talk about the
probability that the trajectory of a stochastic process satisfies
the desired property. Due to this reason, the task of the
stochastic reach-avoid problem can be formulated as finding
a policy that maximizes (or, conversely, minimizes) such a
probability [?], [?]. The special case when S is the whole
state space, and thus only constraint i. has to be satisfied, is
known as reachability of the goal set G [3]: for example, the
stochastic reachability problem was addressed in [?]. Here
we treat reachability as a special case of reach-avoid.

Clearly, the stochastic reach-avoid problem is quantitative
in its nature in the sense that it is characterized by prob-
abilities lying in the interval [0, 1], rather than by binary
outcomes true or false. It is thus convenient to formally
introduce the stochastic reach-avoid problem by means of the
corresponding value function [13]. Such a function, given the
initial state of the process x, the safe and goal sets S and G,
and a time horizon n, gives a probability that the trajectory of
the process satisfies the reach-avoid property within n steps.

More precisely, let D = (X,U,K,T) be some arbitrary
cdt-MP. For any set A ⊆ X let the random variable

τA(h) := inf{k ≥ 0 : xk(h) ∈ A}

be the first hitting time of A. Clearly, τA : H → N̄0 is
a Borel-measurable map whenever A ∈ B(X). Hence, for
any two sets S,G ∈ B(X) it holds that

Wπ
n (x;S,G) := Pπx(τG ≤ τSc , τG ≤ n), n ∈ N0,

Wπ
∞(x;S,G) := Pπx(τG ≤ τSc , τG <∞),

are well-defined universally measurable functions for any
policy π ∈ Π. We call functions Wπ

(·) reach-avoid value
functions, and further say that Wπ

n is a finite-horizon value
function if n ∈ N0, whereas Wπ

∞ is the infinite-horizon one.
Notice that directly from the definition of functions Wπ

n

it follows that

Wπ
n (x;S,G) = Wπ

n (x;S \G,G)

for any sets S,G ∈ B(X), time horizon n ∈ N̄0, policy
π ∈ Π and initial state x ∈ X . Due to this reason, without
loss of generality we often assume that the safe set S and
the goal set G are disjoint.

Finally, we are able to introduce the optimization problems
that are the goal of this paper. For any S,G ∈ B(X), n ∈ N̄0

and x ∈ X we define the following quantities:

W ∗n(x;S,G) := sup
π∈Π

Wπ
n (x;S,G), (5)

W ◦n(x;S,G) := inf
π∈Π

Wπ
n (x;S,G). (6)

We further say that the policy π∗ ∈ Π is optimal for (5)
if it holds that W ∗n(·;S,G) = Wπ∗

n (·;S,G). An optimal
policy π◦ for Problem (6) is defined similarly. Note that
optimal policies do not have to be unique, which is in
particular easy to show for the reach-avoid problem. Clearly,
whenever the trajectory of the process reaches G ∪ Sc, it
does not have further affect on the satisfaction of the reach-
avoid property. Thus, Wπ′

n (·;S,G) = Wπ′′

n (·;S,G) for any
n ∈ N̄0 whenever policies π′, π′′ ∈ Π agree on S \G.1

We are interested in solving problems (5), (6), namely
in finding the optimal value functions and possibly also
constructing optimal policies that realize such functions.
However, the explicit solution is not possible to find in the
general case [?], [?]. Due to this reason, our goal is to provide
methods to compute quantities of interest with any given
precision.

D. Example: the ruin of an insurance company

To elucidate concepts defined above, let us consider the
following example of a stochastic reach-avoid problem im-
portant in risk theory – the ruin problem [2]. We introduce
it over a particular model of a controlled risk process that
was studied in [7].

The ruin problem is focused on the probability that the
capital of the insurance company becomes negative at some
moment in time. Consider X := R×I to be the state space of
the model, where I is a countable set. Here the R-coordinate
represents the capital, and the I-coordinate represents the
short-term interest rate. Furthermore, let umin ∈ (0, 1] be
the minimal retention level, and define U := [umin, 1] to
be the space of actions. We also assume that all actions are
feasible regardless of the current state, that is Kx = U for
all x ∈ X . We are only left to describe the transition kernel.

Instead of writing the kernel T explicitly, let us charac-
terize the dynamics of the system by a stochastic difference
equation as in (2). Let rk be the capital of the company
at time k ∈ N0, and let ik be the short-term interest rate
at that time, then xk = (rk, ik) ∈ R × I. Let ik evolve
independently of rk as a Markov chain with a stochastic
matrix P = (pij)i,j∈I, and let rk be updated as

rk+1 = rk(1 + ik) + c− (1 + θ)(1− uk)ξ̄ − ukξk,

where (ξk)k∈N0
is a sequence of non-negative iid random

variables with a distribution µ, which represent the total

1A related discussion is also given in [?].



insurance claims during each time period k ∈ N0, and
ξ̄ = Eξ0 it their expected value. The parameters are: c, the
constant premium, and θ, the added safety loading satisfying

c− (1 + θ)(1− umin)ξ̄ ≥ 0. (7)

The model can be explained as follows: at each time step
an insurance company receives a premium c from the clients
and has to pay claims ξk back to the clients in insurance
cases. The claims are further reinsured, thus the company
can decide to pay only a fraction uk ∈ [umin, 1] of the total
claim, whereas the remaining part is paid to the client by the
reinsurer. Due to this reason, the insurance company further
pays a premium (1 + θ)(1 − uk)ξ̄ to the reinsurer. As a
result, condition (7) means that the premiums received by the
insurance company from its clients are greater than premiums
paid by the insurance company to the reinsurer. The detailed
discussion on the model can be found in [7] and references
therein. Finally, the ruin probability can be defined as a
reach-avoid problem over sets S = X , and G = (−∞, 0)×I,
which is equivalent to the classical definition given in [2],
[7]. Clearly, the main focus in the risk theory in case the
control structure is presented is in minimizing (rather than
maximizing) the ruin probability. We address this task in
Section III-C below.

III. SOLUTION OF THE STOCHASTIC REACH-AVOID
PROBLEM

A. Dynamic programming characterization

As we have mentioned above, the stochastic reachability
problem over a cdt-MP D = (X,U,K,T) can be consid-
ered as a special case of the reach-avoid one, where the
safe set is S = Gc. Interestingly, it appears that the reach-
avoid problem can be considered as a reachability one over
a modified cdt-MP, where the avoid set Sc is forced to be
invariant under the dynamics of the cdt-MP – see e.g. [16,
Section 3.1]. This fact is very important here as it allows for
the characterization of the reach-avoid value functions W by
means of DP.

A known issue of stochastic reachability and of the reach-
avoid problem is that their value functions do not allow in
general for the additive cost formulation [6], [9], where the
theory is quite rich. Due to this reason, different cost formu-
lation have been proposed in the literature: a multiplicative
one [?], a sum-multiplicative one [?], and an additive up
to the hitting time [?]. Such formulations allow to obtain a
part of the results for the additive cost formulation, but in
some cases the required conditions are quite conservative.2

To cope with these issues, the work in [16] has proposed
an equivalent additive cost formulation for the reachability
over an augmented cdt-MP, derived DP recursions for the
finite time horizon, and DP fixpoint equations for the infinite
time horizon. Since the reach-avoid problem was proved to

2 As an example, for the DP fixpoint equation [?] required that the first
hitting time of Sc ∪G is finite Pπ-a.s. under any Markov policy π, which
in the case of reachability corresponds to the constant solution W ∗∞ ≡ 1
[16]. Thus, such result is not relevant for the reachability problem being a
special case of the reach-avoid one.

have an equivalent reachability formulation, these results can
apply to the present case. Below we shortly summarize them.

From now on we assume sets S,G ∈ B(X) to be fixed
and disjoint. We introduce the following operators:

T∗f(x) := sup
u∈Kx

∫
X

f(y)T(dy|x, u), f ∈ bA ∗

T◦f(x) := inf
u∈Kx

∫
X

f(y)T(dy|x, u), f ∈ bA ◦

Given two disjoint sets S,G ∈ B(X) we further denote

R∗f(x) := 1G(x) + 1S(x)T∗f(x), f ∈ bA ∗

R◦f(x) := 1G(x) + 1S(x)T◦f(x), f ∈ bA ◦.

It follows from the discussion in [6, Section 8.2] that all four
operators map their domains into themselves. The following
result characterizes the reach-avoid value functions via DP
recursions.

Proposition 1. It holds that functions W ∗n and W ◦n belong
to classes bA ∗(X) and bA ◦(X) respectively, and that

W ∗n+1 = R∗ [W ∗n ] , W ◦n+1 = R◦ [W ◦n ] . (8)

for any n ∈ N̄0, where W ∗0 = W ◦0 = 1.

It is now possible to provide methods for the solution
of the stochastic reach-avoid problems. There is a strong
distinction between the finite-horizon case, which allows for
the solution under mild assumptions, and the infinite-horizon
one, where more elaborate analysis is required.

B. Infinite time horizon reach-avoid

In the theory of optimal control, and in particular in
the area of DP, the class of discounted problems refers to
the case when the Bellman DP operator [5] is contractive.
Such a property has some nice consequences: the infinite-
horizon cost is the unique fixpoint of this operator, and
also can be efficiently approximated by means of the finite-
horizon costs, as it follows from the contraction mapping
theorem [14]. This approach is interesting, since the finite-
horizon reach-avoid problem can be precisely computed
under certain assumptions on the dynamics of the model.
The computational details can be found in [16, Section 4].

In the present context, the reach-avoid problem [16] is
never discounted, so that the analysis becomes more subtle.
In particular, (8) for n = ∞ are fixpoint equations for
operators R∗ and R◦, whose solutions are not unique in
general. Indeed, for the case of reachability S = Gc it holds
that f ≡ 1 always solves both equations, although clearly
the solution of the reachability problem in general may be
different from the constant one. Moreover, it follows that the
uniqueness of fixpoints of r∗ or R◦ in the case of reachability
implies a trivial constant optimal reachability. As a result,
any non-trivial case of the reachability is characterized
by the non-unique solutions of the corresponding fixpoint
equations.3

3 The autonomous case even allows for the sharper statements that relate
uniqueness, triviality and contractivity – see e.g. [?].



Although the corresponding additive cost problem is not
discounted, still the operators R∗ or R◦, related to the reach-
avoid problem, can be contractive depending on the set S.
However, the discussion above motivates looking into the
non-contractive case as well. Due to this reason, we first
focus on the former (simpler) case and further show when
the latter case can be reduced to the former one.

Theorem 1. If for some sets S,G ∈ B(X) and some integer
m ∈ N0 it holds that (R∗)m (or (R◦)m) are contractions
on bA ∗(X) (or bA ◦(X)) with a modulus β ∈ [0, 1), then
R∗ (or R◦) has a unique fixpoint and

|W ∗∞(x;S,G)−W ∗mn(x;S,G)| ≤ βn

(or |W ◦∞(x;S,G)−W ◦mn(x;S,G)| ≤ βn),

for any n ∈ N0 and any x ∈ X .

Remark 1. Contractivity of the operators (R∗)m and (R◦)m

is hard to verify since they are non-linear. It is thus of
interest to look for general sufficient conditions assuring
contractivity, else it may be possible to verify contractivity
over a particular given problem where the shape of the kernel
T and of the sets S,G are known.

The lack of contractivity, on the other hand, may be
possibly related to the concepts of weakly and strongly
absorbing sets [16], as much as it is the case for autonomous
models [?].

The result of Theorem 1 shows that in case some power of
the DP operator for the reach-avoid problem is contractive,
it is possible to reduce the infinite-horizon problem to the
finite-horizon one. Our next step is to provide a method
to reduce the general, non-contractive case to a related
contractive one, with guarantees on the error introduced by
such a reduction. However, for it we need to assume that
stationary policies are sufficient for the optimization of the
reach-avoid problem on the infinite time horizon.

Assumption 1. The following identities hold true:

W ∗(x;S,G) = sup
π∈ΠS

Wπ(x;S,G),

W ◦(x;S,G) = inf
π∈ΠS

Wπ(x;S,G).

Some sufficient conditions for Assumption 1 to hold can
be found in [6, Chapter 9].4

Theorem 2. Let S,G ∈ B(X) be any two disjoint sets.
Further, let C ∈ B(X) be any subset of S such that for
some m ∈ N0, (R∗S′,G)m and (R◦S′,G)m are contractions on
bA ◦(X) with a modulus β, where S′ := S\C. If Assumption
1 holds true then

|W ∗∞(·;S′, G)−W ∗∞(·;S,G)| ≤ χ∗C , ∀x ∈ X (9)
|W ◦∞(·;S′, G)−W ∗∞(·;S,G)| ≤ χ◦C , ∀x ∈ X (10)

4 Although such conditions are formulated over additive cost functions,
they clearly can be used in the present framework thanks to the equivalence
between reach-avoid and additive cost as in [16].

where constants χ∗C and χ◦C are given by

χ∗C := sup
π∈ΠS

(
sup
y∈C

Wπ
∞(y;S,G)

)
,

χ◦C := inf
π∈ΠS

(
sup
y∈C

Wπ
∞(y;S,G)

)
.

Notice that under the assumptions of Theorem 2, the
reach-avoid problem for sets S′ and G falls into the class of
contractive problems and thus can further be solved by means
of Theorem 1. This motivates looking into the error bounds
given by (9) and (10), and in particular providing non-trivial
estimations of χ∗C and χ◦C . Recall that the latter quantities,
ought to be used in computations of value functions W ∗∞
and W ◦∞, are defined using these value functions. We obtain
such estimations using appropriate Lyapunov-like functions.

Definition 4. Given a policy π ∈ ΠS , a Borel-measurable
function g : X → [0,∞) is called π-locally excessive on the
set S if {g ≤ 1} ⊆ S, and g(x) ≤ 1 implies Tπg(x) ≤ g(x).

A Borel-measurable function g : X → [0,∞) is called
uniformly locally excessive on the set S if {g ≤ 1} ⊆ S,
and g(x) ≤ 1 implies Tug(x) ≤ g(x) for all u ∈ Kx.

Remark 2. In definition above, one can replace the threshold
1 with the existence of a positive constant δ. Note however,
that in such a case the defined objects are invariant under
the scaling on the positive constant, so that δ can be initially
chosen to be 1, as it is in our case.

Note that π-locally excessive functions are generalization
of excessive functions [15] and locally excessive functions
[11], [?]. They can be thought of as controlled Lyapunov
functions for cdt-MP: there exists a policy π, which leads
the value of such a function to decrease along the dynamics
of the process. Uniformly locally excessive functions, in turn,
can be considered as the analogue of Lyapunov functions
used in the stability analysis of non-stochastic differential
inclusions [1]: their behavior is decreasing along the trajec-
tory of the system regardless of the chosen policy, as the
following lemma shows.

Lemma 1. If g is a uniformly excessive function for S, then
Tπg(x) ≤ g(x) for any x ∈ {g ≤ 1} and any π ∈ ΠS .

We are now ready to relate χ∗C and χ◦C to the correspond-
ing locally excessive functions.

Theorem 3. Let g∗ be a uniformly locally excessive function
for the set S, and let g◦ be a π̂-locally excessive function
for set S, and for some policy π̂ ∈ ΠS . Further, define sets
C∗(ε) := {g∗ ≤ ε} and C◦(ε) := {g◦ ≤ ε}. Then for any
ε ≤ 1 it holds that χ∗C∗(ε) ≤ ε and χ◦C◦(ε) ≤ ε.

Combining the results of theorems 1, 2 and 3, we obtain
that the knowledge of the appropriate locally excessive func-
tions allows reducing the general non-contractive problem
to a new contractive one, with an explicit bound on the
error. The presented results extend those for the autonomous
models summarized in [?]. Unfortunately, even if locally ex-
cessive functions are known, in general case one additionally



has to asses the contractivity of DP operators R∗S\C∗(ε),G
and R◦S\C◦(ε),G. Let us further mention that in the case
of autonomous models with certain continuity properties of
the kernels [?], one can assure the contractivity of these
operators due to their linearity. In the general case of cdt-
MP, however, each case needs to be studied separately.

C. Application to the ruin problem

To enlighten our approach, let us briefly summarize how
does it apply to the case or ruin problem over the model
introduced in Section II-D. First of all, notice that recursions
and fixpoint equations derived in [7, Lemma 2] are given
for a fixed stationary policy, and hence are covered in
the literature on autonomous models [13]. Here, instead,
Proposition 1 provides recursions and fixpoint equations
for the optimal solution of the controlled ruin problem, in
particular for finding the minimal ruin probability.

Let us denote C(ε) := [ε−1,∞) for any ε ≥ 1, then since
umin > 0 and if µ has an unbounded support, one can show

that the operator
(
R◦S\C(ε),G

)2

is a contraction. Hence, it is
possible to compute the value function W ◦∞(·;S \ C(ε), G)
with any given precision using Theorem 1.

Let us further assume that there exists û ∈ U such that

ûξ̄ < c− (1 + θ)(1− û)ξ̄, (11)

so the expected amount of claims the company has to pay is
lower than its revenue. The case û = 1 in (11) corresponds
to the Net Profit Condition (NPC) [2], which means that the
capital of the company grows on average.

Under condition (7) define π̂ ≡ û to be a constant
stationary policy. It follows from [7, Section 2] that

sup
y∈C(ε)

W π̂
∞(y;S,G) ≤ exp(−R0ε

−1),

where the constant R0 is given in [7, Equation (10)]. As
a result, χ◦C(ε) ≤ exp(−R0ε

−1) and thus it can be made
arbitrary small for sufficiently small ε. Hence, using Theorem
2 we can reduce the evaluation of the original minimal ruin
probability W ◦∞(·;S,G) to that of the W ◦∞(·;S \ C(ε), G),
the computability of which has been already discussed above,
with an error that is as small as needed. The actual compu-
tations, however, go beyond the scope of this contribution.

IV. CONCLUSIONS

This contribution has focused on the optimization problem
of reach-avoid probabilities over a general state-space, con-
trolled discrete-time Markov process (cdt-MP). A special
attention has been paid to the infinite-horizon case, as the
finite-horizon one is known to allow for computational
techniques [16]. We have shown that in case of contractive
operators the reach-avoid problem can be solved with any
precision, and further provided a method to reduce the gen-
eral case to the contractive one under the assumed knowledge
of Lyapunov-like locally excessive functions. Finally, we
have elaborated on the developed technique over the example
of a ruin problem taken from the risk theory.

Note that there are some questions that are still left open.
In particular, for the computational direction it is important
to work out sufficient conditions of the contractivity for Bell-
man operators for the reach-avoid problem. As an example, it
is interesting to study the connection between contractivity
and level sets of locally excessive functions, as done over
autonomous models.
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