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ABSTRACT
This paper proposes criteria for metrics between stochastic sys-
tems with a focus on the task of linear temporal model-checking.
It explicitly puts forward two metrics which partially satisfy those
criteria, and discusses their connection with other metrics stud-
ied in the literature. In particular, the notion of coupling be-
tween stochastic processes is shown to be crucial: omitting the
explicit choice of coupling may lead to conservative results. The
theoretical claims in the paper are supported by numerical ex-
amples.

1. INTRODUCTION
Stochastic systems have found broad applications in diverse

areas where uncertainty can be quantified (cf. references in
[31]). One particularly interesting class of problems concerns
linear temporal (LT) model-checking of stochastic systems [8],
which seeks to find the expectation of a path-dependent reward
(or cost) functional, e.g. the probability that a realization of
a system satisfies a given specification. Among the specifica-
tions of interest are reachability, safety, reach-avoid, and richer
properties over a trajectory. If the system allows for a control
input, one may further be interested in optimizing such an ex-
pectation or probability over all the admissible control policies
[32]. Clearly, the simpler the system the easier the resulting
model-checking procedure. In particular, if the state space of
the process is finite, then model-checking can be performed al-
gorithmically, by means of a specialized software [18, 21]. It is
thus of interest to develop metrics1 between stochastic systems
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that allow quantifying an error over LT properties when substi-
tuting a complex, concrete system with a simpler, abstract one.

A recent survey on stochastic metrics can be found in [3].
Here we briefly recapitulate two main approaches to defining
and using such metrics. The first one has been taken in the
Computer Science community, whereas the second has been pro-
posed in the Systems & Control area.

The work in [11] has been the first to emphasize the necessity
for metrics between stochastic systems, justifying their relevance
by the conservative nature and lack of robustness of the notion
of exact probabilistic bisimulation relation [22]. According to
the notion in [22], an infinite system is bisimilar to a finite one
only if the former has a certain “lumpable” structure relating
the two models, and any small perturbation of the models can
violate such a structure, thus resulting in systems that originally
were precisely related and that become now completely unre-
lated. In contrast, the metric introduced in [11] both admits the
bisimulation as its zero level set, and varies continuously with
respect to perturbations of the system dynamics. A few other
metrics have been developed along the same lines (see e.g. [35]
and references therein), however in all these cases the applica-
bility to LT model-checking has not been discussed.

Similar ideas have been later applied to non-stochastic sys-
tems [16]. The approach there is different from the one in [11,
35], as it starts from trace-like metrics over the global dynam-
ics (paths), and then relates the former metrics on path spaces
to a bisimulation-like metric over the local dynamics (transi-
tions), the latter being more conservative but easier to compute.
The developed metrics were designed to quantify errors over LT
properties. The extension of this technique to stochastic systems
has been proposed in [19], however the obtained results appear
to be rather conservative, possibly due to the fact that the work
with stochastic systems has been done at the level of random
elements (rather than distributions), and as their coupling pro-
cedure is not addressed explicitly (cfr. Sections 2.1 and 3.2).

In summary, there are two main approaches to metrics be-
tween stochastic systems that are currently available. The first,
taken in the Computer Science community [35, 11], does not
provide an explicit way of using metrics for LT model-checking.
The second, originated in the area of Systems & Control [19],
although applicable to the aforementioned task, leads to con-
servative results. These reasons suggest to look into alternative
approaches to define metrics between stochastic systems. We
propose the following criteria for such metrics:

i. a metric between two systems quantifies the difference be-
tween LT specifications computed over such systems;

ii. given any two systems the metric between them is com-



putable, either analytically or at least by means of Monte
Carlo simulations;

iii. there is a class of “nice” infinite systems that allow for
finite abstractions that are arbitrarily close in a given met-
ric.

With focus on the criteria above, in this work we provide two
new metrics. Unlike [19], we do not assume any form of stabil-
ity over the systems under study, hence most of the results in this
work hold true over a finite time horizon n, the dependence on
which we then explicitly mention in the notation for the metrics.
The first metric dTVn is based on the total variation distance be-
tween measures, whereas the second metric dWn is inspired by
the Wasserstein distance.2 Similar to [16, 19], we start with
trace-like metrics to assure that the first criterion is satisfied. We
also provide Monte Carlo methods to quantify both metrics in or-
der to meet the requirements of the second criterion. Finally, we
provide precise (rather than simulation-based) bounds on dTVn

in terms of a bisimulation-like analogue, here called dB: this
allows us to characterize a class of systems that satisfy the last
criterion with respect to dTVn , which in turn aligns with results
on formula-free abstractions proposed in [31]. Unfortunately,
such analytic results are much harder to obtain for the metric
dWn .

The rest of the work is structured as follows. The majority of
our ideas and methods rely upon the notion of random elements,
their distributions, and their couplings. We briefly go over this
theory in Section 2, which also introduces labelled discrete-time
Markov processes (ldt-MP), the class of systems we focus on in
this paper. The metrics dTVn and dWn , and relations between
them, are discussed in Section 3. Theoretical and computational
examples are further provided in Section 4, and the paper is
concluded in Section 5. The notation can be found in Section 7.

2. PRELIMINARIES

2.1 Coupling
The notion of coupling [23] is crucial when considering an

interplay between two stochastic processes, particularly in case
one wants to quantify the difference between them. To intro-
duce this notion, we need to elaborate on the definition of stochas-
tic processes and on their representations. Recall that a stochas-
tic process is a special case of a random element – this concept
is often used to model probabilistic phenomena.

DEFINITION 1. A random element on a measurable space (E,E )
is a tuple (Ω,F ,P, f ), where (Ω,F ,P) is a probability space and
f : Ω→ E is a measurable map. We say that (Ω,F ,P) is the sam-
ple space of the random element, and that (E,E ) is its range. The
distribution of the random element (Ω,F ,P, f ) is the probability
measure f∗P ∈ P (E,E ) on its range.

We will shortly discuss that distributions can be induced by
different random elements, thus one can think of the latter as
particular representations of distributions. More precisely, we
say that a random element (Ω,F ,P, f ) is the representation of
a probability measure Q whenever it holds that f∗P = Q. Note
that, for any distribution Q ∈ P (E,E ), there always exists at
least one representation over its range, given by (E,E ,Q, idE)

2 The Wasserstein metric is also known as Kantorovich or Hutchinson
metric [35],[14, footnote in Section 2.2].

since (idE)∗Q=Q. This is also known as the canonical represen-
tation of the distribution Q3. Let us provide some examples to
further clarify the concept of representation. The first example
shows that for any distribution a representation is never unique.

EXAMPLE 1. Consider a distribution Q and let (Ω,F ,P, f ) be
its arbitrary representation. For any probability space (Ω′,F ′,P′)
it holds that (Ω×Ω′,F⊗F ′,P⊗P′, f ◦π) is another representation
of Q, where π : Ω×Ω′→ Ω denotes the projection map.

In the previous example it is crucial that the sample space is
modified. The next example emphasizes this fact by showing
that if the sample space is fixed, then there may exist distribu-
tions that admit a unique representation over this sample space.

EXAMPLE 2. Let E := {−1,1}, E := 2E , and let Q({1}) = 1
3
.

Note that there exist four distinct maps f : E → E, that is idE ,
−idE , and the constant maps −1 and 1. Clearly, Q = (idE)∗Q
but Q 6= f∗Q if f 6= idE , so that Q can be represented in the
unique (canonical) way if the sample space is (E,E ). On the other
hand, a symmetrical distribution Q′ given by Q′({1}) = 1

2
can be

represented in two ways since Q′ = (−idE)∗Q′. More generally, if
a distribution admits distinct representations over its range, they
can be considered as symmetries of this distribution.

According to [24, Section 2.1], a stochastic process on a mea-
surable space (X ,X ) is a parameterized collection of X -valued
random elements (xt)t∈T , all defined over the same probabil-
ity space (Ω,F ,P). Clearly, one can equivalently consider a
stochastic process as a single random element (Ω,F ,P, f )where
the map f : Ω→ X T is uniquely determined by f ◦πt = xt for
any t, πt : X T → X being obvious projection maps. Recall that
here X T is the product measurable space consisting of all maps
from T to X . As a consequence, all the results on random ele-
ments above now apply to stochastic processes. In particular, it
is important for us that any stochastic process can be understood
also in a “weak” form – as a distribution over X T , rather than
only in a perhaps more intuitive “strong” form – as a random el-
ement inducing such a distribution. This approach is important
in the context of this work, since only distributions matter for
LT model checking, rather than particular representations of a
stochastic process. A representation, especially if it is not canon-
ical, is sometimes provided to show a constructive definition of
a distribution, as in the following example.

EXAMPLE 3. A one-dimensional Itô diffusion [24, Chapter 7]

dxt = a(xt)dt + b(xt)dBt , x0 = x ∈ R, (1)

is a stochastic process with trajectories in E = C ([0,∞)). Since
the diffusion (1) is Markovian, it can be considered from two per-
spectives: either as a solution of the stochastic differential equation
(SDE) (1), or as a Markov process on X = R.

In order to treat a diffusion as a solution of an SDE, we consider
a probability space (Ω,B(Ω),P), where Ω =C0([0,∞)) is a set of
all ω ∈ E satisfying ω(0) = 0 and where P is the Wiener measure
(the distribution of the Brownian motion (Bt)t∈[0,∞)). In this set-
ting a diffusion is constructed as a random element (Ω,F ,P, f ),
where f is the strong solution of an SDE [24, Section 5.3] with
the initial condition x. Let us denote the induced distribution by
Q := f∗P.

3 The existence of a canonical representation in particular means that
in order to represent any given distribution its range suffices and there
is no necessity in coming up with a “bigger” sample space (Ω,F ).



Alternatively, one can treat the diffusion in (1) as a Markov
process, and construct a distribution Q directly on E using the
transition function associated with the diffusion [13, Section 4.1].
The stochastic process for the diffusion (in a strong sense) would be
a canonical representation of Q. In this Markovian setting there
is no need to define an auxiliary probability space (Ω,F ,P) for
the Brownian motion, so the current Markovian approach is more
direct. On the other hand, such a construction is perhaps less intu-
itive as it does not emphasize the connection between the diffusion
and the Brownian motion it is driven by.

Note that both methods lead to the same stochastic process in a
weak sense (at the level of distributions), but to different stochas-
tic processes in a strong sense (at the level of random elements).
At the same time, if one needs to compute the probability that a
trajectory of (1) reaches a target set, it does not matter which
representation of a diffusion is used, since such a probability is
uniquely determined by the distribution of the diffusion.

The motivation behind approximate abstractions of stochastic
systems is to use the information obtained over a simpler ab-
stract system to deduce properties of a more complicated con-
crete system. Assume that the range (E,E ) is endowed with a
metric dE . Given a concrete random element (Ω,F ,P, f ) and its
approximation (Ω̃, F̃ , P̃, f̃ ) one wants to obtain an inequality

P
�

dE( f , f̃ )> δ
�

≤ ε (2)

to be able to interpret over f the results obtained for f̃ . As an
example [6], if we know the probability p = P̃( f̃ ∈ A) for some
set A ∈ F̃ , we can use (2) to provide bounds on P( f ∈ Aδ),
where Aδ = {x ∈ E : dE(x , A)≤ δ} is the δ-inflation of the set A:

P( f ∈ Aδ) = P( f ∈ Aδ)≥ P
�

{ f̃ ∈ A} ∩ {dE( f , f̃ )≤ δ}
�

≥ P( f̃ ∈ A)− P(dE( f , f̃ )> δ)≥ p− ε.

Whenever f and f̃ are stochastic processes and A is a reachabil-
ity specification, the result allows using the probabilistic reach-
ability analysis over f̃ to study that over f . Recall that the ab-
straction is a random element on its own, and that the analysis
over the abstraction can be carried out regardless of its rela-
tion to the concrete system: such a relation only matters when
extrapolating results of this analysis from the abstraction back
to the concrete system. For this purpose one has to define a
common sample space for both systems in order to specify the
probability measure in (2). The procedure of building a com-
mon sample space for a priori unrelated distributions or random
elements is called coupling.

DEFINITION 2. A coupling of Q, Q̃ ∈ P (E,E ) is a probability
measure Q ∈ P (E2,E 2) satisfying the following equalities:

π∗Q=Q, π̃∗Q= Q̃, (3)

where π(x , x̃) = x and π̃(x , x̃) = x̃ for all (x , x̃) ∈ E2 are obvious
projection maps. A coupling of two random elements (Ω,F ,P, f )
and (Ω̃, F̃ , P̃, f̃ ) is any random element (Ξ,G ,P, (g, g̃)) such that
(g, g̃)∗P is a coupling of f∗P and f̃∗P̃, and (Ξ,G ) is an arbitrary
measurable space.

Whenever (3) holds true, we say that Q and Q̃ are marginals
of Q. It shall be clear that given any two marginal distributions,
there always exists at least one coupling of them, called the in-
dependence coupling, which is given by Q := Q⊗ Q̃. The most
important point about the coupling is that it is only unique when

one of the marginals Q or Q̃ is the Dirac measure, or equiva-
lently when one of the random elements is deterministic. In par-
ticular, since the concrete system and the abstraction are almost
never coupled a priori (neither at the level of random elements,
nor at the level of distributions), one can e.g. optimize over all
admissible couplings to choose the best for inequality (2). This
idea constitutes to the core of our method. Before going into the
details of it, let us provide examples of couplings.

EXAMPLE 4. Consider the diffusion x as per (1), and let

dx̃t = ã(x̃t)dt + b̃(x̃t)dB̃t , x̃0 = x̃ ∈ R, (4)

be another diffusion. Let us represent both of them as solutions of
SDEs, that is as random elements on the sample spaces (Ω,F ,P)
and (Ω̃, F̃ , P̃), where the former is defined in Example 3, and the
latter is defined for (4) analogously. We provide three versions of
couplings obtained via the Brownian motions driving these diffu-
sions:

a. Ξ = Ω, G = F , P = P and (g, g̃) = ( f , f̃ ). This coupling
corresponds to the case Bt = B̃t when diffusions are “shar-
ing” the same noise [19].

b. Ξ = Ω×Ω̃, G =F⊗F̃ , P= P⊗P̃ and (g, g̃) = ( f ◦π, f̃ ◦π̃)
where the projection maps π : Ξ → Ω and π̃ : Ξ → Ω̃ are
as in Definition 2. This clearly corresponds to the case of the
independence coupling, that is Bt ⊥ B̃t [2].

c. Ξ = Ω, G = F , P = P and (g, g̃) = ( f , f̃ ◦ n) where
n(ω) = −ω for any ω ∈ Ω. In this case Bt = −B̃t : noises
driving diffusions are “reflected”. Such a construction is
possible thanks to the fact that n is a symmetry of P (i.e.
n∗P = P), or in other words −B̃t is a Brownian motion
whenever B̃t is.

Finally, let us mention that as much as any distribution of a
single random element admits a representation over its range,
the distribution of any coupling of two random elements ad-
mits a representation over the product of the ranges: this fol-
lows directly from Definition 2. In particular, if (Ω,F ,P, f ) and
(Ω̃, F̃ , P̃, f̃ ) are any random elements with a range (E,E ) en-
dowed with a metric d, and (Ξ,G ,P, (g, g̃)) is one of their cou-
plings with a distribution Q = (g, g̃)∗P, then the probability in
(2) can be expressed as

P
�

d(g, g̃)> δ
�

=Q(E2 \∆δE),

where ∆δE := {(x , x̃) : d(x , x̃) ≤ ε} is a diagonal ε-strip in E2.
The benefit of dealing with stochastic systems (and their cou-
plings) at the level of distributions lies the easy introduction of
the distance between the concrete and the abstract systems. To
support this point, let us mention that in probability theory dis-
tances are classically introduced between distributions, rather
than between random elements [15, 25].

2.2 Behaviors of ldt-MP
Although most of the concepts and methods we have intro-

duced apply to arbitrary stochastic processes, a focus on discrete-
time Markov processes (dt-MP) allows us to provide a more de-
tailed analysis. A dt-MP is a pair (X , P), where X is a Borel space
referred to as the state space, and P : X →P (X ) is a stochastic
kernel on X . It follows from [26, Theorem 2.8] that given any
initial state x ∈ X there exists a unique probability measure Px
on the state-path space Xω satisfying

Px

 

∞
∏

k=0

dxk

!

= 1{x}(x) ·
∞
∏

k=0

P(xk, dxk). (5)



We say that (X , P) is finite whenever X is a finite set.

REMARK 1. Similar to Example 3, for a given dt-MP and a
fixed initial state, (5) provides a weak stochastic process. The cor-
responding canonical strong stochastic process can be introduced
by defining the coordinate maps xk : Xω → X as obvious pro-
jections. As an alternative, it follows from [20, Proposition 7.6]
that any dt-MP can be expressed as a stochastic difference equation
xk+1 = F(xk, wk), where wk is a sequence of iid uniform random
variables on [0,1]. With focus on Section 2.1, this means that any
dt-MP with a fixed initial state x ∈ X admits the following non-
canonical representation: ([0, 1]ω,B([0, 1]ω),λω, f ), where λ is
the Lebesgue measure on [0, 1] and the map f is obtained by iter-
ating F starting from x.

For a non-stochastic system on a state space X , its internal be-
havior is any element of Xω where each transition xk → xk+1 is
allowed in the system [29, Section 1.2]. For stochastic systems
such a definition is not suitable since formally all transitions are
allowed, so that any single element of Xω is a possible inter-
nal behavior of a dt-MP, albeit possibly of zero probability. Due
to this reason, it is more appropriate to talk about behavioral
distributions, that is Px shall be understood as a distribution of
internal behaviors that indicates which behaviors are more likely
appear as trajectories of a dt-MP.

Often one is not interested in each single behavior, but rather
in collections thereof that can be characterised by means of ob-
servations (or labels). A labeled dt-MP (ldt-MP for short) is a
tuple (X , P, Y,L) where (X , P) is a dt-MP, Y is a Borel space and
L : X → Y is a measurable map [31]. In an ldt-MP, to any inter-
nal behavior (x0, x1, . . . ) there corresponds an external behavior,
or a trace, given by an output of the trace map:

Lω(x0, x1, . . . ) := (L(x0),L(x1), . . . ).

For non-stochastic system a collection of its all admissible exter-
nal behaviors is also called a language of a system [17]. Similar
to the case of internal behaviors, in our setting it is more appro-
priate to talk about distributions of external behaviors as all of
them are allowed in the ldt-MP. We refer to such distributions as
trace distributions [27]: let us emphasize again that trace distri-
butions are analogues of languages for non-stochastic systems.
Since the map Lω : Xω → Yω is measurable [31, Theorem 1],
for any ldt-MP its trace distribution can be expressed as (Lω)∗Px .
We can formulate the LT model-checking problem for ldt-MP as
follows:

PROBLEM 1. Given an ldt-MP (X , P, Y,L) and the observation-
path dependent functional f ∈ B(Yω), compute the expectation
((Lω)∗Px) f for any initial state x ∈ X .

An important case of a functional f in Problem 1 is the indica-
tor function f = 1A of some event of interest A∈B(Yω): in such
a case the expectation to be computed turns out to be the prob-
ability ((Lω)∗Px)(A) = Px(Lω(x) ∈ A). A common example of an
observation space is given by finite sets Y , also called alphabets.
Over alphabets the event A can be for instance anω-regular lan-
guage4 expressed as an automaton, or an LTL formula – for a
detailed exposition see e.g. [8, Chapters 4, 5].

Dealing with stochastic systems at the level of observations
allows one to compare systems possibly endowed with differ-
ent state spaces. This feature is extremely important since a

4 Indeed, ω-regular languages over a finite Y are always elements of
B(Yω), for the proof see e.g. [36, Proposition 2.3].

complex ldt-MP can be approximated by a simpler one over a
smaller state space – for example, by a finite ldt-MP: for the
latter LT model-checking allows for analytical solutions, and nu-
merical procedures can be computationally efficient. In order to
be able to quantitatively argue about the original ldt-MP using
results obtained over its abstract approximation, it is useful to
endow the trace space with some metrics [16]. The choice of
the latter depends on how one wants to interpret over the orig-
inal system the results obtained over the abstraction. Along the
lines of the discussion in Section 2.1, for ldt-MP we define these
metrics to measure the difference (or similarity) between trace
distributions, regardless of the way the latter are represented.
The trace equivalence for any two ldt-MP can be defined by re-
quiring them to have the same trace distributions, however there
may be several choices of metrics whose zero level sets coincide
with such trace equivalence. The next section proposes two such
metrics for the trace distributions over the ldt-MP with the same
observation spaces based on the total variation distance TV and
on the Wasserstein distance W.

3. METRICS FOR LDT-MP

3.1 Total variation distance
Perhaps the most direct way to define a distance between two

probability measures that fits the purposes of Problem 1 is to
maximize over all functionals (or events) the difference between
the corresponding expectations. Interestingly, such seemingly
naïve approach yields a useful metric called the total variation
distance (see Section 7.2).

Let us consider two ldt-MPD = (X , P, Y,L) and D̃ = (X̃ , P̃, Y, L̃)
over the same observation space Y . Given initial states x ∈ X
and x̃ ∈ X̃ , we denote the trace distributions of D and D̃ by Qx
and Q̃ x̃ , respectively. Suppose for example that D̃ is finite, Y is
a finite alphabet and Φ is some LTL formula over Y . If we know
the value of TV(Qx , Q̃ x̃), we can compute Q̃ x̃(Φ) and use it to
estimate Qx(Φ), since by definition of TV (12)

|Qx(Φ)− Q̃ x̃(Φ)| ≤
1

2
TV(Qx , Q̃ x̃).

From the definition of TV (for details see Section 7.2), it fol-
lows that similar bounds in terms of TV(Qx , Q̃ x̃) can be also
obtained on the difference of expectations for more general cost
functionals, rather than just indicator functions of LTL formu-
lae. As a result, the TV satisfies the first criterion from Section 1
and can thus represent a good candidate for a metric. However,
notice that TV(Qx , Q̃ x̃) quantifies the distance between proba-
bilities on the infinite time horizon: this may be a too conserva-
tive requirement, as mentioned in [33, Section 3.1] and as the
following example shows.

EXAMPLE 5. Let us consider two simple ldt-MP with only two
states: X̃ = X = {0, 1}, Y = X , L = L̃ = idX , and suppose that
transition matrices P 6= P̃ have only positive entries. It follows
that these ldt-MP are ergodic; we denote their unique invariant
distributions by µ and µ̃, respectively. For any h : X 2→ R define

Ah :=

(

lim
n→∞

1

n

n−1
∑

k=0

h(xk,xk+1) =

∫

X 2

h(x , y)P(x , dy)µ(dy)

)

.

It holds that Px(Ah) = 1 for any initial state x. A similar fact can
be obtained for P̃x . Clearly, we can always find an h such that

∫

X 2

h(x , y)P(x , dy)µ(dy) 6=
∫

X 2

h(x , y)P̃(x , dy)µ̃(dy).



Since Qx = Px and Q̃x = P̃x we get TV(Qx , Q̃x) = 2 by putting
Ah in (12), no matter how small the difference between P and P̃
is.

Due to the reasons discussed above, we focus our attention to
finite-horizon behaviors of ldt-MP, characterized by restrictions
of the trace distribution Qx and Q̃ x̃ to the set Y n+1: we denote
them by Qn

x and Q̃n
x̃ , respectively. Since given an initial state

over the concrete ldt-MP one has the freedom of choosing that
over the abstraction, let us define the TV-like distance between
ldt-MPs with the same observation spaces by

dTVn(D, D̃) := sup
x∈X

inf
x̃∈X̃

TV(Qn
x , Q̃n

x̃). (6)

DEFINITION 3. We say that two ldt-MP D and D̃ are ε-trace
equivalent in the dTVn metrics if dTVn(D, D̃)≤ ε.

Although the approximate trace equivalence of ldt-MP in dTVn

for n <∞ is not in general useful in infinite-horizon LT model-
checking, it is sufficient to argue about finite-horizon proper-
ties, for example those expressed as BLTL formulae [31, Section
2.4]. Until the end of Section 3.1 we focus exclusively on the
case when Y is a finite alphabet. A finite alphabet on a finite
time horizon contains only a finite number of elements, which
justifies the use of the following formula for the total variation
[9]:

TV(Qn
x , Q̃n

x̃) =
∑

y∈Y n+1

|Qx({y})− Q̃ x̃({y})|. (7)

Though the expression above is still challenging to compute pre-
cisely even over finite-state ldt-MPs, it can be computed by means
of Monte Carlo simulations, which shows that dTVn satisfies the
second criterion mentioned in Section 1.

Let us fix the time horizon n, and let us sample independently
N copies of the observations of D and D̃ over the given time
horizon, which we further denote by (yi)Ni=1 and (ỹi)Ni=1 respec-
tively.5 The index i refers to different runs: each of them can
be obtained e.g. by sampling the state-path of D, say xi , on the
time horizon n, and then by mapping xi into yi by means of map
L. Define

Qn,N
x (·) :=

1

N

N
∑

i=1

1{yi ∈ ·}, Q̃n,N
x̃ (·) :=

1

N

N
∑

i=1

1{ỹi ∈ ·} (8)

to be empirical distributions. It is fairly simple to compute the
approximate distance v̂N := TV(Qn,N

x , Q̃n,N
x̃ ) using (7), which

leads to assess how good such an approximation of the original
distance v := TV(Qn

x , Q̃n
x̃) is. Let us denote by Π the joint prob-

ability distribution of the two iid sequences (yi)Ni=1 and (ỹi)Ni=1.

THEOREM 1. For any δ > 0 it holds that

Π
�

|v − v̂N | ≤ 2δ
�

≥
�

1− (N + 1)|Y
n+1 |e−Nδ2

�2
, (9)

provided that (N + 1)|Y
n+1 |e−Nδ2 ≤ 1.

PROOF. The idea of the proof is to start with TV(Qn
x ,Qn,N

x ):

Π
�

TV(Qn
x ,Qn,N

x )≥ δ
�

=
∑

ν∈LδN

Π
�

Qn,N
x = ν

�

≤
∑

ν∈LδN

e−N ·KL(ν ,Qn
x ),

5 Note that for any i ∈ [1; N], we have that yi is a vector of elements
of Y of length n+ 1: that is a vector of observations of D over the time
horizon n.

where by KL we denote the Kullback-Leibler divergence between
probability measures [15], LδN is the set of all empirical mea-
sures ν satisfying TV(Qn

x ,ν) ≥ δ, and the last inequality imme-
diately follows from [9, Lemma 2.1.9]. Since for all ν ∈ LδN it
holds that KL(ν ,Qn

x) ≥ (TV(ν ,Qn
x))

2, and [9, Lemma 2.1.2(a)]
implies that |LδN | ≤ (N + 1)|Y

n+1 |, we obtain:

Π
�

TV(Qn
x ,Qn,N

x )≥ δ
�

≤ (N + 1)|Y
n+1 |e−Nδ2

. (10)

A similar estimate obviously can be derived for TV(Q̃n
x̃ , Q̃n,N

x̃ ).
By triangular inequality we further get

|v− v̂N | ≤ TV(Qn
x ,Qn,N

x ) +TV(Q̃n
x̃ , Q̃n,N

x̃ ),

which together with (10) yields (9) as desired.

Clearly, (9) implies that the estimator v̂N converges inΠ to the
true distance v, and further provides an explicit bound on the
confidence level. Note also that for fixed sizes of the alphabet
and of the time horizon, the bound in (9) depends quadratically
on the precision δ, and logarithmically on the confidence level.
Unfortunately, such a dependence is only asymptotical, and for
N not sufficiently large the polynomial term (N + 1)|Y

n+1 | dom-
inates the exponential term e−Nδ2

. Moreover, such polynomial
term grows very fast with respect to the size of the alphabet,
and even faster with respect to the time horizon. For example,
even if |Y | = 2, n = 9 and δ = 0.1, one needs approximately
an order of N = 1.5 × 106 samples to obtain good confidence
levels, whereas for n = 10 around N = 3.5× 106 samples are
required. In addition, the precision of the estimator v̂N can be
only guaranteed with some confidence as its computation relies
on randomized methods. Finally, Theorem 1 only gives a way
to estimate TV(Qn

x , Q̃n
x̃) for given initial states, whereas (6) re-

quires solving an optimization problem. All of this motivates
looking into alternative methods for computing the dTVn metric.

We start with the case when both ldt-MPs D and D̃ have
the same state space, say X ; let P and P̃ be the corresponding
stochastic kernels. Recall that each of them acts as a linear oper-
ator on the Banach space bB(X ), e.g. P f (x) =

∫

X
f (y)P(x , dy).

Since bB(X ) is endowed with a sup-norm, one can define an in-
duced norm on operators, as follows:

‖P − P̃‖ := sup
f ∈bB(X ),‖ f ‖≤1

‖(P − P̃) f ‖.

We obtain that ‖P − P̃‖ = supx∈X TV(P(x , ·), P̃(x , ·)) and as a
result ‖P − P̃‖ ≥ TV1(Qx , Q̃ x̃). We define a new metric as

dB(D, D̃) := ‖P − P̃‖.

The next theorem shows how the latter metric can be used in
order to derive upper bounds on dTVn .

THEOREM 2. For any n ∈ N0 it holds that

dTVn(D, D̃)≤ 2− 2
�

1−
1

2
dB(D, D̃)

�n

. (11)

PROOF. From [7, Theorem 2] it follows that

TV(Pn
x , P̃n

x)≤ 2− 2
�

1−
1

2
dB(D, D̃)

�n

,

for any initial state x ∈ X . Since Qn
x and Q̃n

x are image measures
generated by Pn

x and P̃n
x respectively, it holds that TV(Qn

x , Q̃n
x)≤

TV(Pn
x , P̃n

x). Finally, it clearly holds that

dTVn(D, D̃)≤ sup
x∈X

TV(Qn
x , Q̃n

x),



which further leads to (11).

Before we elaborate on Theorem 2, let us first show an ex-
ample of how it can be applied to construct finite abstractions
with any given precision: that would assure that dTVn satisfies
the third criterion in Section 1. Suppose that we are given an
ldt-MP D = (X , Y, P,L), where Y is a finite alphabet and P is
an integral kernel, that is P(x , dy) = p(x , y)µ(dy). Here p is
a jointly measurable function and µ is a σ-additive measure on
X . We say that p is a density of P with respect to the measure
µ: for example if X = Rm and µ is the Lebesgue measure, p is
a common density function. Assume further that the state space
X is endowed with some metric dX compatible with its topology,
and is bounded with respect to this metric. Let (X i)mi=1 be a finite
partition of X such that L is constant when restricted to any X i ,
and denote by δi the diameter of X i in the metric dX . Let x i ∈ X i
be arbitrary points, and define the finite ldt-MP D̃ = (X̃ , P̃, Y, L̃)
as follows: X̃ = [1; m], P̃(i, { j}) := P(x i , X j) and L̃(i) = L(x i).
Notice that we cannot compare D and D̃ directly using the met-
ric dB: the latter is only defined for ldt-MP that share the same
state space. Due to this reason, below we construct an auxiliary
ldt-MP D̂ which has an infinite state space X so that dB(D, D̂)
is well-defined, but whose structure makes it trace-equivalent
to the finite ldt-MP D̃. We require the following Lipschitz-like
condition.

ASSUMPTION 1. There exist measurable non-negative functions
κi : X → [0,∞), such that Ki :=

∫

X
κi(y)µ(dy) < ∞ for all

i ∈ [1; m], and such that

|p(x ′, y)−p(x ′′, y)| ≤ κi(y)dX (x
′, x ′′) ∀x ′, x ′′ ∈ X i , ∀y ∈ X .

THEOREM 3. Under Assumption 1 for any n ∈ N0 it holds that

dTVn(D, D̃)≤ 2− 2
�

1− max
i∈[1;m]

Kiδi

�n

.

PROOF. We construct an auxiliary ldt-MP D̂ = (X , P̂, Y,L) with
a lumpable structure to assure that dTVn(D̂, D̃) = 0, and to
compare dTVn(D, D̂) using Theorem 2. For this purpose we let
P̂(x , dy) = p̂(x , y)µ(dy) to be an integral kernel where the den-
sity p̂ is defined as p̂(x , y) = p(x i , y) for all points x ∈ X i and
y ∈ X . For any f ∈ bB(X ), ‖ f ‖ ≤ 1 and x ∈ X i it holds that

|(P − P̃) f (x)|=

�

�

�

�

�

∫

X

f (y)(p(x , y)− p(x i , y))µ(dy)

�

�

�

�

�

≤
∫

X

| f (y)|δiκi(y)µ(dy)≤ Kiδi ,

and hence ‖P − P̃‖ ≤maxi∈[1;m] Kiδi , so that

dTVn(D, D̂)≤ 2− 2
�

1− max
i∈[1;m]

Kiδi

�n

by Theorem 2. Let ι : X → X̃ be the map defined by ι(x) = i
iff x ∈ X i . For any initial state x ∈ X it holds that Qn

x = Q̃n
ι∗ x :

indeed, these measures coincide on each element of the finite
set Y n+1 by construction. As a result, dTVn(D̂, D̃) = 0, which
completes the proof of the theorem.

This theorem shows that in case an original ldt-MP satisfies
Assumption 1, for any ε > 0 it is possible to construct a finite
ldt-MP that is ε-trace equivalent to the original one in the dTVn

metric. As a result, the metric dTVn satisfies all the criteria in Sec-
tion 1. Note also that to estimate the metric dTVn , which quanti-
fies the difference between path measures, namely the global (in

time) dynamics, we have used the metric dB, which compares
the stochastic kernels, hence measuring the difference between
transitions of ldt-MP – their local dynamics. The difference in
local dynamics is often easier to assess, which in turn provides
a method to argue about similarity of the global dynamics – see
also the discussion in [16, Section II.B]. To formally speak about
the similarity of the local dynamics for the processes with dif-
ferent state spaces, we would need to introduce notions of ap-
proximate bisimulations. For example, in such a case we could
compare D and D̃ in the proof of Theorem 3 directly, without
the need to introduce the auxiliary ldt-MP D̂. However the dis-
cussion on approximate bisimulation goes beyond the scope of
this contribution.

Theorems 2 and 3 further improve the formula-free abstrac-
tion procedure for ldt-MP introduced in [31]: the bounds on
the path measures there increase linearly in the time horizon,
whereas (11) provides bounds which never exceed 2 – the max-
imal meaningful value of the total variation distance. Moreover,
such bounds are tight, that is in some special cases the equality
in (11) holds.

3.2 Wasserstein distance
Above we have shown the usefulness of the metric dTVn for LT

model-checking. Although this metric is based on the total vari-
ation distance, which has an important characterization through
coupling (13), we have not used extensively the notion of cou-
pling in the discussion on dTVn (though it is important in the
proof [7, Theorem 2] used in Theorem 2).

The notion of coupling appears to be much more important
for another metric that we consider next. Suppose that we are
given two ldt-MP D = (X , Y, P,L) and D̃ = (X̃ , P̃, Y, L̃) expressed
as

¨

xk+1 = F(xk, wk),
yk = L(xk)

¨

x̃k+1 = F̃(x̃k, w̃k),
ỹk = L̃(x̃k)

where each of the (wk)k∈N0
, (w̃k)k∈N0

is a sequence of iid random
variables. Suppose further that we are interested in approximat-
ing D with D̃. If the observation space Y is endowed with some
metric dY , we can endow Y n+1 with the product metric

dY n+1((y0, . . . , yn), ( ỹ0, . . . , ỹn)) := max
k∈[0;n]

dY (yk, ỹk).

If we are able to assure that dY n+1(y, ỹ)≤ δ with a high probabil-
ity, the fact that ỹ satisfies some property Φ ∈ bB(Y n+1) would
imply that y satisfies the modified (inflated) property

Φδ = {y ∈ Y n+1 : dY n+1(y,Φ)≤ δ}.

See [19, Theorem 7] for the case when Φ is a reachability spec-
ification. However, in order to talk about the probability of the
value of dY n+1(y, ỹ) being less than δ, we need to consider a cou-
pling between y and ỹ. The work in [19] has considered the case
of linear jump-diffusions, and implicitly suggested to use a cou-
pling that matches the noises, that is w̃k = wk. In the follow-up
paper [2] the coupling was considered to be the independent
one (cf. Example 4). However, one has a complete freedom in
choosing the coupling, so we can define a metric as follows:

dWn(D, D̃) := sup
x∈X

inf
x̃∈X̃

W(Qn
x , Q̃n

x̃),

thanks to the coupling characterization of the Wasserstein dis-
tance in (14). In case we know dWn(D, D̃), for any initial state
x ∈ X we can find a corresponding x̃ ∈ X̃ such that

Q
�

dY n+1(y, ỹ)≥ δ
�

≤
dWn(D, D̃)

δ
,



thanks to Markov’s inequality, whereQ ∈ Γ(Qn
x , Q̃n

x̃) is any among
the optimal couplings in (14). As a result, the metric dWn as well
satisfies the first criterion in Section 1. Randomized methods to
compute this metric can be found in [14, Sections 2.2, 2.3] and
[28], thus assuring that dWn satisfies the second criterion we
have raised. These methods are based on the representation of
W as an integral metric (see Section 7.2), for example the one in
[28] suggests solving a linear programming problem to evaluate
W(Qn,N

x , Q̃n,N
x̃ ) over empirical distributions (8).

Both TV and W are integral metrics, and for bounded metric
spaces TV is always bigger than W, multiplied by a constant.
Hence, one may expect that dWn provides less conservative esti-
mates than dTVn . Unfortunately, although one can try defining
an analogue of the transition-based metric dB for dWn , obtaining
estimates similar to Theorem 2 is not an easy task. Thus we are
not able to claim that dWn satisfies the third criterion.

Let us also mention that the Wasserstein metric has also been
applied for purposes of abstractions of controlled ldt-MP in [14]
with focus on discounted additive cost functionals. Further-
more, [30] has employed the Wasserstein metric to compare
outputs of stochastic processes. However, the results in both
papers are not suitable for Problem 1.

4. COMPARISON WITH THE LITERATURE

4.1 Total Variation distance
Recent literature on approximate probabilistic bisimulations

has led to several metrics for discrete-time stochastic systems
that are related to the metrics dB and dTVn considered here. Be-
fore we elaborate on their similarity, let us first recall a few of
these metrics.

One of the first metrics for stochastic systems is introduced in
[11] and [12] for finite and infinite systems, respectively. As we
discussed in Section 1, the notion of exact probabilistic bisim-
ulation, introduced for finite systems in [22] and extended to
infinite systems in [10], appears to be too restrictive and to lack
robustness: this motivates looking for more flexible relations be-
tween systems. The notion of exact probabilistic bisimulation is
characterized via a binary logic L , so that two states are bisim-
ilar if and only if they satisfy the same formulae in L . The ex-
tension of L to some real-valued logic Lr leads to the definition
of a distance between two states x and x̃ as the maximal dif-
ference between all formulae of Lr computed over such states:
dLr
(x , x̃) := sup f ∈Lr

| f (x) − f ( x̃)|. The fact that Lr is an ex-
tension of L requires that dLr

is equal to zero over bisimilar
states. The value of the metric between two stochastic systems
is defined (over the disjoint union of the two systems) as the dLr

distance between their initial conditions.
A different approach is taken in [35], where stochastic sys-

tems are represented as co-algebras, namely pairs (X , P), where
X is a state space and P : X → P (X ) (note the similarity with
dt-MP models considered in this work). The state spaces are
assumed to be endowed with a metric, and the functor P is as-
sumed to push the original metric of X into a Kantorovich metric
over P (X ).6 It is further shown that a final co-algebra exists for
such a functor, and since the final co-algebra is often thought of
as a collection of behaviors, [35] introduces a metric between
two states x , x̃ ∈ X as dco(x , x̃) = dfin(!(x), !( x̃)), where ! is the
unique map from X to the final co-algebra.

6 Note however, that despite a strong connection between Kan-
torovich and Wasserstein metrics (see e.g. [14, Section 2.4.6]),
this approach differs from the one we apply here in Section 3.2.

Although dLr
and dco are introduced in completely different

ways, it is shown in [35] that under certain conditions dco =
dLr

. This could be considered as evidence that any of these
two (equal) metrics is the natural metric for the intended ap-
plications. However, it is of interest whether either of the two
approaches is the natural one. Indeed, the definition of dLr

de-
pends on the choice of the real-valued logic Lr, which in [12] is
chosen to be just one of many possible extensions of the binary
logic L . Similarly, given a metric on the Borel space X , there
are many ways to introduce a related metric on P (X ): besides
the Kantorovich metric proposed in [35] one could employ a
Prokhorov metric [15] which would lead to a different value for
dco. As convergence in Prokhorov metric is equivalent to weak
convergence of measures, and hence to the topology of P (X ),
arguably the latter may be a more natural choice for a metric on
P (X ) than the Kantorovich one. In conclusion, we contend that
it is in general not possible to assert how good or natural the
choice of a particular metric is, based on the way this metric is
defined: the usefulness of a metric is rather determined by the
applications it is meant to be used for. From this more practical
perspective, it is unfortunately not clear which applications the
models studied in [12, 35] are suitable for, besides their use in
testing [34]: in fact, their semantics has not been defined ex-
plicitly and constructively. Besides, up to the best of the authors
knowledge, in the case of testing there exist no precise bounds
on the difference between testing probabilities over two system
given their dco or dLr

distances.
From the perspective of the preceding discussion, we aim next

to elaborate on the similarity between dLr
and dTVn . Let us in

particular show how dLr
can be applied on BLTL model-checking

over ldt-MP (which are the models we have defined dTVn over).
Since dLr

has been introduced over Labelled Markov Processes
(LMP) [10], we need to provide a way of transform an ldt-MP
into a corresponding LMP7. Consider a ldt-MP D = (X , Y, P,L)
with a finite observation space Y ; we define a corresponding
LMP (X , Y, {τy}y∈Y ), endowed with a state space X , a labels set
Y , and the transition kernel

τy(x , dx ′) := 1L−1(y)(x) · P(x , dx ′),

that is, we enable the label y in the LMP exactly in those states
x that are labeled with y in D. Suppose we would like to com-
pute over D a probability of some basic BLTL formula, that is
a finite word y0 . . . yn ∈ Y n+1: i.e. we are to find Qn

x(y0 . . . yn),
where Qn

x is the trace distribution D induces on Y n+1. As LMP
do not have explicitly-defined trace semantics, we can interpret
Qn

x(y0 . . . yn) as a value of theLr formula 〈y0〉 . . . 〈yn〉1(x).8 The
latter interpretation tells us that the LMP can be applied to com-
pute probabilities of basic BLTL formulae over a corresponding
ldt-MP, and hence it can be applied to any BLTL formula [31,
Section 2.4]. Note however, that probabilities of more general
BLTL formulae over ldt-MP are not necessarily elements of Lr
for the corresponding LMP: the disjunction and conjunction in
BLTL are not related to max and min in Lr at all. As a result,
although any BLTL formula over an ldt-MP can be computed via
functions in Lr over the corresponding LMP, such computations
may require summation of Lr functions. Hence, if any function
in Lr is known only with some error, this operation will require
accumulating errors – this issue was already discussed in [31,
Section 3] concerning the possible extensions of safety-focused

7 Up to our knowledge, this paper is the first to explicitly elabo-
rate on such a transformation.
8 We assume here a version of Lr without discounting.



results in [4] to the whole BLTL. Thus, although [12, Proposi-
tion 7.5] concerning dLr

provides an analysis similar to Theorem
2, the bounds from the former result when interpreted over ldt-
MP only apply to basic BLTL formulae, whereas the latter result
provides bounds for any BLTL formula.

Let us also mention that Theorems 2 and 3 concerning the
dTVn metric improve formula-free guarantees for ldt-MP intro-
duced in [31] by providing tighter bounds on the difference be-
tween trace distributions: indeed, [31, Lemma 1, Theorem 3]
derives similar bounds as Theorem 2, but provide more conser-
vative results. An alternative approach [5] suggests expressing
an LT property as an automaton, and solving a safety problem
over the product system. Unfortunately, the overall error as-
sociated to the abstraction needed for the solution of the safety
problem depends on the size of the automaton, which is particu-
larly crucial in case of BLTL formulae for which automata can be
large [31, Section 3.4]. The formula-free guarantees do not de-
pend on a particular BLTL formula (as the name suggests), and
provide arguably less conservative bounds than safety-based ap-
proximate model-checking of complex LT properties (cf. [31,
Section 5]).

4.2 Wasserstein distance
As we have mentioned in Section 3.2, the definition of the dWn

metric is inspired by the work [19], which introduces an analo-
gous metric restricted to a fixed coupling structure. We contend
that this feature substantially increases the conservatism of the
results, since in general one has the freedom to optimize over
the coupling. The notions in [19] hinge upon similar ones de-
veloped over non-stochastic systems [16], where the coupling is
necessarily unique so that its choice does not play a role. The
choice of coupling for stochastic processes is especially impor-
tant when it is not meaningful to claim that both processes are
driven by the same noise. For instance, if it is clear how to
compare noises that drive two diffusions (cf. Example 4), it is
much less clear how to couple a diffusion with a finite-space
continuous-time Markov Chain serving as its approximation [2]:
in the latter case the only natural coupling seems to be the in-
dependent one, and it is rather unlikely that this coupling is the
optimal one.

The work in [19] suggests how to compute a metric over a
fixed coupling under rather strong assumptions on the stability
of the models (over a fixed coupling). In particular, these tech-
nique require Lyapunov-like functions to synthesize a metric,
and provide practically relevant sufficient conditions for these
functions only in the linear case. In contrast, [6] introduces
randomized methods to compute fixed coupling metrics without
any stability assumptions – as in our case the results are valid
over a finite time horizon. It is of interest to compare those re-
sults with ours, to see whether the choice of the coupling leads
to a reduced conservatism, as expected.

Let us consider an example drawn form [1] and also studied
in [32]. We consider a regional power network consisting of
two local subnetworks: each of them has its own energy stor-
age capacity. There are two sources of the energy: a coal plant
shared by both networks, and two separate wind farms produc-
ing renewable energy. [32] studied the approximate abstraction
of this model, with the objective of coal plant energy produc-
tion and distribution optimizing some desired property over the
whole network. On the other hand, here we are interested in
studying the effect of the correlation over the energy produced
by the two wind farms – it practically makes sense to consider
this correlation when the two local subnetworks are close geo-

graphically. We assume that the coal plant energy is evenly dis-
tributed between both networks, which leads to the following
(autonomous) dt-MP model of the network:

¨

x1
k+1 = β

�

x1
k +

1
2

pk + r1
k − d1

k

�

∨ 0∧M ,
x2

k+1 = β
�

x2
k +

1
2

pk + r2
k − d2

k

�

∨ 0∧M ,

where xi it the amount of the stored energy in the i-th subnet-
work, β = 0.8 is the loss rate of the stored energy, pk is the
energy produced by the coal plant, r i

k is a renewable energy
produced by the i-th wind farm, d i

k is the energy demand in the
i-th network, and M = 30 is the max storage capacity. We as-
sume that pk ∼ U([3,5]) and d i

k ∼ U([1,2]) are distributed uni-
formly. The distribution of the renewable energy instead consists
of two components: r i

k = (1− ρ)e
i
k + ρrk, where ei

k, rk ∈ E (1)
are distributed exponentially and ρ ∈ [0,1] measures the corre-
lation level of the distributions r1

k and r2
k . The initial conditions

xi
0 ∼ U([5, 10]) are distributed uniformly.
We study two copies of the model distinguished by the choice

of parameter ρ = 0.2 and ρ = 0 respectively. Recall that we
only know the distribution of the stochastic process associated
to each of the two models, but not their joint distribution: this
allows to choose the coupling. We then consider three possible
choices: coupling via the same noise, independence coupling,
and reflected coupling. In the former case we use the same sam-
ples of d̃ i

k = d i
k, p̃k = pk and x̃i

0 = xi
0 for both systems, whereas

in the latter case we use the symmetry of the uniform distribu-
tion to define d̃ i

k, p̃k and x̃i
0 as d i

k, pk and xi
0 reflect with respect

to their mean values. Finally, in case of the independence cou-
pling all samples are assumed to be independent, that is d̃ i

k ⊥ d i
k,

p̃k ⊥ pk and x̃i
0 ⊥ xi

0. We assume that the observation space cor-
responds to the state space endowed with the Euclidean metric,
thus the observation map is the identity function.

The results are presented in Figure 1. The computations are
run over a time horizon n = 100 for N ∈ [2;1000] samples.
From the figure it can be seen that over the number of samples
considered, for each estimator the convergence does hold. One
can also observe that although the coupling via the same noise
performs better than the independence coupling, or than that
via reflected noise, their associated distance is greater than the
distance dW100 obtained by optimizing over all the possible cou-
plings. This optimization is performed using the method in [28],
by means of solving a linear programming problem: the latter
clearly represents the computational bottleneck of the method,
as it requires 2N variables and N(N − 1) constraints. The com-
plexity then depends on the number of samples, and although
there is no explicit connection between the complexity of the
linear programming problem and the dimension of original sys-
tems (or the time horizon), the latter factor may affect the num-
ber of samples needed for convergence to the true solution. Un-
fortunately, up to our knowledge there are no explicit results on
the convergence for the W metric, similar to Theorem 1 for the
TV metric. Methods mentioned in [14, Sections 2.2, 2.3] can be
explored as possible computationally efficient alternatives. Let
us finally mention that we do not provide here a comparison
over the dTVn metric as it would not enlighten the importance of
coupling as significantly as the dWn metric does.

5. CONCLUSIONS
This paper has discussed the formulation of two new metrics

for stochastic transition systems, with focus on their applications
for linear-time model-checking. Such metrics are shown to be
useful according to three criteria defined in the article, and are
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Figure 1: Evaluation of expected distances between x and
x̃ depending on the number of samples, over different cou-
plings: shared (blue line in the middle), independent and
reflected noises (resp. red and gray lines on the top), opti-
mal coupling (green line at the bottom).

claimed to perform better compared to other metrics proposed
in the literature. Table 1 further shows which of those crite-
ria the metrics introduced in this paper satisfy, and according to
which result. A promising direction of future research concerns
the connections of the metrics proposed in this work with no-
tions of approximate probabilistic simulation and bisimulation.

Criterion TVn Wn

[i.] YES. By definition. YES. By definition.
[ii.] YES. By Theorem 1. YES. See e.g. [28].
[iii.] YES. By Theorems 2, 3. ???

Table 1: Satisfaction of criteria by metrics TVn and Wn.
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7. APPENDIX

7.1 General notation
We use extensively standard notions from measure and prob-

ability theory, for precise definitions see e.g. [20]. A mea-
surable space is a pair (E,E ) where E is an arbitrary set and
E is a σ-algebra on E. The space of all probability measures
on (E,E ) is denoted by P (E,E ); it is assumed to be endowed
with the smallest σ-algebra that makes any evaluation map θA :
P (E,E )→ R, defined by θA(p) = p(A) for all p ∈ P (E,E ) and

A ∈ E , measurable. A stochastic kernel on (E,E ) is a mea-
surable map K : E → P (E,E ). A probability space is a triple
(E,E , p), where (E,E ) is a measurable space and p ∈ P (E,E ).
If (Ω,F ,P) is a probability space and f : (Ω,F ) → (E,E ) is a
measurable map then

( f∗P)(A) := P
�

f −1(A)
�

, ∀A∈ E

defines the probability measure in P (E,E ). We say that f in-
duces the measure f∗P. We further denote by idΩ the iden-
tity map on Ω; clearly, it holds that (idΩ)∗P = P for any P ∈
P (Ω,F ). By⊗we denote the product of measures orσ-algebras.
The set of real numbers is denote by R, the set of natural num-
bers by N and we write N0 := N ∪ {0}. We write Eω in place of
EN0 .

Any topological space X is assumed to be endowed with its
Borel σ-algebra B(X ) generated by all open subsets of X . For
topological spaces we simply writeP (X ) in place ofP (X ,B(X )).
We refer to elements of B(X ) as Borel subsets of X . A (stan-
dard) Borel space is a topological space that is homeomorphic
to a Borel subset of complete separable metric space. By C (X )
we denote the linear space of all continuous real-valued func-
tions on X .

Given a measurable space (E,E ), we denote by bE the linear
space of all bounded functions f : E → R. It is a Banach space
endowed with a sup-norm ‖ f ‖ := supx∈E | f (x)|.

7.2 Distances between probability measures
For a brief overview on distance between probability mea-

sures see [15]; a detailed exposition can be found in [25]. In
this paper we focus on two metrics: the total variation distance
TV that applies to measures over any measurable spaces, and
the Wasserstein distance W that requires the underlying space
to be a metric space. Both metrics fall into the class of integral
probability metrics: let (E,E ) be an some measurable space and
let G be any collection real-valued measurable functions on E.
The corresponding metric on P (E,E ) is defined as

IG (µ, µ̃) := sup
g∈G

�

�

�

�

�

∫

E

gd(µ− µ̃)

�

�

�

�

�

.

The total variation metric is given by TV = IbE1
where g ∈ bE1

iff g ∈ bE and ‖g‖ ≤ 1. Alternatively, the metric TV can be
introduced via the difference of µ and µ̃ over sets as follows:

TV(µ, µ̃) = 2 · sup
A∈E
|µ(A)− µ̃(A)|. (12)

Unlike the total variation distance that depends exclusively on
the measurability structure of the set E, the Wasserstein distance
requires E to be a metric space. Let E be endowed with the
metric dE such that E =B(E). For any g ∈ bE let

Lip(g) := sup
x 6=x ′

|g(x)− g(x ′)|
dE(x , x ′)

denote the Lipschitz constant of g. The Wasserstein distance is
defined as W = IC1

, where g ∈ C1 iff Lip(g) ≤ 1. Provided that
diam(E) := supx ,x ′∈E dE(x , x ′) <∞, the following inequality re-
lates the two metrics: TV ≥ 1

diam(E)
W [15], so that the conver-

gence in TV implies the convergence in W in case the latter is
defined using a metric in which E is bounded.

Another relation between TV and W can be derived via recall-
ing that each of the metric can be characterized by a coupling,
optimal in a certain sense. For µ, µ̃ ∈ P (E,E ) let us denote by



Γ(µ, µ̃) ⊂ P (E2,E 2) the collection of all coupling measures for
µ and µ̃. Provided that E is a Borel space and E =B(E):

TV(µ, µ̃) = 2 · sup
M∈Γ(µ,µ̃)

M(∆E) (13)

and if (E, dE) is a bounded complete separable metric space:

W(µ, µ̃) = inf
M∈Γ(µ,µ̃)

∫

E×E

dE(x , x̃)M(dx × d x̃). (14)

If we consider any two random elements f and f̃ that represent
distributions µ and µ̃, then the total variation distance can be
obtained via the coupling that maximizes the probability that
f = f̃ , whereas the Wasserstein distance is exactly the minimal
expected value of dE( f , f̃ ) over all possible couplings.
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