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Abstract— In networked control systems (NCS), the commu-
nication between sensors, controllers, and actuators is sup-
ported by a shared communication channel that is subject
to variable communication delays, limited bandwidth, packet
losses, quantization errors, and other practical non-idealities.
This work investigates the problem of constructively deriving
symbolic models of NCS by simultaneously considering the
mentioned network non-idealities. By employing the obtained
symbolic models, one can completely automate the design of
controllers enforcing rich logical specifications, e.g. formulae in
linear temporal logic, over NCS.

I. INTRODUCTION

Networked control systems (NCS) are becoming a ubiq-
uitous element of many modern technologies because they
provide a spatially distributed framework for control systems
encompassing network elements, increasing on the one hand
architecture flexibility and reducing on the other installation
and maintenance costs. On the minus side, their analysis
and synthesis require more involved studies because of new
challenges introduced by non-idealities related to the network
element, including quantization errors, limited bandwidth,
packet dropouts, time-varying sampling/transmission inter-
vals, time-varying communication delays, and communica-
tion constraints (scheduling protocols).

Recently, there have been numerous studies focusing
mostly on the stability properties of NCS [1], [2], [3],
[4], [5], [6], [7] and taking into account a subset of the
aforementioned non-idealities. However, there are no signif-
icant results in the literature dealing with more sophisticated
objectives, such as fully automated verification or synthesis
of NCS, nor for more complex properties or specifications.
Examples of relevant complex specifications include proper-
ties expressed as formulae in linear temporal logic (LTL) or
as automata on infinite strings, which are by and large not
amenable to be dealt with the existing techniques for NCS.

A promising approach to tackle these complex properties
is the use of symbolic models [8]. Symbolic models are finite
abstractions of the concrete models, where each abstract state
corresponds to a collection of concrete states. Symbolic mod-
els allow us to leverage algorithmic machinery for controller
synthesis of discrete systems [9] to automatically synthesize
hybrid controllers enforcing complex specifications on the
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original concrete system [8]. The only results available in the
literature on the construction of finite abstractions for NCS
are the ones in [10], [11]. The results in [10], [11] consider
the following network non-idealities simultaneously: quanti-
zation errors, limited bandwidth, packet dropouts, and time-
varying communication delays. Nevertheless, the proposed
results in [10], [11] present some limitations: they are
restricted to grid-based abstractions, with evident scalability
limitations; they only deal with static controllers, thus ruling
out more general control architectures; the specifications
need to be expressed in terms of some types of nondeter-
ministic automata, which can be reductive; and they require
to reformulate a given specification in an extended state-
space fashion, in order to be semantically applicable to the
proposed finite abstractions, which can be expensive. Fur-
thermore, the implementations in [10], [11] assume that the
sensors transmit messages only whenever a new controller
update is received by the actuators, which in practice imposes
the co-location of sensors and actuators.

In this paper, we provide a synthesis technique for con-
structing finite abstractions of NCS exclusively using existing
finite abstractions of the plant. Therefore, one can use
existing results in the literature to construct finite abstractions
of the plant, such as the grid-based ones in [12], [13], or one
partially based on grids [14] and without requiring state-
space discretization, or specification-based approaches [15],
and then construct the finite abstractions of the NCS from
those. Given any type of finite abstraction for the plant, one
can always leverage the results provided in this paper to
provide a finite abstraction of the NCS. We consider the
following network non-idealities simultaneously: quantiza-
tion errors, limited bandwidth, packet dropouts, and time-
varying communication delays. Moreover, in our proposal
the transmission of updates from sensors and controllers
are periodic, removing any location restriction of sensors,
actuators, and/or controllers. This requires to explicitly take
into account the possibility of out-of-order packet arrivals
and message rejection, which means that older data will
be neglected if more recent one is available. Furthermore,
our proposed results do not restrict us to only work with
static controllers, which in general are not sufficient to satisfy
every LTL formula, see e.g. [16], [17]. Hence, one can also
employ the results proposed here to study larger classes of
temporal logic specifications without requiring any additional
reformulation.

II. CONTROL SYSTEMS & STABILITY/COMPLETENESS
NOTIONS

A. Notations
The symbols N, N0, R, R+, and R+

0 denote the set of
natural, nonnegative integer, real, positive, and nonnegative



real numbers, respectively. Given a set A, define An+1 =
A×An for any n ∈ N. Given a vector x ∈ Rn, we denote by
xi the i–th element of x, and by ‖x‖ the infinity norm of x,
namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes
the absolute value of xi. Given an interval [a, b] ⊆ R with
a ≤ b, we denote by [a; b] the set [a, b] ∩ N. We denote by
[Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, . . . , n}.

Given a measurable function f : R+
0 → Rn, the (es-

sential) supremum of f is denoted by ‖f‖∞; we recall
that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A continuous func-
tion γ : R+

0 → R+
0 , is said to belong to class K if it is

strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K
with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞. We identify a relation R ⊆ A×B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given
a relation R ⊆ A×B, R−1 denotes the inverse relation
defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}. When R
is an equivalence relation1 on a set A, we denote by [a]
the equivalence class of a ∈ A, by A/R the set of all
equivalence classes, and by πR : A → A/R the natural
projection map taking a point a ∈ A to its equivalence class
π(a) = [a] ∈ A/R.

B. Control systems

The class of control systems that we consider in this paper
is formalized in the following definition.

Definition 2.1: A control system is a tuple Σ =
(Rn,U,U , f), where:
• Rn is the state space;
• U ⊆ Rm is the compact input set;
• U is a subset of the set of all measurable functions of

time from intervals of the form ]a, b[⊆ R to U with
a < 0 and b > 0;

• f : Rn × U→ Rn is a continuous map which is locally
Lipschitz continuous with respect to its first argument.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if
there exists υ ∈ U satisfying:

ξ̇(t) = f (ξ(t), υ(t)) ,

for almost all t ∈ ]a, b[. Similarly, we refer to trajectories
ξ :[0, t]→ Rn defined on closed domains [0, t], t ∈ R+, with
the understanding that there exists a trajectory ξ′ :]a, b[→ Rn
such that ξ = ξ′|[0,t] with a < 0 and b > t. We also write
ξxυ(t) to denote the point reached at time t under the input
υ from the initial condition x = ξxυ(0); the point ξxυ(t)
is uniquely determined, since the assumptions on f ensure
existence and uniqueness of trajectories [18].

A control system Σ is said to be forward complete if
every trajectory is defined on an interval of the form ]a,∞[.
Sufficient and necessary conditions for a control system to
be forward complete can be found in [19].

1An equivalence relation R ⊆ X ×X is a binary relation on a set X if
it is reflexive, symmetric, and transitive.

C. Stability & completeness notions
Some of the existing results in the literature, briefly re-

called in this paper, require certain stability and completeness
properties on Σ. First, we recall a stability notion introduced
in [20].

Definition 2.2: A control system Σ is incrementally input-
to-state stable (δ-ISS) if it is forward complete and there exist
a KL function β and a K∞ function γ such that for any
t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U , the following
condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞) .
(II.1)

We recall a completeness property, introduced in [13],
which can be satisfied by more general classes of (even
unstable) control systems.

Definition 2.3: A control system Σ is incrementally for-
ward complete (δ-FC) if it is forward complete and there
exist continuous functions β : R+

0 × R+
0 → R+

0 and γ :
R+

0 ×R+
0 → R+

0 such that for each fixed s, functions β(r, s)
and γ(r, s) belong to class K∞ with respect to r, and for any
t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U , the following
condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞, t) .
(II.2)

The interested readers can find a characterization (resp.
description) of δ-ISS (resp. δ-FC) in terms of the existence
of so-called incremental Lyapunov functions in [20] (resp.
[13]).

III. SYSTEMS & APPROXIMATE EQUIVALENCE NOTIONS

We now recall the notion of systems, introduced in [8],
that we use later to describe NCS as well as their finite
abstractions.

Definition 3.1: A system is a tuple S =
(X,X0, U, - , Y,H) consisting of: a (possibly infinite)
set of states X; a (possibly infinite) set of initial states
X0 ⊆ X; a (possibly infinite) set of inputs U ; a transition
relation - ⊆ X × U ×X; a set of outputs Y ; and an
output map H : X → Y .

A transition (x, u, x′) ∈ - is also denoted by
x

u- x′. If x
u- x′, state x′ is called a u-successor of

state x. We denote by Postu(x) the set of all u-successors
of a state x and by U(x) the set of inputs u ∈ U for which
Postu(x) is nonempty.

System S is said to be:
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• finite (or symbolic), if X and U are finite sets;
• countable, if X and U are countable sets;
• deterministic, if for any state x ∈ X and any input
u ∈ U , |Postu(x)| ≤ 1;

• nondeterministic, if there exist a state x ∈ X and an
input u ∈ U such that |Postu(x)| > 1;

Given a system S = (X,X0, U, - , Y,H), we denote
by |S| the size of S, defined as |S| := | - |, which is
equal to the total number of transitions in S. Note that it is
more reasonable to consider | - | as the size of S rather



than |X|, as it is the transitions of S that are required to be
stored rather than just the states of S.

We also recall the notions of (alternating) approximate
(bi)simulation relation, introduced in [21], [22], which are
useful to relate properties of NCS to those of their finite
abstractions. First we recall the notions of approximate
(bi)simulation relation, introduced in [21].

Definition 3.2: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d. For ε ∈ R+
0 ,

a relation R ⊆ Xa ×Xb is said to be an ε-approximate
simulation relation from Sa to Sb if the following three
conditions are satisfied:
(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with

(xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R, we have

d(Ha(xa), Hb(xb)) ≤ ε;
(iii) for every (xa, xb) ∈ R, the existence of xa

ua

a
- x′a in

Sa implies the existence of xb
ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an ε-approximate
bisimulation relation between Sa and Sb if R is an ε-
approximate simulation relation from Sa to Sb and R−1 is
an ε-approximate simulation relation from Sb to Sa.
System Sa is ε-approximately simulated by Sb, or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation from Sa to Sb.
System Sa is ε-approximate bisimilar to Sb, denoted by
Sa ∼=ε

S Sb, if there exists an ε-approximate bisimulation
relation between Sa and Sb.

As explained in [22], for nondeterministic systems one
needs to consider relationships that explicitly capture the
adversarial nature of nondeterminism. Furthermore, these
types of relations become crucial to enable the refinement
of symbolic controllers [8].

Definition 3.3: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d. For
ε ∈ R+

0 , a relation R ⊆ Xa ×Xb is said to be an
alternating ε-approximate simulation relation from Sa to Sb
if conditions (i) and (ii) in Definition 3.2, as well as the
following condition, are satisfied:
(iii) for every (xa, xb) ∈ R and for every ua ∈ Ua (xa)

there exists some ub ∈ Ub (xb) such that for every x′b ∈
Postub(xb) there exists x′a ∈ Postua(xa) satisfying
(x′a, x

′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an alternating ε-
approximate bisimulation relation between Sa and Sb if R
is an alternating ε-approximate simulation relation from Sa
to Sb and R−1 is an alternating ε-approximate simulation
relation from Sb to Sa.
System Sa is alternatingly ε-approximately simulated by Sb,
or Sb alternatingly ε-approximately simulates Sa, denoted
by Sa �εAS Sb, if there exists an alternating ε-approximate
simulation relation from Sa to Sb. System Sa is alternatingly
ε-approximately bisimilar to Sb, denoted by Sa ∼=ε

AS Sb,
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Fig. 1. Schematics of a networked control system Σ̃.

if there exists an alternating ε-approximate bisimulation
relation between Sa and Sb.

Let us define a metric system Sτ (Σ) :=
(Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ ), capturing all the information

contained in the forward complete plant Σ at the sampling
times:
• Xτ = Rn;
• Xτ0 = Rn;
• Uτ = U ;
• xτ

υτ

τ
- x′τ if there exists a trajectory ξxτυτ : [0, τ ]→

Rn of Σ satisfying ξxτυτ (τ) = x′τ ;
• Yτ = Rn/Q for some given equivalence relation Q ⊆
Xτ ×Xτ ;

• Hτ = πQ.
Notice that the set of states and inputs of Sτ (Σ) are uncount-
able and that Sτ (Σ) is a deterministic system in the sense of
Definition 3.1 since (cf. Subsection II-B) the trajectory of Σ
is uniquely determined. We also assume that the output set
Yτ is equipped with a metric dYτ : Yτ × Yτ → R+

0 .
The interested readers can consult the results in [12]

(resp. [13]) providing a finite abstraction Sq(Σ) :=
(Xq, Xq0, Uq,

q
- , Yq, Hq) for a δ-ISS (resp. δ-FC) con-

trol system Σ such that Sq(Σ) ∼=ε
S Sτ (Σ), or equivalently2

Sq(Σ) ∼=ε
AS Sτ (Σ) (resp. Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ)).

Remark 3.4: Consider the metric system Sτ (Σ) admitting
an abstraction Sq(Σ). Since the plant Σ is forward complete,
one can readily verify that given any state xτ ∈ Xτ , there
always exists a υτ -successor of xτ for any υτ ∈ Uτ . Hence,
Uτ (xτ ) = Uτ for any xτ ∈ Xτ . Therefore, without loss of
generality, one can also assume that Uq(xq) = Uq for any
xq ∈ Xq.

IV. NETWORKED CONTROL SYSTEMS

Consider a NCS Σ̃ as depicted schematically in Figure
1 similar to the ones in [5, Figure 1] and [6, Figure 1].
The NCS Σ̃ includes a plant Σ, a time-driven sampler, and
an event-driven zero-order-hold (ZOH), which are described
in more detail shortly. The forward complete plant Σ =
(Rn,U,U , f) of a NCS is connected to a symbolic controller,
explained in more detail in the next subsection, over a
communication network that induces delays (∆sc and ∆ca).

2Let us recall that the notions of alternating approximate (bi)simulation
and of approximate (bi)simulation relation coincide when the systems
involved are deterministic as per Definition 3.1.



The state measurements of the plant are sampled by a time-
driven sampler at times sk := kτ , k ∈ N0, and we denote
xk := ξ(sk). The discrete-time control values computed by
the symbolic controller at times sk are denoted by uk. Time-
varying network-induced delays, i.e. the sensor-to-controller
delay (∆sc

k ) and the controller-to-actuator delay (∆ca
k ), are in-

cluded in the model. Moreover, packet dropouts in both chan-
nels of the network can be incorporated in the delays ∆sc

k and
∆ca
k as long as the maximum number of subsequent dropouts

over the network is bounded [23]. Finally, the varying
computation time needed to evaluate the symbolic controller
is incorporated into ∆ca

k . We assume that the time-varying
delays are bounded and are integer multiples of the sampling
time τ , i.e. ∆sc

k := N sc
k τ , where N sc

k ∈ [N sc
min;N sc

max],
and ∆ca

k := N ca
k τ , where N ca

k ∈ [N ca
min;N ca

max], for some
N sc

min, N
sc
max, N

ca
min, N

ca
max ∈ N0. Under these assumptions,

there is no difference in assuming that both the controller
and the actuator act in an event-driven fashion (i.e. they
respond instantaneously to newly arrived data) or in a time-
driven fashion (i.e. they respond to newly arrived data at the
sampling instants sk). Furthermore, we model the occurrence
of message rejection, i.e. the effect of older data being
neglected because more recent data is available before the
older data arrival, similar to the work in [5], [6]. The zero-
order-hold (ZOH) function (see Figure 1) is placed before
the plant Σ to transform the discrete-time control inputs uk,
k ∈ N0, to a continuous-time control input υ(t) = uk∗(t),
where k∗(t) := max {k ∈ N0 | sk + ∆ca

k ≤ t}. As argued in
[5], [6], within the sampling interval [sk, sk+1[ υ(t) can be
explicitly described by

υ(t) = uk+j∗−N ca
max

, for t ∈ [sk, sk+1[ , (IV.1)

where j∗ ∈ [0;N ca
max −N ca

min] is defined as:

j∗ = f̂
(
N̂N ca

min
, . . . , N̂N ca

max

)
, (IV.2)

where N̂k, for k ∈ [N ca
min;N ca

max], is the delay suffered by
the control packet sent k samples before, namely N̂N ca

max−i =
N ca
k−N ca

max+i
for any i ∈ [0;N ca

max −N ca
min] and

f̂
(
N̂N ca

min
, . . . , N̂N ca

max

)
(IV.3)

= max

{
arg min

j
ĝ
(
j, N̂N ca

min
, . . . , N̂N ca

max

)}
,

where

ĝ
(
j, N̂N ca

min
, . . . , N̂N ca

max

)
=

min

{
max

{
0, N̂N ca

max−j + j −N ca
max

}
,

max
{

0, N̂N ca
max−1−j + j −N ca

max + 1
}
,

. . . ,max
{

0, N̂N ca
min
−N ca

min

}
, 1

}
,

with j ∈ [0;N ca
max −N ca

min]. Note that the expression for the
continuous-time control input in (IV.1) and (IV.2) takes into
account the possible out-of-order packet arrivals and message
rejection. For example, in Figure 3, the time-delays in the

sk�1 sk sk+1 sk+2 sk+3 sk+4

�ca
k�1

�ca
k

�ca
k+1

�ca
k+2

Message rejected

uk�3

uk�2

uk�1

uk+1

uk+2

Fig. 2. Time-delays in the controller-to-actuator branch of the network
with ∆ca

k ∈ {τ, 2τ, 3τ}.

controller-to-actuator branch of the network are allowed to
take values in {τ, 2τ, 3τ}, resulting in a message rejection at
time sk+2. We refer the interested readers to references [5],
[6] for more details on the proposed choices for j∗ (IV.2),
f̂ , and ĝ.

A. Symbolic controller

A symbolic controller is a mechanism that determines
which inputs uk ∈ U should be fed into the system Σ based
on the observed states xk ∈ Rn. We refer the interested
readers to [8] for a formal definition of symbolic controllers.
Although for some LTL specifications such as safety or
reachability it is sufficient to consider only static controllers
(i.e. without memory) [24], we do not limit our work by this
assumption. Hence the approach presented in what follows
is applicable to dynamic controllers (i.e. a controller with
memory) as well, which are required to address general LTL
specifications [25]. Due to the presence of a ZOH, from now
on we assume that the set U contains only curves that are
constant over intervals of length τ ∈ R+ and take values in
U, i.e.:

U = (IV.4)

{υ : R+
0 → U|υ(t) = υ((s− 1)τ), t ∈ [(s− 1)τ, sτ [, s ∈ N}.

Correspondingly, one should update Uτ to U (IV.4) in the
definition of Sτ (Σ) (cf. Section III).

Similar to what was assumed in the connection between
controller and plant, we also consider the possible occurrence
of message rejection for the measurement data sent from the
sensor to the symbolic controller. The symbolic controller
uses x̂k as an input at the sampling times sk := kτ , where

x̂k = xk+`∗−N sc
max

, (IV.5)

where `∗ ∈ [0;N sc
max −N sc

min] is defined as:

`∗ = f̂
(
ÑN sc

min
, . . . , ÑN sc

max

)
, (IV.6)

where Ñk, for k ∈ [N sc
min;N sc

max], is the delay suffered
by the measurement packet sent k samples ago, namely
ÑN sc

max−i = N sc
k−N sc

max+i
for any i ∈ [0;N sc

max −N sc
min], and

f̂ is the function appearing in (IV.3). Note that the expression
for the input of the controller in (IV.5) and (IV.6) takes into
account possible out-of-order packet arrivals and message
rejection. Again, we refer the interested readers to [5], [6]
for more details on the proposed choices for `∗ in (IV.6).



B. Describing NCS as metric systems

Given Sτ (Σ) and the NCS Σ̃, now consider the metric
system S(Σ̃) := (X,X0, U, - , Y,H), capturing all the
information contained in the NCS Σ̃, where:

• X = {Xτ ∪ q}N
sc
max × U

N ca
max

τ × [N sc
min;N sc

max]
N sc

max ×
[N ca

min;N ca
max]

N ca
max , where q is a dummy symbol;

• X0 =
{(
x0, q, . . . , q, υ0, . . . , υ0, N

sc
max, . . . , N

sc
max,

N ca
max, . . . , N

ca
max

)
| x0 ∈ Xτ0, υ0 ∈ Uτ

}
;

• U = Uτ ;
•
(
x1, . . . , xN sc

max
, υ1, . . . , υN ca

max
, Ñ1, . . . , ÑN sc

max
,

N̂1, . . . , N̂N ca
max

)
υ-
(
x′, x1, . . . , xN sc

max−1, υ, υ1, . . . ,

υN ca
max−1, Ñ , Ñ1, . . . , ÑN sc

max−1, N̂ , N̂1, . . . , N̂N ca
max−1

)

for all Ñ ∈ [N sc
min;N sc

max] and all N̂ ∈ [N ca
min;N ca

max]

if there exists a transition x1
υNca

max−j∗

τ
- x′ in Sτ (Σ)

where j∗ = f̂
(
N̂N ca

min
, . . . , N̂N ca

max

)
, defined in (IV.2);

• Y = Yτ × Yτ ;
• H

(
x1, . . . , xN sc

max
, υ1, . . . , υN ca

max
, Ñ1, . . . , ÑN sc

max
,

N̂1, . . . , N̂N ca
max

)
=
(
Hτ (x1), Hτ

(
xN sc

max−`∗
))

, where

`∗ = f̂
(
ÑN sc

min
, . . . , ÑN sc

max

)
is defined in (IV.6). With

a slight abuse of notation, we assume that Hτ (q) := q.

Note that the choice of the set of state X in S(Σ̃) allows
one to keep track of the measurement and control packets
and the corresponding delays suffered by them, in order to
consider out-of-order packet arrivals and message rejections.

Let us remark that the set of states and inputs of S(Σ̃) are
uncountable and that S(Σ̃) is a nondeterministic system in
the sense of Definition 3.1, since depending on the values of
Ñ and N̂ , more than one υ-successor of any state of S(Σ̃)
may exist.

Remark 4.1: Note that the output value of any state of
S(Σ̃) is a pair: the first entry is the output of the plant
available at the sensors at times sk := kτ , and the second
one is the output of the plant available at the controller at
the same times sk taking into consideration the occurrence of
message rejection (cf. see Figure 1 for the pair of outputs).
With the output map defined as we suggest, the synthesis
of controllers should be performed using the first entries of
the output pairs to define the satisfaction of properties. This
is so because usually specifications are expressed in terms
of the outputs exhibited by the plant, i.e. what is available
at the sensors before the network. However, the controller
refinement (and any interconnection analysis) should make
use of the second entry of the output pairs as those are the
outputs received by the controllers. In the present paper we
do not dive further into these issues, which are left as object
of future research.

We assume that the output set Y is equipped
with the metric dY that is induced by the
metric dYτ , as the following: given any x :=(
x1, . . . , xN sc

max
, υ1, . . . , υN ca

max
, Ñ1, . . . , ÑN sc

max
, N̂1, . . . ,

N̂N ca
max

)
and x′ :=

(
x′1, . . . , x

′
N sc

max
, υ′1, . . . , υ

′
N ca

max
, Ñ ′1, . . . ,

Ñ ′N sc
max

, N̂ ′1, . . . , N̂
′
N ca

max

)
in X , we set

dY (H (xτ ) , H (x′τ )) = dY ((x1, xk), (x′1, x
′
k)) := (IV.7)

max {dYτ (Hτ (x1) , Hτ (x′1)) ,dYτ (Hτ (xk) , Hτ (x′k))} ,

for some given k ∈ [N sc
min;N sc

max], where we extend the
metric dYτ such that dYτ (Hτ (x), Hτ (q)) = +∞ for any
x ∈ Rn and dYτ (Hτ (q), Hτ (q)) = 0. Hence, two states of
S(Σ̃) are ε-close if not only their first entries are ε-close but
also if the second entries are ε-close too.

V. SYMBOLIC MODELS FOR NCS

This section contains the main contributions of the paper.
We show the existence and construction of symbolic models
for NCS by using existing symbolic models for the plant Σ,
namely, Sq(Σ) := (Xq, Xq0, Uq,

q
- , Yq, Hq).

Define the following system:

S∗(Σ̃) :=
(
X∗, X∗0, U∗, ∗

- , Y∗, H∗
)
,

where
• X∗ = {Xq ∪ q}N

sc
max × UN

ca
max

q × [N sc
min;N sc

max]
N sc

max ×
[N ca

min;N ca
max]

N ca
max ;

• X∗0 =
{(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N sc

max, . . . , N
sc
max,

N ca
max, . . . , N

ca
max

)
| x∗0 ∈ Xq0, u∗0 ∈ Uq

}
;

• U∗ = Uq;
•
(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗N ca

max
, Ñ∗1, . . . , Ñ∗N sc

max
,

N̂∗1, . . . , N̂∗N ca
max

)
u∗

∗
-
(
x′∗, x∗1, . . . , x∗(N sc

max−1), u∗,

u∗1, . . . , u∗(N ca
max−1), Ñ∗, Ñ∗1, . . . , Ñ∗(N sc

max−1), N̂∗,

N̂∗1, . . . , N̂∗(N ca
max−1)

)
for all Ñ∗ ∈ [N sc

min;N sc
max]

and all N̂∗ ∈ [N ca
min;N ca

max] if there exists

transition x∗1
u∗(Nca

max−j∗)

q
- x′∗ in Sq(Σ) where

j∗ = f̂
(
N̂∗N ca

min
, . . . , N̂∗N ca

max

)
, defined in (IV.2);

• Y∗ = Yq × Yq;
• H∗

(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗N ca

max
, Ñ∗1, . . . , Ñ∗N sc

max

, N̂∗1, . . . , N̂∗N ca
max

)
=
(
Hq (x∗1) , Hq

(
x∗(N sc

max−`∗)
))

where `∗ = f̂
(
Ñ∗N sc

min
, . . . , Ñ∗N sc

max

)
, defined in

(IV.6). With a slight abuse of notation, we set
Hq(q) := q.

Note that S∗(Σ̃) has the same structure as S(Σ̃), but it is
computed using a symbolic model of Sτ (Σ), namely, Sq(Σ).
It can be readily seen that the system S∗(Σ̃) is countable
or symbolic if the system Sq(Σ) is countable or symbolic,
respectively. Although Sq(Σ) may be a deterministic system,
S∗(Σ̃) is always a nondeterministic one, since depending on
the possible delays in both channels of the network (i.e. the
values of Ñ∗ and N̂∗), more than one u∗-successor of any
state of S∗(Σ̃) may exist.

We can now state the main results of the paper.
Theorem 5.1: Consider a NCS Σ̃ and suppose that there

exists an abstraction Sq(Σ) such that Sq(Σ) �εAS Sτ (Σ) �εS
Sq(Σ). Then we have S∗(Σ̃) �εAS S(Σ̃) �εS S∗(Σ̃).
The proof of Theorem 5.1 is provided in the Appendix.
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Fig. 3. Shifting functions ϕ and ψ to the other sides of the communication
network.

Corollary 5.2: Consider a NCS Σ̃ and suppose that there
exists an abstraction Sq(Σ) such that Sq(Σ) ∼=ε

AS Sτ (Σ).
Then we have S∗(Σ̃) ∼=ε

AS S(Σ̃).
Proof: Using Theorem 5.1 one gets that Sq(Σ) �εAS

Sτ (Σ) implies S∗(Σ̃) �εAS S(Σ̃) equipped with the alter-
nating ε-approximate simulation relation R̃ as defined in the
proof of Theorem 5.1. In a similar way, one can show that
Sτ (Σ) �εAS Sq(Σ) implies S(Σ̃) �εAS S∗(Σ̃) equipped with
the alternating ε-approximate simulation relation R̃−1 which
completes the proof.

Remark 5.3: With reference to the formal definition of
symbolic controllers in [8], one can readily verify the exis-
tence of two static functions ϕ : Xτ → Xq and ψ : Uq → U,
inside the symbolic controllers, associating to any xτ ∈ Xτ

one symbol xq ∈ Xq and to any symbol uq ∈ Uq one
control value uτ ∈ U, respectively, as shown in Figure 3.
Since the functions ϕ and ψ are static, without violating
the main results one can shift those functions toward sensor
and actuator in the NCS as shown in Figure 3. If Sq(Σ)
is symbolic, then Uq and Xq are finite sets. Hence, one
can automatically take care of limited bandwidth constraints
without introducing additional quantization errors. As also
noted in [10], [11], for the grid-based symbolic abstractions
Sq(Σ) proposed in [12], [13], one has: ψ = 1Uq and ϕ : x→
[x]η , where [x]η ∈ [Rn]η such that ‖x− [x]η‖ ≤ η/2 for a
given state space quantization parameter η ∈ R+.

We refer the interested readers to Subsection 5.1 in [26]
providing similar results as the ones in Theorem 5.1 and
Corollary 5.2 when the symbolic controller is static.

Remark 5.4: One of the distinguishing contributions of
our work with respect to [10], [11] is that our results do
not hinge on any assumption on the controller. Hence, the
provided abstractions here are amenable to any available
synthesis techniques and tools, e.g. PESSOA [27] and SPIN

[28] (whether resulting in static or dynamic controllers).
Contrary, the authors in [10], [11] were forced to provide
specific constructions for both the controller synthesis and
the reformulation of the specification, due to the employed
assumptions and the convolved output values of the proposed
abstractions.

VI. SPACE COMPLEXITY ANALYSIS

We compare the results provided here with the ones
provided in [10], [11] in terms of the size of the proposed
finite abstractions. To obtain a fair comparison, we also
impose a grid-based finite abstraction for the plant Σ using
the same sampling time and quantization parameters as the
ones in [10], [11]. By assuming that we are only interested
in the dynamics of Σ on a compact set D ⊂ Rn, the size of
the set of states of the finite abstractions, provided in [10],
[11], is:

|X?| =
∑

i∈{{1}∪[Nmin;Nmax]}

∣∣∣[D]η

∣∣∣
i

,

where Nmin = N sc
min + N ca

min and Nmax = N sc
max + N ca

max.
Meanwhile, the size of the set of states for the abstractions
provided by Theorem 5.1 and Corollary 5.2, is at most:

|X∗| =
(∣∣∣[D]η

∣∣∣+ 1
)N sc

max

·
∣∣∣[U]µ

∣∣∣
N ca

max

·

(N sc
max −N sc

min + 1)
N sc

max · (N ca
max −N ca

min + 1)
N ca

max ,

where [D]η = D ∩ [Rn]η and [U]µ = U ∩ [Rm]µ for some
quantization parameters η, µ ∈ R+.

One can easily verify that the size of the symbolic models
proposed in [10], [11] is at most:
∣∣∣S?(Σ̃)

∣∣∣ = |X?| · |[U]µ| · (Nmax −Nmin + 1) ·K (VI.1)

=


 ∑

i∈{{1}∪[Nmin;Nmax]}

∣∣∣[D]η

∣∣∣
i


 ·

|[U]µ| · (Nmax −Nmin + 1) ·K,

where K is the maximum number of u-successors of any
state of the symbolic model Sq(Σ) for u ∈ [U]µ. Note
that with the results proposed in [12] one has K = 1
because Sq(Σ) is a deterministic system, while with the
ones proposed in [13] one has K ≥ 1 because Sq(Σ) is
a nondeterministic system and the value of K depends on
the functions β and γ in (II.2), see [13] for more details.
The size of the symbolic models provided in this paper is at
most:∣∣∣S∗(Σ̃)

∣∣∣ = |X∗| · |[U]µ| · (N sc
max −N sc

min + 1) (VI.2)

· (N ca
max −N ca

min + 1) .K

=
(∣∣∣[D]η

∣∣∣+ 1
)N sc

max ·
∣∣∣[U]µ

∣∣∣Nca
max+1

· (N sc
max −N sc

min + 1)
N sc

max+1

· (N ca
max −N ca

min + 1)
Nca

max+1 ·K,

with the same K as in (VI.1). For the sake of fair comparison,
one should compare the size in (VI.1) with the one in (6.3)
in [26] because in both symbolic models S?(Σ̃) and S∗(Σ̃)
in [26] it is assumed that the symbolic controllers are static.
It can be readily verified that if

∣∣∣[D]η

∣∣∣ is much bigger than



∣∣∣[U]µ

∣∣∣
(∣∣∣[D]η

∣∣∣ >>
∣∣∣[U]µ

∣∣∣
)

which is often the case,
∣∣∣S∗(Σ̃)

∣∣∣
can be much smaller than

∣∣∣S?(Σ̃)
∣∣∣ specially for large values

of Nmax. The symbolic model S∗(Σ̃) can also have a smaller
size for large values of Nmax and for

∣∣∣[D]η

∣∣∣ >>
∣∣∣[U]µ

∣∣∣, as
shown in the following numerical example.

Example 6.1: Consider a plant Σ such that D = [−1, 1]×
[−1, 1], U = [0, 1], η = 0.1, and µ = 1. Assume that the
delays in different parts of the network are as the following:
N sc

min = 1, N sc
max = 2, N ca

min = 2, and N ca
max = 3. Using

equations (VI.1), (VI.2), and (6.3) in [26], one obtains:∣∣∣S?(Σ̃)
∣∣∣ = 6.1594× 1013K,

∣∣∣S∗(Σ̃)
∣∣∣ = 3.2932× 108K,∣∣∣S∗(Σ̃)

∣∣∣ = 1.8662× 107K.

It can be readily verified that the sizes of our proposed
abstractions S∗(Σ̃) and S∗(Σ̃) in [26] are roughly 2 × 105

and 3× 106 times smaller than the one of S?(Σ̃), proposed
in [10], [11], respectively.

Remark 6.2: Note that in Remark 5.2 in [10], the authors
suggest a more concise representation for their proposed
finite abstractions of NCS in order to reduce the space
complexity. However, this representation is only applicable
if the plant Σ is δ-ISS. Therefore, for general classes of
plants Σ of NCS, our proposed approach is potentially more
appropriate in terms of the size of the abstractions, especially
for large values of Nmax.

VII. DISCUSSION

In this paper we have provided a construction of symbolic
models for NCS, subject to variable communication delays,
quantization errors, packet losses, and limited bandwidth, us-
ing available symbolic models for the plant. Furthermore, our
approach allows us to treat general specifications expressed
as formulae in LTL or as automata on infinite strings without
requiring additional reformulations. Finally, we have shown
that the proposed methodology also results, in general, in
smaller abstractions than similar approaches in the literature
[10], [11].

Future work will concentrate on: 1) providing efficient
implementations of the symbolic models, the construction of
which has been shown in this work; 2) the construction of
symbolic models for NCS by considering some probabilis-
tic structure on the transmission intervals, communication
delays, and packet dropouts; 3) construction of symbolic
models for NCS by considering additional network non-
idealities, in particular time-varying sampling/transmission
intervals.
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VIII. APPENDIX

Proof: [Proof of Theorem 5.1] We start by proving
S∗(Σ̃) �εAS S(Σ̃). Since Sq(Σ) �εAS Sτ (Σ),
there exists an alternating ε-approximate simulation
relation R from Sq(Σ) to Sτ (Σ). Consider the relation
R̃ ⊆ X∗ × X defined by (x∗, x) ∈ R̃, where x∗ =(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗N sc

max
, N̂∗1, . . . ,

N̂∗Nca
max

)
and x =

(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
,

N̂1, . . . , N̂Nca
max

)
, if and only if Ñ∗i = Ñi, ∀i ∈ [1;N sc

max],

N̂∗j = N̂j , ∀j ∈ [1;N ca
max], (x∗k, xk) ∈ R, ∀k ∈ [1;N sc

max], and
for each u∗i and the corresponding υi there exists x′∗ ∈ Postu∗i(x∗)
such that (x′∗, ξxυi(τ)) ∈ R for any i ∈ [1;N ca

max] and any
(x∗, x) ∈ R. Note that if Uτ = Uq and they are finite then the
last condition of the relation R̃ is nothing more than requiring
u∗i = υi for any i ∈ [1;N ca

max].
Consider x∗0 :=

(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N

sc
max, . . . , N

sc
max,

N ca
max, . . . , N

ca
max

)
∈ X∗0. Due to the relation R, there

exist x0 ∈ Xτ0 such that (x∗0, x0) ∈ R and υ0 ∈ Uτ
such that there exists x′∗ ∈ Postu∗0 (x∗) satisfying
(x′∗, ξxυ0(τ)) ∈ R for any (x∗, x) ∈ R. Hence, by choosing x0 :=
(x0, q, . . . , q, υ0, . . . , υ0, N

sc
max, . . . , N

sc
max, N

ca
max, . . . , N

ca
max) ∈

X0, one gets (x∗0, x0) ∈ R̃ and condition (i) in Definition 3.3 is
satisfied.

Now consider any (x∗, x) ∈ R̃, where x∗ =(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗N sc

max
, N̂∗1, . . . ,

N̂∗Nca
max

)
and x =

(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
,

N̂1, . . . , N̂Nca
max

)
. Since Ñ∗i = Ñi, ∀i ∈ [1;N sc

max],

and N̂∗j = N̂j , ∀j ∈ [1;N ca
max], and using definitions

of S∗(Σ̃) and S(Σ̃), one obtains H∗ (x∗) = (x∗1, x∗k)
and H (x) = (x1, xk), for some k ∈ [N sc

min;N sc
max]

(cf. Definitions S∗(Σ̃) and S(Σ̃)). Since (x∗i, xi) ∈ R,
∀i ∈ [1;N sc

max], one gets dYτ (Hq (x∗i) , Hτ (xi)) ≤ ε,
∀i ∈ [1;N sc

max]. Therefore, dY (H∗(x∗), H(x)) =
max {dYτ (Hq (x∗1) , Hτ (x1)) , dYτ (Hq (x∗k) , Hτ (xk))} ≤ ε
and condition (ii) in Definition 3.3 is satisfied.

Let us now show that condition (iii) in Definition
3.3 holds. Consider any (x∗, x) ∈ R̃, where x∗ =(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗N sc

max
, N̂∗1, . . . ,

N̂∗Nca
max

)
, x =

(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
,

N̂1, . . . , N̂Nca
max

)
. Consider any u∗ ∈ U∗(x∗) = Uq. Using the

relation R, there exist υ ∈ U(x) = Uτ and x̀∗ ∈ Postu∗(x∗) such
that (x̀∗, ξxυ(τ)) ∈ R for any (x∗, x) ∈ R. Now consider any x′ =(
x′, x1, . . . , xN sc

max−1, υ, υ1, . . . , υNca
max−1, Ñ , Ñ1, . . . , ÑN sc

max−1,

N̂ , N̂1, . . . , N̂Nca
max−1

)
∈ Postυ(x) ⊆ X for some

Ñ ∈ [N sc
min;N sc

max] and N̂ ∈ [N ca
min;N ca

max] where
x′ = ξx1υk (τ) for some given k ∈ [N ca

min;N ca
max] (cf.

Definition S(Σ̃)). Because of the relation R, there exists
x′∗ ∈ Postu∗k (x∗1) in Sq(Σ) such that (x′∗, x

′) ∈ R.
Hence, due to the definition S∗(Σ̃), one can choose x′∗ =(
x′∗, x∗1, . . . , x∗(N sc

max−1), u∗, u∗1, . . . , u∗(Nca
max−1), Ñ , Ñ1, . . . ,

ÑN sc
max−1, N̂ , N̂1, . . . , N̂Nca

max−1

)
∈ Postu∗(x∗) ⊆ X∗.

Due to the relation R, one can readily verify that
dYτ (Hq(x

′
∗), Hτ (x′)) ≤ ε. Since dYτ (Hq(x∗j), Hτ (xj)) ≤ ε,

∀j ∈ [1;N sc
max − 1], one gets dY (H∗ (x′∗) , H (x′)) =

max {dYτ (Hq (x′∗) , Hτ (x′)) , dYτ (Hq (x∗k) , Hτ (xk))} ≤ ε,
for some given3 k ∈ [N sc

min − 1;N sc
max − 1] (cf. Definitions S∗(Σ̃)

3Note that if N sc
min = 0, then x∗(−1) = x′∗ and x−1 = x′.

and S(Σ̃)). Hence, (x′∗, x
′) ∈ R̃ implying that condition (iii) in

Definition 3.3 holds.
Now we prove S(Σ̃) �εS S∗(Σ̃). Since Sτ (Σ) �εS

Sq(Σ), there exists an ε-approximate simulation relation
R from Sτ (Σ) to Sq(Σ). Consider the relation
R̃ ⊆ X × X∗ defined by (x, x∗) ∈ R̃, where
x =

(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
, N̂1, . . . ,

N̂Nca
max

)
and x∗ =

(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . ,

Ñ∗N sc
max

, N̂∗1, . . . , N̂∗Nca
max

)
, if and only if Ñi = Ñ∗i,

∀i ∈ [1;N sc
max], N̂j = N̂∗j , ∀j ∈ [1;N ca

max], (xk, x∗k) ∈ R,
∀k ∈ [1;N sc

max], and for each υi and the corresponding u∗i there
exists a x′∗ ∈ Postu∗i(x∗) such that (ξxυi(τ), x′∗) ∈ R for any
i ∈ [1;N ca

max] and any (x, x∗) ∈ R. Note that if Uτ = Uq and
they are finite then the last condition of the relation R̃ is nothing
more than requiring u∗i = υi for any i ∈ [1;N ca

max].
Consider x0 :=

(
x0, q, . . . , q, υ0, . . . , υ0, N

sc
max, . . . , N

sc
max, N

ca
max,

. . . , N ca
max

)
∈ X0. Due to the relation R, there exist

x∗0 ∈ X∗0 such that (x0, x∗0) ∈ R and u∗0 ∈ Uq

such that there exists x′∗ ∈ Postu∗0 (x∗) satisfying
(ξxυ0(τ), x′∗) ∈ R for any (x, x∗) ∈ R. Hence, by choosing
x∗0 :=

(
x∗0, q, . . . , q, u∗0, . . . , u∗0, N

sc
max, . . . , N

sc
max, N

ca
max, . . . ,

N ca
max

)
∈ X∗0, one gets (x0, x∗0) ∈ R̃ and condition (i) in

Definition 3.2 is satisfied.
Now consider any (x, x∗) ∈ R̃, where x =(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
, N̂1, . . . , N̂Nca

max

)
and x∗ =

(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗N sc

max
,

N̂∗1, . . . , N̂∗Nca
max

)
. Since Ñi = Ñ∗i, ∀i ∈ [1;N sc

max],

and N̂j = N̂∗j , ∀j ∈ [1;N ca
max], and using definitions

of S(Σ̃) and S∗(Σ̃), one obtains H (x) = (x1, xk)
and H∗ (x) = (x∗1, x∗k), for some k ∈ [N sc

min;N sc
max]

(cf. Definitions S∗(Σ̃) and S(Σ̃)). Since (xi, x∗i) ∈ R,
∀i ∈ [1;N sc

max], one gets dYτ (Hτ (xi) , Hq (x∗i)) ≤ ε,
∀i ∈ [1;N sc

max]. Therefore, dY (H(x), H∗(x∗)) =
max {dYτ (Hτ (x1) , Hq (x∗1)) , dYτ (Hτ (xk) , Hq (x∗k))} ≤ ε
and condition (ii) in Definition 3.2 is satisfied.

Let us now show that condition (iii) in Definition
3.2 holds. Consider any (x, x∗) ∈ R̃, where x =(
x1, . . . , xN sc

max
, υ1, . . . , υNca

max
, Ñ1, . . . , ÑN sc

max
, N̂1, . . . , N̂Nca

max

)
,

x∗ =
(
x∗1, . . . , x∗N sc

max
, u∗1, . . . , u∗Nca

max
, Ñ∗1, . . . , Ñ∗N sc

max
, N̂∗1,

. . . , N̂∗Nca
max

)
. Consider any υ ∈ U(x) = Uτ . Using the relation

R, there exist u∗ ∈ U∗(x∗) = Uq and x̀∗ ∈ Postu∗(x∗) such
that (ξxυ(τ), x̀∗) ∈ R for any (x, x∗) ∈ R. Now consider any x′ =(
x′, x1, . . . , xN sc

max−1, υ, υ1, . . . , υNca
max−1, Ñ , Ñ1, . . . , ÑN sc

max−1,

N̂ , N̂1 . . . , N̂Nca
max−1

)
∈ Postυ(x) ⊆ X for some

Ñ ∈ [N sc
min;N sc

max] and N̂ ∈ [N ca
min;N ca

max] where
x′ = ξxυk (τ) for some given k ∈ [N ca

min;N ca
max] (cf.

Definition S(Σ̃)). Because of the relation R, there exists
x′∗ ∈ Postu∗k (x∗1) in Sq(Σ) such that (x′, x′∗) ∈ R.
Hence, due to the definition S∗(Σ̃), one can choose x′∗ =(
x′∗, x∗1, . . . , x∗(N sc

max−1), u∗, u∗1, . . . , u∗(Nca
max−1), Ñ , Ñ1, . . . ,

ÑN sc
max−1, N̂ , N̂1, . . . , N̂Nca

max−1

)
∈ Postu∗(x∗) ⊆ X∗.

Due to the relation R, one can readily verify that
dYτ (Hτ (x′), Hq(x

′
∗)) ≤ ε. Since dYτ (Hτ (xj), Hq(x∗j)) ≤ ε,

∀j ∈ [1;N sc
max − 1], one gets dY (H (x′) , H∗ (x′∗)) =

max {dYτ (Hτ (x′) , Hq (x′∗)) , dYτ (Hτ (xk) , Hq (x∗k))} ≤ ε,
for some given3 k ∈ [N sc

min − 1;N sc
max − 1] (cf. Definitions S∗(Σ̃)

and S(Σ̃)). Hence, (x′, x′∗) ∈ R̃ implying that condition (iii) in
Definition 3.2 holds, which completes the proof.


