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Abstract— Symbolic approaches provide a mechanism to
construct discrete and possibly finite abstractions of continuous
control systems. Discrete abstractions are in turn amenable
to automata-theoretic techniques targeted at the construction
of controllers satisfying complex specifications that would be
difficult to enforce over continuous models with conventional
control design methods. Although the construction of discrete
abstractions has been extensively studied for non-probabilistic
continuous-time control systems, it has received scant attention
on their stochastic counterparts. In this paper, we propose
an abstraction technique that is applicable to any stochastic
continuous-time control system, as long as we are only inter-
ested in its behavior over a compact set. The effectiveness of the
proposed results is illustrated with the synthesis of a controller
for a jet engine model, which is not stable, is affected by noise,
and is subject to a schedulability constraint expressed by a
finite automaton.

I. INTRODUCTION

Symbolic models are abstract descriptions of physical
systems where each state represents a collection, or an ag-
gregate, of states of the continuous system. Symbolic models
are as well employed in the description of software and
hardware, which are often characterized by discrete, digital
components. The composition of continuous and discrete
models captures the behavior of physical systems interacting
with digital, computational devices, and results in the general
framework known as Cyber-Physical Systems (CPS) [17].
The problems of verification and of controller synthesis over
models as general as CPS can be algorithmically studied
using methodologies and tools developed in the computer
science, as long as there exist symbolic models describing
the overall behaviors of CPS.

The quest for symbolic abstractions has a rich and recent
history with numerous results on non-probabilistic contin-
uous control systems [5], [7], [10], [13], [14], [16], [19].
For stochastic systems the results are less abundant, and
deal with discrete-time autonomous systems [1], [3], [4],
with discrete-time control systems [2] equipped with a finite
number of control actions and investigated over reachability
analysis, and finally with continuous-time control systems
under some stability assumptions [18]. As an extension of
the results in [18], this paper shows that a symbolic model
of a continuous-time stochastic control system exists even in
the absence of stability assumptions. More specifically, the
main contribution of this work is to establish the following
claim: for every continuous-time stochastic control system
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satisfying some completeness assumption (as per Definition
2.2), one can construct a symbolic model that is alternatingly
approximately simulated (as discussed in Definition 3.3) by
the stochastic control system and that approximately simu-
lates (as discussed in Definition 3.2) the stochastic control
system.

The mentioned relationships are weaker than that of ap-
proximate bisimulation relation established in [18], but they
apply to a larger class of continuous-time stochastic control
systems since they no longer require any sort of stability
assumptions. Moreover, the relationships established in this
paper are still sufficient to guarantee that any controller
synthesized for the symbolic model enforces the desired
specifications on the original stochastic control system. How-
ever, they can no longer guarantee, as it was the case in [18],
that the existence of a controller for the original stochastic
control system leads to the existence of a controller for the
symbolic model.

The technical results in this work are illustrated on a
Moore-Greitzer jet engine model, which is affected by noise
and dwells in a no-stall mode that does not satisfy the
stability assumptions required in [18]. The novel abstraction
approach presented in this paper is used to synthesize a con-
troller stabilizing the jet engine, despite further schedulability
constraints imposed by executing the controller actions on a
microprocessor running other tasks.

II. STOCHASTIC CONTROL SYSTEMS

A. Notation
The identity map on a set A is denoted by 1A. If A

is a subset of B we denote by ıA : A ↪→ B or simply by
ı the natural inclusion map taking any point a ∈ A to
ı(a) = a ∈ B. The symbols N, Z, R, R+, and R+

0 denote
the set of natural, integer, real, positive real, and nonnegative
real numbers, respectively. The symbols In, 0n, and 0n×m
denote the identity matrix, the zero vector and zero matrix in
Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,
we denote by xi the i–th element of x, and by ‖x‖ the infinity
norm of x, namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|}, where
|xi| denotes the absolute value of xi. Given a matrix M =
{mij} ∈ Rn×m, we denote by ‖M‖ the infinity norm of
M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F

the Frobenius norm of M , namely, ‖M‖F =
√

Tr (MMT )
where Tr(P ) =

∑n
i=1 pii, for any P = {pij} ∈ Rn×n.

The diagonal set ∆ ⊂ Rn × Rn is defined as: ∆ =
{(x, x) | x ∈ Rn}.

The closed ball centered at x ∈ Rn with radius ε is defined
by Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. A set B ⊆ Rn is called
a box if B =

∏n
i=1[ci, di], where ci, di ∈ R with ci < di

for each i ∈ {1, . . . , n}. The span of a box B is defined
as span(B) = min {|di − ci| | i = 1, . . . , n}. By defining
[Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the
set
⋃
p∈[Rn]η Bλ(p) is a countable covering of Rn for any η ∈

R+ and λ ≥ η. Define the η-approximation [B]η = [Rn]η∩B



for a box B ⊂ Rn and η ≤ span(B). Note that [B]η 6= ∅ for
any η ≤ span(B). Geometrically, for any η ∈ R+ with η ≤
span(B) and λ ≥ η, the collection of sets {Bλ(p)}p∈[B]η is
a finite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). We extend
the notions of span and of approximation to finite unions
of boxes as follows. Let A =

⋃M
j=1Aj , where each Aj is

a box. Define span(A) = min {span(Aj) | j = 1, . . . ,M},
and for any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η .

Given a measurable function f : R+
0 → Rn, the (essential)

supremum (sup norm) of f is denoted by ‖f‖∞; we recall
that ‖f‖∞ = (ess) sup {‖f(t)‖, t ≥ 0}. A function f is
essentially bounded if ‖f‖∞ <∞. For a given time τ ∈ R+,
define fτ so that fτ (t) = f(t), for any t ∈ [0, τ), and
fτ (t) = 0 elsewhere; f is said to be locally essentially
bounded if for any τ ∈ R+, fτ is essentially bounded.
A continuous function γ : R+

0 → R+
0 , is said to belong

to class K if it is strictly increasing and γ(0) = 0; γ is
said to belong to class K∞ if γ ∈ K and γ(r) → ∞ as
r → ∞. We identify a relation R ⊆ A×B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given
a relation R ⊆ A×B, R−1 denotes the inverse relation
defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Stochastic control systems
Let (Ω,F ,P) be a probability space endowed with a

filtration F = (Fs)s≥0 satisfying usual conditions of com-
pleteness and right continuity [8, p. 48]. Let (Ws)s≥0 be a
p-dimensional F-Brownian motion.

Definition 2.1: A stochastic control system is a tuple Σ =
(Rn,U,U , f, σ), where
• Rn is the state space;
• U ⊆ Rm is the input set;
• U is a subset of the set of all measurable, locally

essentially bounded functions of time from R+
0 to U;

• f : Rn × U → Rn is a continuous function of its
arguments satisfying the following Lipschitz assump-
tion: there exist constants Lx, Lu ∈ R+ such that:
‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x− x′‖+ Lu‖u− u′‖ for
all x, x′ ∈ Rn and all u, u′ ∈ U;

• σ : Rn → Rn×p is a continuous function satisfying the
following Lipschitz assumption: there exists a constant
Z ∈ R+ such that: ‖σ(x)−σ(x′)‖ ≤ Z‖x−x′‖ for all
x, x′ ∈ Rn.

A stochastic process ξ : Ω× R+
0 → Rn is said to be a

solution process of Σ if there exists υ ∈ U satisfying:

d ξ = f(ξ, υ) d t+ σ(ξ) dWt, (II.1)

P-almost surely (P-a.s.). We also write ξaυ(t) to denote the
value of the solution process at time t ∈ R+

0 under the
input υ and from the initial condition ξaυ(0) = a P-a.s.,
in which a is a random variable that is measurable in F0.
Note that F0, in general, is not a trivial sigma-algebra, thus
the stochastic control system Σ may start from a random
initial condition. Let us emphasize that the solution process
is uniquely determined, since the assumptions on f and σ
ensure the existence and the uniqueness of solutions [12,
Theorem 5.2.1, p. 68].

C. Completeness notion
The main result presented in this paper requires a certain

property on Σ that we introduce in this section.
Definition 2.2: A stochastic control system

Σ = (Rn,U,U , f, σ) is incrementally forward complete

in the qth moment (δ-FC-Mq), where q ≥ 1, if there
exist continuos functions β : R+

0 × R+
0 → R+

0 and
γ : R+

0 × R+
0 → R+

0 such that for every s ∈ R+, the
functions β(·, s) and γ(·, s) belong to class K∞, and for any
Rn-valued random variables a and a′, which are measurable
in F0, any t ∈ R+

0 , and any υ, υ′ ∈ U , the following
condition is satisfied:

E [‖ξaυ(t)− ξa′υ′(t)‖q] ≤ β (E [‖a− a′‖q] , t)
+γ (‖υ − υ′‖∞ , t) . (II.2)

The notion of δ-FC-Mq can be described in terms of
Lyapunov-like functions. We start by introducing the follow-
ing definition, which is inspired by the notion of incremen-
tally forward complete (δ-FC) Lyapunov function presented
in [19] for non-probabilistic control systems.

Definition 2.3: Consider a stochastic control system
Σ = (Rn,U,U , f, σ) and a continuous function
V : Rn × Rn → R+

0 that is continuously differentiable
on {Rn × Rn}\∆. Function V is called a δ-FC-Mq

Lyapunov function for Σ, where q ≥ 1, if there exist K∞
functions α, α, ρ, and a constant κ ∈ R, such that
(i) α (resp. α) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn,
α (‖x− x′‖q) ≤ V (x, x′) ≤ α (‖x− x′‖q);

(iii) for any x, x′ ∈ Rn : x 6= x′, and for any u, u′ ∈ U,

Lu,u
′
V (x, x′) := [∂xV ∂x′V ]

[
f(x, u)
f(x′, u′)

]
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [ ∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤ κV (x, x′) + ρ(‖u− u′‖),

where Lu,u′
is the infinitesimal generator associated to the

stochastic control system (II.1) [12, Section 7.3], which in
this case depends on two separate control inputs u, u′. The
symbols ∂x and ∂x,x′ denote first- and second-order partial
derivatives with respect to x and x′, respectively.

Note that the condition (i) is not required in the context
of non-probabilistic control systems [19]. Roughly speaking,
condition (ii) implies that the growth rate of functions α and
α are linear, as a concave function is supposed to dominate
a convex one. These conditions are not restrictive, provided
we are interested in the dynamics of Σ on a compact subset
D ⊂ Rn, which is often the case in practice. The following
theorem describes δ-FC-Mq in terms of the existence of δ-
FC-Mq Lyapunov functions.

Theorem 2.4: A stochastic control system
Σ = (Rn,U,U , f, σ) is δ-FC-Mq if it admits a δ-FC-
Mq Lyapunov function.

Proof: The proof is similar to the proof of Theorem
3.3 in [18] by enforcing κ ∈ R rather than κ ∈ R+ in the
proof.

Next result shows that any stochastic control system
Σ = (Rn,U,U , f, σ) is indeed δ-FC-M1.

Theorem 2.5: Any stochastic control system
Σ = (Rn,U,U , f, σ) is δ-FC-M1.

Proof: We prove the result by showing that any stochas-
tic control system Σ admits a δ-FC-M1 Lyapunov function

as V (x, x′) =

√
(x− x′)T (x− x′) and by resorting to

the result in Theorem 2.4. It is not difficult to check that
the function V satisfies properties (i) and (ii) of Definition
2.3 with functions α(y) := y and α(y) :=

√
ny. It then

suffices to verify property (iii). By the definition of V , for



any x, x′ ∈ Rn such that x 6= x′, one obtains

∂xV = −∂x′V =
(x− x′)T

V (x, x′)
,

∂x,xV = ∂x′,x′V = −∂x,x′V

=
V 2(x, x′)In − (x− x′)(x− x′)T

V 3(x, x′)
.

Therefore, following the definition of Lu,u′
, for any

x, x′ ∈ Rn such that x 6= x′, and any u, u′ ∈ U, one obtains

Lu,u
′
V (x, x′) =

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [
∂x,xV −∂x,xV
−∂x,xV ∂x,xV

])
=

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2
Tr
((
σ(x)− σ(x′)

) (
σT (x)− σT (x′)

)
∂x,xV

)
=

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2V 3(x, x′)

(∥∥(σ(x)− σ(x′))∥∥2
F
V 2(x, x′)

−
∥∥∥(x− x′)T (σ(x)− σ(x′))∥∥∥2

F

)
≤
‖x− x′‖
V (x, x′)

(
Lx‖x− x′‖+ Lu‖u− u′‖

)
+
‖σ(x)− σ(x′)‖2F

2V (x, x′)

≤ Lx‖x− x′‖+ Lu‖u− u′‖+
min{n, q}nZ2‖x− x′‖2

2V (x, x′)

≤
(
Lx +

min{n, q}nZ2

2

)
V (x, x′) + Lu

∥∥u− u′∥∥ ,
where Lx, Lu, and Z are the Lipschitz constants,
as introduced in Definition 2.1. Therefore, V (x, x′) =√

(x− x′)T (x− x′) is a δ-FC-M1 Lyapunov function for
Σ and as showed in Theorem 2.4, one concludes that Σ is
δ-FC-M1.

The following result provides a sufficient condition on a
particular function V to be a δ-FC-Mq Lyapunov function,
when q ∈ {1, 2}.

Lemma 2.6: Consider a stochastic control system Σ =
(Rn,U,U , f, σ). Let q ∈ {1, 2}, P ∈ Rn×n be a symmetric
positive definite matrix, and the function V : Rn×Rn → R+

0
be defined as follows:

V (x, x′) :=

(
1

q
(x− x′)T P (x− x′)

) q
2

, (II.3)

and satisfy

(x− x′)TP (f(x, u)− f(x′, u))+1

2

∥∥∥√P (σ(x)− σ(x′))∥∥∥2
F

≤ κ̃
(
V (x, x′)

) 2
q , (II.4)

or, if f is differentiable with respect to x, satisfy

(x− x′)TP∂xf(z, u)(x− x′)+
1

2

∥∥∥√P (σ(x)− σ(x′))∥∥∥2
F

≤ κ̃
(
V (x, x′)

) 2
q , (II.5)

for all x, x′, z ∈ Rn, for all u ∈ U, and for some constant
κ̃ ∈ R. Then V is a δ-FC-Mq Lyapunov function for Σ.

Proof: The proof is similar to the proof of Lemma 3.4
in [18].

The next result provides an equivalent condition to (II.4)
or (II.5) for linear stochastic control systems in the form of
a linear matrix inequality (LMI).

Corollary 2.7: Consider a stochastic control system Σ =
(Rn,U,U , f, σ), where for all x ∈ Rn, and u ∈ U,
f(x, u) := Ax+Bu, for some A ∈ Rn×n, B ∈ Rn×m, and
σ(x) := [σ1x σ2x · · · σpx], for some σi ∈ Rn×n. Then,
function V in (II.3) is a δ-FC-Mq Lyapunov function for Σ,
when q ∈ {1, 2}, if there exists a constant κ̂ ∈ R satisfying
the following LMI:

PA+ATP +

p∑
i=1

σTi Pσi � κ̂P. (II.6)

Proof: The proof is similar to the proof of Corollary
3.5 in [18].

One can find an appropriate matrix P by solving the LMI
(II.6) to have a tighter upper bound in (II.2).

III. SYMBOLIC MODELS AND APPROXIMATE
EQUIVALENCE NOTIONS

A. Systems
We use the notion of systems [17] to describe both

stochastic control systems as well as their symbolic models.
Definition 3.1: A system S is a tuple

S = (X,X0, U,−→, Y,H) consisting of
• A set of states X;
• A set of initial states X0 ⊆ X;
• A set of inputs U ;
• A transition relation −→⊆ X × U ×X;
• An output set Y ;
• An output function H : X → Y .

A system S is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• finite, if X is a finite set.

A transition (x, u, x′) ∈−→ is also denoted by x
u- x′.

For a transition x
u- x′, state x′ is called a u-successor,

or simply a successor, of state x. We denote by Postu(x)
the set of u-successors of a state x and by U(x) the set of
inputs u ∈ U for which Postu(x) is nonempty. A system
is deterministic if for any state x ∈ X and any input u,
there exists at most one u-successor (there may be none).
A system is called nondeterministic if it is not deterministic.
Hence, for a nondeterministic system it is possible for a state
to have two (or possibly more) distinct u-successors.

B. Relations among systems
First, we recall the notion of approximate simulation

relation, introduced in [6], which is useful when analyzing
or synthesizing controllers for deterministic systems.

Definition 3.2: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d, and
consider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is
said to be an ε-approximate simulation relation from Sa to
Sb, if the following three conditions are satisfied:
(i) ∀xa0 ∈ Xa0,∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

(ii) ∀(xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
(iii) ∀(xa, xb) ∈ R, xa

ua

a
- x′a in Sa implies the existence

of xb
ub

b
- x′b in Sb satisfying (x′a, x

′
b) ∈ R.



System Sa is ε-approximately simulated by Sb or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation from Sa to Sb.

For nondeterministic systems we need to consider relation-
ships that explicitly capture the adversarial nature of nonde-
terminism. The notion of alternating approximate simulation
relation is shown in [14] to be appropriate for this objective.

Definition 3.3: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d, and
consider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is
said to be an alternating ε-approximate simulation relation
from Sa to Sb if conditions (i), (ii) in Definition 3.2 hold,
and additionally if the following condition is satisfied:
(iii) for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there

exists ub ∈ Ub(xb) such that for every x′b ∈ Postub(xb)
there exists x′a ∈ Postua(xa) satisfying (x′b, x

′
a) ∈ R.

System Sa is alternatingly ε-approximately simulated by Sb
or Sb alternatingly ε-approximately simulates Sa, denoted
by Sa �εAS Sb, if there exists an alternating ε-approximate
simulation relation from Sa to Sb.

It is readily seen from the above definitions that the notions
of approximate simulation and of alternating approximate
simulation coincide when the systems involved are deter-
ministic.

IV. SYMBOLIC MODELS FOR STOCHASTIC CONTROL
SYSTEMS

This section contains the main contribution of the paper.
We show that any δ-FC-Mq stochastic control system Σ
admits a finite symbolic model whenever we are inter-
ested in the dynamics of Σ on a compact subset D ⊂
Rn. We restrict our attention to stochastic control systems
Σ = (Rn,U,U , f, σ) with f(0n, 0m) = 0n, σ(0n) = 0n×p,
and input sets U that are assumed to be finite unions of
boxes and include {0m}. We further restrict our attention to
sampled-data stochastic control systems, where input curves
belong to set Uτ which contains only curves that are constant
over intervals of length τ ∈ R+, i.e.

Uτ =
{
υ : R+

0 → U | υ(t) = υ((k − 1)τ), t ∈ [(k − 1)τ, kτ [, k ∈ N
}
.

Given a stochastic control system Σ = (Rn,U,Uτ , f, σ),
consider the system

Sτ (Σ) = (Xτ , Xτ0, Uτ ,
τ
- , Yτ , Hτ ),

consisting of:
• Xτ is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• Xτ0 is the set of random variables that are measurable

with respect to trivial sigma-algebra F0, i.e., the system
starts from a deterministic initial condition;

• Uτ = Uτ ;
• xτ

υτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N ∪ {0}, and there
exists a solution process ξ : Ω × R+

0 → Rn of Σ
satisfying ξ(kτ) = xτ and ξxτυτ (τ) = x′τ P-a.s.;

• Yτ is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hτ = 1Xτ .
We assume that the output set Yτ is equipped with the natural
metric d(y, y′) =

(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and

some q ≥ 1.

Before introducing the symbolic model for the stochastic
control system, we proceed with the following preliminary
lemma.

Lemma 4.1: Consider a stochastic control system Σ =
(Rn,U,U , f, σ) such that f(0n, 0m) = 0n, and σ(0n) =
0n×p. Suppose there exists a δ-FC-Mq Lyapunov function V
for Σ such that its Hessian is a positive semidefinite matrix
in R2n×2n and q ≥ 2. Then for any x in a compact set D
and any υ ∈ U , we have

E
[∥∥ξxυ(t)− ξxυ(t)

∥∥q] ≤ h(σ, t), (IV.1)

where ξxυ is the solution of the ordinary differential equation
(ODE) ξ̇xυ = f

(
ξxυ, υ

)
starting from the initial condition

x, and the nonnegative valued function h tends to zero as
t → 0 or as Z → 0, where Z is the Lipschitz constant,
introduced in Definition 2.1.

Proof: The proof is similar to the proof of Lemma 3.7
in [18].
We refer the interested readers to Lemmas 3.7, 3.9 and
Corollary 3.10 in [18] to see how the function h can be
similarly computed by enforcing κ ∈ R in Definition 2.3
rather than κ ∈ R+

0 .
We consider a stochastic control system

Σ = (Rn,U,Uτ , f, σ), and a tuple q = (τ, η, µ, θ, l) of
quantization parameters, where τ ∈ R+ is the sampling
time, η ∈ R+ is the state space quantization, µ ∈ R+ is the
input set quantization and θ ∈ R+ and ` ∈ N are design
parameters. Given Σ and q, consider the following system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (IV.2)

consisting of: Xq = [Rn]η , Xq0 = [Rn]η , Uq = [U]µ, and

• xq
uq

q
- x′q if∥∥∥ξxquq
(τ)− x′q

∥∥∥ ≤ (β(θq, τ) + γ(µ, τ))
1
q +h(σ, τ)

1
q +

h(σ, `τ)
1
q + η, where ξ̇xquq

= f
(
ξxquq

, uq

)
;

• Yq is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hq = ı : Xq ↪→ Yq.
Here β and γ are the functions appearing in (II.2) and h is
the function appearing in (IV.1). Note that we have abused
notation by identifying uq ∈ [U]µ with the constant input
curve with domain [0, τ [ and value uq. Notice that the pro-
posed abstraction Sq(Σ) is indeed a nondeterministic system
governed by an ordinary differential equation. However, in
order to establish an (alternating) approximate simulation
relation, the output set Yq is defined similarly to our original
stochastic system Sτ (Σ). Therefore, in the definition of Hq,
the inclusion map ı is meant, with a slight abuse of notation,
as a mapping from a deterministic grid point to a random
variable with a Dirac probability distribution centered at the
grid point.

The transition relation of Sq(Σ) is well defined in the
sense that for every xq ∈ [Rn]η and every uq ∈ [U]µ there
always exists x′q ∈ [Rn]η such that xq

uq

q
- x′q. This can

be seen since by definition of [Rn]η , for any x̂ ∈ Rn there
always exists a state x̂′ ∈ [Rn]η such that ‖x̂ − x̂′‖ ≤ η.
Hence, for ξxquq

(τ) there always exists a state x′q ∈ [Rn]η

satisfying
∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η ≤ (β(θq, τ) + γ(µ, τ))

1
q +

h(σ, τ)
1
q + h(σ, `τ)

1
q + η.



We can now present the main result of the paper, showing
that any δ-FC-Mq stochastic control system Σ admits a finite
symbolic model.

Theorem 4.2: Let Σ = (Rn,U,Uτ , f, σ) be a stochastic
control system, admitting a δ-FC-Mq Lyapunov function V ,
of the form of (II.3) or the one explained in Lemmas 4.1. For
any ε ∈ R+, and any tuple q = (τ, η, µ, θ, `) of quantization
parameters satisfying µ ≤ span(U) and h(σ, `τ)

1
q +η ≤ ε ≤

θ, we have:

Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ), (IV.3)

within the time horizon 0, τ, · · · , `τ .

Before providing the proof, it can be readily seen that
when we are interested in the dynamics of Σ on a compact
subset D ⊂ Rn, assumed to be a finite union of boxes, and for
a given precision ε, there always exists a sufficiently small
choice of τ such that h(σ, `τ)

1
q < ε. Then by choosing a

sufficiently small value of η ≤ span(D), the condition of
Theorem 4.2 is satisfied.

Proof: We start by proving Sq(Σ) �εAS Sτ (Σ). Con-
sider the relation R ⊆ Xτ ×Xq defined by (xτ , xq) ∈ R if
and only if

(E [‖Hτ (xτ )−Hq(xq)‖q])
1
q = (E [‖xτ − xq‖q])

1
q ≤ ε.

For every xq0 ∈ Xq0, by choosing xτ0 = xq0, we have
(‖xτ0 − xq0‖q)

1
q = 0 and (xτ0, xq0) ∈ R and condition (i)

in Definition 3.3 is satisfied. Now consider any (xτ , xq) ∈ R.
Condition (ii) in Definition 3.3 is satisfied by the def-
inition of R. Let us now show that condition (iii) in
Definition 3.3 holds. Consider any uq ∈ Uq. Choose the
input υτ = uq and consider the unique solution process
x′τ = ξxτυτ (τ) ∈ Postυτ (xτ ) in Sτ (Σ). Since Σ is δ-FC-
Mq , we have:

E
[
‖x′τ − ξxquq(τ)‖

q] ≤ β (E [‖xτ − xq‖q] , τ) ≤ β (εq, τ) .
(IV.4)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that(
E
[∥∥x′τ − x′q∥∥q]) 1

q ≤ h(σ, `τ)
1
q + η. (IV.5)

Using the inequalities ε ≤ θ, (IV.4), and (IV.5), and triangle
inequality, we obtain:∥∥∥ξxquq

(τ)− x′q
∥∥∥ =

(
E
[∥∥∥ξxquq

(τ)− x′q
∥∥∥q]) 1

q

≤
(
E
[∥∥∥ξxquq

(τ)− ξxquq (τ)
∥∥∥q]) 1

q
+
(
E
[∥∥ξxquq (τ)− ξxτυτ (τ)

∥∥q]) 1
q

+
(
E
[∥∥ξxτυτ (τ)− x′q∥∥q]) 1

q

≤ h(σ, τ)
1
q + (β(εq , τ))

1
q + h(σ, `τ)

1
q + η

≤ (β(θq , τ) + γ(µ, τ))
1
q + h(σ, τ)

1
q + h(σ, `τ)

1
q + η,

which, by the definition of Sq(Σ), implies the existence of
xq

uq

q
- x′q in Sq(Σ). Therefore, from inequality (IV.5) and

since h(σ, `τ)
1
q + η ≤ ε, we conclude that (x′τ , x

′
q) ∈ R and

condition (iii) in Definition 3.3 holds.
In a similar way, we can prove that Sτ (Σ) �εS Sq(Σ).
The following remark readily extends the assertion of

Theorem 4.2 to be valid over an infinite time horizon, under
an assumption on the observation of the diffusion.

Remark 4.3: Suppose the symbolic model is allowed to
periodically observe the system Sτ (Σ) after each period
T := `τ , for some ` ∈ N. Then, the assertion of Theorem 4.2

holds over an infinite horizon, since one can update the initial
state of the symbolic model up to precision η with respect to
the realization of Sτ (Σ) at time `τ , and replicate the same
strategy periodically. In particular, if the observation period
is the same as the sampling time, then the lower bound of ε
reduces to h(σ, τ)

1
q + η by setting ` = 1.

Let us highlight that the assumption in Remark 4.3 implic-
itly requires enlarging the class of admissible inputs to the
set of stochastic ones. That is, the input signal synthesized in
the symbolic model is deterministic within the time horizon
`τ , but according to the diffusion observation may change
from one realization to another.

We note that the results in [19, Theorem 4.1] are fully
recovered by the results in Theorem 4.2 if the stochastic
control system Σ is not affected by any noise, implying that
h(σ, t) is identically zero and the δ-FC-Mq property reduces
to the δ-FC property. Correspondingly, the definitions of
Sτ (Σ) and Sq(Σ) need slight modifications.

Remark 4.4: Although we assume that the set U is infinite,
Theorem 4.2 still holds when the set U is finite, with the
following modifications: first, the system Σ is required to
satisfy the property (II.2) for υ = υ′; second, assume Uq = U
and set γ(µ, τ) = 0 in the definition of Sq(Σ).

V. SYMBOLIC CONTROL DESIGN FOR A JET ENGINE

We illustrate the results of this paper over the Moore-
Greitzer jet engine model in no-stall mode, which is affected
by noise and unstable [9]. In this model, the unstable
equilibrium (in the absence of noise) is transferred to the
origin (φ = 0 and ψ = 0) using the following change of
coordinates: φ = Φ − 1, ψ = Ψ − Ψc0 − 2, where Φ is the
mass flow, Ψ is the pressure rise and Ψc0 is a constant. The
resulting model Σ is:[

dφ
dψ

]
=

[
−ψ − 3

2φ
2 − 1

2φ
3

1
ω2 (φ− υ)

]
d t+

[
0.1φdW 1

t

0.1ψ dW 1
t

]
,

(V.1)
where ω is a positive constant parameter set to be equal
to 1, υ(t) = ΦT (t) − 1 is the control input and ΦT (t) is
the mass flow through the throttle. We work on the subset
D = [−2, 2]×[−2, 2] of the state space of Σ. One can readily
verify that Σ satisfies the conditions in Definition 2.1 with
Lu = 1, Z = 0.1, and Lx = 13, when we are interested in
the behaviors of Σ in D.

We consider a parameter q = 1 and show that Σ satisfies
(II.5) by finding a suitable matrix P using SOS programming
as described in [15]. The constant κ̃ in (II.5) takes the value
1.5 and the resulting matrix is P = I2.

Using the results of Theorem 2.4, one obtains the follow-
ing δ-FC-M1 bound for the jet engine model:

E [‖ξaυ(t)− ξa′υ′(t)‖] ≤
√
2e1.5tE

[∥∥a− a′∥∥]+te1.5t|υ−υ′|∞.

For a given sampling time τ = 0.1 and δ-FC-M1 Lyapunov
function V (x, x′) = (x− x′)T (x− x′), one can compute an
h(σ, 0.1) = 0.07.

We assume that U = [−2, 2] and that the control input
can take only three different values from the set {−2, 0, 2}.
In order to synthesize a controller under this constraint on
the input, we select µ = 2. The objective is to design a
controller forcing the trajectories of the system to reach and
stay (in the 1st moment metric) within the target set W =
[−0.25, 0.25]× [−0.25, 0.25], which can be expressed in the
LTL formula 32W .

Furthermore, we assume that the controller is implemented
on a microprocessor, executing other tasks in addition to the
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Fig. 1. Finite system describing the schedulability constraint over the
controller. The lower part of the states are labeled with the outputs (a
and u) denoting the availability and unavailability of the microprocessor,
respectively.

control scheme. Let us consider a schedule with epochs of
nine time slots, in which at most one slot is allocated to
the control task and the rest of them to other tasks. A time
slot is an interval of the form [kτ, (k + 1)τ [, with k ∈ N
and where τ is the sampling time. Therefore, some of the
possible microprocessor schedules are given by:

|auuuuuuuu|auuuuuuuu|auuuuuuuu|auuuuuuuu| · · · ,

|uuuuuuuua|uuuuuuuuu|auuuuuuuu|uuuuuuuuu| · · · ,

where a denotes a slot available for the control task and
u denotes a slot allotted to other tasks. The schedulability
constraint on the microprocessor can be represented by
the finite system (labeled automaton) in Figure 1, where
the allowed initial states are distinguished as targets of a
sourceless arrow. We embed the schedulability constraint by
composing the finite system in Figure 1 by the constructed
finite system Sq(Σ).

For a precision ε = 0.08, we construct a symbolic model
Sq(Σ) by choosing θ = 0.08, ` = 1, and η = 0.01. The
computation of the abstraction Sq(Σ) is performed in the
tool Pessoa [11] on a laptop with CPU 2 GHz Intel Core
i7. The resulting number of states after composition is equal
to 1447209. The consumed CPU times for computing the
abstraction and synthesizing the controller have been 21554
and 542 seconds, respectively. Here we have assumed that
symbolic model can observe the diffusion process at each
sampling time, as discussed in Remark 4.3.

Figure 2 displays several realizations of the closed-
loop trajectory stemming from the initial condition in
(−0.75,−1.75) and the evolution of the input signal, where
the finite system is initialized at state q2.

Furthermore, in Figure 3, we show the average value over
200 experiments of the distance in time of the solution
process ξx0υ to the set W , namely ‖ξx0υ(t)‖W , where the
point-to-set distance is defined as ‖x‖W = infw∈W ‖x−w‖.
Notice that the average distance is significantly lower than
the precision ε = 0.08, as expected since the conditions
based on Lyapunov-like functions can lead to conservative
bounds.
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