
Bisimilar finite abstractions of stochastic control systems

Majid Zamani, Peyman Mohajerin Esfahani, Rupak Majumdar, Alessandro Abate, and John Lygeros

Abstract— Abstraction-based approaches to the design of
complex control systems construct finite-state models that are
formally related to the original control systems, then leverage
symbolic techniques from finite-state synthesis to compute
controllers satisfying specifications given in a temporal logic,
and finally refine the obtained control schemes back to the given
concrete complex models. While such approaches have been
successfully used to perform synthesis over non-probabilistic
control systems, there are only few results available for prob-
abilistic models: hence the goal of this paper, which considers
continuous-time controlled stochastic differential equations. We
show that for every stochastic control system satisfying a
stochastic version of incremental input-to-state stability, and
for every ε > 0, there exists a finite-state abstraction that is
ε-approximate bisimilar to the stochastic control system (in
the sense of moments). We demonstrate the effectiveness of the
construction by synthesizing a controller for a stochastic control
system with respect to linear temporal logic specifications. Since
stochastic control systems are a common mathematical models
for many complex safety critical systems subject to uncertainty,
our techniques promise to enable a new, automated, correct-
by-construction controller synthesis approach for these systems.

I. INTRODUCTION

The synthesis of controllers over complex hybrid con-
trol systems with respect to rich specifications is a grand
challenge in cyber-physical systems research. One recent
approach in this direction is the use of symbolic models,
which represent discrete and finite approximations of more
complex (e.g., continuous and uncountable) model dynam-
ics, and which allow relating a controller designed for the
symbolic approximation to one for the original dynamics.
Whenever finite symbolic models of complex dynamics can
be constructed, one can use synthesis techniques for finite-
state models [16] to design controllers for the concrete
models. The formal notion of approximation is cast via ε-
approximate bisimulation relations [7], which guarantee that
each trace of the continuous system can be matched by a
trace of the symbolic model up to a precision ε, and vice
versa.

The construction of finite symbolic models has been
widely investigated over non-probabilistic control systems
[6], [8], [9], [15], [19], [21], [24], [26]. For example,
ε-approximate bisimilar symbolic models exist for non-
probabilistic incremental input-to-state stable control sys-
tems, for any precision ε > 0 [8], [15], [19].

On the other hand, the important class of continuous
stochastic control systems have not yet been looked at
from the perspective of finite symbolic abstractions. Existing
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results on stochastic systems include the construction of
finite bisimilar abstractions for continuous-time diffusions
under some contractivity assumption [1], for discrete-time
stochastic hybrid dynamical systems endowed with certain
continuity and ergodic properties [3], and for discrete-time
stochastic dynamical systems under a notion of bisimu-
lation function [5]. All these techniques are restricted to
autonomous models (that is with no control inputs), and as
such they can be used for verification, but not for controller
synthesis.

For non-autonomous models there are techniques to check
if a lower dimensional abstraction (still uncountable) is
formally related to a concrete stochastic control model by
the notion of approximate probabilistic bisimulation [11],
however these results do not extend to the construction of
approximations, nor do they deal with finite abstractions,
and finally appear to be computationally tractable only when
restricted to the autonomous case. For specific properties
expressed in the PCTL logic, there are techniques to compute
finite abstractions of discrete-time stochastic control models
[2], but their generalization to linear temporal logic is not
obvious. The work in [22] provides schemes for control
problems over probabilistic rectangular automata, in which
random behaviors occur only over the discrete components.
The work in [14] presents a finite MDP abstraction of a
continuous-time controlled diffusion for the verification of
given temporal properties, however the relationship between
abstract and concrete model is not quantitative – similarly,
classical discretization results in the literature [13] lead to
discrete approximations of continuous models with asymp-
totic convergence, rather than with formal relationships based
on bisimulation or simulation notions that can ensure the
correspondence of controllers on linear temporal logic spec-
ifications over model trajectories. In conclusion, there seems
to be no comprehensive work on the construction of finite
bisimilar abstractions for continuous-time stochastic control
systems, which represent models for cyber-physical systems
operating in an uncertain or noisy environment, and for
which automated synthesis methodologies can allow for a
more effective model development and regulation.

In this paper, we show the existence of ε-approximate
bisimilar symbolic models for continuous-time stochastic
control systems satisfying a stochastic version of the incre-
mental input-to-state stability property [4], for any parameter
ε > 0. Furthermore, we show that the symbolic models
are finite if the continuous states lie within a bounded set.
We also provide a simple way to construct the symbolic
abstractions by quantizing the state and input sets. Since
we guarantee ε-approximate bisimulation, there exists a
controller enforcing a desired specification on the symbolic
model if and only if there exists a controller enforcing an ε-
related specification on the original stochastic control system.
Our construction nicely generalizes the construction for non-
probabilistic systems [8], [15], [19], tailoring to the results
for non-probabilistic systems in the special case with no
noise. We illustrate our results on an example, where a
controller is synthesized for a stochastic control system with



respect to specifications expressed in linear temporal logic.
Proofs are omitted due to space limitations and can be found
in [25].

II. STOCHASTIC CONTROL SYSTEMS

A. Notations

The identity map on a set A is denoted by 1A. If A is a
subset of B we denote by ıA : A ↪→ B or simply by ı the
natural inclusion map taking any a ∈ A to ı(a) = a ∈ B. The
symbols N, N0, Z, R, R+, and R+

0 denote the set of natural,
nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. The symbols 0n and 0n×m denote
the zero vector and zero matrix in Rn and Rn×m, respec-
tively. Given a vector x ∈ Rn, we denote by xi the i–th
element of x, and by ‖x‖ the infinity norm of x, namely,
‖x‖ = max{|x1|, |x2|, ..., |xn|}, where |xi| denotes the ab-
solute value of xi. Given a matrix M = {mij} ∈ Rn×m, we
denote by ‖M‖ the infinity norm of M , namely, ‖M‖ =
max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F the Frobenius norm

of M , namely, ‖M‖F =
√

Tr (MMT ), where Tr(P ) =∑n
i=1 pii for any P = {pij} ∈ Rn×n. We denote by λmin(A)

and λmax(A) the minimum and maximum eigenvalues of
matrix A, respectively. The diagonal set ∆ ⊂ R2n is defined
as: ∆ = {(x, x) | x ∈ Rn}.

The closed ball centered at x ∈ Rn with radius ε is
defined by Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. A set B ⊆ Rn
is called a box if B =

∏n
i=1[ci, di], where ci, di ∈ R

with ci < di for each i ∈ {1, . . . , n}. The span of a box
B is defined as span(B) = min {|di − ci| | i = 1, . . . , n}.
Define the η-approximation [B]η = {b ∈ B | bi =
kiη, ki ∈ Z, i = 1, . . . , n} for a box B and η ≤
span(B). Note that [B]η 6= ∅ for any η ≤ span(B).
Geometrically, for any η ∈ R+ with η ≤ span(B)
and λ ≥ η, the collection of sets {Bλ(p)}p∈[B]η is a
finite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). By defining
[Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the
set
⋃
p∈[Rn]η Bλ(p) is a countable covering of Rn for any

η ∈ R+ and λ ≥ η/2. We extend the notions of span and
approximation to finite (possibly disjoint) unions of boxes
as follows. Let A =

⋃M
j=1Aj , where each Aj is a box.

Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η .

Given a set X , a function d : X ×X → R+
0 is a metric on

X if for any x, y, z ∈ X , the following three conditions are
satisfied: i) d(x, y) = 0 if and only if x = y; ii) d(x, y) =
d(y, x); and iii) (triangle inequality) d(x, z) ≤ d(x, y) +
d(y, z). Given a measurable function f : R+

0 → Rn, the
(essential) supremum of f is denoted by ‖f‖∞; we recall
that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A function f is es-
sentially bounded if ‖f‖∞ <∞. For a given time τ ∈ R+,
define fτ so that fτ (t) = f(t), for any t ∈ [0, τ), and
fτ (t) = 0 elsewhere; f is said to be locally essentially
bounded if for any τ ∈ R+, fτ is essentially bounded.
A continuous function γ : R+

0 → R+
0 , is said to belong to

class K if it is strictly increasing and γ(0) = 0; γ is said to
belong to class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A
continuous function β : R+

0 × R+
0 → R+

0 is said to belong to
class KL if, for each fixed s, the map β(r, s) belongs to class
K∞ with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞. We identify a relation R ⊆ A×B with the map
R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given

a relation R ⊆ A×B, R−1 denotes the inverse relation
defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Stochastic control systems
Let (Ω,F ,P) be a probability space endowed with a

filtration F = (Fs)s≥0 satisfying the usual conditions of
completeness and right continuity [12, p. 48]. Let (Ws)s≥0
be a p-dimensional F-Brownian motion.

Definition 2.1: A stochastic control system is a tuple Σ =
(Rn,U,U , f, σ), where
• Rn is the state space;
• U ⊆ Rm is an input set;
• U is a subset of the set of all measurable, locally

essentially bounded functions of time from intervals of
the form [0,∞[ to U;

• f : Rn × U → Rn satisfies the following Lipschitz
assumption: there exist constants Lx, Lu ∈ R+ such
that: ‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖
for all x, x′ ∈ Rn and all u, u′ ∈ U;

• σ : Rn → Rn×p satisfies the following Lipschitz
assumption: there exists a constant Z ∈ R+ such that:
‖σ(x)− σ(x′)‖ ≤ Z‖x− x′‖ for all x, x′ ∈ Rn. 2

A stochastic process ξ : Ω× [0,∞[→ Rn is said to be a
solution process of Σ if there exists υ ∈ U satisfying:

d ξ = f(ξ, υ) d t+ σ(ξ) dWt, (II.1)

P-almost surely (P-a.s.), where f is known as the drift, σ
as the diffusion, and again Wt is Brownian motion. We also
write ξaυ(t) to denote the value of the solution process at
time t ∈ R+

0 under the input curve υ from initial condition
ξaυ(0) = a P-a.s., in which a is a random variable that is
measurable in F0. Let us emphasize that the solution process
is uniquely determined, since the assumptions on f and σ
ensure its existence and uniqueness [18, Theorem 5.2.1, p.
68].

III. A NOTION OF INCREMENTAL STABILITY

This section introduces a stability notion for stochastic
control systems that generalizes the notion of incremental
input-to-state stability (δ-ISS) [4] for non-probabilistic con-
trol systems.

Definition 3.1: A stochastic control system Σ is incremen-
tally input-to-state stable in the qth moment (δ-ISS-Mq),
where q ≥ 1, if there exist a KL function β and a K∞
function γ such that for any t ∈ R+

0 , any Rn-valued random
variables a and a′ that are measurable in F0, and any υ,
υ′ ∈ U , the following condition is satisfied:

E [‖ξaυ(t)− ξa′υ′(t)‖q] ≤β
(
E
[∥∥a− a′∥∥q] , t)

+ γ
(∥∥υ − υ′∥∥∞) . (III.1)

2
It can be easily checked that a δ-ISS-Mq stochastic control

system Σ is δ-ISS in the absence of any noise as in the
following:

‖ξaυ(t)− ξa′υ′(t)‖ ≤ β (‖a− a′‖ , t) + γ (‖υ − υ′‖∞) ,
(III.2)

for a, a′ ∈ Rn, some β ∈ KL, and some γ ∈ K∞. Moreover,
whenever f(0n, 0m) = 0n and σ(0n) = 0n×p (i.e., the drift
and diffusion terms vanish at the origin), then δ-ISS-Mq

implies input-to-state stability in the qth moment (ISS-Mq)
[10].

We describe the notion of δ-ISS-Mq in terms of the
existence of incremental Lyapunov functions, along the same



line as for δ-ISS Lyapunov functions in the non-probabilistic
case [4].

Definition 3.2: Consider a stochastic control system Σ
and a continuous function V : Rn ×Rn → R+

0 that is twice
continuously differentiable on {Rn × Rn}\∆. The function
V is called an incremental input-to-state stability in the qth
moment (δ-ISS-Mq) Lyapunov function for Σ, where q ≥ 1,
if there exist K∞ functions α, α, ρ, and a constant κ ∈ R+,
such that
(i) α (resp. α) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn,
α (‖x− x′‖q) ≤ V (x, x′) ≤ α (‖x− x′‖q);

(iii) for any x, x′ ∈ Rn, x 6= x′, and for any u, u′ ∈ U,

Lu,u
′
V (x, x′) := [∂xV ∂x′V ]

[
f(x, u)
f(x′, u′)

]
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [
∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤ −κV (x, x′) + ρ(‖u− u′‖),

where Lu,u′ is the infinitesimal generator associated to the
stochastic control system (II.1) [18, Section 7.3], which in
this case depends on two separate controls u, u′. The symbols
∂x and ∂x,x′ denote first- and second-order partial derivatives
with respect to x and x′, respectively. 2

The following theorem describes δ-ISS-Mq in terms of the
existence of δ-ISS-Mq Lyapunov functions.

Theorem 3.3: A stochastic control system Σ is δ-ISS-Mq

if it admits a δ-ISS-Mq Lyapunov function. 2
One can resort to available software tools, such as SOS-

TOOLS [20], to search for appropriate, non-trivial δ-ISS-Mq

Lyapunov functions for system Σ. We refer the interested
readers to the results in [25], providing special instances
where these functions can be easily computed. For example,
for linear stochastic control systems Σ (that is, for systems
with linear drift and diffusion terms), one can search for
appropriate δ-ISS-Mq Lyapunov functions by solving a linear
matrix inequality (LMI).

A. Noisy and noise-free trajectories
In order to introduce a symbolic model in Section V for the

stochastic control system, we need the following technical
result, which provides an upper bound on the distance (in
the qth moment) between the solution processes of Σ and
those of the corresponding non-probabilistic control system
obtained by disregarding the diffusion term (that is, σ). From
now on, we use the notation ξxυ to denote the solution of
the ordinary differential equation (ODE) ξ̇xυ = f

(
ξxυ, υ

)
starting from the initial condition x and under the input curve
υ.

Lemma 3.4: Consider a stochastic control system Σ such
that f(0n, 0m) = 0n, and σ(0n) = 0n×p. Suppose q ≥ 2
and there exists a δ-ISS-Mq Lyapunov function V for Σ such
that its Hessian is a positive semidefinite matrix in R2n×2n

and ∂x,xV (x, x′) ≤ P , for any x, x′ ∈ Rn and some positive
semidefinite matrix P ∈ Rn×n. Then for any x in a compact
set D and any υ ∈ U , we have

E
[∥∥ξxυ(t)− ξxυ(t)∥∥q] ≤ h(σ, t), (III.3)

such that the nonnegative valued function h tends to zero as
t → 0, t → +∞, or as Z → 0, where Z is the Lipschitz
constant, introduced in Definition 2.1. 2

The interested readers are referred to Lemma 3.9 and
Corollary 3.10 in [25], providing explicit form of the function

h for (linear) stochastic control systems Σ admitting a
specific type of δ-ISS-Mq Lyapunov functions.

IV. SYMBOLIC MODELS

A. Systems

We employ the notion of system, introduced in [23], to
describe both stochastic control systems as well as their
symbolic models.

Definition 4.1: A system S is a tuple S = (X,X0, U,−→
, Y,H), where X is a set of states, X0 ⊆ X is a set of initial
states, U is a set of inputs, −→⊆ X ×U ×X is a transition
relation, Y is a set of outputs, and H : X → Y is an output
map. 2

A transition (x, u, x′) ∈−→ is also denoted by x
u- x′.

For a transition x
u- x′, state x′ is called a u-successor,

or simply a successor, of state x. For technical reasons, we
assume that for any x ∈ X , there exists some u-successor
of x for some u ∈ U – let us remark that this is always the
case for the considered systems later in this paper.

System S is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• finite, if X is a finite set;
• deterministic, if for any state x ∈ X and any input u,

there exists at most one u-successor.
For a system S = (X,X0, U,−→, Y,H) and given

any state x0 ∈ X0, a finite state run gener-
ated from x0 is a finite sequence of transitions:
x0

u0- x1
u1- x2

u2- · · · un−2- xn−1
un−1- xn,

such that xi
ui- xi+1 for all 0 ≤ i < n. A finite state run

can be directly extended to an infinite state run as well.

B. System relations

We recall the notion of approximate (bi)simulation rela-
tion, introduced in [7], which is useful when analyzing or
synthesizing controllers for deterministic systems.

Definition 4.2: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d. For ε ∈ R+,
a relation R ⊆ Xa ×Xb is said to be an ε-approximate
simulation relation from Sa to Sb if the following three
conditions are satisfied:
(i) for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with

(xa0, xb0) ∈ R;
(ii) for every (xa, xb) ∈ R we have

d(Ha(xa), Hb(xb)) ≤ ε;
(iii) for every (xa, xb) ∈ R we have that xa

ua

a
- x′a in Sa

implies the existence of xb
ub

b
- x′b in Sb satisfying

(x′a, x
′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an ε-approximate
bisimulation relation between Sa and Sb if R is an ε-
approximate simulation relation from Sa to Sb and R−1 is
an ε-approximate simulation relation from Sb to Sa.

System Sa is ε-approximately simulated by Sb, or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation from Sa to Sb.
System Sa is ε-approximate bisimilar to Sb, denoted by
Sa ∼=ε

S Sb, if there exists an ε-approximate bisimulation
relation between Sa and Sb. 2



V. SYMBOLIC MODELS
FOR STOCHASTIC CONTROL SYSTEMS

This section contains the main results of the paper, show-
ing that for any stochastic control system Σ admitting a
δ-ISS-Mq Lyapunov function, and for any precision level
ε ∈ R+, we can construct a finite system that is ε-
approximately bisimilar to Σ. In order to do so, we use
the notion of system as an abstract representation of a
stochastic control system. More precisely, given a stochastic
control system Σ, we define an associated metric system
S(Σ) = (X,X0, U, - , Y,H), where:
• X is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• X0 is the set of all Rn-valued random variables that

are measurable over the trivial sigma-algebra F0, i.e.,
the system starts from a deterministic initial condition,
which is equivalently a random variable with a Dirac
probability distribution;

• U = U ;
• x

υ- x′ if x and x′ are measurable in Ft and Ft+τ ,
respectively, for some t ∈ R+

0 and τ ∈ R+, and there
exists a solution process ξ : Ω × R+

0 → Rn of Σ
satisfying ξ(t) = x and ξxυ(τ) = x′ P-a.s.;

• Y is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• H = 1X .
We assume that the output set Y is equipped with the natural
metric d(y, y′) =

(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and

some q ≥ 1. Let us remark that the set of states of S(Σ)
is uncountable and that S(Σ) is a deterministic system in
the sense of Definition 4.1, since (cf. Subsection II-B) the
solution process of Σ is uniquely determined.

The results in this section rely on additional assump-
tions on model Σ that are described next (however such
assumptions are not required for the definitions and results
in Sections II, III, and IV). We restrict our attention to
stochastic control systems Σ with f(0n, 0m) = 0n, σ(0n) =
0n×p, and input sets U that are assumed to be finite unions
of boxes. We further restrict our attention to sampled-data
stochastic control systems, where input curves belong to set
Uτ which contains only curves that are constant over intervals
of length τ ∈ R+, i.e.

Uτ =
{
υ : R+

0 → U | υ(t) = υ((k − 1)τ),

t ∈ [(k − 1)τ, kτ [, k ∈ N
}
.

Let us denote by Sτ (Σ) a sub-system of S(Σ) obtained
by selecting those transitions from S(Σ) corresponding to
solution processes of duration τ and to control inputs in
Uτ . This can be seen as the time discretization or as the
sampling of a process. More precisely, given a stochastic
control system Σ, we define the associated metric system
Sτ (Σ) =

(
Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ

)
, where Xτ = X ,

Xτ0 = X0, Uτ = Uτ , Yτ = Y , Hτ = H , and

• xτ
υτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N0, and there exists
a solution process ξ : Ω × R+

0 → Rn of Σ satisfying
ξ(kτ) = xτ and ξxτυτ (τ) = x′τ P-a.s..

Notice that a finite state run
x0

υ0

τ
- x1

υ1

τ
- ...

υN−1

τ
- xN , of Sτ (Σ), where

υi ∈ Uτ and xi = ξxi−1υi−1(τ) for i = 1, · · · , N , captures
the solution process of the stochastic control system Σ

at times t = 0, τ, · · · , Nτ , started from the deterministic
initial condition x0 and resulting from a control input υ
obtained by the concatenation of the input curves υi

(
i.e.

υ(t) = υi−1(t) for any t ∈ [(i−1)τ, i τ [
)
, for i = 1, · · · , N .

Let us proceed introducing a fully symbolic system for the
concrete model Σ. Consider a stochastic control system Σ
and a triple q = (τ, η, µ) of quantization parameters, where
τ is the sampling time, η is the state space quantization, and
µ is the input set quantization. Given Σ and q, consider the
following system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (V.1)

consisting of (cf. Notation in Subsection II-A) Xq = [Rn]η ,
Xq0 = [Rn]η , Uq = [U]µ, and:

• xq
uq

q
- x′q if there exists a x′q ∈ Xq such that∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η;

• Yq is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hq = ı : Xq ↪→ Yq.
Note that we have abused notation by identifying uq ∈

[U]µ with the constant input curve with domain [0, τ [ and
value uq. Notice that the proposed abstraction Sq(Σ) is a
deterministic system in the sense of Definition 4.1. In order
to establish an approximate bisimulation relation, the output
set Yq is defined similarly to the stochastic system Sτ (Σ).
Therefore, in the definition of Hq, the inclusion map ı is
meant, with a slight abuse of notation, as a mapping from
a deterministic grid point to a random variable with a Dirac
probability distribution centered at that grid point.

The transition relation of Sq(Σ) is well defined in the
sense that for every xq ∈ [Rn]η and every uq ∈ [U]µ there
always exists x′q ∈ [Rn]η such that xq

uq

q
- x′q. This can

be seen since by definition of [Rn]η , for any x̂ ∈ Rn there
always exists a state x̂′ ∈ [Rn]η such that ‖x̂ − x̂′‖ ≤ η.
Hence, for ξxquq

(τ) there always exists a state x′q ∈ [Rn]η

satisfying
∥∥∥ξxquq

(τ)− x′q
∥∥∥ ≤ η.

In order to show the first main result of this work, we
raise a supplementary assumption on the δ-ISS-Mq Lyapunov
function V as follows:

|V (x, y)− V (x, z)| ≤ γ̂(‖y − z‖), (V.2)

for any x, y, z ∈ Rn, and some K∞ and concave function γ̂.
This assumption is not restrictive, provided V is restricted
to a compact subset of Rn×Rn. Indeed, for all x, y, z ∈ D,
where D ⊂ Rn is compact, by applying the mean value
theorem to the function y → V (x, y), one gets

|V (x, y)− V (x, z)| ≤ γ̂ (‖y − z‖) ,

where γ̂(r) =

(
max

x,y∈D\∆

∥∥∥∥∂V (x, y)

∂y

∥∥∥∥) r.
In particular, for the δ-ISS-M1 Lyapunov function

V (x, x′) :=
√

(x− x′)TP (x− x′), ∀x, x′ ∈ Rn and some
positive definite matrix P ∈ Rn×n, we obtain explicitly
that γ̂(r) = λmax(P )√

λmin(P )
r [23, Proposition 10.5]. We can now

present the first main result of the paper, which relates the
existence of a δ-ISS-Mq Lyapunov function to the construc-
tion of a symbolic model.

Theorem 5.1: Consider a stochastic control system Σ,
admitting a δ-ISS-Mq Lyapunov function V , of the form
of the one explained in Lemma 3.4 and satisfying (V.2).



For any ε ∈ R+ and any triple q = (τ, η, µ) of quantization
parameters satisfying µ ≤ span(U) and

α (ηq) ≤ α (εq) , (V.3)

e−κτα (εq) +
1

eκ
ρ(µ) + γ̂

(
(h(σ, τ))

1
q + η

)
≤ α (εq) , (V.4)

we have that Sq(Σ) ∼=ε
S Sτ (Σ). 2

It can be readily seen that when we are interested in the
dynamics of Σ, initialized on a compact D ⊂ Rn of the
form of finite union of boxes and for a given precision ε,
there always exists a sufficiently large value of τ and small
enough values of η and µ, such that η ≤ span(D) and such
that the conditions in (V.3) and (V.4) are satisfied. On the
other hand, for a given fixed sampling time τ , one can find
sufficiently small values of η and µ satisfying η ≤ span(D),
(V.3) and (V.4), as long as the precision ε is lower bounded
by:

ε >

α−1

 γ̂
(
(h(σ, τ))

1
q

)
1− e−κτ


1
q

. (V.5)

One can easily verify that the lower bound on ε in (V.5)
goes to zero as τ goes to infinity or as Z → 0, where Z is the
Lipschitz constant, introduced in Definition 2.1. Furthermore,
one can try to minimize the lower bound on ε in (V.5) by
appropriately choosing a δ-ISS-Mq Lyapunov function V (cf.
Section III).

Note that the results in [8], as in the following corollary,
are fully recovered by the statement in Theorem 5.1 if the
stochastic control system Σ is not affected by any noise,
implying that h(σ, τ) is identically zero and that the δ-ISS-
Mq property reduces to the δ-ISS property.

Corollary 5.2: Let Σ = (Rn,U,Uτ , f, 0n×p) be a δ-ISS
control system admitting a δ-ISS Lyapunov function V ,
satisfying (V.2). For any ε ∈ R+, and any triple q = (τ, η, µ)
of quantization parameters satisfying µ ≤ span(U) and

α (η) ≤ α(ε), (V.6)

e−κτα(ε) +
1

eκ
ρ(µ) + γ̂ (η) ≤ α(ε), (V.7)

one obtains Sq(Σ) ∼=ε
S Sτ (Σ). 2

The next main theorem provides a result that is similar
to that in Theorem 5.1, which is however not obtained by
explicit use of δ-ISS-Mq Lyapunov functions, but by using
functions β and γ as in (III.1).

Theorem 5.3: Consider a δ-ISS-Mq stochastic control sys-
tem Σ, satisfying (III.3). For any ε ∈ R+, and any triple q =
(τ, η, µ) of quantization parameters satisfying µ ≤ span(U)
and

(β (εq, τ) + γ(µ))
1
q + (h(σ, τ))

1
q + η ≤ ε, (V.8)

we have Sq(Σ) ∼=ε
S Sτ (Σ). 2

It can be readily seen that when we are interested in the
dynamics of Σ, initialized on a compact D ⊂ Rn of the
form of finite union of boxes and for a given precision ε,
there always exists a sufficiently large value of τ and small
values of η and µ such that η ≤ span(D) and the condition in
(V.8) are satisfied. However, unlike the result in Theorem 5.1,
notice that here for a given fixed sampling time τ , one may
not find any values of η and µ satisfying (V.8) because the
quantity (β (εq, τ))

1
q may be larger than ε. As long as there

exists a triple q, satisfying (V.8), the lower bound of precision
ε can be computed by solving the following inequality with
respect to ε: ε− (β (εq, τ))

1
q > (h(σ, τ))

1
q . In this case, one

can easily verify that the lower bound on ε goes to zero as τ

goes to infinity, as τ goes to zero (only if (β (εq, 0))
1
q ≤ ε),

or as Z → 0, where Z is the Lipschitz constant introduced
in Definition 2.1.

The symbolic model Sq(Σ), computed by using the quan-
tization parameters q provided in Theorem 5.3 whenever
existing, is likely to have fewer states than the model
computed by using the quantization parameters provided in
Theorem 5.1, or may provide a better lower bound on ε for
a fixed sampling time τ .

Note that the results in [19, Theorem 5.1] are fully
recovered by the results in Theorem 5.3 if the stochastic
control system Σ is not affected by any noise, implying that
h(σ, τ) is identically zero and that the δ-ISS-Mq property
becomes the δ-ISS property.

Remark 5.4: Although we assume that the set U is infinite,
Theorems 5.1 and 5.3 still hold when the set U is finite, with
the following modifications. First, the system Σ is required to
satisfy the property (III.1) for υ = υ′. Second, take Uq = U
in the definition of Sq(Σ). Finally, in the conditions (V.4)
and (V.8) set µ = 0. 2

VI. EXAMPLE

We now experimentally demonstrate the effectiveness of
the discussed results. In the example below, the computation
of the abstract system Sq(Σ) has been done by the software
tool Pessoa [17] on a laptop with CPU 2GHz Intel Core
i7. We have assumed that the control inputs are piecewise
constant of duration τ and that Uτ contains curves taking
values in [U]µ. Hence, as explained in Remark 5.4, µ = 0 is
to be used in the conditions (V.4) and (V.8). The controllers
enforcing the specifications of interest have been found by
standard algorithms from game theory [16], as implemented
in Pessoa. In the example, the terms W i

t , i = 1, 2, denote
the standard Brownian motion terms.

Consider a linear stochastic control system Σ, borrowed
from [1] by adding a control input, and described by:

Σ :

{
d ξ1 = (−2ξ1 − ξ2) d t+ 0.1ξ1 dW 1

t ,
d ξ2 = (ξ1 − 0.9ξ2 + υ) d t+ 0.1ξ2 dW 2

t .
(VI.1)

It can be readily verified that the system Σ satisfies
the LMI (3.8) in [25] with κ̂ = 2.884 and the matrix

P =

[
2.2101 1.2188
1.2188 2.2275

]
. Therefore, Σ is δ-ISS-Mq ,

equipped with the δ-ISS-Mq Lyapunov function V (x, x′) :=(
1
q (x− x′)TP (x− x′)

)q/2
, where q ∈ {1, 2}. In this exam-

ple, we use q = 1.
We assume that U = [−3, 3] and Uτ contains curves

taking values in [U]0.2. Similar to [1], we work on the
subset D = [−2, 2] × [−2, 2] of the state space of Σ.
For a given fixed τ = 1.5, precision ε is lower bounded
by 0.1129 and 0.3062 using the results in Theorems 5.3
and 5.1, respectively. Hence, the results in Theorem 5.3
provide a symbolic model which is less conservative than
the one provided by Theorem 5.1. By choosing ε = 0.12,
the parameter η of Sq(Σ) based on the results in Theorem
5.3 is 0.005. The resulting number of states and inputs in
Sq(Σ) are 641601 and 31, respectively. The consumed CPU
time for computing the abstraction is 280.658 seconds.

Now, consider the objective to design a controller forcing
(in the 1st moment) the trajectories of Σ to reach and stay
within W = [−0.8, −0.7]×[1.5, 1.7], while always avoiding
Z = [−1.5, −0.5]×[−1, 0.5], that is, the LTL specification1

1Note that the semantics of LTL would be defined over the output
behaviors of Sq(Σ).



32W ∧ 2¬Z. The consumed CPU time for synthesizing
the controller was 77.04 seconds. In Figure 1, we show
several realizations of the closed-loop solution process ξx0υ

stemming from the initial condition x0 = (−2,−2), as well
as the corresponding evolution of the input signal. In Figure
2, we show the average value over 100 experiments of the
distance in time of the solution process ξx0υ to the sets W
and D\Z, namely, ‖ξx0υ(t)‖W and ‖ξx0υ(t)‖D\Z , where the
point-to-set distance is defined as ‖x‖W = infw∈W ‖x−w‖.
Notice that the average distances are considerably lower than
the precision ε = 0.12.
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Fig. 1. Several realizations of the closed-loop solution process ξx0υ with
the initial condition x0 = (−2,−2) (left panel) and evolution of the input
signal υ (right panel).
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Fig. 2. Average values (over 100 experiments) of the distance of the
solution process ξx0υ to the sets W (left panels) and S = D\Z (right
panels), in different vertical scales.

VII. CONCLUSIONS

This work has shown that any stochastic sampled-data
control system, admitting a δ-ISS-Mq Lyapunov function
with a shape as in Lemma 3.4, and initialized within a
compact set of states, admits a finite approximately bisimilar
symbolic model (in the sense of moments). The constructed
symbolic model can be used to synthesize controllers en-
forcing complex logic specifications, expressed via linear
temporal logic or as automata on infinite strings.

The main limitation of the design methodology developed
in this paper lies in the cardinality of the set of states of
the computed symbolic model. The authors are currently
investigating several different techniques to address this
limitation.
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