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ABSTRACT
In the past few years different techniques have been de-
veloped for constructively deriving symbolic abstractions of
(stochastic) control systems. The obtained symbolic mod-
els allow us to leverage the apparatus of finite-state re-
active synthesis towards the problem of designing hybrid
controllers enforcing rich logic specifications over the con-
crete models. Unfortunately, most of the existing techniques
severely suffer from the curse of dimensionality due to the
need to discretize state and input sets. In this paper we
provide a symbolic abstraction technique for incrementally
stable stochastic control systems, which only requires dis-
cretizing input sets. We show that for every incrementally
stable stochastic control system, and for every given positive
precision ε, the discretization of exclusively the input set al-
lows constructing a symbolic model which is ε-approximate
bisimilar (in moments) to the original stochastic control
system. The details of the proposed technique are eluci-
dated by synthesizing a control policy for a 6-dimensional
linear stochastic control system satisfying some logic spec-
ifications, which would not be tractable using existing ap-
proaches based on state-space discretization.

1. INTRODUCTION
In the last decade several abstraction techniques have been

developed, providing symbolic models for (stochastic) con-
trol systems obtained by replacing aggregates or collections
of states of such systems by symbols. When a system with
a finite number of states is obtained, one can use mature
methodologies available in the literature [9] to leverage fixed-
point computations in order to synthesize hybrid controllers
enforcing rich complex specifications over the original sys-
tem. Examples of such specifications include properties ex-
pressed as formulas in linear temporal logic (LTL) or as au-
tomata on infinite strings.
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The construction of symbolic models has been studied
extensively for continuous-time non-probabilistic systems.
This includes results on the construction of approximately
bisimilar symbolic abstractions for incrementally stable con-
trol systems [8, 12], switched systems [4], and control sys-
tems with disturbances [13], as well as the construction of
sound abstractions based on the convexity of reachable sets
[14] and for unstable control systems [20]. Recently, there
have been some results on the construction of symbolic mod-
els for continuous-time stochastic systems, including the
construction of approximately bisimilar (in moments) sym-
bolic models for incrementally stable stochastic control sys-
tems [18, 19] and for stochastic switched systems [16], as
well as sound abstractions for unstable stochastic control
systems [17]. The results in [6] propose abstraction notions
for continuous-time stochastic hybrid systems, but with a
different purpose: while we are interested in the construc-
tion of bisimilar abstractions that are finite, the work in [6]
uses the notion of bisimulation to relate continuous (and
thus infinite) stochastic hybrid systems. Note that all the
abstraction techniques provided in [4, 8, 12, 13, 14, 16, 17,
18, 19, 20] are based on the discretization of state and input
sets. Therefore, they suffer severely from the curse of dimen-
sionality due to the need to grid both sets, which is especially
tolling for models with high-dimensional state spaces.

In this paper, we construct approximately bisimilar
symbolic models for incrementally stable continuous-time
stochastic control systems, where only the input set requires
to be discretized. This work is inspired by the recently
proposed result in [2] for discrete-time non-probabilistic
switched systems, in which mode sequences of a given length
are considered as symbolic states. Since in the new approach
we do not discretize the state space, this is potentially more
efficient than the one proposed in [18, 19] when dealing with
higher dimensional continuous-time stochastic systems. We
provide a simple criterion that helps choosing the the most
suitable among two approaches (in terms of the sizes of the
symbolic models) for a given stochastic control system. An-
other advantage of the technique proposed here is that it
allows us to construct symbolic models with probabilistic
output values, resulting in less conservative symbolic ab-
stractions than those proposed in [16, 17, 18, 19] that allow
for non-probabilistic output values exclusively. We then ex-
plain how the proposed symbolic models with probabilistic
output values can be used for synthesizing hybrid controllers
enforcing logic specifications. The effectiveness of the pro-
posed results is illustrated by synthesizing a control policy
for a simple 6-dimensional linear stochastic control system
against an LTL specification, which is not amenable to be



dealt with the approaches proposed in [18, 19]. Due to space
constraints, most of the proofs of the main results are omit-
ted from this manuscript.

2. STOCHASTIC CONTROL SYSTEMS

2.1 Notation
The identity map on a set A is denoted by 1A. The sym-

bols N, N0, Z, R, R+, and R+
0 denote the set of natural,

nonnegative integer, integer, real, positive, and nonnegative
real numbers, respectively. The symbols In, 0n, and 0n×m
denote the identity matrix, zero vector, and zero matrix in
Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,
we denote by xi the i–th element of x, and by ‖x‖ the
infinity norm of x, namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|},
where |xi| denotes the absolute value of xi. Given a ma-
trix P = {pij} ∈ Rn×n, we denote by Tr(P ) =

∑n
i=1 pii

the trace of P . We denote by λmin(A) and λmax(A) the
minimum and maximum eigenvalues of symmetric matrix
A, respectively. The diagonal set ∆ ⊂ Rn × Rn is defined
as: ∆ = {(x, x) | x ∈ Rn}.

The closed ball centered at x ∈ Rm with radius λ is de-
fined by Bλ(x) = {y ∈ Rm | ‖x− y‖ ≤ λ}. A set B ⊆ Rm
is called a box if B =

∏m
i=1[ci, di], where ci, di ∈ R with

ci < di for each i ∈ {1, . . . ,m}. The span of a box
B is defined as span(B) = min {|di − ci| | i = 1, . . . ,m}.
For a box B ⊆ Rm and µ ≤ span(B), define the
µ-approximation [B]µ = [Rm]µ ∩ B, where [Rm]µ =
{a ∈ Rm | ai = kiµ, ki ∈ Z, i = 1, . . . ,m}. Note that [B]µ 6=
∅ for any µ ≤ span(B). Geometrically, for any µ ∈ R+ with
µ ≤ span(B) and λ ≥ µ, the collection of sets {Bλ(p)}p∈[B]µ

is a finite covering of B, i.e. B ⊆
⋃
p∈[B]µ

Bλ(p). We ex-

tend the notions of span and approximation to finite unions
of boxes as follows. Let A =

⋃M
j=1 Aj , where each Aj is a

box. Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and

for any µ ≤ span(A), define [A]µ =
⋃M
j=1[Aj ]µ.

Given a measurable function f : R+
0 → Rn,

the (essential) supremum of f is denoted by
‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A continuous func-
tion γ : R+

0 → R+
0 , is said to belong to class K if it is

strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K
with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0
as s→∞. We identify a relation R ⊆ A×B with the
map R : A→ 2B defined by b ∈ R(a) iff (a, b) ∈ R. Given
a relation R ⊆ A×B, R−1 denotes the inverse relation
defined by R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

2.2 Stochastic control systems
Let (Ω,F ,P) be a probability space endowed with a fil-

tration F = (Fs)s≥0 satisfying the usual conditions of com-
pleteness and right continuity [7, p. 48]. Let (Ws)s≥0 be a
p-dimensional F-adapted Brownian motion.

Definition 2.1. A stochastic control system is a tuple
Σ = (Rn,U,U , f, σ), where

• Rn is the state space;

• U ⊆ Rm is a compact input set;

• U is a subset of the set of all measurable functions of
time from R+

0 to U;

• f : Rn × U → Rn satisfies the following Lipschitz as-
sumption: there exist constants Lx, Lu ∈ R+ such that:
‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖ for all
x, x′ ∈ Rn and all u, u′ ∈ U;

• σ : Rn → Rn×p satisfies the following Lipschitz as-
sumption: there exists a constant Z ∈ R+ such that:
‖σ(x)− σ(x′)‖ ≤ Z‖x− x′‖ for all x, x′ ∈ Rn.

A continuous-time stochastic process ξ : Ω× R+
0 → Rn is

said to be a solution process of Σ if there exists υ ∈ U sat-
isfying the following stochastic differential equation (SDE):

d ξ = f(ξ, υ) d t+ σ(ξ) dWt, (2.1)

P-almost surely (P-a.s.), where f is known as the drift and
σ as the diffusion. We also write ξaυ(t) to denote the value
of the solution process at time t ∈ R+

0 under the input curve
υ from initial condition ξaυ(0) = a P-a.s., in which a is a
random variable that is measurable in F0. Let us empha-
size that the solution process is unambiguously determined,
since the assumptions on f and σ ensure its existence and
uniqueness [10, Theorem 5.2.1, p. 68].

3. INCREMENTAL STABILITY
We recall a stability notion for stochastic control systems,

introduced in [19], on which the main results presented in
this work rely.

Definition 3.1. A stochastic control system Σ is incre-
mentally input-to-state stable in the qth moment (δ-ISS-
Mq), where q ≥ 1, if there exist a KL function β and a
K∞ function γ such that for any t ∈ R+

0 , any Rn-valued
random variables a and a′ that are measurable in F0, and
any υ, υ′ ∈ U , the following condition is satisfied:

E [‖ξaυ(t)− ξa′υ′ (t)‖q ] ≤ β
(
E
[∥∥a− a′∥∥q] , t)+ γ

(∥∥υ − υ′∥∥∞) .
(3.1)

As showed in [19], one can describe δ-ISS-Mq in terms of
the existence of so-called incremental Lyapunov functions,
as defined next.

Definition 3.2. Consider a stochastic control system Σ
and a continuous function V : Rn × Rn → R+

0 that is twice
continuously differentiable on {Rn × Rn}\∆. The function
V is called an incremental input-to-state stability in the qth
moment (δ-ISS-Mq) Lyapunov function for Σ, where q ≥ 1,
if there exist K∞ functions α, α, ρ, and a constant κ ∈ R+,
such that

(i) α (resp. α) is a convex (resp. concave) function;

(ii) for any x, x′ ∈ Rn,
α (‖x− x′‖q) ≤ V (x, x′) ≤ α (‖x− x′‖q);

(iii) for any x, x′ ∈ Rn, x 6= x′, and for any u, u′ ∈ U,

Lu,u
′
V (x, x′) := [∂xV ∂x′V ]

[
f(x, u)
f(x′, u′)

]
+

1

2
Tr

([
σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [ ∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤ −κV (x, x′) + ρ(‖u− u′‖),



where Lu,u
′

is the infinitesimal generator associated to the
process V (ξ, ξ′) where ξ and ξ′ are solution processes of the
SDE (2.1) [10, Section 7.3]. The symbols ∂x and ∂x,x′ de-
note first- and second-order partial derivatives with respect
to x and (x, x′), respectively.

Although condition (ii) in the above definition implies
that the growth rate of functions α and α is linear, this
condition does not restrict the behavior of α and α to only
linear functions on a compact subset of Rn. The following
theorem, borrowed from [19], describes δ-ISS-Mq in terms of
the existence of δ-ISS-Mq Lyapunov functions.

Theorem 3.3. A stochastic control system Σ is δ-ISS-Mq

if it admits a δ-ISS-Mq Lyapunov function.

One can resort to available software tools, such as SOS-
TOOLS [11], to search for appropriate δ-ISS-Mq Lyapunov
functions for polynomial type Σ. We refer the interested
readers to the results in [19], providing special instances
where these functions can be easily computed. For example,
for linear stochastic control systems Σ (that is, for systems
with linear drift and diffusion terms), one can search for ap-
propriate δ-ISS-Mq Lyapunov functions by solving a linear
matrix inequality (LMI).

3.1 Noisy and noise-free trajectories
In order to introduce the symbolic models in Subsection

5.2 (Theorems 5.6 and 5.7) for a stochastic control system,
we need the following technical result, borrowed from [19],
which provides an upper bound on the distance (in the qth
moment) between the solution process of Σ and the solu-
tion of the corresponding non-probabilistic control system
obtained by disregarding the diffusion term σ. From now
on, we use the notation ξxυ to denote the solution of the or-

dinary differential equation (ODE) ξ̇xυ = f
(
ξxυ, υ

)
starting

from the non-probabilistic initial condition x and under the
input curve υ.

Lemma 3.4. Consider a stochastic control system Σ such
that f(0n, 0m) = 0n and σ(0n) = 0n×p. Suppose that q ≥ 2
and there exists a δ-ISS-Mq Lyapunov function V for Σ such
that its Hessian is a positive semidefinite matrix in R2n×2n

and ∂x,xV (x, x′) ≤ P , for any x, x′ ∈ Rn, and some positive
semidefinite matrix P ∈ Rn×n. Then for any x ∈ Rn and
any υ ∈ U , we have

E
[∥∥ξxυ(t)− ξxυ(t)

∥∥q] ≤ hx(σ, t), (3.2)

where

hx(σ, t) = α−1

(
1

2

∥∥∥√P∥∥∥2

nmin{n, p}Z2e−κt

·
∫ t

0

(
β (‖x‖q , s) + γ

(
sup
u∈U
{‖u‖}

)) 2
q

ds

)
.

It can be readily seen that the nonnegative valued function
hx tends to zero as t → 0, t → +∞, or as Z → 0, where
Z is the Lipschitz constant for the diffusion, introduced in
Definition 2.1. The interested readers are referred to [19],
which provides results in line with that of Lemma 3.4 for
(linear) stochastic control systems Σ admitting a specific
type of δ-ISS-Mq Lyapunov functions.

4. SYSTEMS AND APPROXIMATE
EQUIVALENCE RELATIONS

4.1 Systems
We employ the notion of system, introduced in [15], to de-

scribe both stochastic control systems as well as their sym-
bolic models.

Definition 4.1. A system S is a tuple S =
(X,X0, U, - , Y,H), where X is a set of states
(possibly infinite), X0 ⊆ X is a set of initial states
(possibly infinite), U is a set of inputs (possibly infinite),
- ⊆ X × U × X is a transition relation, Y is a set of

outputs, and H : X → Y is an output map.

A transition (x, u, x′) ∈ - is also denoted by

x
u- x′. For a transition x

u- x′, state x′ is called
a u-successor, or simply a successor, of state x. We denote
by Postu(x) the set of all u-successors of a state x. For
technical reasons, we assume that for any x ∈ X, there ex-
ists some u-successor of x, for some u ∈ U — let us remark
that this is always the case for the considered systems later
in this paper.

System S is said to be

• metric, if the output set Y is equipped with a metric
d : Y × Y → R+

0 ;

• finite (or symbolic), if X and U are finite sets;

• deterministic, if for any state x ∈ X and any input
u ∈ U , |Postu(x)| ≤ 1.

For a system S = (X,X0, U, - , Y,H) and given any
initial state x0 ∈ X0, a finite state run generated from x0 is
a finite sequence of transitions:

x0
u0- x1

u1- · · ·
un−2- xn−1

un−1- xn, (4.1)

such that xi
ui- xi+1 for all 0 ≤ i < n. A finite state

run can be directly extended to an infinite state run as well.
A finite output run is a sequence {y0, y1, . . . , yn} such that
there exists a finite state run of the form (4.1) with yi =
H(xi), for i = 0, . . . , n. A finite output run can also be
directly extended to an infinite output run as well.

4.2 Relations among systems
We recall the notion of approximate (bi)simulation rela-

tion, introduced in [3], which is useful when analyzing or
synthesizing controllers for deterministic systems.

Definition 4.2. Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d. For ε ∈
R+

0 , a relation R ⊆ Xa ×Xb is said to be an ε-approximate
simulation relation from Sa to Sb if, for all (xa, xb) ∈ R, the
following two conditions are satisfied:

(i) d(Ha(xa), Hb(xb)) ≤ ε;

(ii) xa
ua

a
- x′a in Sa implies the existence of xb

ub

b
- x′b

in Sb satisfying (x′a, x
′
b) ∈ R.

A relation R ⊆ Xa × Xb is said to be an ε-approximate
bisimulation relation between Sa and Sb if R is an ε-
approximate simulation relation from Sa to Sb and R−1 is
an ε-approximate simulation relation from Sb to Sa.



System Sa is ε-approximately simulated by Sb, or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation R from Sa to Sb
such that:

• for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R.

System Sa is ε-approximately bisimilar to Sb, denoted by
Sa ∼=ε

S Sb, if there exists an ε-approximate bisimulation re-
lation R between Sa and Sb such that:

• for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R;

• for every xb0 ∈ Xb0, there exists xa0 ∈ Xa0 with
(xa0, xb0) ∈ R.

5. SYMBOLIC MODELS FOR STOCHAS-
TIC CONTROL SYSTEMS

5.1 Describing stochastic control systems as
metric systems

In order to show the main results of the paper, we use the
notion of system to abstractly represent a stochastic control
system: given a stochastic control system Σ, we define an
associated metric system S(Σ) = (X,X0, U, - , Y,H),
where:

• X is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• X0 is a subset of the set of Rn-valued random variables
that are measurable over F0;

• U = U ;

• x υ- x′ if x and x′ are measurable in Ft and Ft+τ ,
respectively, for some t ∈ R+

0 and τ ∈ R+, and there
exists a solution process ξ : Ω × R+

0 → Rn of Σ satis-
fying ξ(t) = x and ξxυ(τ) = x′ P-a.s.;

• Y = X;

• H = 1X .

We assume that the output set Y is equipped with the metric

d(y, y′) =
(
E
[
‖y − y′‖q

]) 1
q , for any y, y′ ∈ Y and some

q ≥ 1. Let us remark that the set of states and inputs
of S(Σ) are uncountable and that S(Σ) is a deterministic
system in the sense of Definition 4.1, since (cf. Subsection
2.2) the solution process of Σ is uniquely determined.

As usual, since the concrete system S(Σ) is infinite and
does not allow for the direct control synthesis over itself,
we are interested in finding a finite abstract system that
is (bi)similar to the original concrete one. In order to
talk about approximate (bi)simulation relations between two
metric systems, such systems have to share the same output
set (cf. Definition 4.2). The latter clearly determines the
output behavior of the model that needs to be used to com-
pare the concrete and the abstract models. Obviously, the
system S(Σ) inherits a classical trace-based semantics [15],
and the only subtle point in our case is that the outputs of
S(Σ) (and those of any approximately (bi)similar one) are
random variables. This fact is especially important due to
the metric d with which the output set is endowed: for any
non-probabilistic point one can always find a non-degenerate

random variable which is as close as desired to the original
point in the metric d.

To elucidate the discussion in the previous paragraph, let
us consider the following example. Let A ⊂ Rn be the set (of
non-probabilistic points) whose safety we are interested in,
so we formulate the problem as satisfying the LTL formula1

�A. Suppose that over the abstract system we are able to
synthesize a control strategy that makes an output run of
the abstraction satisfy �A. Although the run would in gen-
eral be consisting of random variables y, the fact that y ∈ A
means that y has a Dirac probability distribution centered at
y, that is y ∈ Y is a degenerate random variable that can be
identified with a point in A ⊂ Rn ⊂ Y : note that since any
non-probabilistic point can be regarded as a random variable
with a Dirac probability distribution centered at that point,
Rn can be embedded in Y , which we denote as Rn ⊂ Y with
a slight abuse of notation. As a result, satisfying �A pre-
cisely means that the output run of the abstraction indeed
stays in the set A ⊂ Rn forever. On the other hand, suppose
that the original system is ε-approximate bisimilar to the
abstraction. If we want to interpret the result �A obtained
over the abstraction, we can guarantee that the correspond-
ing output run of the original system satisfies �Aε, that is
any output y of the run of the original system is within ε d-
distance from the set A: d(y,A) = infa∈A d(y, a) ≤ ε. Note
that although the original set A ⊂ Y is a subset of Rn ⊂ Y ,
its ε-inflation Aε = {y ∈ Y : d(y,A) ≤ ε} is not a subset
of Rn anymore and hence contains non-degenerate random
variables. In particular, Aε 6= {y ∈ Rn : infa∈A ‖y− a‖ ≤ ε}
and is in fact bigger than the latter set of non-probabilistic
points. As a result, although satisfying �Aε does not neces-
sarily mean that a trajectory of Σ always stays within some
non-probabilistic set, it means that the associated random
variables always belong to Aε and hence are close to the non-
probabilistic set A with respect to the qth moment metric.

We are now able to provide two versions of finite abstrac-
tions: one whose outputs are always non-probabilistic points
– that is degenerate random variables, elements of Rn ⊂ Y ,
and one whose outputs can be non-degenerate random vari-
ables. Recall, however, that in both cases the output set is
still the whole Y and the semantics is the same as for the
original system S(Σ).

5.2 Main results
This subsection contains the main contributions of the

paper. We show that for any δ-ISS-Mq stochastic control
system Σ, and for any precision level ε ∈ R+, we can con-
struct a finite system that is ε-approximate bisimilar to Σ.
The results in this subsection rely on additional assumptions
on the model Σ that are described next. We restrict our at-
tention to stochastic control systems Σ with input sets U
that are assumed to be finite unions of boxes (cf. Subsec-
tion 2.1). We further restrict our attention to sampled-data
stochastic control systems, where input curves belong to set
Uτ which contains only curves that are constant over inter-
vals of length τ ∈ R+, i.e.

Uτ =
{
υ ∈ U | υ(t) = υ((k − 1)τ), t ∈ [(k − 1)τ, kτ [, k ∈ N

}
.

Let us denote by Sτ (Σ) a sub-system of S(Σ) obtained by
selecting those transitions of S(Σ) corresponding to solution
processes of duration τ and to control inputs in Uτ . This
can be seen as the time discretization of Σ. More precisely,

1We refer the interested readers to [1] for the detailed defi-
nition of the safety property.



given a stochastic control system Σ, we define the associ-

ated metric system Sτ (Σ) =
(
Xτ , Xτ0, Uτ ,

τ
- , Yτ , Hτ

)
,

where Xτ = X, Xτ0 = X0, Uτ = Uτ , Yτ = Y , Hτ = H, and

• xτ
υτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N0, and there exists

a solution process ξ : Ω × R+
0 → Rn of Σ satisfying

ξ(kτ) = xτ and ξxτυτ (τ) = x′τ P-a.s..

Notice that a finite state run

x0
υ0

τ
- x1

υ1

τ
- · · ·

υN−1

τ
- xN of Sτ (Σ), where υi−1 ∈ Uτ

and xi = ξxi−1υi−1(τ) P-a.s. for i = 1, . . . , N , captures the
solution process of Σ at times t = 0, τ, . . . , Nτ , started from
the initial condition x0 and resulting from a control input υ
obtained by the concatenation of the input curves υi−1

(
i.e.

υ(t) = υi−1(t) for any t ∈ [(i− 1)τ, i τ [
)
, for i = 1, . . . , N .

Let us proceed introducing two fully symbolic systems for
the concrete model Σ. Consider a stochastic control system
Σ and a tuple q = (τ, µ,N, xs) of parameters, where τ is the
sampling time, µ is the input set quantization, N ∈ N is a
temporal horizon, and xs ∈ Rn is a source state. Given Σ
and q, consider the following systems:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq),

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq),

consisting of:

• Xq =
{

(u1, . . . , uN ) ∈
N times︷ ︸︸ ︷

[U]µ × · · · × [U]µ
}

;

• Xq0 = Xq;

• Uq = [U]µ;

• xq
uq

q
- x′q, where xq = (u1, u2, . . . , uN ), if and only if

x′q = (u2, . . . , uN , uq);

• Yq is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hq(xq) = ξxsxq(Nτ)
(
Hq(xq) = ξxsxq(Nτ)

)
.

Note that the transition relation in Sq(Σ) admits a very
compact representation in the form of a shift operator. We
have abused notation by identifying uq ∈ [U]µ with the con-
stant input curve with domain [0, τ [ and value uq and identi-
fying xq ∈ [U]Nµ with the concatenation of N control inputs

ui ∈ [U]µ
(
i.e. xq(t) = ui for any t ∈ [(i − 1)τ, iτ [

)
for

i = 1, . . . , N . Notice that the proposed abstraction Sq(Σ)(
resp. Sq(Σ)

)
is a deterministic system in the sense of Defi-

nition 4.1. Note that Hq and Hq are mappings from a non-
probabilistic point xq to the random variable ξxsxq(Nτ) and
to the one with a Dirac probability distribution centered at
ξxsxq(Nτ), respectively.

The control synthesis for Sq(Σ) is simple as the outputs
are non-probabilistic points. For Sq(Σ) it is perhaps less
intuitive. Hence, we discuss it in more details later in Sub-
section 5.3.

An example of abstraction Sq(Σ) with N = 2 and Uq =
{0, 1} is depicted in Figure 1, where the initial states are
shown as targets of sourceless arrows. Note that Sq(Σ) only
has four possible states: Xq = {(0, 0), (0, 1), (1, 0), (1, 1)}.

(0, 0)

ξxs(0,0)(2τ)

(0, 1)

ξxs(0,1)(2τ)

(1, 1)

ξxs(1,1)(2τ)

(1, 0)

ξxs(1,0)(2τ)

1

1
0

0

0

0

1

1

Figure 1: Example of abstraction Sq(Σ) with N = 2
and Uq = {0, 1}. The lower part of the states are
labeled with their output values.

If one chooses N = 3, then Sq(Σ) will have eight possible
states.

In order to obtain some of the main results of this work,
we raise an assumption on the δ-ISS-Mq Lyapunov function
V as follows:

|V (x, y)− V (x, z)| ≤ γ̂(‖y − z‖), (5.1)

for any x, y, z ∈ Rn, and some K∞ and concave function γ̂.
As long as one is interested to work in a compact subset of
Rn, the function γ̂ in (5.1) can be readily computed. Indeed,
for all x, y, z ∈ D, where D ⊂ Rn is compact, one can readily
apply the mean value theorem to the function y → V (x, y)
to get

|V (x, y)− V (x, z)| ≤ γ̂ (‖y − z‖) ,

where γ̂(r) =

(
max

x,y∈D\∆

∥∥∥∥∂V (x, y)

∂y

∥∥∥∥) r.
In particular, for the δ-ISS-M1 Lyapunov function

V (x, x′) :=
√

(x− x′)T P (x− x′), for some positive defi-

nite matrix P ∈ Rn×n and for all x, x′ ∈ Rn, one obtains

γ̂(r) = λmax(P )√
λmin(P )

r [15, Proposition 10.5], which satisfies (5.1)

globally on Rn.
Before providing the main results of the paper, we need

the following technical claims.

Lemma 5.1. Consider a stochastic control system Σ, ad-
mitting a δ-ISS-Mq Lyapunov function V , and consider its
corresponding symbolic model Sq(Σ). We have:

η ≤
(
α−1

(
e−κNτ max

uq∈Uq

V
(
ξxsuq

(τ), xs
)))1/q

, (5.2)

where

η := max
uq∈Uq,xq∈Xq

x′q∈Postuq (xq)

∥∥∥ξHq(xq)uq
(τ)−Hq

(
x′q
)∥∥∥ . (5.3)

The proof of Lemma 5.1 is provided in the Appendix. The
next lemma provides similar result as the one in Lemma 5.1,
but without explicitly using any Lyapunov function.



Lemma 5.2. Consider a δ-ISS-Mq stochastic control sys-
tem Σ and its corresponding symbolic model Sq(Σ). We
have:

η ≤
(
β

(
max
uq∈Uq

∥∥∥ξxsuq
(τ)− xs

∥∥∥q , Nτ))1/q

, (5.4)

where η is given in (5.3).

The proof of Lemma 5.2 is provided in the Appendix.
The next two lemmas provide similar results as the ones of
Lemmas 5.1 and 5.2, but by using the symbolic model Sq(Σ)

rather than Sq(Σ).

Lemma 5.3. Consider a stochastic control system Σ, ad-
mitting a δ-ISS-Mq Lyapunov function V , and consider its
corresponding symbolic model Sq(Σ). One has:

η̂ ≤
(
α−1

(
e−κNτ max

uq∈Uq

E
[
V
(
ξxsuq (τ), xs

)]))1/q

, (5.5)

where

η̂ := max
uq∈Uq,xq∈Xq

x′q∈Postuq (xq)

E
[∥∥ξHq(xq)uq(τ)−Hq

(
x′q
)∥∥] . (5.6)

Proof. The proof is similar to the one of Lemma 5.1 and
can be shown by using convexity of α and Jensen inequality
[10].

Lemma 5.4. Consider a δ-ISS-Mq stochastic control sys-
tem Σ and its corresponding symbolic model Sq(Σ). We
have:

η̂ ≤
(
β

(
max
uq∈Uq

E
[∥∥ξxsuq (τ)− xs

∥∥q] , Nτ))1/q

, (5.7)

where η̂ is given in (5.6).

Proof. The proof is similar to the one of Lemma 5.2 and
can be shown by using Jensen inequality [10].

Remark 5.5. It can be readily verified that by choosing
N sufficiently large, η and η̂ can be made arbitrarily small.
One can even try to reduce the upper bound of η in (5.2) by
choosing the source point xs as the following:

xs = arg min
x∈Rn

max
uq∈Uq

V
(
ξxuq

(τ), x
)
. (5.8)

We can now present the first main result of the paper,
which relates the existence of a δ-ISS-Mq Lyapunov function
to the construction of a symbolic model.

Theorem 5.6. Consider a stochastic control system Σ
with f(0n, 0m) = 0n and σ(0n) = 0n×p, admitting a δ-ISS-
Mq Lyapunov function V , of the form of the one explained in
Lemma 3.4, such that (5.1) holds for some concave γ̂ ∈ K∞.
Let η be given by (5.3). For any ε ∈ R+ and any tuple
q = (τ, µ,N, xs) of parameters satisfying µ ≤ span(U) and

e−κτα (εq) +
1

eκ
ρ(µ) + γ̂

(
(hxs (σ, (N + 1)τ))

1
q + η

)
≤ α (εq) ,

(5.9)

the relation

R =
{

(xτ , xq) ∈ Xτ ×Xq | E
[
V
(
xτ , Hq(xq)

)]
≤ α (εq)

}
is an ε-approximate bisimulation relation between Sq(Σ) and
Sτ (Σ).

By choosing N sufficiently large, one can enforce
hxs(σ, (N + 1)τ) and η to be sufficiently small. Hence, it
can be readily seen that for a given precision ε, there always
exists a sufficiently small value of µ and a large value of N ,
such that the condition in (5.9) is satisfied.

In order to mitigate the conservativeness caused by using
Lyapunov functions, the next theorem provides a result that
is similar to the one of Theorem 5.6, which is however not
obtained by explicit use of δ-ISS-Mq Lyapunov functions,
but by using functions β and γ as in (3.1).

Theorem 5.7. Consider a δ-ISS-Mq stochastic control
system Σ, satisfying the result of Lemma 3.4. Let η be given
by (5.3). For any ε ∈ R+, and any tuple q = (τ, µ,N, xs) of
parameters satisfying µ ≤ span(U) and

(β (εq , τ) + γ(µ))
1
q + (hxs (σ, (N + 1)τ))

1
q + η ≤ ε, (5.10)

the relation

R =

{
(xτ , xq) ∈ Xτ ×Xq |

(
E
[∥∥xτ −Hq(xq)

∥∥q]) 1
q ≤ ε

}
is an ε-approximate bisimulation relation between Sq(Σ) and
Sτ (Σ).

By choosing N sufficiently large, one can force hxs(σ, (N+
1)τ) and η to be sufficiently small. Hence, it can be readily
seen that for a given precision ε, there always exist a suf-
ficiently large value of τ and N and small value of µ such
that the condition in (5.10) is satisfied. However, unlike
the result in Theorem 5.6, notice that here for a given fixed
sampling time τ , one may not find any values of N and µ

satisfying (5.10) because the quantity (β (εq, τ))
1
q may be

larger than ε. The symbolic model Sq(Σ), computed by
using the parameter q provided in Theorem 5.7 whenever
existing, is likely to have fewer states than the model com-
puted by using the parameter q provided in Theorem 5.6.
Similar observation has been verified in the first example in
[19].

The next theorems provide results that are similar to those
of Theorems 5.6 and 5.7, but by using the symbolic model
Sq(Σ).

Theorem 5.8. Consider a stochastic control system Σ,
admitting a δ-ISS-Mq Lyapunov function V such that (5.1)
holds for some concave γ̂ ∈ K∞. Let η̂ be given by (5.6). For
any ε ∈ R+ and any tuple q = (τ, µ,N, xs) of parameters
satisfying µ ≤ span(U) and

e−κτα (εq) +
1

eκ
ρ(µ) + γ̂ (η̂) ≤ α (εq) , (5.11)

the relation

R = {(xτ , xq) ∈ Xτ ×Xq | E [V (xτ , Hq(xq))] ≤ α (εq)}

is an ε-approximate bisimulation relation between Sq(Σ) and
Sτ (Σ).

Theorem 5.9. Consider a δ-ISS-Mq stochastic control
system Σ. Let η̂ be given by (5.6). For any ε ∈ R+, and any
tuple q = (τ, µ,N, xs) of parameters satisfying µ ≤ span(U)
and

(β (εq, τ) + γ(µ))
1
q + η̂ ≤ ε, (5.12)

the relation

R =
{

(xτ , xq) ∈ Xτ ×Xq | (E [‖xτ −Hq(xq)‖q])
1
q ≤ ε

}



is an ε-approximate bisimulation relation between Sq(Σ) and
Sτ (Σ).

Remark 5.10. The symbolic model Sq(Σ), computed us-
ing the parameter q provided in Theorem 5.8 (resp. Theorem
5.9), has fewer (or at most equal number of) states than the

symbolic model Sq(Σ), computed by using the parameter q
provided in Theorem 5.6 (resp. Theorem 5.7) while hav-
ing the same precision. However, the symbolic model Sq(Σ)
has states with probabilistic output values, rather than non-
probabilistic ones, which is likely to require more involved
control synthesis procedures (cf. Subsection 5.3).

Remark 5.11. Although we assume that the set U is infi-
nite, Theorems 5.6, 5.7, 5.8, and 5.9 still hold when the set U
is finite, with the following modifications. First, the system
Σ is required to satisfy the property (3.1) for υ = υ′. Sec-

ond, take Uq = U in the definition of Sq(Σ) (resp. Sq(Σ)).
Finally, in the conditions (5.9), (5.10), (5.11), and (5.12)
set µ = 0.

Finally, we establish the results on the existence of sym-
bolic model Sq(Σ) (resp. Sq(Σ)) such that Sq(Σ) ∼=ε

S Sτ (Σ)
(resp. Sq(Σ) ∼=ε

S Sτ (Σ)).

Theorem 5.12. Consider the results in Theorem 5.6. If
we select

Xτ0 =

{
x ∈ Rn|

∥∥x−Hq(xq0)
∥∥ ≤ (α−1 (α (εq))

) 1
q ,∀xq0 ∈ Xq0

}
,

then we have Sq(Σ) ∼=ε
S Sτ (Σ).

Proof. We start by proving that Sτ (Σ) �εS Sq(Σ). For
every xτ0 ∈ Xτ0 there always exists xq0 ∈ Xq0 such that

‖xτ0 −Hq(xq0)‖ ≤
(
α−1 (α (εq))

) 1
q . Then,

E
[
V
(
xτ0, Hq(xq0)

)]
= V

(
xτ0, Hq(xq0)

)
≤ α(‖xτ0 −Hq(xq0)‖q) ≤ α (εq) ,

since α is a K∞ function. Hence, (xτ0, xq0) ∈ R implying

that Sτ (Σ) �εS Sq(Σ). In a similar way, we can show that

Sq(Σ) �εS Sτ (Σ) which completes the proof.

The next theorem provides a similar result in line with the
one of previous theorem, but by using a different relation.

Theorem 5.13. Consider the results in Theorem 5.7. If
we select

Xτ0 =
{
x ∈ Rn |

∥∥x−Hq(xq0)
∥∥ ≤ ε, ∀xq0 ∈ Xq0

}
,

then we have Sq(Σ) ∼=ε
S Sτ (Σ).

Proof. We start by proving that Sτ (Σ) �εS Sq(Σ). For
every xτ0 ∈ Xτ0 there always exists xq0 ∈ Xq0 such that

‖xτ0 − Hq(xq0)‖ ≤ ε and
(
E
[∥∥xτ0 −Hq(xq0)

∥∥q]) 1
q ≤ ε.

Hence, (xτ0, xq0) ∈ R implying that Sτ (Σ) �εS Sq(Σ). In a

similar way, we can show that Sq(Σ) �εS Sτ (Σ) which com-
pletes the proof.

The next two theorems provide similar results as the ones
of Theorems 5.12 and 5.13, but by using the symbolic model
Sq(Σ).

Theorem 5.14. Consider the results in Theorem 5.8. Let
A denote the set of all Rn-valued random variables, measur-
able over F0. If we select

Xτ0 ={
a ∈ A| (E [‖a−Hq(xq0)‖q ])

1
q ≤

(
α−1 (α (εq))

) 1
q , ∀xq0 ∈ Xq0

}
,

then we have Sq(Σ) ∼=ε
S Sτ (Σ).

Proof. The proof is similar to the one of Theorem
5.12.

Theorem 5.15. Consider the results in Theorem 5.9. Let
A denote the set of all Rn-valued random variables, measur-
able over F0. If we select

Xτ0 =
{
a ∈ A | (E [‖a−Hq(xq0)‖q ])

1
q ≤ ε, ∀xq0 ∈ Xq0

}
,

then we have Sq(Σ) ∼=ε
S Sτ (Σ).

Proof. The proof is similar to the one of Theorem
5.13.

5.3 Control synthesis over Sq(Σ)

Note that both Sq(Σ) and Sq(Σ) are finite systems. The
only difference is that the outputs of the former system are
always non-probabilistic points, whereas those of the latter
can be non-degenerate random variables. Let us describe
the control synthesis for these systems over the safety for-
mula �A, for A ⊂ Rn ⊂ Y , which has already been used in
Subsection 5.1. Clearly, since the original system Sτ (Σ) is
stochastic in the sense that its outputs are non-degenerate
random variables similarly to Sq(Σ), it would be too conser-
vative to require that it satisfies the formula exactly. Thus,
we are rather interested in an input policy that makes Sτ (Σ)
satisfy �Aε with some ε > 0: recall from Subsection 5.1 that
the latter LTL formula can be satisfied by non-degenerate
random variables, in contrast to �A. Let us recap how to
use abstractions for this task, and let us start with Sq(Σ)
belonging to a more familiar type of systems whose outputs
are non-probabilistic.

We label a state xq of Sq(Σ) with A ifHq(xq) ∈ A and, say,
with B otherwise. As a result, we obtain a transition system
with labels over the states and can synthesize a control strat-
egy that makes an output run of Sq(Σ) satisfy �A. After
that, we can exploit ε-approximate bisimilarity to guaran-
tee that the refined input policy makes the corresponding
output run of the original system satisfy �Aε.

The main subtlety in the case of Sq(Σ) is how to label its

states. We cannot do this as for Sq(Σ), since Hq(xq) may
never be an element of A for any xq ∈ Xq: indeed, the latter
is a set of non-probabilistic points, whereas all the outputs
of Sq(Σ) can happen to be non-degenerate random variables.
In order to cope with this issue, we propose to relax the orig-
inal problem and at the same time to strengthen the quality
of the abstraction. Namely, we can consider a relaxed prob-
lem �Aδ over the abstraction Sq(Σ), for some δ ∈ (0, ε),
where the latter is now required to be (ε − δ)-approximate
(rather than just ε-approximate) bisimilar to the original
system. Clearly (Aδ)ε−δ ⊆ Aε, so that whenever the control

policy for �Aδ is synthesized over Sq(Σ), its refined version
is guaranteed to force �Aε over the original system. Thanks
to the fact that Aδ contains non-degenerate random vari-
ables, we eliminate the conservativeness presented before in
the sense that it is likely that there are now points xq ∈ Xq



in Sq(Σ) such that Hq(xq) ∈ Aδ. The only remaining ques-
tion is how to check whether Hq(xq) ∈ Aδ. To answer this
question, we check that the distance

d (Hq(xq), A) = inf
a∈A

(
E‖ξxsxq(Nτ)− a‖q

)1/q
(5.13)

is smaller than δ, which involves both computing the ex-
pectation over the solution of the SDE, and optimizing the
value of this expectation. Clearly, such a computation in
general cannot be done analytically, and the evaluation of
the expectation itself is a highly non-trivial task unless the
SDE has a very special form.

We propose a Monte Carlo approach to compute an ap-
proximation of the quantity in (5.13) by means of empiri-
cal expectations. Using such an approach, we can estimate
d (Hq(xq), A) only up to some precision, say ε. If the es-
timated distance is less than δ − ε, we are safe to label xq
with A, whereas all other states are labeled by B. Further-
more, since this result is based on a Monte Carlo method, it
holds true only with a certain confidence level 1 − π where
π ∈ [0, 1]. The benefit of our approach is that it is not
only valid asymptotically (as the number of samples tends
to infinity), but we are also able to provide a number of sim-
ulations that is sufficient to estimate d (Hq(xq), A) with any
given precision ε and with any given confidence 1− π. This
can be considered as an extension of the well-known Hoeffd-
ing’s inequality [5] to the case when one has to deal with
an optimization problem. Note that regardless of the spec-
ification of interest, the main task over Sq(Σ) is always to
compute some distance as in (5.13) for any set that appears
in the specification, so the method below applies not only to
the safety formula �A, but also to more general formulae,
which are left as object of future research.

Due to space limitations, here we only consider the case
q = 1. For q ≥ 2, similar results can be derived. Suppose
that A as in (5.13) is a compact subset of Rn, and let Ar

be the smallest subset of [Rn]r such that A ⊆
⋃
p∈Ar B r2 (p).

Let M be the number of samples and let

drM := min
a∈Ar

1

M

M∑
i=1

∥∥∥ξixsxq(Nτ)− a
∥∥∥ ,

where the superscript i denotes the number of samples. Now
we have the following result.

Theorem 5.16. Consider a stochastic control system Σ
and suppose that we are interested in its dynamics over a
compact set D. It holds that |d (Hq(xq), A) − drM | ≤ ε with
confidence of at least 1− π given that r/2 < ε and that

M ≥ D2

2 (ε− r/2)2 · log
2|Ar|
π

,

where D = sup {‖x− y‖ | x, y ∈ D}.

Let us make some remarks regarding Theorem 5.16. First
of all, no matter how many distances one has to evaluate,
one can always use the same samples ξi and there is no need
to generate new samples. Second, the number of samples is
quadratic in the precision ε and is only logarithmic in the
lack of confidence π, thus it is fairly fast and easy to satisfy
the desired degree of accuracy with very high confidence.

5.4 Comparison with existing results in the
literature

Note that given any precision ε and sampling time τ , one
can always use the results in Theorem 5.12 to construct
a symbolic model Sq(Σ) that is ε-approximate bisimilar to
Sτ (Σ). However, the results in Theorem 5.1 in [19] cannot
be applied for any sampling time τ if the precision ε is lower
than the thresholds introduced in inequality (5.5) in [19].
Furthermore, while the results in [19] only provide symbolic
models with non-probabilistic output values, the ones in this
work provide symbolic models with probabilistic output val-
ues as well, which can result in less conservative symbolic
models (cf. Remark 5.10 and the example section).

One can compare the results provided in Theorems 5.6
(corr. 5.12) and 5.7 (corr. 5.13) with the results provided
in Theorems 5.1 and 5.3 in [19] in terms of the size of the
generated symbolic models. One can readily verify that the
precisions of the symbolic models proposed here and the ones
proposed in [19] are approximately the same as long as both
use the same input set quantization parameter µ and the
state space quantization parameter, called ν, in [19] is equal

to the parameter η in (5.3), i.e. ν ≤
(
α−1

(
e−κNτη0

))1/q
,

where η0 = maxuq∈Uq V
(
ξxsuq

(τ), xs
)

. The reason their

precisions are approximately (rather than exactly) the same
is because we use hxs (σ, (N + 1)τ) in conditions (5.9) and
(5.10) in this paper rather than h(σ, τ) = supx∈D hx(σ, τ)
that is being used in conditions 5.4 and 5.14 in [19] for a

compact set D ⊂ Rn. By assuming that hxs (σ, (N + 1)τ)
1
q

and h(σ, τ)
1
q are much smaller than η and ν, respectively, or

hxs (σ, (N + 1)τ) ≈ h(σ, τ), one should expect to obtain the
same precisions for the symbolic models provided here and
those provided in [19] under the aforementioned conditions.

The number of states of the proposed symbolic model in

this paper is
∣∣∣[U]µ

∣∣∣N . Assume that we are interested in the

dynamics of Σ on a compact set D ⊂ Rn. Since the set of
states of the proposed symbolic model in [19] is [D]ν , its size

is
∣∣[D]ν

∣∣ = K
νn

, where K is a positive constant proportional
to the volume of D. Hence, it is more convenient to use the
proposed symbolic model here rather than the one proposed
in [19] as long as:∣∣∣[U]µ

∣∣∣N ≤ K

(α−1 (e−κNτη0))n/q
.

Without loss of generality, one can assume that α(r) = r for
any r ∈ R+

0 . Hence, for sufficiently large value of N , it is
more convenient to use the proposed symbolic model here
in comparison with the one proposed in [19] as long as:∣∣∣[U]µ

∣∣∣ e−κτnq ≤ 1. (5.14)

Note that the methodology proposed in this paper allows
us to construct less conservative symbolic models with prob-
abilistic output values (see the example section) while the
proposed one in [19] only provides conservative symbolic
models with non-probabilistic output values.

6. EXAMPLE
We show the effectiveness of the results of the paper

by constructing a bisimilar symbolic model for a simple
6-dimensional linear stochastic control system Σ, aiming
mostly at elucidating the details. The model of Σ is de-
scribed by:

Σ : {d ξ = (Aξ +Bυ) d t+ 0.5ξ dWt, (6.1)



where

A =


−20.73 0.45 −0.77 0.92 0.68 1.28
0.95 −22.41 −1.73 −0.14 0.47 0.77
0.57 −0.74 −23.57 0.37 0.58 0.57
−0.71 0.07 1.04 −21.41 −1 0.14
−0.95 0.47 0.96 −1.34 −23.96 0.11
1.72 0.37 −0.21 −0.43 0.89 −22.91


BT = [ 0 0 0 0 0 100 ]T .

We assume that U = [−1, 1] and that Uτ contains curves
taking values in [U]1. Hence, as explained in Remark
5.11, µ = 0 is to be used in (5.9), (5.10), (5.11), and
(5.12). One can readily verify that the function V (x, x′) =√

(x− x′)T I6(x− x′), for any x, x′ ∈ R6, satisfies conditions

(i)-(iii) in Definition 3.2 with q = 1, α(r) = r, α(r) =
√

6r,

ρ(r) =
√

6‖B‖r, ∀r ∈ R+
0 , and κ = 19.5. Hence, Σ is δ-

ISS-M1, equipped with the δ-ISS-M1 Lyapunov function V .
Using the results of Theorem 3.3, provided in [19], one gets

that functions β(r, s) =
√

6e−κsr and γ(r) =
√

6‖B‖r
eκ

satisfy
property (3.1) for Σ. Given the Lyapunov function V , we
solve the optimization problem in (5.8) using the function
fminimax in Matlab and obtain xs ≈ 06.

For a given precision ε = 1 and fixed sampling time
τ = 0.01, the parameter N for Sq(Σ), based on inequal-
ity (5.9) in Theorem 5.6, is obtained as 10. Therefore,

the resulting cardinality of the set of states for Sq(Σ) is∣∣[U]1
∣∣10

= 310 = 59049. Using the aforementioned param-
eters, one gets η ≤ 0.127, where η is given in (5.3). Note
that the results in Theorems 5.7 and 5.9 cannot be applied

here because (β(εq, τ))
1
q > ε. Using criterion (5.14), one has∣∣∣[U]µ

∣∣∣ e−κτnq = 0.93, implying that the approach proposed

in this paper is more appropriate in terms of the size of the
abstraction than the one proposed in [19]. We elaborate
more on this at the end of the section.

Remark 6.1. By considering the dynamics of Σ over the
subset D = [−4, 4]6 of R6, at least 1− 10−5 confidence level,
and precision ε = 0.01 and using Hoeffding’s inequality [5],
one can verify that the number of samples should be at least
3.9059× 106 to empirically compute the upper bound of η̂ in
(5.5). We compute η̂ ≤ 0.1287 when N = 10, τ = 0.01, and
xs ≈ 06. Using the results in Theorem 5.8 and the same
parameters q as the ones in Sq(Σ), one obtains ε = 0.73 in
(5.11). Therefore, Sq(Σ), with confidence at least 1− 10−5,

provides less conservative precision than Sq(Σ) while having

the same size as Sq(Σ).

Now, consider that the objective is to design a con-
trol policy forcing the trajectories of Σ, starting from the
initial condition x0 = 06, to first sequentially visit (in
the 1st moment metric) two regions of interest W1 ={
x ∈ R6 | x6 = 0.3

}
and W2 =

{
x ∈ R6 | x6 = −0.3

}
; then

once the system has visited these regions, to reach the re-
gion W3 =

{
x ∈ R6 | x6 = 0.2

}
in finite time and remain

there forever (in the 1st moment metric). The LTL for-
mula2 representing this goal is 32W3∧3 (W1 ∧3W2). Fig-
ure 2 displays a few realizations of the closed-loop solution
process ξx0υ along the 6th dimension, as well as the cor-
responding evolution of the input signal υ. In Figure 3,
we show the average value (over 1000 experiments) of the

2Note that the semantics of LTL are defined over the output
behaviors of Sq(Σ).

distance in time of the solution process ξx0υ to the sets
W1, W2, and W3, namely ‖ξx0υ(t)‖W1

, ‖ξx0υ(t)‖W2
, and

‖ξx0υ(t)‖W3
, where the point-to-set distance is defined as

‖x‖W = infw∈W ‖x− w‖.
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Figure 2: A few realizations of the closed-loop solu-
tion process ξx0υ along the 6th dimension (top panel)
and the corresponding evolution of the obtained in-
put signal υ (bottom panel).
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Figure 3: The average values (over 1000 experi-
ments) of the distance of the solution process ξx0υ
to the sets W1 (top panel), W2 (middle panel), and
W3 (bottom panel).

To compute exactly the size of the symbolic model, pro-
posed in Theorem 5.1 in [19], we consider the dynamics of Σ
over the subset D = [−4, 4]6 of R6. Note that Theorem 5.3

in [19] cannot be applied here because (β(εq, τ))
1
q > ε. Us-

ing the same precision ε = 1 and sampling time τ = 0.01 as
the ones here, and the inequalities (5.3) and (5.4) in [19], we
obtain the state space quantization parameter as ν ≤ 0.01.
Therefore, if one uses ν = 0.01, the cardinality of the state
set of the symbolic model, provided by the results in The-

orem 5.1 in [19], is equal to
(

8
0.01

)6
= 2.62 × 1017 which is

much higher than the one proposed here, which amounts to
59049 points.

7. DISCUSSION
In this paper we have proposed a symbolic abstraction

technique for incrementally stable stochastic control systems
with only discretization of the input sets. The proposed
approach is potentially more scalable than that proposed in
[18, 19] for higher dimensional stochastic control systems.

Future work will concentrate on efficient implementations
of the symbolic models proposed here, using Binary Decision
Diagrams (BDD’s) or Algebraic Decision Diagrams (ADD’s)
as well as efficient controller synthesis techniques.



8. REFERENCES
[1] C. Baier and J. P. Katoen. Principles of model

checking. The MIT Press, April 2008.

[2] E. Le Corronc, A. Girard, and G. Goessler. Mode
sequences as symbolic states in abstractions of
incrementally stable switched systems. In Proceedings
of the 52nd IEEE Conference on Decision and
Control, pages 3225–3230, December 2013.

[3] A. Girard and G. J. Pappas. Approximation metrics
for discrete and continuous systems. IEEE
Transactions on Automatic Control, 25(5):782–798,
May 2007.

[4] A. Girard, G. Pola, and P. Tabuada. Approximately
bisimilar symbolic models for incrementally stable
switched systems. IEEE Transactions on Automatic
Control, 55(1):116–126, January 2009.

[5] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[6] A. A. Julius and G. J. Pappas. Approximations of
stochastic hybrid systems. IEEE Transactions on
Automatic Control, 54(6):1193–1203, 2009.

[7] I. Karatzas and S. E. Shreve. Brownian Motion and
Stochastic Calculus, volume 113 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2nd edition,
1991.

[8] R. Majumdar and M. Zamani. Approximately
bisimilar symbolic models for digital control systems.
In M. Parthasarathy and S. A. Seshia, editors,
Computer Aided Verification (CAV), volume 7358 of
LNCS, pages 362–377. Springer-Verlag, July 2012.

[9] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis
of discrete controllers for timed systems. In E. W.
Mayr and C. Puech, editors, Symposium on
Theoretical Aspects of Computer Science, volume 900
of LNCS, pages 229–242. Springer-Verlag, 1995.

[10] B. K. Oksendal. Stochastic differential equations: An
introduction with applications. Springer, 5th edition,
November 2002.

[11] A. Papachristodoulou, J. Anderson, G. Valmorbida,
S. Prajna, P. Seiler, and P. A. Parrilo. SOSTOOLS
version 3.00 - Sum of squares optimization toolbox for
MATLAB. arXiv: 1310.4716, October 2013.

[12] G. Pola, A. Girard, and P. Tabuada. Approximately
bisimilar symbolic models for nonlinear control
systems. Automatica, 44(10):2508–2516, October 2008.

[13] G. Pola and P. Tabuada. Symbolic models for
nonlinear control systems: Alternating approximate
bisimulations. SIAM Journal on Control and
Optimization, 48(2):719–733, February 2009.

[14] G. Reißig. Computing abstractions of nonlinear
systems. IEEE Transaction on Automatic Control,
56(11):2583–2598, November 2011.

[15] P. Tabuada. Verification and Control of Hybrid
Systems, A symbolic approach. Springer, 1st edition,
June 2009.

[16] M. Zamani and A. Abate. Symbolic control of
stochastic switched systems via finite abstractions. In
K. Joshi, M. Siegle, M. Stoelinga, and P. R.
D’Argenio, editors, Quantitative Evaluation of
Systems, volume 8054 of Lecture Notes in Computer
Science, pages 305–321. Springer Berlin Heidelberg,
August 2013.

[17] M. Zamani, P. Mohajerin Esfahani, A. Abate, and
J. Lygeros. Symbolic models for stochastic control
systems without stability assumptions. In Proceedings
of European Control Conference (ECC), pages
4257–4262, July 2013.

[18] M. Zamani, P. Mohajerin Esfahani, R. Majumdar,
A. Abate, and J. Lygeros. Bisimilar finite abstractions
of stochastic control systems. In Proceedings of the
52nd IEEE Conference on Decision and Control,
pages 3926–3931, December 2013.

[19] M. Zamani, P. Mohajerin Esfahani, R. Majumdar,
A. Abate, and J. Lygeros. Symbolic control of
stochastic systems via approximately bisimilar finite
abstractions. IEEE Transactions on Automatic
Control, accepted, arXiv: 1302.3868, 2014.

[20] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada.
Symbolic models for nonlinear control systems
without stability assumptions. IEEE Transactions on
Automatic Control, 57(7):1804–1809, July 2012.

Appendix
Proof. of Lemma 5.1: Let xq ∈ Xq, where xq =

(u1, u2, . . . , uN ), and uq ∈ Uq. Using the definition of Sq(Σ),
one obtains x′q = (u2, . . . , uN , uq) ∈ Postuq(xq). Since V is
a δ-ISS-Mq Lyapunov function for Σ, we have:

α
(∥∥∥ξHq(xq)uq

(τ)−Hq
(
x′q
)∥∥∥q) ≤ V (ξHq(xq)uq

(τ), Hq
(
x′q
))

= V

(
ξξxsxq (Nτ)uq

(τ), ξxsx′q
(Nτ)

)
= V

(
ξξxsu1 (τ)(u2,...,uN ,uq)

(Nτ), ξxs(u2,...,uN ,uq)
(Nτ)

)
≤ e−κNτV

(
ξxsu1

(τ), xs
)
. (8.1)

We refer the interested readers to the proof of Theorem 3.3
in [19] to see how we derived the inequality (8.1). Hence,
one gets∥∥∥ξHq(xq)uq

(τ)−Hq
(
x′q
)∥∥∥ ≤ (α−1

(
e−κNτV

(
ξxsu1

(τ), xs
)))1/q

,

(8.2)

because of α ∈ K∞. Since the inequality (8.2) holds for
all xq ∈ Xq and uq ∈ Uq, and α ∈ K∞, inequality (5.2)
holds.

Proof. of Lemma 5.2: Let xq ∈ Xq, where xq =
(u1, u2, . . . , uN ), and uq ∈ Uq. Using the definition of Sq(Σ),
one obtains x′q = (u2, . . . , uN , uq) ∈ Postuq(xq). Since Σ is
δ-ISS-Mq and using inequality (3.1), we have:∥∥∥ξHq(xq)uq

(τ)−Hq
(
x′q
)∥∥∥q =

∥∥∥∥ξξxsxq (Nτ)uq
(τ)− ξxsx′q (Nτ)

∥∥∥∥q
=

∥∥∥∥ξξxsu1 (τ)(u2,...,uN ,uq)
(Nτ)− ξxs(u2,...,uN ,uq)

(Nτ)

∥∥∥∥q
≤ β

(∥∥∥ξxsu1
(τ)− xs

∥∥∥q , Nτ) .
Hence, one gets∥∥∥ξHq(xq)uq

(τ)−Hq
(
x′q
)∥∥∥ ≤ (β (∥∥∥ξxsu1

(τ)− xs
∥∥∥q , Nτ))1/q

.

(8.3)

Since the inequality (8.3) holds for all xq ∈ Xq and all uq ∈
Uq, and β is a K∞ function with respect to its first argument
when the second one is fixed, inequality (5.4) holds.


