
Fast linearizability testing

Alex Horn and Daniel Kroening

University of Oxford

February 5, 2015

Abstract

Linearizability is the de facto correctness criteria for concurrent
data structures and consensus-based distributed systems. In this
talk, I present some work-in-progress on a new tool for testing
linearizability. We experimentally show that our tool can handle
problems where existing implementations timeout or run out of
memory. Our experiments include shared memory programs
(Intel’s TBB and Siemens’ EMBB library) and a large-scale
distributed system (etcd) using Aphyr’s testing framework
(Jepsen).

Outline

What’s the problem?
Example
Problem statement

Ideas
Partitioning scheme
Optimizations

Experiments
Etcd distributed system
Intel’s TBB library
Siemens’ EMBB library

Concluding remarks

Example: history
Consider a concurrent data type for unordered sets with the usual
‘insert’, ‘contains’ and ‘empty?’ operations.

Suppose three threads execute these operations concurrently, and we
record their operations in a so-called history (let it be H1):

t1 : � set.insert(1) : true �

t2 : � set.contains(1) : true �

t3 : � set.empty?: false �

What does it mean for this execution to be correct (or incorrect)?
This is answered by the concept of linearizability (see next slides).

Example: linearizability
Let H1 be the history from the previous slide:

t1 : � set.insert(1) : true �

t2 : � set.contains(1) : true �

t3 : � set.empty?: false �

Then H1 is linearizable because we can reorder the operations to, say,

i . set.insert(1) : true; ii . set.empty?: false; iii . set.contains(1) : true

which satisfies the specification of a sequential set.

The problem (to be formalized next) is to automatically find such a
reordering given any H and sequential specification.

Definition (History)
Let E , {call, ret} × N be the set of events. For all n in N, define
calln ∈ E to be a call and retn ∈ E to be a return. A history H is a
sequence of such events, totally ordered by �H . For all events e in E ,
obj(e) and m(e) denotes the object and method of e, respectively.
The length of H, written |H|, is the number of events in H.

Example

t1 : � set.insert(1) : true �

t2 : � set.contains(1) : true �

t3 : � set.empty?: false �

H1 , 〈call1, call2, call3, ret1, ret3, ret2〉 where obj(call1) = ‘set’ and
m(call1) = ‘insert(1) : true’, |H1| = 6 and call3 �H1 ret1 etc.

Definition (Sequential history)
Let e, e′ ∈ E be events in history H. If e is a call and e′ is a return in
H, both are matching whenever e �H e′ and their objects and
operations are equal, i.e. obj(e) = obj(e′) and m(e) = m(e′). A
history is complete if every call has a matching return. A complete
history H is sequential if it alternates between matching calls and
returns (necessarily starting with a call).

Example
H2 is a sequential history:

� insert(1) : true � � empty?: false � � contains(1) : true �

And so is H3 (albeit not maybe what we expect):

� empty?: false � � insert(1) : true � � contains(1) : true �

Definition (Happens-before)
Given a history H, the happens-before relation is defined to be a
partial order <H over calls e and e′ such that e <H e′ whenever
ret(e) �H e′, i.e. e’s matching return occurs before e′ in H.

Example
Let H5 be the following history:

t1 : call1 � set.insert(1) : true � ret1

t2 : call3 � set.contains(1) : true � ret3

t3 : call2 � set.empty?: false � ret2

• call1 6<H call2 and call2 6<H call1, i.e. both happen concurrently;
• call1 <H call3 and call2 <H call3, i.e. call1 happens-before call3
etc.

Problem statement

Definition (Linearizability)
Denote with φ a specification of a sequential data type, i.e. φ is a
unary predicate on sequential histories. A φ-sequential history is a
sequential history H that satisfies φ(H). A history H is linearizable
with respect to φ if it can be extended to a complete history H ′ (by
appending zero or more returns to H) and there is a φ-sequential
history S such that
L1 H ′ is equivalent to S, i.e. H ′ and S are are equal as sets;
L2 <H ⊆ <S , i.e. if e precedes e′ in H, the same is true in S.

Decision problem: Given H and φ, decide whether H is linearizable
with respect to φ.

Example: linearizability (with our formalization)
Recall H5:

t1 : call1 � set.insert(1) : true � ret1

t2 : call3 � set.contains(1) : true � ret3

t3 : call2 � set.empty?: false � ret2

Question: Is H5 linearizable with respect to φset?

Yes!

H2 is a witness for a φset-sequential history that respects <H5 :

� insert(1) : true � � empty?: false � � contains(1) : true �

In general, to check linearizability, we need to consider all
permutations of a history H. That’s O(|H|!).

Example: linearizability (with our formalization)
Recall H5:

t1 : call1 � set.insert(1) : true � ret1

t2 : call3 � set.contains(1) : true � ret3

t3 : call2 � set.empty?: false � ret2

Question: Is H5 linearizable with respect to φset? Yes!

H2 is a witness for a φset-sequential history that respects <H5 :

� insert(1) : true � � empty?: false � � contains(1) : true �

In general, to check linearizability, we need to consider all
permutations of a history H. That’s O(|H|!).

Theorem (Complexity)
Given a history H and specification φ, the linearizability problem —
i.e. whether H is linearizable with respect to φ — is NP-complete.

Proof.
The problem is clearly in NP whenever the specification of the
sequential data type is deterministic and can be run in polynomial
time. For NP-hardness, by reduction from SAT. Let ψ be a
propositional logic formula. Let Mψ be a model for a partial Boolean
assignment of the variables in ψ. Let H be a history where every
operation sets a variable to either true or false, and all operations
happen concurrently, i.e. are unordered by <H . The specification is
satisfied whenever all variables in Mψ have been assigned a value
without causing a contradiction (any later assignments are ignored).
Then H is linearizable with respect to Mψ if and only if ψ is SAT.
Hence linearizability checking is NP-complete.

About our decision procedure

Definition (Interval order)
A partially ordered set (P, ≤) is an interval order whenever, for all
x , y , u, v in P, if x ≤ y and u ≤ v , then x ≤ v or u ≤ y .

Note that (P, ≤) is an interval order if and only if no restriction of
(P, ≤) is isomorphic to the following Hasse diagram:1

• •

• •

1Rabinovitch, I., The dimension of semiorders. J. Comb. Theory (Series A) 25
1978 50–61

About our decision procedure

Theorem
For every complete history H, <H is an interval order.

Proof.
Assume x <H y and u <H v . Let ret(x) and ret(u) be the matching
return of x and u, respectively. Since H is complete, both returns are
in H. Recall that �H denotes the total ordering of events in H. By
definition of <H , ret(x) �H y and ret(u) �H v . Since �H is total,
either ret(x) �H ret(u) or ret(u) �H ret(x). The former implies
x <H v , whereas the latter implies u <H y , proving the claim.

Put differently, this talk is about a decision procedure for a certain
class of partial orders.

Idea: Partitioning scheme

Theorem
A history H is linearizable with respect to a specification if and only
if, for each object obj, the restriction of H to obj is linearizable.2

We use this theorem to partition a history of operations on an
associative data type (e.g. a set or hash map) into sub-histories that
only contain operations on the same datum. We call this the
compositional technique. Note that this technique cannot be
applied when there are zero-arg operations such as ‘empty?‘.

Example
set.insert(1) and set.insert(2) are in different sub-histories even
though both operations are on the same set. Put differently, we
interpret the datum to be obj .

2This is well-known as “compositionality”, see Theorem 3.6.1 in The Art of
Multiprocessor Programming (Revised Ed.) by Herlihy and Shavit.

Idea: Optimizations
As in SAT solvers, optimizations matter. We’ve experimentally
evaluated many different ways of implementing the decision
procedure, including non-chronological backtracking, parallelization,
and cache eviction strategies. We also looked at hashing: we exploit
the fact that XOR forms an albelian group and by this we get a
constant-time, O(1), hash function on bitsets.

Abelian group axioms:
• Closure: for all x , y ∈ V, x ⊕ y ∈ V;
• Associativity: for all x , y , z ∈ V, (x ⊕ y)⊕ z = x ⊕ (y ⊕ z);
• Identity: for all x ∈ V, x ⊕ 0 = x = 0⊕ x ;
• Inverse: for all x ∈ V, x ⊕ x̃ = 0 (here, x̃ , x);
• Commutativity: for all x , y ∈ V, x ⊕ y = y ⊕ x .

Experiments with distributed systems
For our experiments with distributed systems, we use Jepsen, a testing
framework that simulates network failures.3 For example, Jepsen
sporadically introduces network partitions in a cluster (on purpose):

N1

N2

N3

N4

N5

Using Jepsen, we have collected histories from etcd, a distributed
key/value data store.4 Due to network failures, the etcd histories are
rather different from those generated by shared memory programs.

3https://github.com/aphyr/jepsen
4https://github.com/coreos/etcd

https://github.com/aphyr/jepsen
https://github.com/coreos/etcd

Etcd experiments, comparison with Knossos
Jepsen ships with a linearizability tester called Knossos.5 Out of 100
etcd histories collected with Jepsen, 80% are non-linearizable (this is
harder to check than linearizability, i.e. SAT versus UNSAT).

Crucially, Knossos times out on benchmarks 7 and 99, and runs out of
memory on benchmarks 40, 57, 85 and 97. All these benchmarks
(except 7) are non-linearizable. In contrast, our linearizability tester
completes all 100 benchmarks in around 7 s, averaging 0.07 s per
benchmark. Memory usage of our tool is negligible.

5https://github.com/aphyr/knossos

https://github.com/aphyr/knossos

TBB experiments
We tested concurrent_unordered_set in Intel’s TBB library.6 In
our experiments, we start up four processes that randomly insert and
remove items. Each process produces 70K operations. In other
words, the length of histories is 4× 2× 70K = 560K . Those histories
are significantly longer than in previous experiments where the limit is
213 ≈ 8K operations per process.7 For our tool, we get the following
results when histories are linearizable:
• LRU=on, O(1) hash: 54 s [646MiB]
• LRU=off, O(1) hash: 131 s [9, 763MiB ≈ 10GiB]
• Compositional: 7 s [9, 763MiB ≈ 10GiB]
The first two times remain stable even if allow ‘empty?’ checks, but
then we cannot use the compositional technique (as noted before).

6https://www.threadingbuildingblocks.org/
7http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/

https://www.threadingbuildingblocks.org/
http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/

EMBB experiments
We tested LockFreeStack in Siemens’ EMBB library.8 Again, we
start up four processes that randomly push and pop items. Each
process produces 70K operations, resulting in histories of length
560K . We get the following results when histories are linearizable:
• LRU=on, O(1) hash: 73 s [704MiB]
• LRU=off, O(1) hash: 59 s [13, 135MiB ≈ 13GiB]

Things to improve: Currently, we artificially induce non-linearizable
histories by changing the initial state. Ideally, we would find real bugs
in TBB or EMBB. It would be also interesting to extract histories
form Gavin’s experiments on hash sets implemented in Scala.9

8https://github.com/siemens/embb
9http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/

https://github.com/siemens/embb
http://www.cs.ox.ac.uk/people/gavin.lowe/LinearizabiltyTesting/

Concluding remarks
We have presented a linearizability tester with promising results. We
beat Knossos and our partitioning scheme shows significant
algorithmic improvements over Gavin’s linearizability tester. In
addition, we have shown that LRU cache eviction can reduce memory
consumption by one order of magnitude. In fact, in the TBB
experiments, this even decreases runtime.

As future work, it would be nice to extend the idea behind our
partitioning scheme to a wider class of operations. I am planning to
support other consistency models.

You may download our tool now!
https://github.com/ahorn/linearizability-tester

(Our source code repository contains not only our experiments but
also many unit tests to simplify development.)

https://github.com/ahorn/linearizability-tester

	What's the problem?
	Example
	Problem statement

	Ideas
	Partitioning scheme
	Optimizations

	Experiments
	Etcd distributed system
	Intel's TBB library
	Siemens' EMBB library

	Concluding remarks

