
1

Stack

A stack-based virtual machine
for physical devices.

19th September 2018

Stack (name may change) is a stack-based virtual machine for physical computing. The final system
will consist of (i) a web-based development environment with a simulator, (ii) a USB HID programming
interface, and (iii) various hardware implementations of the virtual machine supporting output devices
such as RGB LED, sounders, and motors. The aim is to provide a fun programming platform using
low-cost battery-powered physical devices. Being stack-based, building compliers for custom domain-
specific languages is relatively straightforward. To date, parts (i) and (ii) are complete, and (iii) is
currently being prototyped.

Stack Instruction Set

The Stack instruction set consists of two parts: (i) a core set of instructions that all virtual machines
must implement, and (ii) an optional set which provide specific input and output functionality. The
optional instructions encode their stack manipulation within the opcode, so backward compatibility is
maintained as additional optional instructions are added to the instruction set. Optional instructions
can easily be added to the assembler and compiler without their implementation details being known.

Core Instructions

The core instructions are shown below. The instructions manipulate two stacks: the operand stack, S,
and the return address stack, R, The sizes of the stacks is denoted by #S and #R respectively. The
top of both stacks is referred to by the index 1.

The program, and any associated data, is encoded as a set of bytes, P , in the program space, indexed
from 0, with the size of the program being #P bytes.

Instruction Effect Description Preconditions

0x00 ADD, + ab — x Pops a and b from the operand stack and pushes
back a+ b.

#S ≥ 2

0x01 SUB, - ab — x Pops a and b from the operand stack and pushes
back a− b.

#S ≥ 2

0x02 MUL, * ab — x Pops a and b from the operand stack and pushes
back a× b.

#S ≥ 2

0x03 DIV, / ab — x Pops a and b from the operand stack and pushes
back a÷ b.

#S ≥ 2, b > 0



2

0x04 MOD ab — x Pops a and b from the operand stack and pushes
back a mod b

#S ≥ 2, b > 0

0x05 INC a — x Pops a from the operand stack and pushes back
a+ 1.

#S ≥ 1

0x06 DEC a — x Pops a from the operand stack and pushes back
a− 1.

#S ≥ 1

0x07 MAX ab — x Pops a and b from the operand stack and pushes
back MAX(a, b).

#S ≥ 2

0x08 MIN ab — x Pops a and b from the operand stack and pushes
back MIN(a, b).

#S ≥ 2

0x09 LT, < ab — x Pops a and b from the operand stack and pushes
back 1 if a < b, and 0 otherwise.

#S ≥ 2

0x0A LE, <= ab — x Pops a and b from the operand stack and pushes
back 1 if a ≤ b, and 0 otherwise.

#S ≥ 2

0x0B EQ, = ab — x Pops a and b from the operand stack and pushes
back 1 if a = b, and 0 otherwise.

#S ≥ 2

0x0C GE, >= ab — x Pops a and b from the operand stack and pushes
back 1 if a ≥ b, and 0 otherwise.

#S ≥ 2

0x0D GT, > ab — x Pops a and b from the operand stack and pushes
back 1 if a > b, and 0 otherwise.

#S ≥ 2

0x0E DROP a — Pops a from the operand stack and discards it. #S ≥ 1

0x0F DUP a — aa Pops a from the operand stack and pushes back
two copies.

#S ≥ 1

0x10 NDUP bc2 — bcb PopsN from the operand stack, and pushes back
to the stack a copy of the value at depth N in
the stack. 1 NDUP is equivalent to DUP.

N > 0, #S > N

0x11 SWAP ab — ab Pops a and b from the operand stack and pushes
them back in the reverse order.

#S ≥ 2

0x12 ROT abc — bca Rotates top three values on the stack (bottom
to top).

#S ≥ 3

0x13 NROT abcd4 — bcda Pops N from the stack, and rotates top N val-
ues on the stack. 3 NROT is equivalent to ROT, 2
NROT is equivalent to SWAP, and 1 NROT is equiv-
alent to NOP.

N > 0, #S > N

0x14 TUCK abc — cab Rotates top three values on the stack (top to
bottom).

#S ≥ 3

0x15 NTUCK abcd4 — dabc Pops N from the stack, and tucks top N values
on the stack. 3 NTUCK is equivalent to TUCK,
2 NTUCK is equivalent to SWAP, and 1 NTUCK is
equivalent to NOP.

N > 0, #S > N

0x16 SIZE — x Pushes #S onto the operand stack. —

0x17 NRND n — x PopsN from the operand stack, and pushes back
onto the stack a random number between 0 and
N − 1.

#S ≥ 1, N > 1



3

0x18 PUSH — x Takes the 8-bit two’s complement number en-
coded in the instruction, and pushes this onto
the operand stack.

—

0x19 PUSH — x Takes the 16-bit two’s complement little-endian
number encoded in the instruction, and pushes
this onto the operand stack.

—

0x1A FETCH a — x Pops an address from the operand stack, and
pushes back the 16-bit two’s complement little-
endian number found there.

#S ≥ 1, 0 ≤ a <
#P − 1

0x1B CALL a — Pushes the current program counter value onto
the return address stack, pops the destination
from the operand stack, and jumps to that ad-
dress.

#S ≥ 1, 0 ≤ a <
#P − 1

0x1C RET — Pops an address from the return address stack,
and jumps there.

—

0x1D JMP a — Pops the destination from the operand stack,
and jumps to that address.

#S ≥ 1, 0 ≤ a <
#P − 1

0x1E CJMP ab — Pops the destination, b, from the operand stack,
and jumps to that address if a ! = 0.

#S ≥ 2, 0 ≤ b <
#P − 1

0x1F WAIT d — Pops d from the operand stack, and performs a
blocking wait of d milliseconds

0 ≤ d ≤ 32767

0x20 HALT — Halts program execution —

All core instructions are encoded as a single byte with the exception of PUSH which comes in two
variants, opcodes 0x18 and 0x19 which are followed by either one or two bytes representing an 8-bit
or a 16-bit little-endian two’s complement number. The internal representation of the address and
operand stack are 32-bit integers, and ll arithmetic operations saturate, rather than overflow.

Optional Instructions

Optional instructions are encoded as two bytes: the first byte is the opcode, and the second byte is a
representation of how the instruction manipulates the operand stack. The most four most significant
bits represent the number of values that are pushed to the operand stack, and the four least significant
bits represent the number of values that are popped from the operand stack. The opcode of all optional
instructions is 0x80 or greater. In this way, the virtual machine can execute optional instructions that
it doesn’t actually support, by simply popping and pushing dummy values to the operand stack.

Instruction Effect Description Preconditions

0x80,0x01 SLEEP d — Pops d from the operand stack and sleeps in
a low power mode for d seconds. All outputs
are disabled, and on waking program execution
starts from address 0 with empty operand and
return address stacks.

#S ≥ 1, 0 ≤ d ≤
32767

0x81,0x01 TONE f — Pops f from the operand stack and starts playing
a tone of frequency f Hz. Calling 0 TONE will
silence the tone.

#S ≥ 1, 0 ≤ f ≤
32767



4

0x82,0x02 BEEP fd — Pops f and d from the operand stack. Plays a
tone of frequency f Hz for d milliseconds. This
is a blocking call and program execution waits
until the tone has completed.

#S ≥ 2, 0 ≤ f ≤
32767, 0 ≤ d ≤
32767

0x83,0x03 RGB rgb — Pops r, g and b from the operand stack and sets
the LED colour appropriately. Calling 0 0 0 RGB
will turn off the LED.

#S ≥ 3, 0 ≤
r, g, b ≤ 255

0x84,0x01 COLOUR c — Pops c from the operand stack and sets the LED
colour appropriately. Colours are encoded as
RGB using the three least significant bits, so 0
- off, 1 - blue, 2 - green, 3 - cyan, 4 - red, 5 -
magenta, 6 - yellow and 7 - white.

#S ≥ 1, 0 ≤ c ≤
7

0x85,0x02 FLASH cd — Pops c and d from the operand stack and flashes
the LED with the appropriate colour for d mil-
liseconds. This is a blocking call and program
execution waits until the flash has completed.

#S ≥ 2, 0 ≤ c ≤
7, 0 ≤ d ≤ 32767

0x86,0x10 TEMP — t Pushes current temperature in degrees centi-
grade to the operand stack.

#S ≥ 0

0x87,0x30 ACCEL — xyz Pushes current accelerometer x, y and z axis
readings to the operand stack (1g = 1024). Max-
imum reading is 8g.

#S ≥ 0

0x88,0x02 PIXEL cp — Pops c and p from the operand stack and lights
LED number p the appropriate colour, leaving
other LED unchanged.

#S ≥ 2, 0 ≤ c ≤
7, 1 ≤ p ≤ 9

Status Codes

The virtual machine uses the following status codes. Codes other than 0 and 1 indicate an error status
and the execution of the program will stop.

Code Name Description

0 OKAY Normal state when the virtual machine is executing code.
1 HALT The HALT instruction has been executed.
2 INVALID ADDRESS An attempt was made to decode, fetch or jump to an address

which is outside of the program space.
3 INVALID INSTRUCTION An attempt to decode an instruction failed. Typically caused

by an error converting to byte code by hand, or by jumping
to the data sector or inside a PUSH instructions.

4 INVALID OPERAND One of the values popped from the operand stack by an in-
struction was invalid (e.g. attempting to divide by zero).

5 STACK OVERFLOW Maximum stack size exceeded (either the operand stack or
the return address stack).

6 STACK UNDERFLOW An instruction attempted to pop a value from a stack, and
found it to be empty (either the operand stack or the return
address stack).



5

Stack Assembler

The Stack assembler converts assembly language to machine code as you type. Instructions are case
insensitive, and numbers can be represented either as decimal values, or as 8-bit and 16-bit two’s
complement hexadecimal values (e.g. so that −1, 0xFF and 0xFFFF are equivalent). The assembler
will switch between the two variants of PUSH depending on the number of bytes required to represent
any value.

Below, is a minimal program that can be compiled and loaded into the simulator. It plays an 500 Hz
note for 1 second, and then exits. The equivalent byte code consists of 9 bytes: two three-byte PUSH
instructions encoding 500 and 1000 as little-endian 16-bit two’s complement numbers, two bytes to
represent the BEEP instruction which is part of the optional instruction set, and an additional HALT
instruction inserted by the assembler.

500 1000 beep

0x0000: 0x19 0xF4 0x01
0x0003: 0x19 0xE8 0x03
0x0006: 0x82 0x02
0x0008: 0x1A

(a) Assembly code. (b) Byte code.

The assembler will also resolve labels for CALL, JMP, CJMP and FETCH instructions. Labels end with a
colon and are case sensitive alphanumeric names which must start with a letter. The corresponding
address omits the colon. It also recognises useful constants; specifically, the colours (e.g. black, blue,
green, cyan, red, magenta, yellow and white) and the frequency of musical notes (e.g. D4, D#4 and
Db4).

The code below shows the same minimal program with the BEEP instruction moved to a procedure
which is called from the main code and is marked with a label. The equivalent byte code is 13 bytes.
Note that the assembler has resolved the address of the start of the play procedure to be 0x0007 and
this is pushed to the operand stack in little-endian format as 0x07 using opcode 0x18 before the CALL
instruction.

A4 play call
halt

play:
1000 beep
ret

0x0000: 0x19 0xEE 0x01
0x0003: 0x18 0x07
0x0006: 0x1B
0x0007: 0x20
0x0008: 0x19 0xE8 0x03
0x000B: 0x82 0x02
0x000D: 0x1C

(a) Assembly code. (b) Byte code.

The assembler also allows for the storage of array type data within the program code. Values within
this area and may be pushed to the operand stack using the FETCH instruction. Data is separated from
the rest of the program by either placing it at the end of the program with a .data segment label,
or at the start of the program between a pair of .data and .code segment labels. The address of
the data can be referenced from the .data segment label, or from any additional label inserted in this
space. The actual data is always positioned after the executable instructions, with an additional HALT
instruction automatically inserted if required.

The assembler also allows the insertion of raw opcode. These are placed between square brackets and



6

should represent single byte hex values (e.g. [0x20] or [0x82 0x02]). The opcode blocks cannot be
nested and can only appear in the code segment.

Procedural Music

The example code in the assembler plays the Fibonacci sequence in modulo 7, which repeats every 16
notes, and sounds quite nice. The frequencies of the 7 notes of the scale are stored in the data area.

.data
B4 C5 D5 E5 F5 F#5 G5

.code
33 6 1

loop:
dup rot + 7 mod
dup colour
dup play call
rot dec dup 4 ntuck
0 > loop cjmp
halt

play:
2 * data + fetch
200 beep
50 wait
ret

Fibonacci

Finally, here is an example of calculating the Fibonacci sequence calculated both iteratively and re-
cursively.

12 fibonacci call
halt

fibonacci:
dup 1 > isGreaterThanOne cjmp
ret

isGreaterThanOne:
0 1

loop:
dup tuck +
rot 1 - dup 4 ntuck
1 > loop cjmp
rot drop swap drop
ret

12 fibonacci call
halt

fibonacci:
dup 1 > isGreaterThanOne cjmp
ret

isGreaterThanOne:
dup
1 - fibonacci call
swap
2 - fibonacci call
+
ret

(a) Iterative Fibonacci. (b) Recursive Fibonacci.

The recursive calculation is quite slow. It is much more readable though.

Accelerometer

The following code calculates
√
a2x + a2y + a2z using a loop to approximate the square root function to

provide an estimate of the net acceleration felt by the device.



7

acceleration:
accel
dup * rot
dup * rot
dup * rot
+ + 0

loop:
2 ndup 2 ndup
dup * < done cjmp
50 + loop jmp

done:
swap drop ret

Future Work

Future work will demonstrate Stack on a number of different hardware platforms.


