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Abstract—Although privacy concerns in smart metering have
been widely studied, relatively little attention has been given to
privacy in bi-directional communication between consumers and
service providers. Full bi-directional communication is necessary
for incentive-based demand response (DR) protocols, such as
demand bidding, in which consumers bid to reduce their energy
consumption. However, this can reveal private information about
consumers. Existing proposals for privacy-enhancing protocols do
not support bi-directional communication. To address this chal-
lenge, we present a privacy-enhancing communication architec-
ture that incorporates all three major information flows (network
monitoring, billing and bi-directional DR) using a combination
of spatial and temporal aggregation and differential privacy. The
key element of our architecture is the Trustworthy Remote Entity
(TRE), a node that is singularly trusted by mutually distrusting
entities. The TRE differs from a trusted third party in that it
uses Trusted Computing approaches and techniques to provide a
technical foundation for its trustworthiness. A automated formal
analysis of our communication architecture shows that it achieves
its security and privacy objectives with respect to a previously-
defined adversary model. This is therefore the first application
of privacy-enhancing techniques to bi-directional smart grid
communication between mutually distrusting agents.

I. INTRODUCTION

It is widely acknowledged that there are privacy concerns as-
sociated with smart energy meters. Various privacy-enhancing
protocols and systems have been proposed to mitigate the
risk of private information being inferred from frequent en-
ergy consumption measurements. Experience has shown that
consumers do not always trust service providers such as the
energy supplier or distribution network operator (DNO) with
these fine-grained consumption measurements [1]. Even if
service providers follow the defined protocols, they might
still be perceived as honest-but-curious (HBC) adversaries
attempting to learn private information about consumers [2]. In
addition to these privacy concerns, there are numerous security
threats that must also be taken into account in smart grid
communication protocols. Most privacy-enhancing protocols
that have been proposed focus on two main information flows:
monitoring and billing. In the monitoring flow, consumers send
frequent consumption measurements to the DNO to allow fine-
grained monitoring of the distribution network. In the billing
flow, these frequent measurements are sent to the energy
supplier to facilitate price-based demand response schemes
such as dynamic pricing. The communication of energy price
information is not included in these information flows as it

is usually sent via a broadcast channel. Both monitoring and
billing are therefore uni-directional information flows.

Demand response (DR) is defined as: “Changes in electric
usage by end-use customers from their normal consumption
patterns in response to changes in the price of electricity
over time, or to incentive payments designed to induce lower
electricity use at times of high wholesale market prices or
when system reliability is jeopardized” [3]. As shown in this
definition and confirmed in the categorization by Albadi et
al. [4], there are two types of DR approaches: price-based
and incentive-based DR. An example of an incentive-based
approach is demand bidding [4] in which consumers interact
with the Demand Side Manager (DSM) as follows: When
a shortage in supply is expected, the DSM creates a DR
event and notifies all consumers. Consumers send bids to
the DSM stating the amount of consumption they are willing
to reduce and the desired incentive price for this reduction.
The DSM selects the winning bids and communicates its
decision to individual consumers. After the event, the respec-
tive incentives are credited to the successful bidders. Demand
bidding requires full bi-directional communication between
consumers and the DSM so that consumers can submit bids
and the DSM can respond to individual consumers to accept or
reject their bids. This bi-directional communication provides
a closed feedback loop allowing the DSM to monitor and
control the DR process and also constitutes a third primary
information flow. Standards such as Open Automated Demand
Response (OpenADR) version 1.0 [5] and the subsequent
OASIS Energy Interoperation (Ei) standard [6] specify data
models for demand bidding. Although initially targeted at large
industrial consumers, demand bidding can also be applied to
residential consumers. In a residential setting, a home energy
management system or feature-rich smart meter would place
bids and control energy-consuming systems according to a
user-defined policy.

However, it has been shown that these bids can be used
to infer private information about consumers [7][8][2]. The
magnitude and timing of a particular bid could reveal the
use of a particular type of system (e.g. charging a plug-in
electric vehicle after arriving home). If multiple bids can be
linked to a specific consumer, these can be used to infer
behavioural patterns. Any deviation from these patterns could
also reveal private information [2]. The challenge is that



existing proposals for privacy-enhanced smart metering do not
support bi-directional communication.

In order to address this challenge, we present a unified
communication architecture incorporating all three primary
information flows. The key element of our architecture is
the Trustworthy Remote Entity (TRE), a communication node
that is singularly trusted by mutually distrusting entities. The
TRE is an intermediary in the communication path between
consumers and service providers. The TRE enhances con-
sumers’ privacy using a combination of spatial and temporal
aggregation techniques and facilitates privacy-preserving bi-
directional communication for demand bidding protocols.

Although the TRE performs a similar role to a trusted third
party, the fundamental difference is that the TRE provides
a technical mechanism for proving its trustworthiness to the
relying parties. As our second contribution, we present a
technical approach for establishing trust in the TRE using
approaches and technologies from the field of Trusted Com-
puting (TC). Due to the unique characteristics of the smart grid
application domain, we propose that existing TC components
and approaches, such as the Trusted Platform Module (TPM)
and remote attestation, can be leveraged to provide meaningful
security guarantees.

Previous work has shown how some communication proto-
cols that have been proposed for the smart grid have failed
to meet their security and privacy requirements [9]. As our
third contribution, we have formally analysed the security
and privacy properties of our proposed protocols using an
enhanced version of the Casper/FDR protocol analysis tool
[10]. Our key contributions are:
• A privacy-enhancing communication architecture incor-

porating all three smart grid information flows, utilizing
Trustworthy Remote Entities (TREs).

• An approach for establishing trust in the TRE using tools
and approaches from the field of Trusted Computing.

• An automated formal analysis showing that our commu-
nication architecture improves upon existing protocols,
particularly with respect to bi-directional communication.

II. RELATED WORK

A. Privacy in Smart Metering

For purposes of network monitoring, consumption mea-
surements do not need to be attributable to individual con-
sumers. It is sufficient for the DNO to receive aggregated
consumption data from a group of smart meters. One class
of proposals involves anonymizing or pseudonymizing indi-
vidual measurements [11][12][13][14]. However, it has been
shown that in some cases these can be de-pseudonymized [9].
Furthermore, anonymization is not directly suitable for DR
bidding protocols because the relevant incentives cannot be
credited to anonymous bidders. Another class of proposals use
spatial aggregation in which measurements from a group of
consumers are added together such that the recipient cannot
determine each individual’s contribution to the total. Various
mechanisms for performing spatial aggregation have been pro-
posed including homomorphic encryption schemes [15][16],

data perturbation [17][18] and secret sharing [19]. However,
these cannot be used for demand bidding protocols because
the service provider is unable to select and notify individual
bidders.

For billing purposes, measurements must be attributable to
individual, named consumers. Some privacy-preserving billing
protocols make use of temporal aggregation in which measure-
ments from a single consumer are aggregated over time. The
energy supplier has a significant financial interest at stake and
so must be convinced that this aggregation has been performed
honestly. It has been proposed that this can be achieved
using verifiable computation techniques [20][21]. However,
temporal aggregation cannot be used for demand bidding
protocols because the bidding interactions must take place
in real time. An improved form of temporal aggregation for
billing has been proposed by Danezis et al [22]. Building on
the success of differential privacy [23], they have shown that
data perturbation can be used to enhance consumers’ privacy
whilst still providing some real time feedback to the supplier
[22]. Although the data is attributable to named consumers
and approximate individual measurements are available at each
point in time, this approach is still not ideal for demand
bidding because the perturbation of each individual bid could
result in an unacceptably large overall error. Furthermore,
the DSM requires accurate data in order to select successful
bidders, ensure that they have fulfilled their obligations and
credit them with the relevant incentives. Some proposals
for monitoring or billing have included trusted third parties
[17][24][25] but none of these have addressed the challenge
of bi-directional communication.

B. Privacy in Demand Response

Early research efforts have begun to investigate privacy-
enhancing techniques for DR applications. Rottondi and Ver-
ticale [8] have proposed the use of multi-party computation to
facilitate privacy-friendly appliance load-scheduling. Although
it addresses a similar problem, their architecture is designed
for collaborative scheduling rather than incentive-based DR.
The most similar work to ours is that by Karwe and Strüker
[7] who investigated a demand bidding protocol based on the
Open Automated Demand Response (OpenADR) specification
[5]. They showed that an untrusted intermediary between
the consumers and the DSM could compromise consumers’
privacy and they proposed enhancements to prevent this inter-
mediary from inferring private information [7]. As explained
in the next section, we focus on the complementary threat
scenario in which the third party is provably trustworthy whilst
all other agents are mutually distrusting. We have previously
analysed the privacy issues in bi-directional DR communica-
tion using different types of adversary models and suggested
that these issues could be mitigated using a trustworthy third
party [2]. This paper is the fulfilment of that suggestion and,
to the best of our knowledge, is the first work to address
privacy concerns in bi-directional DR communication between
mutually distrusting agents.



III. COMMUNICATION ARCHITECTURE

We first describe the baseline system model and the current
security and privacy threats. We then present our privacy-
enhancing communication architecture in terms of the three
main information flows and discuss some implementation
considerations.

A. Baseline System Model

In the set of all consumers C, each consumer c ∈ C has a
feature-rich smart meter or home energy management system
capable of bi-directional communication. At time t ∈ N, c
produces a consumption measurement mc

t and sends this to the
DNO (monitoring) and to the supplier (billing). For dynamic
pricing, the supplier periodically broadcasts the prevailing
price per unit pt to all consumers but this is not included
in the billing information flow because it is a broadcast
message. When incentive-based DR is required, the DSM
notifies consumers and invites bids. At time t, each consumer
c may generate a DR bid (bid-qct , bid-p

c
t) consisting of the bid

quantity and the bid price per unit and send this to the DSM.
The DSM replies to individual consumers indicating accep-
tance of the bid. We refer to this bi-directional communication
between the consumer and DSM as the DR information flow.

In this baseline model, there are various threats to con-
sumers’ privacy as well as the overall security of the system.
We focus on the threat model defined in [2]. In this model, it
is assumed that a limited number of consumers are adversarial
and will submit false measurements (a type of false data injec-
tion attack). It is also assumed that all service providers could
be honest-but-curious (HBC) adversaries who will follow the
defined protocol but will attempt to learn private information
about consumers from any received messages [2].

B. Enhanced System Model

In our privacy-enhancing communication architecture archi-
tecture, all communication between consumers and service
providers passes through a TRE. For each information flow,
the TRE performs specific information processing tasks as
described in the following subsections. In all cases, commu-
nication with the TRE takes place over a secure authenti-
cated channel providing confidentiality and integrity protection
with respect to external adversaries as well as strong mutual
authentication. For example, this could be achieved using
Transport Layer Security (TLS) with mutual authentication or
an equivalent protocol. Although we describe the functionality
of a single TRE, we envisage that there will be a network of
TREs distributed throughout the grid, each providing identical
functionality.

C. Network Monitoring

In the network monitoring information flow, the TRE per-
forms spatial aggregation over a group of consumers and
applies data perturbation to the result to achieve differential
privacy [23]. Consumers are divided into aggregation groups
g ⊂ C where G is the set of all groups on a particular TRE.
The aggregation groups are dynamically defined by the DNO

such that each group g ∈ G represents a sector within the
distribution network.

Every 15 or 30 minutes, at time t, consumers send individual
measurements mc

t to the TRE. The TRE first performs bounds
checking to mitigate against false data injection attacks. Mea-
surements that exceed a consumer’s installed capacity will be
excluded from the aggregation and an alert will be raised.
For each aggregation group, the TRE computes the sum of
the measurements and adds random noise according to the
Laplace distribution, Lap(λ), which has the density function
h(y) ∝ exp(−|y|/λ) (zero mean and standard deviation λ)
[26]. The result is sent to the DNO:

TRE→ DNO:

(∑
c∈g

mc
t

)
+ Y ; where: Y ∼ Lap(1/ε)

This mechanism is therefore ε-indistinguishable [26]. The
addition of random noise necessary to mitigate against a vari-
ant of the set-difference attack [27] in which the DNO creates
two overlapping aggregation groups that differ by a single
consumer in order to learn that individual’s consumption.
The sensitivity of the added noise is calibrated to mask the
presence of absence of any single consumer in the aggregate
[26]. All consumers in a particular group must connect to
the same TRE. Consumers’ privacy is technically preserved
if |g| ≥ 2 but in practice, larger aggregation groups would be
used. As |g| increases, the percentage error introduced by the
random noise decreases. In all practical implementations, this
error will be less than other errors such as those caused by
electrical losses in the distribution network. The maximum |g|
depends on implementation details such as the bandwidth and
computational capacity of the TRE. This approach achieves
the same outcome as other spatial aggregation techniques
[15][16][17][18][19] without requiring any modification to the
smart meters and only minimal configuration changes at the
DNO. Specifically, this approach does not increase the number
of messages sent by the consumers.

D. Billing

In the billing information flow, temporal aggregation is
used to preserve the level of privacy available before smart
meters. At time t the supplier notifies the TRE of the current
energy price pt which the TRE then broadcasts to consumers.
By verifying that pt was sent by the TRE, consumers are
assured that this is the price that will be applied. Consumers
send measurements mc

t to the TRE which performs bounds
checking and adds them to the consumer’s running total:

billct = billct−1 + (mc
t × pt)

At the end of the billing period (t = t-end), the TRE sends
each consumer’s aggregated total to the energy supplier and
resets the running total:

TRE→ Supplier: billct-end ; billct-end = 0

The temporal aggregation period is dynamically defined by
the supplier but must exceed the minimum value specified



by the regulator and enforced by the TRE to protect pri-
vacy (e.g. weeks or months). It is not necessary to apply
differential privacy in this case because the supplier cannot
define overlapping time periods and thus cannot learn anything
other than the temporal aggregate. The maximum temporal
aggregation period is again implementation-dependent. This
achieves the same result as other privacy-preserving billing
methods [22][20][21] without requiring modifications to the
smart meters or increasing the number of messages sent by
consumers. The TRE can combine the temporal aggregation
for billing purposes with the spatial aggregation for monitoring
since both use the same individual measurements as inputs.

E. Demand Response

Due to the requirement for full bi-directional communica-
tion in the DR information flow, techniques such as spatial or
temporal aggregation cannot be used directly. For example, in
demand bidding, the bids cannot be spatially aggregated over
multiple consumers because each bid contains both quantity
and price information. Furthermore, residential consumers
may only have the ability to reduce demand by a specific
amount (e.g. disconnecting a particular load) so bids cannot
be partially accepted. In our architecture, the TRE combines
the functionality of a privacy proxy with temporal aggregation
techniques as shown in Figure 1. When the DSM creates a new
DR event, the TRE notifies the consumers and participating
consumers submit bids to the TRE:

∀c ∈ C : c→ TRE: (bid-qct , bid-p
c
t)

To mitigate against false bid injection, consumers must
authenticate themselves to the TRE and the TRE performs
bounds checking on all bids. The TRE sends the DSM a set
of pseudo-bids corresponding to the consumers’ bids:

∀c ∈ C : TRE→ DSM: (pseudo-qct , pseudo-p
c
t)

Each pseudo-bid includes a single-use anonymous identifier
that can only be linked to the original bid by the TRE. This
differs from pseudonymization in which the same pseudonym
would be used for all bids from a particular consumer, thus
allowing linkability between bids. From the DSM’s perspec-
tive, the TRE appears to be a large aggregated load that
submits multiple bids for each DR event. The DSM can
therefore use its existing processes and algorithms to select
a set of accepted specific pseudo-bids, A and notify the
TRE which in turn notifies the individual consumers. If this
information flow were viewed in isolation, the TRE would still
not enable full demand bidding because the incentives could
not be credited to individual consumers. However, since our
architecture incorporates all three information flows, the TRE
can credit the consumers’ internal aggregated bills:

∀ c ∈ A : billct = billct−1 − (bid-qct × bid-pct)

These incentives are therefore included in the temporal
aggregation of the billing data thus preventing them from
being used to link bids to individual consumers. If required,

DSM

Publish DR Event

Consumer

Consumer

Pseudo-bids

Publish DR Event

Accept pseudo-bids

Bids/opt-outs

Notify successful bidders

TRE

Apply incentives to 
consumer bills Verify bid 

compliance

Fig. 1. Hybrid spatial and temporal aggregation for privacy-preserving DR.

the TRE could also verify that successful bidders have com-
plied with their bid obligations based on their consumption
measurements. This protocol ensures that the DSM is unable
to link bids to individual consumers and is therefore unable
to detect if specific consumers have placed bids.

F. Implementation Considerations

In the United Kingdom, the Data Communication Company
(DCC) is a licensed entity mandated to provide communication
services for all smart meters. Such an entity is ideally posi-
tioned to operate the network of TREs. To ensure availability,
it is expected that there would be a significant number of
TREs (in the order of thousands) geographically distributed
throughout the grid. If a TRE fails, the affected consumers
would re-connect to a different TRE since the aggregation
groups are dynamically defined. The maximum number of
consumers per TRE depends on implementation factors such
as the computational capacity and network bandwidth of the
TRE node. Given the simplicity of the information processing
it performs, the TRE is not expected to add significant com-
munication latency. Since our architecture does not increase
the number of messages sent by consumers compared to
the baseline system, it would impact the performance of the
communication network. This architecture could be deployed
incrementally in parallel with the roll-out of smart meters since
no modifications are required on the consumer side.

IV. ESTABLISHING TRUST

In the most extreme case, consumers and service providers
could be mutually distrusting. Consumers do not necessarily
trust service providers with their fine-grained energy measure-
ments [1] and service providers do not trust consumers to
aggregate their own measurements or calculate their own bills
honestly. The key feature of our communication architecture is
that the TRE is singularly trusted by these mutually distrusting
entities. Although the TRE provides the functionality of a
trusted third party, the fundamental difference is that a trusted



third party is typically trusted without proof whilst the TRE
uses Trusted Computing (TC) technologies and approaches to
provide a technical basis for this trust.

A. Trusted Computing Background

We focus on TC technologies standardized by the Trusted
Computing Group (TCG). These make use of the Trusted Plat-
form Module (TPM), a cryptographic co-processor securely
integrated into the platform that provides isolated storage for
cryptographic keys and a special set of Platform Configuration
Registers (PCRs). Each PCR stores an integrity measurement
in the form of cryptographic hash which cannot be directly
written but can be extended by supplying a new hash which is
concatenated with the existing value and the hash of the result
stored in the PCR. The PCRs provide integrity-protection for
the log of all software that has been executed on the platform.
Before any software is executed, the preceding software takes
a hash of the new binary, adds it to the log and extends it into
the PCRs. If the measurement log has been tampered with, its
sequence of hashes will not match the PCR values. This forms
a chain of trust extending back to either the platform reset or
to a point at which the platform transitioned into a secure state.
The TPM can seal data by encrypting the data such that it can
only be decrypted when the PCRs have the correct value. The
platform can perform a secure boot in which software binaries
are only executed if their hashes are on a pre-defined whitelist.
Remote attestation can then be used to prove the state of the
platform to a remote verifier by sending a TPM-signed quote
of the PCR values to the verifier.

Although TPMs are readily available in server platforms,
the use of remote attestation has been very limited due to
the size and complexity of modern general-purpose systems.
Studies have shown that remote attestation of a typical web
service involves approximately 300 integrity measurements
with about 35 new measurements added each month due to
software updates [28]. Furthermore, a general-purpose system
usually includes an operating system (OS) kernel consisting
of millions of lines of code. Even if the software can be
unambiguously identified, its complexity makes it infeasible
for a remote party to make informed trust decisions.

B. Trusted Computing in the TRE

In our architecture, the TRE avoids these scalability issues
since it is a highly specialized system with a single well-
defined unchanging purpose. The TRE has a minimal Trusted
Computing Base (TCB) consisting of a purpose-built network
stack, a limited number of cryptographic primitives and the
simple information processing procedures described above.
The TCB could be further reduced by partitioning the TRE into
its trusted and untrusted components using a similar approach
to that proposed by Lyle and Martin [28]. As a single-purpose
system, the TRE requires neither an OS nor the ability to
execute any other software. This makes it feasible to use
TCG secure boot so software binaries are only executed if
their hashes are on a pre-defined white-list. During normal
operation, the PCRs will therefore always reach the same value

thus allowing sensitive information, such as cryptographic
keys, to be sealed to this state. Most importantly, the TRE
can use remote attestation to prove its state to all relying
parties and due to its minimal TCB, this attestation can be
used to make informed trust decisions. Since the TRE must
be unambiguously identified, there is no need to use privacy-
preserving attestation protocols. Each TRE uses a consistent
Attestation Identity Key (AIK), endorsed by a regulatory
authority, and a simple challenge-response attestation protocol:

Verifier→ TRE: attestation request, nvt

Verifier← TRE: MLTRE
t , TSt,

{
nvt , PCR

TRE
t

}
Sig(AIK)

At time t, the verifier supplies nonce nvt . The TPM generates
a signature over nvt and the current PCR values PCRTRE

t

using its AIK and sends this to the verifier with the current
measurement list MLt and a timestamp TSt. The most sig-
nificant performance constraint is the TPM’s quote operation
since current generation TPMs (version 1.2) are not usually
designed to provide high throughput. To quantify this, we have
performed micro-benchmarks on an Infineon TPM 1.2. The
time taken by the TPM to perform one quote operation is
approximately 731 milliseconds with a standard deviation of
0.7 ms over 3000 samples. Even with over 1000 consumers
per TRE, this still allows every consumer to run the attestation
protocol at least once every 15 minutes. It is anticipated that
the TPM 2.0 will improve this performance.

V. FORMAL ANALYSIS

The trust establishment procedure described above provides
a technical basis for checking the exact system state of the
TRE. However, in order to make a well-founded trusted
decision, they must also be able to decide if this state provides
the required security and privacy properties. Practically, these
decisions are usually based on consistent experience of good
behaviour but in some cases, formal methods can be used
to analyse certain security and privacy properties resulting in
much higher levels of assurance. Arguably the most critical
aspects of the system are the communication protocols since
a protocol flaw could have catastrophic effects. To mitigate
against this risk, we have conducted an automated formal
analysis of all the communication protocols in our architecture.

A. Enhanced Casper/FDR Tool

The analysis was conducted using an enhanced version
of the Casper/FDR security protocol analysis tool [10]. The
original Casper/FDR tool developed by Lowe [29] takes an
abstract description of a security protocol and compiles it
into a formal model in the process algebra of Communicating
Sequential Processes (CSP) [30]. The tool then uses the FDR
model checker to perform trace refinement on the model to
verify the security properties of secrecy and authentication. For
this research, we augmented Casper/FDR to model and auto-
matically analyse the privacy properties of undetectability and
unlinkability in addition to the security properties of secrecy
and authentication [10]. These privacy properties are analysed



with respect to an honest-but-curious (HBC) adversary who is
a legitimate participant in the protocol.

Since the security properties are verified using a
reachability-based approach, the same type of approach must
be used for analysing the privacy properties. Ideally, an
indistinguishability-based approach would be used to analyse
these properties because such an approach can be used to
prove unlinkability and undetectability in the absolute sense.
In contrast, a reachability-based approach is limited to a
particular adversary model and set of adversary capabilities
which must be specified in advance. In our analysis, we use the
adversary model defined in [2] and the adversary capabilities
defined for the enhanced Casper/FDR tool [10]. However, the
advantage of the reachability-based approach is that the same
formal model can be used for both the analysis of the security
properties and the analysis of the privacy properties. This is
particularly useful in cases where there is tension between
the security goals and the privacy goals. For example, in the
baseline system model for the smart grid, a relaxation in the
authentication requirements between consumers and service
providers could be beneficial from a privacy perspective.
If consumption measurements were reported anonymously,
it would be more difficult to link these measurements to
individual consumers as explained in the protocols presented
by Borges et al. [12]. However, as shown by the enhanced
Casper/FDR tool, this could lead to a false data injection attack
since an external adversary could masquerade as one or more
legitimate consumers and submit falsified measurements. It
is therefore critical to analyse both the security and privacy
properties and to ensure that the analysis method used can
capture the inter-dependence between these properties. This
enhanced tool was used to analyse the various communication
protocols that constitute our architecture as described in the
following subsections. The analysis tool and all input scripts
are available online1.

B. Network Monitoring

Our model for the network monitoring information flow
consists of two consumers, a TRE and a distribution network
operator (DNO). At each of two consecutive time periods
(t ∈ {1, 2}) both consumers send consumption measurements
to the TRE. The TRE aggregates these measurements and
sends the result to the DNO. Since any aggregation group must
contain at least two consumers, the DNO cannot perform a set-
difference attack [27] in this model. Therefore, the model does
not need to include the random noise that would be added to
achieve differential privacy and thus mitigate against the set-
difference attack in a real implementation. All communication
is assumed to take place over secure channels that provide
confidentiality and integrity protection with respect to an
external adversary. In this protocol, the following security
properties are analysed:
• Secrecy: Individual consumption measurements must

only be known to the TRE and the respective consumers.

1https://www.cs.ox.ac.uk/people/andrew.paverd/casper/

This protects consumers’ privacy with respect to external
adversaries.

• Authentication: The consumers and the TRE must agree
on the individual measurement values that have been sent
and the TRE and DNO must agree on the aggregated
measurement values. This mitigates against false data
injection attacks caused by falsified measurements sent
from an external adversary.

The following privacy properties are analysed:
• Unlinkability: The DNO must not be able to link indi-

vidual measurements to specific consumers and the DNO
must not be able to link multiple measurements from
the same consumer. The DNO knows that the aggregated
measurement is the sum of individual measurements. This
enhances consumers’ privacy with respect to the DNO in
the monitoring information flow.

The analysis has shown that all the above properties are
achieved with respect to the defined adversary model.

C. Billing
Our model of the billing information flow consists of a

consumer, a TRE and an energy supplier. At each of two
consecutive time periods (t ∈ {1, 2}) the supplier sends
price information to the TRE which then forwards this to the
consumer. The consumer submits an individual consumption
measurement for that period to the TRE which multiplies
the consumption by the prevailing price and adds this to the
consumer’s running total. At the end of the billing period
(t = 2), the TRE sends the consumer’s aggregated total to
the supplier. As before, all communication is assumed to take
place over secure channels that provide confidentiality and
integrity protection with respect to an external adversary. In
this protocol, the following security properties are analysed:
• Secrecy: Individual consumption measurements must

only be known to the TRE and the respective consumers.
This protects consumers’ privacy with respect to external
adversaries.

• Authentication: The consumer and the TRE must agree
on the prices and individual measurement values and the
TRE and DNO must agree on the aggregated measure-
ment values. This mitigates against the possibility of an
external adversary manipulating this billing information.
It should be noted that this protocol does not mitigate
against malicious consumers who might send falsified
measurements as this is an orthogonal problem.

The following privacy properties are analysed:
• Unlinkability: The supplier must not be able to link

individual measurements to the consumer and the must
not be able to link multiple measurements from the
same consumer. The supplier knows that the aggregated
measurement is the sum of individual measurements
weighted by the prevailing price at each point in time.
This enhances consumers’ privacy with respect to the
energy supplier in the billing information flow.

The analysis has shown that all the above properties are
achieved with respect to the defined adversary model.



D. Demand Response

Our model for the DR information flow consists of two
consumers, a TRE and a demand side manager (DSM). At a
specific time, the DSM notifies the TRE of a DR event and
the TRE in turn notifies the consumers. This first message
exchange is not critical to the protocol and so is not included
in the model. At this point each of the consumers may submit
bids to the TRE. For each bid it receives, the TRE creates a
pseudo-bid containing the same bid quantity and bid price and
sends these to the DSM. The DSM uses its usual processes
to select the winning bids and notifies the TRE which then
passes on the notifications to the individual consumers. At
this point, the TRE would add the incentives to the running
bills of the successful bidders and optionally verify their
compliance with their bids, however these steps are also not
crucial to the analysis and so are not included in the model. As
before, all communication is assumed to take place over secure
channels that provide confidentiality and integrity protection
with respect to an external adversary. In this protocol, the
following security properties are analysed:
• Secrecy: Individual bids must only be known to the TRE

and the respective consumers. This protects consumers’
privacy with respect to external adversaries.

• Authentication: The consumer and the TRE must agree
on the individual bids and bid notifications. The TRE
and DSM must agree on all pseudo-bids and notifica-
tions. This mitigates against the possibility of an external
adversary placing false bids or manipulating the bidding
process.

The following privacy properties are analysed:
• Undetectability: The DSM is unable to detect if a

specific consumer has placed a bid. This ensures that
the DSM cannot infer any private information about
consumers based on the presence or absence of bids.

• Unlinkability: The DSM must not be able to link pseudo-
bids to consumers or to consumer bids.
The supplier knows that each pseudo-bid corresponds to
a real bid and that the notification for the pseudo-bid
will be forwarded to the specific consumer. This enhances
consumers’ privacy with respect to the DSM in the bi-
directional demand response information flow.

The analysis has shown that all the above properties are
achieved with respect to the defined adversary model.

VI. CONCLUSION

Due to the requirement of full bi-directional communication
between service providers and individual consumers, current
techniques for enhancing privacy in smart metering cannot be
used address the privacy concerns arising from incentive-based
DR protocols such as demand bidding. To address this chal-
lenge, we have proposed a unified communication architecture
combining all three major information flows and making use
of a Trustworthy Remote Entity (TRE). We have shown how
the TRE facilitates demand bidding whilst preserving con-
sumers’ privacy using a combination of spatial and temporal

aggregation and differential privacy. The TRE differs from a
typical trusted third party in that it uses Trusted Computing
technologies (secure boot and remote attestation) to provide
the technical foundation for establishing its trustworthiness.
Preliminary micro-benchmarks on a current generation TPM
confirm the feasibility of this approach from a performance
perspective. We have also conducted a systematic formal
analysis of the communication protocols in our architecture
using an automated analysis tool. This has shown that our
architecture achieves its security and privacy objectives with
respect to the defined adversary model.
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