
Online algorithms with pairwise-permuted inputs

Andrew Twigg∗

August 20, 2004

Keywords: On-line algorithms

1 Introduction

Imagine a network N with delays, such that when a
message sequence a, b, c, . . . is sent over the network,
elements of the sequence may individually experience
delays. This is a simplified model of UDP transmis-
sion, which is often used for broadcasting streams of
data where low transmission overhead is important
(for now, let’s assume that the stream is lossless, ie
the maximum delay experienced by any element is fi-
nite). We say that N has delay of d if the maximum
amount of time any element can be delayed for is d.
Clearly, the set of d-delayed versions of a stream σ
is a subset of the permutations of the elements of σ.
For example, a 1-delayed version of σ = σ1, σ2, σ3, . . .
is σ′ = σ1, σ3, σ2,

Now imagine an on-line algorithm ALG that re-
ceives an input stream σ′ over the network, as in Fig-
ure 1. The network can be considered a set of links
and the network chooses (adversarially) which link
to send each element over. We investigate the effect
of the network on the competitive ratio of ALG, by
comparing the worst-case performance of ALG(σ′) to
ALG(σ). We look at on-line algorithms for three well-
studied problems: minimum spanning tree, steiner
tree and static list-accessing.

∗Address: Computer Laboratory, 15 JJ Thomson Avenue
Cambridge UK e-mail: andrew.twigg@cl.cam.ac.uk

σ=1,2,3,...

1

0

ALG

σ =1,3,2,...’

Figure 1: An on-line algorithm ALG receives its in-
put via a network. The top and bottom links incur
delays of 0,1 respectively. The network can choose
adversarially, for each element, the link to send it
over

2 Minimum Spanning Tree

The first example is the on-line minimum spanning
tree problem. Given a graph G with vertices V , and
input sequence σ = v1, v2, . . . , vi, the algorithm must
construct a spanning tree Ti, where the set of vertices
in Ti = {v1, v2, . . . , vi}. The cost of the algorithm
on σ is the sum of edge weights used (edges can be
deleted at zero cost).

Algorithm GREEDY. The algorithm GREEDY
connects vi to the closest node arg minv∈Ti d(v, vi)
currently in the spanning tree. Hence, it never re-
moves edges. The following theorem is well-known.

Theorem 1 The greedy minimum spanning tree al-
gorithm is O(log n)-competitive for any weighted
graph over n vertices, and nothing on-line can beat
Ω(log n).

It is reasonably easy to show that a lower bound,
i.e. that the ‘cost’ of a 1-delayed adversarial network
to GREEDY for the on-line minimum spanning tree
problem is at least 3

2 .

1

y

z

x

1

1

2

Figure 2: Illustrating Theorem 2. The solid edges
illustrate the tree constructed by GREEDY[x, y, z]
whilst the dashed edges show the tree constructed by
GREEDY[x, z, y]

Theorem 2 For the on-line minimum spanning tree
problem, the competitive ratio of GREEDY on 1-
delayed inputs is at least 3/2 times the competitive
ratio of GREEDY on 0-delayed inputs.

Proof. We need to exhibit a sequence σ and a 1-
delayed version σ′, such that the cost ratio is 3/2.
Consider Figure 2, where σ = x, y, z and σ′ = x, z, y,
and assume wlog that d(x, y) ≤ d(z, y). Then
GREEDY on σ connects x, y and y, z, yet on σ′ it con-
nects x, z then x, y. It is clear that GREEDY(σ′) =
3
2GREEDY(σ).

To provide an upper bound, we use a lemma which
applies to on-line algorithms for constructing (mini-
mum) spanning trees.

Lemma 1 For the on-line minimum spanning
tree problem, the cost of serving future requests
σi+1, σi+2, . . . is independent of the edges in the cur-
rent tree Ti.

Proof. The proof follows immediately from the defi-
nition of the spanning tree, i.e. Ti contains exactly
{v1, v2, . . . , vi} and so has no paths v → w x where
w 6∈ σ.

A

B

x

T

y

Figure 3: Illustrating Theorem 3. The tree T exactly
spans the vertices in σ. The solid edges are added
by GREEDY on σ,A,B while the dashed edges are
added by GREEDY on σ,B,A

Theorem 3 For the on-line minimum spanning tree
problem, the competitive ratio of GREEDY on 1-
delayed inputs is as most 3/2 times the competitive
ratio of GREEDY on 0-delayed inputs.

Proof. By Lemma 1, it suffices to show that the cost
of adding any pair of vertices B,A to a tree T , in-
curs at most 3/2 times the cost of adding A,B to
the same tree T . If A is not the closest element to
B, then the ordering of A,B is unimportant since
GREEDY(σ) = d(x,A) + d(y,B) = GREEDY(σ′)
where x is the closest element to A and y is the clos-
est element to B. Hence we can assume wlog that
d(A,B) ≤ d(t, B) for any t ∈ T .

Let x be the closest element of T to A, and sim-
ilarly y for B. Then GREEDY on σ connects x,A
then A,B, and on σ′ it is forced to take the long way
round and connects y,B followed by B,A, as in Fig-
ure 3. If x = y then it is clear that GREEDY(σ′) ≤
3
2GREEDY(σ).

Assume that x 6= y, then from Figure 3, d(y,B) ≤
d(A,B)+d(x,A) if y is to really be the closest element
of T to B. Since A,B are closest to each other, then
d(A,B) ≤ d(x,A) which implies that GREEDY(σ) ≥

2

2d(A,B), hence d(A,B) ≤ 1
2GREEDY(σ). We have

GREEDY(σ′) = d(y,B) + d(A,B)

≤ 2d(A,B) + d(x,A)

= d(A,B) + GREEDY(σ)

≤ 3

2
GREEDY(σ).

3 Minimum Steiner Tree

The on-line Steiner tree problem is similar to the min-
imum spanning tree, but the Steiner tree Ti can in-
clude nodes not in σ, i.e. {v1, v2, . . . , vi} ⊆ Ti, and
the subtree Ti must include Ti−1 as a subgraph. The
configuration of a Steiner tree algorithm is the cur-
rent tree Ti. The cost for changing from Ti to Ti+1

is the sum of weights of edges added, known as the
distance d(Ti, Ti+1). Hence d(·) is a metric on the
space of configurations.

The on-line Steiner tree problem is a special case
of the file allocation problem, where D = 1, only read
requests are allowed, and the algorithm is forced to
replicate on every read request.

The GREEDY algorithm simply connects the re-
quested node to the closest node in the tree, via the
shortest path (rather than single edge). Since it never
removes edges, the cost GREEDY(σ) is simply the
weight of the final tree Tl. The optimum cost is the
weight of a minimum Steiner tree spanning the nodes
requested. We start by recalling a well-known result
about the competitiveness of GREEDY.

Theorem 4 The greedy Steiner tree algorithm is
strictly dlogne-competitive for any weighted graph
over n vertices, and nothing on-line can beat 1

2 logn.

Now we present a lower bound of 3 for the approxi-
mation ratio for 1-delay networks for GREEDY.

Theorem 5 For the on-line minimum Steiner tree
problem on infinite metric spaces, the competitive ra-
tio of GREEDY on 1-delayed inputs is at least 3 times
the competitive ratio of GREEDY on 0-delayed in-
puts.

s1
r2

r3

r5

r4

r1

s2

r7

r6
s3
...

1/2
1/2

1/2

1/2

1/2

1

1

2

2

Figure 4: Illustrating the lower bound of 3 for the
greedy on-line Steiner tree algorithm. 5.

Proof. Figure 4 shows the result of the request
sequence σ = r1, r2, r3, r4, r5, r6, . . . , θ and σ′ =
r1, r3, r2, r5, r4, r7, r6, . . . , θ where θ = r2 r3, s1
r4, r4 r5, s2 r6, r6 r7 Clearly, σ′ is a 1-
delayed version of σ. Label each triangle ti from the
top, so that t1 = {r1, r2, r3}, t2 = {r3, r4, r5}, t3 =
{r5, r6, r7}, We will show that each triangle ex-
cept the first, forces GREEDY on σ′ to incur at least
3 times the cost of GREEDY on σ.

The cost to GREEDY of serving σ is the cost
of the solid lines, and it gets to serve θ at zero
cost. Hence GREEDY(σ) = 2 + 3

2 + 3
2 + · · · . The

cost to GREEDY of serving σ′ is the cost of serv-
ing each of the dashed triangles. The first triangle
costs 4, since both algorithms start at r1, and each
successive triangle is served at cost 9

2 , which is the
cost of the dashed lines and the solid lines. Hence
GREEDY(σ′) = 4 + 9

2 + 9
2 + · · · .

The lower bound of 3 follows, since the cost ratio is
GREEDY(σ′) = 3 ·GREEDY(σ)−2, where the addi-
tive constant depends on the size of the first triangle
r1, r2, r3.

The following upper bound shows that the ‘cost’ of
a 1-delayed network to GREEDY is 3, ie our bounds

3

are tight. Surprisingly, the adversarial network can
force greedy to do no better than a minimum span-
ning tree, by building disjoint paths at each step.
The main difficulty in analysing GREEDY is that
Lemma 1 no longer holds for on-line Steiner tree con-
structions. Over σ, the algorithm could use a path
u→ v w, and so v would be in the tree constructed
from σ but not in the tree constructed from σ′. Fu-
ture requests could then utilise v, at zero cost to the
algorithm on σ.

Theorem 6 For the on-line minimum Steiner tree
problem on infinite metric spaces, the competitive ra-
tio of GREEDY on 1-delayed inputs is at most 3
times the competitive ratio of GREEDY on 0-delayed
inputs. That is, GREEDY(σ′) ≤ 3GREEDY(σ) − α,
where α is some constant.

Proof. The proof is based on a potential argument,
where Tσ may include edges not in Tσ′ , and these
have a potential’. The existence of a potential func-
tion Φ with the following properties implies the re-
sult:

• The potential function is non-negative, Φ ≥ 0;

• Whenever GREEDY on σ incurs a cost of x, the
potential increases by ∆Φ ≤ 3x;

• Whenever GREEDY on σ′ incurs a cost x, the
potential decreases by −∆Φ ≥ x.

Informally, we want the potential to be the maxi-
mum cost that GREEDY on σ can be forced to incur,
on a request sequence θ which GREEDY on σ′ can
serve at zero-cost.

We will show that the potential of a path u v
is d(u, v) if both endpoints u, v are in Tσ′ . The idea
is to construct a walk u v (abusing notation -fix)
that forces GREEDY on σ to incur a cost of d(u, v),
even if already touches both endpoints, by repeatedly
requesting the midpoint of the remaining edges. The
sequence is to request the midpoint of u, v, say ω1,
incurring at least 1

2d(u, v). Assume it was served by
adding the edges along u ω1 to Tσ′ . Then request
the midpoint of v, ω1, say ω2, and so on. The total
cost incurred is d(u, v)(1

2 + 1
4 + 1

8 + · · ·) = d(u, v).

r

r

Τ
y

x

u
v

1

2

Figure 5: Illustrating Lemma 2.

The potential function is then naturally defined as
the sum of all edges in T = Tσ − Tσ′ , that is Φ =∑

(u,v)∈T d(u, v).

Lemma 2 Whenever GREEDY on σ incurs a cost
of x, the potential increases by ∆Φ ≤ 3x;

Proof. Consider the situation as in Figure 5, and
wlog let the edge (y, x) be the largest-cost edge in
T (if it is not the largest-cost edge, the potential
can only be increased by a smaller amount). Now
consider the sequence σ, r1, r2, and let GREEDY
on σ connect (u, v), (v, r1) and (v, r2) (since v may
be on the shortest path from u to r1), as shown
by the solid lines in the figure. It incurs the cost
d(u, v) + d(v, r1) + d(v, r2) ≤ d(v, r2) + d(u, r1).

The request sequence r2, r1, u r1, v r2 will
force GREEDY on σ′ to incur maximum cost, at zero-
cost to GREEDY on σ, and hence provides a bound
on the potential Φ. Let the potential before ALG
moves be Φ′ + d(y, x), since we assumed that (y, x)
was the largest edge in T . There are two cases to
consider:

Case 1 - GREEDY on σ increases the length
of the largest edge in T . Then, d(u, r1) ≥ d(u, y)
and so the new potential is given by

Φ = Φ′ +
(
3d(v, r2) + 2d(u, r1) + d(u, y)

)
+ d(u, r1)

≤ Φ′ + 3
(
d(v, r2) + d(u, r1)

)
+ d(u, y).

4

The increase in potential is then given by

∆Φ ≤ 3 (d(v, r2) + d(u, r1)) + d(u, y)− d(y, x)

≤ 3 (d(v, r2) + d(u, r1))− d(u, x)

≤ 3 (d(v, r2) + d(u, r1)) .

Case 2 - GREEDY on σ does not increase the
length of the longest edge in T . Assume wlog
that d(u, y) = d(u, x), since both endpoints are in
Tσ′ . By cutting the edge (y, x) at u, the potential is
reduced by at most 1

2d(y, x), and leaves (u, y) as the
longest edge. The new potential is given by

Φ = Φ′ +
(
d(y, r2) + d(r1, r2) + d(u, v) + d(v, r1)

+d(v, r2)
)

+ d(u, y)

≤ Φ′ + 3d(v, r2) + 2d(u, v) + 2d(v, r1) + 2d(u, y)

≤ Φ′ + 3d(v, r2) + 2d(u, r1) + 2d(u, y).

The increase in potential is then given by

∆Φ ≤ 3d(v, r2) + 2d(u, r1) + 2d(u, y)− d(y, x). (1)

Since y is the closest vertex in Tσ′ to r2 (by assump-
tion), then we also have that d(y, r2) ≤ d(v, r2) +
d(x, v) ≤ d(v, r2) + d(x, u) + d(u, v). A similar argu-
ment to the above shows that Φ ≤ Φ′ + 3d(v, r2) +
2d(u, r1) + 2d(u, x), and so we also have that

∆Φ ≤ 3d(v, r2) + 2d(u, r1) + 2d(u, x)− d(y, x). (2)

The increase in potential is bounded above by both
(1) and (2), so by a balancing argument we can re-
move the assumption d(u, y) = d(u, x) and so ∆Φ ≤
3
(
d(v, r2) + d(u, r1)

)
.

Lemma 3 Whenever GREEDY on σ′ incurs a cost
x, the potential decreases by −∆Φ ≥ x

Proof. In both cases, GREEDY on σ′ adds the paths
y r2 and r1 r2. Since these are disjoint from Tσ,
then the length of the largest edge in T is unaltered.
Hence the potential is decreased by at least d(y, r2)+
d(r1, r2) ≤ −∆Φ.

The result follows, since the total potential remaining
after any 1-delayed sequence σ′ is bounded by at most
3 times the cost incurred by GREEDY on σ.

s1
r2

r3

r5

r4

...

10
10

1

10

10

20

Figure 6: An example of a 1-delayed construction
which can force GREEDY on σ′ to incur > 3 times
the cost to GREEDY on σ. The costs are 11+30 = 41
and 11, respectively. The problem is that the con-
struction can only be repeated with a cost ratio which
exponentially approaches 3, as the longest edge ∈ T
has halved.

The tricky part of the upper bound is in showing
that the short-term gain of adding longer edges (since
one can then build triangles that force a cost ratio of
strictly greater than 3) is offset by the loss in po-
tential, and sufficiently so, that it can be taken as a
constant, rather than a fraction of the total cost.

For example, one can build triangles as in Figure
6 that force a cost ratio of strictly greater than 3,
but this construction can only be repeated with an
exponentially diminishing cost ratio, so some longer
edges need to be added again. The cost of adding
these edges does not justify the increased cost ratio
of such a construction.

There are some interesting special cases of this up-
per bound, for example where we consider the two
trees Tσ and Tσ′ (built by GREEDY on σ and its
1-delayed σ′ respectively), but then let them both
follow the same sequence θ after this point. By a
similar (though simplified) argument, the total cost
GREEDY on σ′θ is a 2-approximation to GREEDY
on σθ. That is, the entire potential gained over σ′ can
be taken as a constant if the sequence θ is sufficiently
long.

5

4 List Accessing

Suppose we have a linked list containing n items. We
receive a request to access a particular item x, say.
To find x, we must walk through the list until we find
it, so if x is at position i we incur a cost of O(i) for
serving the request. After accessing the item, we may
return it at to any position in the list, for free.1 The
aim of reorganizing the list is to reduce the search
time in the future, for example if an item is likely
to be requested soon, it is wise to reinsert it closer
to the front. The problem is inherently on-line in
that the request sequence is not known in advance,
so the goal is to find an algorithm which minimizes
the worst-case search costs.

The list accessing problem is relevant since the
linked-list structure is often-used in practice, since
it is simple and memory need not be pre-allocated
contiguously. Furthermore, and our main interest in
including this problem, is that on-line algorithms for
the problem can be directly explocted to produce sim-
ple and efficient data compression schemes.

Before looking at some list accessing algorithms, it
is useful to consider the following positive theorem,
which is easy to see.

Theorem 7 If ALG is c-competitive against OPT,
then it is also c-competitive against itself with net-
works of arbitrary finite delay. Hence it is c2-
competitive against OPT (when OPT operates on the
0-delayed sequence).

Proof. A network with arbitrary finite delays can
produce any permutation of the input sequence σ.
Fortunately, this is the same worst-case measure
as the original competitive ratio between ALG and
OPT, hence arbitrary permutations can elicit this
worst-case behaviour.

Although the theorem is a positive result, in the
sense that competitiveness is a property of the al-
gorithm and not the network it receives its requests
via, this is not surprising given the pessimistic nature

1Actually, we are only interested in algorithms which re-
turn it to either adjacent nodes or the head or tail of the list,
in which case this operation would be free in a linked-list im-
plementation.

of the competitive ratio. It would be interesting to
investigate a stochastic analogue of the theorem.

There are some interesting points not covered by
the above theorem. For example, it is easy to see
that for the MST problem, operating in a non-metric
space, the GREEDY algorithm is not competitive
against itself even with 1-delays (imagine the triangle
of Figure 2 with edges of length 1,1 and an arbitrar-
ily large hypoteneuse). Fortunately, this does not
contradict the theorem since GREEDY is not com-
petitive against OPT for non-metric spaces.

4.1 Algorithm Move-to-Front (MTF)

After accessing or inserting an item, move it to the
front of the list, without changing the relative order
of the other items.

We will count the cost of accesses in the following
way, known as the partial cost model. When ALG ac-
cesses an item x at position i, it pays i. This counts
the number of comparisons ALG makes while search-
ing for x. Among these i comparisons, i− 1 are with
items different from x (called negative comparisons).
The last comparison with x is called a positive com-
parison, and the number of such comparisons is the
same for all algorithms. It makes sense then to ig-
nore the number of positive comparisons, and only
count negative comparisions, known as the partial
cost model. The model where all comparisons are
counted is the full cost model.

Theorem 8 For the on-line static list accessing
problem, the competitive ratio of MTF on 1-delayed
inputs is at least 2 times the competitive ratio of MTF
on 0-delayed inputs.

Proof. Consider the initial list x, y of length 2. We
construct a cruel pair of sequences σ and a 1-
delayed version σ′. Let σ = x, y, y, x, . . . and σ′ =
y, x, y, x, On σ, the first element is always ac-
cessed exactly once, then the second element, for a
cost of 2 for each phase x, y, y, x of length 4. Serving
σ′ forces MTF to always access the second element,
incurring a cost of 2 for each phase y, x of length
2. Hence, MTF(σ′) ≤ 2 · MTF(σ) for all 1-delayed
σ′.

6

Theorems 7 and 8 together immediately imply that
for 1-delayed networks, 2 is an upper bound of the ra-
tio of MTF(σ′) to MTF(σ), since we know that MTF
is 2-competitive against OPT. Furthermore, since 1-
delays are a special case of arbitrary delays, this
bound must also be tight for networks with arbitrary
finite delays.

It is a positive result that, even under arbitrary
delays, the competitive ratio of MTF to OPT (on 0-
delays) is asymptotically unchanged, but a negative
result in that this worst-case can be easily achieved
with just 1-delays (pairwise permutations).

In the full cost model, MTF is 2-competitive
against OPT, but the above argument appears to give
a ratio of only 4

3 , but the sequences σ = x, y, y and
σ′ = y, x, y give 3

2 , and it appears that 3
2 is a tight

bound, although the best upper bound is 5
3 .

Theorem 9 The competitive ratio of MTF on 1-
delayed inputs is at most 5

3 times the competitive ratio
of MTF on 0-delayed inputs in the full cost model.

Proof. Assume that both algorithms start with the
same list. We need to consider two types of event
partitioning the request sequences. The first is where
two elements are swapped, and the second is the usual
case of a request to a single element. Hence we need
to show that MTFσ′(y, x) + ∆Φ ≤ 5

3MTFσ(x, y) and
MTFσ′(x) + ∆Φ ≤ 5

3MTFσ(x), where Φi is a poten-
tial function with Φ0 = 0 and Φi ≥ 0 for all i. Let
Φi be the number of inversions in MTFσ′ ’s list with
respect to MTFσ ’s list, just after both have finished
processing the ith event (noting that an event may
be a pair of permuted requests).

We first consider the simple case of a single request
x to both algorithms. Consider the lists before the
request. We will view the lists (configurations) by
considering the inversions that we are interested in.
There are three types of inversions - M-inversions pre-
cede x in MTFσ′ ’s list but are behind x in MTFσ ’s
list, and the opposite for O-inversions. �-inversions
are those elements which precede x in both lists (and
so are not inversions in the initial configuration). We
first consider the simple case of a single request x to
both algorithms. Consider the lists before the request

to x. These initial configurations can be viewed as

MTF[σ′] : {�,M}, x, {O}
MTF[σ] : {�,O}, x, {M}

Now let MTFσ′ serve x. All the M-inversions are
destroyed, but the �-inversions are created. When
MTFσ serves x, all the �-inversions and O-inversions
are destroyed, giving the intermediate configurations

MTF[σ′, x] : x, {�,M,O}
MTF[σ, x] : x, {�,O,M}

Hence, all inversions wrt x (i.e. {M,O}-inversions)
are destroyed after both algorithms have served x,
which is to be expected since moving an element to
the front preserves the relative order of the rest of
the list.

Let kx be the number of items preceding x in both
MTFσ and MTFσ′ ’s lists (and similarly, ky for y).
Let lx be the number of items preceding x only in
MTFσ′ ’s list (and similarly, ly for y). Then, the cost
to MTFσ′ is kx + lx + 1, and the cost to MTFσ is at
least kx + 1. Since the number of M-inversions is lx
(the number of O-inversions is ≥ 0), we have

MTFσ′(x) + ∆Φ ≤ kx + lx + 1

−(M -inversions)− (O-inversions)

≤ kx + 1

≤ MTFσ(x).

This case also implies that, for serving the same se-
quence σ, MTF incurs no penalty (in the competitive
ratio against itself) for starting on arbitrarily differ-
ent lists, so it might be said to be ‘self-synchronizing’.

Next, we consider the case where two elements are
served in alternate order. There are two subcases, de-
pending on whether the pair of elements {x, y} is an
inversion in the configurations prior to the requests.

Subcase 1 - {x, y} is an inversion. We will con-
sider the sequences σ, y, x and σ′, x, y. Assume wlog
that y precedes x in MTFσ′ ’s list (otherwise we can
request σ, x, y and σ′, y, x). Let us consider the in-
versions wrt x. The configurations can be viewed as

MTF[σ′] : {�,M}, y, {�,M}, x, {O}
MTF[σ] : {�,O}, x, {M}, y, {M}

7

M-inversions are elements preceeding x in MTFσ′ ’s
list, but are behind x in MTFσ ’s list, and the opposite
for O-inversions.

When MTFσ′ moves x to the front, it destroys all
M-inversions and creates �-inversions. The action
of MTFσ on y has no effect on all the {�,M,O}-
inversions wrt x since the relative order of remaining
elements is preserved. The intermediate configura-
tions are now

MTF[σ′, x] : x, {�,M}, y, {�,M,O}
MTF[σ, y] : y, {�,O}, x, {M}

When MTFσ moves x to the front of its list, it de-
stroys all {�,O}-inversions, and we have the final
configurations

MTF[σ′, x, y] : y, x, {�,M,O}
MTF[σ, y, x] : x, y, {�,M,O}

A similar argument considering the inversions wrt
y shows that all the inversions wrt x (call this Φx)
and wrt y (Φy) are destroyed, and that the inversion
{x, y} is preserved. Since the number of M-inversions
is lx (the number of O-inversions is ≥ 0), this gives
∆Φ = Φx + Φy ≤ −(lx + ly).

The cost to MTFσ of serving y, x is at least (kx +
1)+(ky+2), since moving x to the front pushes y back
by one place. Similar reasoning shows that the cost
to MTFσ′ of serving x, y is (kx+ lx+1)+(ky+ ly+2).
Hence

MTFσ′(x, y) + ∆Φ ≤ (kx + ky + lx + ly + 4)

−(lx + ly)

= kx + ky + 4

≤ 5

3
MTFσ(y, x).

The last step follows since it must be that kx+ky ≥ 1,
since it is impossible for both x and y to be at the
front of a list (and to both be served at cost 1). Hence

5

3
MTFσ(y, x) ≥ (kx + ky) +

2

3
(kx + ky) + 5

≥ (kx + ky) +
17

3
.

Subcase 2 - {x, y} is not an inversion. We will
consider the sequences σ, x, y and σ′, y, x. We can
assume that x preceeds y in both lists, as the alter-
native is dominated by this case (since MTFσ would
do strictly worse on x, y than MTFσ′ on y, x). Let
us consider the inversions wrt x. The configurations
can then be viewed as

MTF[σ′] : {�,M}, x, {O}, y, {O}
MTF[σ] : {�,O}, x, {M}, y, {M}

When MTFσ moves x to the front, it destroys all M-
inversions and creates �-inversions (all inversions are
with respect to x). The intermediate configurations
are now

MTF[σ′, y] : y, {�,M}, x, {O}
MTF[σ, x] : x, {�,M,O}, y, {M}

When MTFσ′ moves x to the front, it destroys all
�-inversions and all O-inversions, but {x, y} is a new
inversion and we have the final configurations

MTF[σ′, y, x] : x, y, {�,M,O}
MTF[σ, x, x] : y, x, {�,M,O}

A similar argument considering the inversions wrt y
shows that all the inversions wrt x (call this Φx) and
wrt y (Φy) are destroyed, and that the single inversion
{x, y} is created. Hence ∆Φ = Φx + Φy + 1 ≤ −(lx +
ly) + 1.

The cost to MTFσ of serving x, y is at least (kx +
1) + (ky + 1). The cost to MTFσ′ of serving y is
ky + ly+1 (as before), but this pushes x back by one,
so the cost of serving x is kx + kx + 2. Hence

MTFσ′(y, x) + ∆Φ ≤ (kx + ky + lx + ly + 3)

−(lx + ly) + 1

= kx + ky + 4

≤ 5

3
MTFσ(x, y).

To see the last step, it must be that kx+ky ≥ 1, since
it is impossible for both x and y to be at the front of
a list (and to both be served at cost 1). Hence

5

3
MTFσ(x, y) ≥ (kx + ky) +

2

3
(kx + ky) +

10

3
≥ (kx + ky) + 4.

8

As a verification of of Theorem 7, the following ar-
gument shows that MTF is a 2-approximation of it-
self for arbitrary delays. Let the list be x1, x2, . . . , xl
initially. Then MTF(x1, x2, . . . , xl) = l(l+1)

2 and
MTF(xl, xl−1, . . . , x1) = l2. For a sufficiently large
number of insertions, the ratio is liml→∞ 2 l

l+1 = 2.

4.2 Algorithm Transpose (TRANS)

After accessing or inserting an item, transpose (swap)
it with the immediately preceding item.

We know that TRANS is not competitive for the
dynamic list accessing problem, but this does not nec-
essarily imply that it cannot achieve a constant factor
approximation in the face of delayed networks. Un-
fortunately, TRANS cannot remain competitive with
itself even with 1-delays (better: it cannot approxi-
mate itself?), as illustrated by the following result.

Theorem 10 Algorithm TRANS is not competitive
with itself on 1-delayed networks.

Proof. The proof relies on the following observation.
Consider the list x1, x2, x3. Given the request se-
quence x2, x3, TRANS produces the list x2, x3, x1,
i.e. the pair x2, x3 has been ‘shuffled’ one place to the
front. Now consider the 1-delayed request sequence
x3, x2. TRANS transposes x3 and x2 twice, leaving
the list unchanged. Hence this can be repeated to
shuffle a pair of elements to the front, while leaving
them at the back for TRANS on σ′.

Consider the list x1, x2, . . . , xl. The cruel request
sequence consists of two phases. In the first phase,
the last two elements xl−1 and xl are ‘shuffled’ to
the front of the list to obtain xl−1, xl, x1, . . . , xl−2,
using the construction above. In the second phase,
TRANS on σ repeatedly serves xl−1, xl, xl, xl−1, . . .
at a cost of 2 for each quartet of requests (in effect,
it behaves as OPT). Throughout both phases, the 1-
delayed sequence σ′ = xl, xl−1, . . . is served at a cost
of 2(l − 1) for each pair of requests. It is easy to
check that σ′ is indeed a 1-delayed version of both
phases of σ. The cost ratio for the second phase is
then 4(l − 1)/2 = 2(l − 1).

The cost of the shuffle phase is absorbed into the
additive constant, but for completeness we analyse
its cost. Each shuffle of elements at positions j − 1
and j costs 2j − 3. Hence the total cost for the l− 2
shuffles is

l−2∑

i=1

2l− (2i+ 1) = 2

(
l−2∑

i=1

l −
l−2∑

i=1

i

)
− (l − 2)

= l(l− 2)

During the shuffle phase, TRANS on σ′ incurs a cost
of 2(l − 1)(l − 2), for a cost ratio of 2(l − 1)/l =
2
(
1− 1

l

)
. Of course, the second phase forces this

constant cost ratio to be taken into the additive con-
stant.

Since there is no a priori bound on the length of
the list, the above argument, coupled with a suffi-
ciently long sequence of initial insertions, establishes
the result.

5 Other models

It would be good to investigate alternative, less ad-
versarial models for the network. Two ideas seem
particularly interesting:

Distributional. This currently considers what
happens when the network chooses the links adver-
sarially. But what about having a probability distri-
bution on the links?

Nash equilibria. Real-world networks are not ad-
versarial, rather their behaviour is determined by
many individual agents, each wishing to minimise its
own latency. The stable behaviour of the network is
then defined by the Nash equilibria. Indeed, the Nash
equilibria also arise via distributed shortest-path al-
gorithms. These Nash equilibria are precisely the
fixed points of the shortest-path protocol in which
all nodes of the network define the length of their in-
cident edges as their current delay (the shortest paths
computed are a function of how routers define edge
length). What is the cost to the on-line algorithm
of receiving a sequence sent through a network at a
worst-case Nash equilibrium?

9

