
Combining BibTeX and PageRank to Classify

WWW Pages

MIKE JOY, GRAEME COLE and JONATHAN LOUGHRAN

University of Warwick

IAN BURNETT

IBM United Kingdom

and

ANDREW TWIGG

Cambridge University

“Focused” search engines are those which limit themselves to a particular subset of the web, for
example, pages from a certain web site, or pages about a particular subject. We present such an
engine which uses a method of automatic classification using BibTeX bibliographies, along with
an adaptation of Google’s PageRank algorithm which complements this technique.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Search Pro-
cess; E.5 [Files]: Sorting/searching; F.2.2 [Non Numerical Algorithms and Problems]:
Sorting and Searching

General Terms: web search

Additional Key Words and Phrases: web search

1. INTRODUCTION

The construction of a web search engine which can accurately and efficiently return
the web pages most relevant to a user’s query is a complex task, which every day
gets harder as more documents are published on the web. Popular search engines
such as Google and Yahoo! store information about documents from all over the
web, corresponding to many different topics. Focused search engines, instead of
indexing pages from the whole web, limit themselves to a small subset of them
[Chakrabarti et al. 1999].

Google uses a system of document importance measurement known as PageRank
[Brin and Page 1998]. It views the web as a directed graph of interconnected nodes,
where each edge corresponds to a hyperlink. A page with many links pointing
to it is inferred to be a useful page, and so is placed higher in search results.
We have developed a search engine that uses an adaptation of PageRank, which

Author’s address: M.S. Joy, Department of Computer Science, University of Warwick, Coventry,
CV4 7AL, UK.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, December 2004, Pages 1–0??.

2 · Mike Joy et al.

weights a document’s rank by its overall relevance to a particular topic. Haveliwala
[Haveliwala 2003] describes a system of topic-sensitive PageRank; we present a
similar system for our focused search engine.

User

!!!!

PP

?

Keyphrase query

6

Results

?
Keyphrase query

6
Results

�
SQL queries

6

Information from DB

-
Page information

(e.g. scores, relevances)

?
Pages and
relevances

?
Pages

6
Relevance

?

HTTP Servlet

Query Engine

Database

Indexer

Classifier

Crawlers

WWW

Fig. 1. Architecture of our search engine

Figure 1 shows the architecture of our search engine. Crawlers follow links on
the web, and pass the crawled resources to the classifier, described below. If the
classifier considers the document relevant to computer science, which is our search
engine’s area of interest, then details about that web resource are indexed into
the database by the indexer. The crawler is a focused one, meaning it will only
follow links from those pages which were determined as “relevant” by the classifier.
Details stored in the database of a relevant page include an index of words in that
document, together with the attributes of the occurrences of the words, for example,
the position of the word in the document, and any formatting applied to the word.

The classifier takes documents downloaded by the crawler and uses a classifi-

cation algorithm to determine the overall relevance of the document to the search
engine’s field of interest. It also determines the document’s relevance to several
subcategories of the field.

For our purposes, a keyword phrase is an unordered set of keywords. The job
of the query engine is to take a keyword phrase and make a judgement about
which subset of pages are most relevant (in some precise sense defined later) to

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 3

the keyword phrase entered. It then returns a list of relevant documents, sorted in
descending order of overall score, the algorithms for calculating which are described
later.

2. CLASSIFIER

The classification algorithm is based upon the use of bibliographies as a way of
forming a set of training documents for the search engine to work with. These
bibliographies are in the form of a BibTeX file, an electronic resource that stores
entries about papers and reports which pertain to a particular topic. This means
that all of the reports stored within the BibTeX file are all about the same topic,
and so their use is perfect for this kind of situation. Figure 2 is an example of an
entry taken from a BibTeX file (bibliography) containing UNIX papers.

@Article{Ellis:1980:LS,

author = "J. R. Ellis",

title = "A {LISP} shell",

journal = "j-SIGPLAN",

volume = "15",

number = "5",

pages = "24--34",

month = "may",

year = "1980",

CODEN = "SINODQ",

ISSN = "0362-1340",

bibdate = "Sat Apr 25 11:46:37 MDT 1998",

acknowledgement = "ack-nhfb",

classification = "C6140D (High level languages)",

corpsource = "Computer Sci. Dept., Yale Univ., New Haven, CT, USA",

keywords = "INTERLISP; LISP; shell system; UNIX system",

treatment = "P Practical",

}

Fig. 2. Example of an entry contained within a BibTeX file

A major advantage of using BibTeX entries as the training set is that they are
generally of high quality, accurate and precise, since they are written by the authors
themselves.

Using the fact that each entry stored within the BibTeX file contains a list of
keywords to be associated with that publication, each document indexed can be
assigned a relevance based on occurrences of those keywords in the document being
classified. For example, the above entry is in a UNIX bibliography. If keywords such
as “shell system” or “LISP” appear in a document fetched by the crawler, then it
is reasonable for the classifier to assume that the document is relevant to the UNIX
category. However, before this comparison can be performed, the BibTeX files are
converted into a more useful form we call a classification graph.

2.1 Classification Graph

A classification graph is a layered graph built up by parsing BibTeX files. The
graph is used to store the information gathered from the training documents (the

ACM Journal Name, Vol. V, No. N, December 2004.

4 · Mike Joy et al.

BibTeX files) in a way that is convenient for the classification algorithm to use.
The classification graph is a directed acyclic graph that has four different types of
nodes divided into levels, as in Figure 3.

KeywordsKeyword phrases

BibEntries

Bibliographies

Fig. 3. Classification Graph

Level 1 (bibliography) nodes represent categories, level 2 (bibentry) nodes repre-
sent documents, level 3 nodes represent keyword phrases and level 4 nodes represent
individual keywords. The edges in the graph represent the natural subset relation
between each of the levels, for example, all of the keyword phrases containing a
certain keyword.

The scope of a crawler is the union of all the classification graphs derived from a
set of BibTeX documents, and the scope of a search can be extended by incorpo-
rating extra bibliographies. For example, given a bibliography containing papers
on ”optimizing Linux performance”, that search scope be extended by including
a classification graph of papers on ”optimizing UNIX performance”, and extended
further by including a classification graph of papers dealing with ”optimizing op-
erating system performance”.

In terms of the BibTeX files themselves, each level 1 node is a single bibliography
file, each level 2 node is a publication’s entry (which we will refer to as a BibEntry),
each level 3 node is a phrase taken from the list of keywords for a document, and
each level 4 node is from a phrase split up into individual words.

The motivation behind splitting all of the information up in this manner is to
allow a direct comparison with all the keywords taken from the document being

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 5

classified, with the keywords taken from each the training documents, to allow a
relevance for each category to be calculated.

2.2 Classification Algorithm

The aim of the classification algorithm is to calculate the relevance of a given
document to the previously specified categories. These categories are created using
the BibTeX training documents (see figure 2). The actual input that the algorithm
takes is a list of all the words stored within the document with all common words
removed, and the classification graph bibGraph. This process is performed to help
save space when storing the results, and to cut out any words that are not specific
enough to search for during any query. Each of the keywords obtained from the
document are assigned a score depending on the attributes of each occurrence of
the word in the document (see section 4.1.1).

The keywords are stored in a data structure bHits, which for each keyword
from the document stores count (the number of times that a word appears in the
document, and score (the score of the word for each occurence). Bucketed hits are
explained in greater detail in section 4.1.2, and the classification algorithm is shown
in pseudocode in appendix A. The algorithm consists of five sequenced components:

(1) Filter the keywords from the document so that only keywords that correspond
to keywords from the classification graph are left. This action is performed
so that only the keywords pertaining to the topic currently being used will be
compared.

(2) Filter out all of the keyword phrases that do not match the keyword phrases
from the classification graph using an algorithm similar to the Phrase Matching
Algorithm used by the query engine, described in section 4.1.2. The score for
the phrase is equal to that generated by the Phrase Matching Algorithm.

(3) Sum the scores of all the keywords contained in the document, for each BibEntry
containing them. The score for each keyword is equal to the keyword score as
previously defined multiplied by the degree of that node. This means that the
more keyword phrases that a keyword appears in the highier the score of that
keyword. The idea is that if a keyword is contained in more phrases, then it is
more likely to be important to the category being focused upon.

(4) Sum the scores for each BibEntry within a category to form a score for that
Bibliography.

(5) Sum the Bibliography scores to form an overall document relevance score.

3. AN EXTENSION TO PAGERANK

Google’s PageRank algorithm [Brin and Page 1998] was modified to complement the
classifier design detailed earlier. PageRank, rather than determining the relevance

of a document to a particular search phrase, gives an indication of the document’s
importance, working on the principle that “a link from a page p to a page q can
be viewed as an endorsement of q by p” [Dhyani et al. 2003]. To describe our
algorithm, it is necessary to give a short summary of PageRank.

ACM Journal Name, Vol. V, No. N, December 2004.

6 · Mike Joy et al.

3.1 PageRank

The PageRank algorithm is a mathematical model of a “random surfer” who starts
on one (random) page of the crawled webspace, and randomly follows links, never
moving backwards. Occasionally, the random surfer stops following links and starts
again on a randomly chosen page. A page’s PageRank is simply a measure of the
probability that this “random surfer” will, in an infinitely long walk, be at that
page. The pagerank of a page p is defined as the sum of the pageranks of the pages
that link to it, weighted by the outdegrees of the linking pages. Resolving this
definition is done by considering the principal eigenvector of the link matrix.

To calculate the PageRanks, a directed graph is built to represent the web, in
which nodes represent documents, and edges represent hyperlinks between pages.
The graph has associated an n × n transition matrix T, where n is the number of
URLs crawled, and Tji is the probability of the “random surfer” moving to page
j given that it is currently on page i, readily computed by the number of links on
page i1. Power iteration is then used to calculate an approximation to the principal
eigenvector of this matrix, which corresponds to the PageRanks of the documents
concerned.

3.2 How the extension differs

Our adaptation of PageRank maintains the main principle that a page’s backward
links (that is, the links pointing to the page) are most significant in determining the
page’s importance. However, in this extension, forward links and overall relevances
(as determined by the classifier at the crawling stage) are taken into account as
well.

3.2.1 Allowing the random surfer to follow backward links. It is not just the
links to a page (its backlinks) that are considered when calculating the transition
matrix, but also the links from the page (its forward links). Hence, the random
surfer is given a “back button”, as found on web browsers. Say a page a links to
another page b, but not vice versa. Using the normal PageRank algorithm, it is b’s
backlinks that determine its importance, i.e. there is a probability that the random
surfer may traverse from a to b. However, we model the probability that it may
jump from b back to a.

Backward links are of course still considered more important than forward links
(which actually has the effect that the random surfer is more likely to follow forward
links than backward links, as is intuitive for a web surfer); if forward links were
considered more important, then a website owner need only insert a large number
of links to popular sites to artificially inflate their rank.

3.2.2 Allowing the random surfer to remain on the same page. We alter the
graph of the web slightly by assuming that every page has a link to and from itself.
This is again modifying the behaviour of the random surfer. The transition matrix
T, which defines the random surfer’s behaviour, represents a Markov chain; when
it is time for the random surfer to make a transition, it moves from one page to

1more precisely, a damping factor is used so that there is a small probability of the random surfer
moving to a random node probably unconnected with i, so Tji (if there is an edge from i to j) is
not simply the reciprocal of the out-degree of i. For more information, see [Brin and Page 1998].

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 7

another according to the probabilities in the appropriate column of the transition
matrix. However, if the page is a “good” page, a user could reasonably be expected
to read it for longer before clicking a link to go somewhere else. We argue that
this models more accurately the behaviour of a human surfer looking for specific
content (as opposed to surfing at random).

3.2.3 Considering overall relevance. In the previous paragraph, how do we de-
fine a “good” page? We cannot simply calculate the page’s score with respect to
some arbitrary search terms, as the ranks are calculated just after the crawling
stage, before any queries are submitted to the search engine. So, we must use
the overall relevance, determined by the classifier. While in PageRank, the random
surfer has an equal probability of following any link it sees, in our adaptation, these
probabilities are weighted by each page’s overall relevance.

3.2.4 The Transition Matrix. If we consider the webspace crawled as a graph
G with a set of edges E, then n (the number of rows and columns in the transition
matrix T) is the number of nodes in G, denoted |G|. We assume that the random
surfer has an interest in the subject of our focused crawler, hence, links to pages
that were deemed relevant overall are more likely to be followed. Let the relevance
of a page p be denoted C(p); we then use the normalised relevance, which expresses
the relevance score as a figure between zero and one:

Cnorm(p) =
C(p)

C(p) + 1
(1)

This has the desirable effect that the ranks do not rely too much on the classifier’s
results; they rely more on the link structure of the web.

As stated earlier, our “random surfer” can follow backward links as well as for-
ward links. It is more likely to follow forward links than backward links (thus
making a page’s backward links more important when determining that page’s
rank, as the random surfer is more likely to come from the edges pointing into

that node), and this preference for following forward links, k, is set at 0.7 in our
implementation. The exact value of k appears not to be critical.

Let us also introduce some auxiliary functions. Fi denotes the set of all pages
which are linked to from page i (i’s forward links) and Bi denotes the set of all
pages which link to page i (i’s backward links). That is, for a graph (webspace) G
with a set of edges E,

Fi = {p ∈ G | (i, p) ∈ E} Bi = {p ∈ G | (p, i) ∈ E}

For any two pages i and j, (i, j) ∈ E if and only if there is a link on page i which
points to j, or if i = j. Recall that we consider every page to have a link to and
from itself. Finally, A(i, j) indicates the presence of a link between two pages, as
follows.

A(i, j) =
{

1 if (i, j) ∈ E
0 otherwise

PageRank uses a damping factor, which represents the probability of the random
surfer not following a link, but starting again on another randomly chosen page. Our
system also uses a damping factor, but for a different reason; it avoids infinite values

ACM Journal Name, Vol. V, No. N, December 2004.

8 · Mike Joy et al.

when dealing with nodes which were given zero relevance. In our implementation,
the damping factor d is 0.1, the same as in PageRank, and like the value of k above,
its value is not critical.

So, we can now define the transition matrix T as:

Tji = k

(

A(i, j).(d + Cnorm(j))
∑

∀p∈Fi
(Cnorm(p) + d)

)

+ (1 − k)

(

A(j, i).(d + Cnorm(j))
∑

∀p∈Bi
(Cnorm(p) + d)

)

(2)

The sum of each column of T must be 1, that is, the random surfer must always
have a defined “next move”, even if that move is to follow the current page’s loop-
link to itself.

3.2.5 Rank calculation. The ranks, as with Google’s PageRank, correspond to
the elements of the principal eigenvector of the transition matrix T, defined above.
This can be found by calculating the steady-state probability vector r (which is a
vector of ranks) such that Tr = r. This is accomplished by starting with an initial
arbitrary n-dimensional probability vector p0, and repeatedly premultiplying this
vector by T. Eventually, irrespective of p0, the vector so obtained will tend towards
r with successive multiplications. So, by the equation and the ergodic theorem:

lim
i−>∞

T ip0 = r

we take a suitable value for infinity (10 usually gives adequate results) and pro-
duce a sufficiently accurate approximation to r. The sum of all the elements in r

should be one (as it is a probability vector). However, we, as do Google, multiply
each element of r by |G|, so that the mean of all the ranks is one. This means that
the magnitudes of the ranks are independent of the number of pages crawled.

3.3 Subject-based ranking

Recall that the classifier, as well as assigning each document an overall relevance
score based on the document’s relevance to the classifier’s field of interest, also
assigns several “category relevances” based on the document’s relevance to subcat-
egories of the classifier’s field of interest, defined by the individual BibTeX bibliogra-
phies that comprise the classifier’s training set of documents. Using these category
relevances, we can calculate not only the rank of a document, but the individual
“category ranks” calculated by considering only those pages which were considered
relevant to the category in question, and using the category relevance to weight
the probabilities instead of the overall relevance. This gives us a topic-sensitive
PageRank system, similar to that discussed in [Haveliwala 2003].

The subject-based ranking technique brings an element of relevance (to the user’s
search query) into the rank, which is normally a measure only of importance.

The transition matrix for subject-based ranking is calculated in exactly the same
way as in equation 2, with the following exceptions:

—The graph G contains only those nodes which were given a non-zero relevance to
the category in question. The set of edges E excludes any links in which either
end points to a node not in G.

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 9

—Instead of the overall relevance for a document being used to weight the proba-
bilities, Cnorm refers to the relevance assigned to that document for the category,
rather than the overall relevance. The category relevance is normalised in the
same way as in equation 1.

In this way, we can produce a rank vector for each individual category, and use
these ranks instead of the overall ranks should the user select a particular category
in which to focus the search.

4. USING THE RANKS IN PLACING SEARCH RESULTS

When a query is submitted to the search engine, the query is processed by the
query engine, which uses the information stored in the database by the crawler (for
example, word frequencies for each document) to decide which documents should
appear at the top of the list returned to the user. Rank alone is not an adequate
means of sorting this list, as rank is a measure of importance and not of relevance;
it is usually helpful if the pages returned are popular, important ones, however this
is not the case if those pages bear no relevance to the topic of interest (determined
by the classification graph used as the training set). On the other hand, it is not
always the case that simple analysis of a page’s content can determine the usefulness
of the page with respect to the user’s query; pages further up the hierarchy of a
relevant website tend to be more useful than a page deep within the filesystem
which may nonetheless contain more occurrences of the search words. Hence, a
means of blending relevance and importance is required.

4.1 Word and phrase counts

4.1.1 Keyword Scores. The crawler side of our search engine associates each
distinct word in a document with a score, based on the prominence of that word in
the document. Thus, there can be considered to be a function:

keywordscores : document → (keyword → score)

If a word w does not appear in the document d, then its score in that document
is zero, that is, (keywordscores d) w = 0. This score is calculated at the crawling
stage by assigning “weightings” to certain HTML tags as follows:

Tag Weight

<body> 2
<title> 5

<bold>,, 3
<h1> 5
<h2> 4

<h3> 3
<h4> 2

<meta-keywords> 4
<meta-description> 3

Table I. Hit weights for HTML tags

Every word in the document then has a weighting according to the HTML tags
in which it is enclosed. In the case of nested tags, the respective weightings are

ACM Journal Name, Vol. V, No. N, December 2004.

10 · Mike Joy et al.

summed; for example, if a word is in a <bold> tag which is itself contained within
the <body> tag, then that word would be given a weighting of 5. The score of
a word w in a document d is then defined as the sum of the weights of all the
occurrences of w in d.

So, given a document d and a search query q, we can calculate the Keyword Score
Sum (KSS) as the sum of all the keyword scores of the words in q for the document
d, i.e.

KSS(d, q) =

n−1
∑

i=0

keywordscores d qi

However, we will see later that normalising this value produces better results.
So, the normalised keyword score sum, KSSnorm, is defined:

KSSnorm(d, q) =
1

n

n−1
∑

i=0

keywordscores d qi

keywordscores d qi + 1
(3)

4.1.2 Phrase Matching. The crawler also stores information about the position
of words in the document. A particular occurrence of a word in a document is called
a hit and has associated with it the position of the word in the document and its
weight. The average weight of a word is simply the weighting of that occurrence of
the word divided by the total number of occurrences of that word in the document.

A collection of these hits, all of which pertain to a particular word in a document,
is called a bucket of hits. Every page is associated with some buckets of hits, each
bucket corresponding to a word. We used an algorithm that calculates both exact
and approximate phrase matches within a document, as described below.

4.1.2.1 Exact Matches. Let q = (q1, . . . , qn) be a search keyword phrase with
keywords q1, q2, . . ., and the subscripts to d have an analogous meaning — d1 means
the first word of the document d. Let us also define a set wordpos(d, q), which is
the set of all the word positions (natural numbers) at which the phrase q appears
in the document d, where word di is equal to qi. That is:

wordpos(d, q) = {i : N | (∀pos : N | i ≤ pos < n+i • pos ∈ dom(bucketedhits d qpos−i))}

So, wordpos(d, q) is the set of all word positions i at which, for all word positions
pos between i and i + n − 1 inclusive, it is the case that pos is an element of the
domain of the set bucketedhits d qpos−i — that is, the word qpos−i exists at position
pos in the document d.

The “exact phrase” component of the overall phrase matcher score is the sum of
the average weights of all words in the document which are part of an exact phrase
match.

PMphr(d, q) =
∑

∀i∈wordpos(d,q)

i+n−1
∑

j=i

bucketedhits d qj−i j

4.1.2.2 Close Matches. A “close match” of a phrase is defined as the occurrence
of the phrase in the document with no more than one additional word inserted be-
tween each of the phrase words. We can define this mathematically with the help of

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 11

some auxiliary functions. Let phrase(d, p) take a document d and a set of positions
(natural numbers) p. It returns a phrase (string) s which is the concatenation of
all the words in d whose positions are included in the set p, in ascending order
of position number. Let min(p) return the lowest numbered element in the set
of naturals p. We can now define a function closepos, analogous to the wordpos
function in the exact match instance, as follows.

closepos(d, q) = {p : P(N) | phrase(d, p) = q ∧

(∀i ∈ p • (∃j ∈ p | j < i) ⇒ ∃k ∈ p | k < i ∧ i − k ≤ 2) ∧

min(p) /∈ wordpos(d, q)}

So, our function closepos(d, q) returns the set of all sets of positions which rep-
resent in d the phrase q, for which each position, if it is not the lowest in the set,
has another position number at most two words before it. We also do not want
exact phrase matches in this set, so we stipulate that the lowest position number
in any of the sets in closepos(d, q) cannot be an element of wordpos(d, q). We now
express the close match component of the overall phrase matcher score as half the
sum of the average weights of all those words in the document which are part of a
close match. Let di denote the word at position i of document d.

PMclo(d, q) =
1

2

∑

∀p∈closepos(d,q)

∑

∀i∈p

bucketedhits d di i

4.1.2.3 Total Phrase Matcher Score. The phrase matcher score involves the
phrase match hit weights and the close match hit weights; the number of phrase
and close matches, which are equal, respectively, to the number of elements in
wordpos(d, q) and closepos(d, q), and are denoted below as Mphr and Mclo; and a
pair of constants Cphr and Cclo, which in out implementation were 8 and 4 respec-
tively. The formula for calculating the phrase matcher score is as follows.

PM(d, q) = (PMphr(d, q) + PMclo(d, q))(CphrMphr(d, q) + CcloMclo(d, q))

5. EXPERIMENTAL RESULTS

5.1 Method

In order to test our algorithms performed well (that is, returned relevant results) a
comparison method was devised. For each search term supplied to the engine, the
first ten results returned were examined, and the results’ relevance to the search
terms evaluated. Each result was then given a score of 1 if it was relevant, 0 for
somewhat relevant and -1 for irrelevant. This is analogous to the method suggested
in [Li and Shang 2000]; we decided to use -1 for an irrelevant result to penalise
algorithms which gave many irrelevant results. While a simple three-point scoring
system might seem vague, using a finer score range might introduce an element
of subjectivity into the experimenter’s judgement. The three-point scoring system
provides a trade-off between providing an adequate range of results (as opposed to
“relevant” or “not relevant”) while limiting the degree of subjectivity that might
inevitably be introduced by a human experimenter. Note that the experiments
must be undertaken by a human being, because a computer program cannot decide
the relevance of a search result to a query any more accurately and objectively than

ACM Journal Name, Vol. V, No. N, December 2004.

12 · Mike Joy et al.

a human; if it could, then we could simply use this program as our query engine.
It is worth remarking that the word “relevant” is a subjective term, which depends
on the experimenter, and we have not offered a specific formal definition for the
term. When we evaluated the “relevance” of results to a search term, the specific
question we asked was: “if I was searching for general information about the given
subject, would the page have been useful?” This was a question which, for almost
all cases, the experimenters were able to agree on the answer.

5.2 Implementation

For each version of the algorithm we tested, eleven computer science-related search
terms were used as test data, for which to examine and score the results. The
first ten results for each search term were examined, and the judged scores for each
search term were summed, hence each tested algorithm was assigned a judgement
between -110 and 110. Although there is no guarantee that all pages in a given
site will have been crawled (since the crawler chooses which links to follow), it is
unlikely than an important or relevant page will have been omitted. All pages in
the sites used for the experimental results presented here were crawled.

The test searches were performed on a database containing data crawled from
our computer science department’s website — a total of 6,489 documents.

Table II shows the scores for each algorithm. The quantities on which the results
were sorted in each algorithm is shown in the left-hand column, where KSS denotes
Keyword Score Sum, explained in section 4.1.1, PM denotes the phrase matcher
score, and R denotes rank. The subscript norm indicates that the quantity was
normalised in the same way as in equation 1, so Rnorm = R

R+1 . For the “category”
algorithm, an appropriate category was selected for each search term (if one was
available) and the search limited to that category, using the appropriate category
ranks instead of the overall ranks for R. The exception to this rule is KSSnorm,
which is defined as in equation 3.

Algorithm Score

KSS + PM 40
(KSS + PM) × R 32

KSSnorm + PMnorm + Rnorm (overall) 57
KSSnorm + PMnorm + Rnorm (category) 62

Google 75
Yahoo! 69
Atomz 9

Table II. Relevance judgements for the tested algorithms, alongside judgements for performing
the same experiment on other search engines for comparison purposes.

5.3 Comparison

The same experiments were performed on Google, Yahoo! and the search engine
used by the university, provided by Atomz. The same eleven search terms were
supplied to these search engines, limited only to those pages within the department’s
webspace. The top ten PostScript or HTML files were examined and assigned a
relevance judgement as before by the experimenter; the reason for the limited range

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 13

of file types was to enable a meaningful comparison with our search engine, which
currently only has plugins for processing those file types, although our software
allows plugins for other file types to be added at a later date.

Our experimentation showed that our search engine gives reasonably relevant
results. While the scores attained are not as high as the most popular search
engines, they are comparable with them, and much higher than the commercially
available search engine used by the university.

5.4 Summary

The normalisation of the individual quantities which comprise the overall score
by which the query engine orders the presented results was seen to give a better
performance overall than using the raw values. From examining the results returned
by each algorithm for the search terms, it became apparent that the results a user
would consider most useful had reasonable keyword score sum scores for each of the
search words, rather than a very high score for one of the words and low scores in
the others, which is why the normalised keyword score sum (which does not allow
the score of any one word to dominate over the others) was used. Additionally,
normalising the phrase matcher score and the ranks had the desirable effect that
very highly ranked documents were not unjustly placed above lower-ranked, but
more relevant, results.

6. CONCLUSION

We have presented a method of automatic classification which classifies crawled
documents based on the contents of BibTeX bibliography files of known category.
Using an adaptation of Google’s PageRank, we have constructed a focused search
engine. Our adaptation of PageRank was further extended to exploit the classifica-
tion method of our engine, using subject-based ranking. Experiments undertaken
on our search engine using some sample search terms on the department’s webspace
of 6,489 URLs showed that the system performs comparably to some of the popular
search engines.

6.1 Acknowledgements

This study is based on work originally undertaken by Ian Burnett, Hristo Djidjev,
Mike Joy and Andrew Twigg, who conceived the original designs for the classifica-
tion and ranking algorithms presented in this paper.

A. CLASSIFICATION ALGORITHM

The following constants are used to refine the output of the classification by chang-
ing the threshold levels; if, for example, the score given to an entry is lower than
Min BibEntry Score, then that entry is not considered further.

—Min Keyword Score

—Min BibEntry Score

—Min Bibliography Score

—Min Document Score

Map L

ACM Journal Name, Vol. V, No. N, December 2004.

14 · Mike Joy et al.

For each Keyword k in bHits

Find the corresponding Bibkeyword bibKey in bibGraph

If bibKey = null, skip to the next k

For each neighbour of bibKey (ie all the phrases containing

bibKey)

count = L.get(phrase)

If count = null

L.put(phrase,1)

Else

L.put(phrase,count+1)

END

END

END

Set all of the scores and counts for every element in bibGraph to 0.

Set K,B

For each Phrase k in L

count = Count of k

If count >= Number of words in k

Use Phrase Matching Algorithm (see section)

k.score = score from Phrase Matching

If Number of Phrase Matches >= Min_Keyword_Score

Add k to K

END

END

For each Keyword k in K

For each BibEntry b containing k

b.score = b.score + (k.score * k.degree)

(The degree of k is the number of neighbours that the node has)

b.count = b.count + 1

If b.count >= Min_BibEntry_Score

Add b to B

END

END

docScore = 0

For each BibEntry b in B

For each bibliography bb containing b

bb.score = bb.score + b.score

docScore = docScore + b.score

bb.count = bb.count + 1

if bb.count >= Min_Bibliography_Score

ACM Journal Name, Vol. V, No. N, December 2004.

Combining BibTeX and PageRank to Classify WWW Pages · 15

Add bb to results

END

END

Boolean isRelevant = (docScore >= Min_Document_Score)

The document’s scores for each of the categories are stored inside bb.score for
each of the categories, and the overall document score which is a sum of all of the
bibliography scores is stored in docScore. These values are important when using
the Page Ranking Algorithm and describe the relevance that a document has to
each of the categories.

REFERENCES

Achilles, A.-C. The Collection of Computer Science Bibliographies.
http://liinwww.ira.uka.de/bibliography/.

Brin, S. and Page, L. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In Proceedings of the Seventh International World-Wide Web Conference.

Chakrabarti, S., van den Berg, M., and Dom, B. 1999. Focused crawling: A new approach to
topic-specific web resource discovery. In WWW8.

Dhyani, D., Ng, W. K., and Bhowmick, S. S. 2003. A survey of Web metrics. ACM Computing
Surveys 34, 4 (Dec.), 469–503.

Haveliwala, T. H. 2003. Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for
Web Search. IEEETKDE: IEEE Transactions on Knowledge and Data Engineering 15.

Kumar, S. R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal, E.

2000. The web as a graph. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS-00). ACM Press, N. Y., 1–10.

Li, L. and Shang, Y. 2000. A new method for automatic performance comparison of search
engines. Kluwer’s World Wide Web Journal 3, 4, 241–247.

McCallum, A. and Nigam, K. 1998. A comparison of event models for naive Bayes text classi-
fication. In Proceedings of AAAI-98 Workshop on Learning for Text Categorization. 41–48.

Yang, Y. 1999. An evaluation of statistical approaches to text categorization. Information
Retrieval 1, 1–2, 69–90.

ACM Journal Name, Vol. V, No. N, December 2004.

