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Abstract

Routing on the Internet is policy-based, meaning that eade iofree to decide how to assign
costs to paths. This freedom is important since the nodesiaomomous, competing organiza-
tions whose path preferences may be dictated by exterrtar$asuch as economic or political)
rather than simply by path length. Although shortest-patiting is well-understood, little is
known about the complexity of policy routing. The only knoaigorithms for policy routing
use routing trees — for each destination, construct a rgtteée and forward packets along it.

A negative result of Griffin et al. shows that routing treeséx algorithms (including the
Internet routing algorithm, BGP) may not converge when eabyjtpolicies are used, and de-
ciding whether they will is NP-complete. Yet there are nadreslgorithms known for policy
routing; one possible reason is that the problem is muchenan@n shortest-path routing.

We study the complexity of policy routing witlerbidden-sepolicies — each node specifies
a set of forbidden nodes and wants to route on paths that @verd. We begin by proving
some new intractability results and reviewing known onesuabouting tree-based algorithms.
We show that routing trees are both impractical (they mayerist) and intractable (deciding if
they exist is NP-complete) for forbidden-set policies aetlike networks. We also prove the
first communication complexity results for deciding if d&bouting trees exist — for general
policies, we show that communication exponential in thevoekt size is needed. This implies
that routing trees are a bad choice, even for some simpleypaluting problems.

We describe the first compact forbidden-set routing schahesdo not suffer from non-
convergence. For degreks-node graphs of treewidt) our schemes use spa@éﬁd) bits per
node; a trivial scheme uséxn?) and routing trees use(n) per nodé. We also show how to do
forbidden-set routing on planar graphs between nodes wdistce is less than a parameéter
We prove a lower bound on the space requirements of forbidderouting for general graphs,
and show that the problem is related to constructing an effidistributed representation of all
the separators of an undirected graph. Finally, we consaémg while taking into account
path costs of intermediate nodes and show that this redaimgs routing labels. We also study
a novel way of approximating forbidden-set routing usingtignt graphs of low treewidth.

These results have since been improved and extended [CTO07]
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CHAPTER 1

Introduction

1.1 Introduction

A fundamental task for any communications network is raytinthe process of discovering
paths between nodes in the network and using them for conuaiion. Without a path con-
necting two nodes, they cannot send packets to each othesatite problem of deciding
reachability is crucial to any routing algorithm. The bagib of any routing algorithm is to
allow nodes to route on paths having low cost — but what do wemnty a low-cost path? The
usual view of routing is to assign weights to edges, and défi@aeost of a path as the sum of
its edge costs. This is known as the shortest-path routioigigm.
We study a problem motivated by routing in networks havirgftilowing properties:

1. There is no centralized control, so all decisions shoalthlde usindpcal information

2. The nodes arautonomousmeaning they are free to make their own independent deci-
sions (we shall explain later what these decisions are).

3. The network is large, so nodes cannot store a piece ofnaftion for every other node,
i.e. we wantb(n) space per node.

The Internet is an example of such a network — each node may lredapendent orga-
nization with its own economic aims, possible competinghvather organizations to provide
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2 Chapter 1. Introduction

connectivity in the network. We shall not be interested mélsonomics of Internet routing, but

we shall be interested in the routing problems that suchuatsiin creates. We begin by de-

scribing at a high level, how Internet routing is done. Lateywe shall use this as an abstract
model for routing in which we can prove various results.

The main protocol used for routing on the Internet is knowtha€Border Gateway Protocol
(BGP). It works roughly as follows: a node advertises to itghieours the route it currently
uses to each destination. A node with many neighbours wils fearn about many routes to
some destination. It then selects one of these routes as the route that it sélta send data to
j; subsequently, it can advertise this route to all of its hbaurs. This process repeats until the
set of routes stabilises (and so the protocol convergeggarh node discovers at least one route
to every destination (if such a route exists). Since therg lbgamany possible routes to choose
from, a crucial decision a node must make is route selectioren all the currently available
routes to a destinatiofy which one should it choose? In the early days of the Intgmabén it
was known as ARPANET), each node simply chosesth@rtestvailable path [MW77]. In this
case, the algorithm we have just described can be seen asibutksl algorithm for solving
the shortest-path problem, and indeed it is possible to shatithis algorithm will converge in
finite time and every node will discover the shortest pathvergdestination.

However, today’s Internet no longer consists of machinasesixand run by a single organ-
isation; instead it consists of independent competingrosgdéions whose routing preferences
are influenced by external factors other than path lengtth as commercial relationships with
other organizations in the network. For this reason, sktgath routing is often not appro-
priate or desirable (the shortest path franrmay go via another organization thatwishes to
avoid). BGP allows nodes complete freedom to pick routesrdauog to localrouting policies
and this leads us to thgolicy routing problem — each node has a policy that defines how it
assigns costs to paths, and each node wants to route on Ipaitlase of low cost to itself. Very
little is known about the complexity of policy routing, in mwast to the problem of shortest-
path routing, which is very well-understood. Our aim is te@lep an understanding of policy
routing, and how to design good algorithms for routing wipledfic classes of policies.

1.2 Chapter 3: Routing trees

We begin by discussing a simple but widely-used method dinguthat we shall refer to as a
‘routing tree’-based scheme. Imagine that we want to seollgta on shortest paths between
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nodes. Arouting treefor a nodev is simply a spanning tree rooted-atImagine that we con-
struct a forest of routing trees, one for each node in the ortwI hen to route to a destination
v, we find its routing tree and forward the packet along the sadéhe tree until it reaches the
root. The set of shortest paths to each nodea routing tree for. Therefore we can construct
the forest by running an efficient distributed shortesti@gorithm, and storing at each node
the parent node for each routing tree. This scheme uses 6jageat each node for a network
of n nodes (from now on, we shall usgto denote the number of nodes).

For routing in autonomous networks with no centralized mantve need our routing trees
to satisfy an additional property, callstability. A routing tree isstableif no node in the tree
can switch to a lower cost path without creating a cycle inttbe. Throughout the thesis, we
shall assume that stable routing trees are the only onewséhean use for routing. The reason
for this is that if the nodes are autonomous, then given tloecehbetween a path of high cost
and a path of low cost to a destination, we have to assumeltbgtwill pick the low cost
path for routing to that destination. The collection of kst paths to some node has a useful
property, sometimes referred to as the principle of opiilytadny subpath of a shortest path is
a shortest subpathThis property implies that a shortest-path routing treléativays be stable,
if all nodes prefer shorter paths over longer paths. In mioggbolicy routing, we shall assume
that each node has a policy, that assigns a nonnegative cegtP) to each pathP. Clearly,
it is possible to construct a set of policies so that the fpircf optimality no longer holds. In
this case, it is natural to ask if we can still construct stabluting trees.

Griffin et al. [GSWO02] answered this question in the negativarthermore, they showed
that given a set of policies (encoded in a particular way) ametwork, it is NP-complete to
decide whether there exists a stable routing tree to some digstination. This intractability
result is particularly surprising because it models howtirguactually happens on the Internet
— not only is it possible that the BGP algorithm may not congeiga solution (i.e. a set of
stable routing trees), but it is NP-complete to decide ifiit do so. Why then do we still use
BGP? The main answer is that it still works ‘in practice’, bgttae Internet grows and we
become more reliant on it as a means of communication, tle&@nwill eventually not be a
good enough one.

In light of this hardness result, there are two natural wayshich we might hope to attack
the problem, if we wish to construct useful algorithms fae gholicy routing problem. One di-
rection is to restrict the class of policies allowed in the&dthat the reduction in expressiveness
will permit an efficient algorithm. Another direction is testrict the class of networks.
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Feigenbaum et al. [FKMSO05] investigated the first directibhey studied the simple class
of next-hop preferenceshere the cost of a path depends only on its next-hop. Theyesththat
a stable routing tree always exists and so deciding soltsalsitrivial. Gao and Rexford [GROO]
suggested that next-hop preferences capture the effecSet Aaving different commercial
relationships with neighbouring ASes. However, there aamyrdesirable classes of policies
that cannot be expressed in terms of next-hop preferencasexample, the government of
country X may want to avoid any path that goes through some other goudnerhaps because
X is afraid thatY” may do bad things to its packets, or because it does not Waontknow
who it is communicating with. This motivates tifierbidden-set routingoroblem, introduced
by Feigenbaum et al. [FKMSO05]: each nodéas a forbidden set(u) C V(&) of nodes,
and the cost,(P) of a pathP from « is the number of nodes it contains frof{u), i.e.
c.(P) = |S(u) N P|. In addition to being a relevant and interesting class ofingupolicies,
the problem is interesting from a graph theory point of visince there is no patR from « to
v with ¢, (P) = 0iff S(u) separates andv in G.

In Chapter 3, we further the study of routing trees for thegyolouting problem. Our main
results are following.

e We show that deciding if there exists a stable routing treere/the nodes use forbidden-
set preferences is NP-complete, even on bounded treewniajting, This shows that even
if we severely restrict both the class of poliapdthe class of networks, deciding solv-
ability is still intractable. This rules out the possilyliof using a single routing tree for
policy-based routing, even in simple cases.

e We show that a small change in policy can give a huge changemplexity of deciding
solvability — it is trivial for next-hop preferences but NBmplete for two-hop prefer-
ences. We conjecture that there exists a dichotomy theae®HP solvability, i.e. for a
given class of policy, it is either NP-complete or trivial.

e We prove the first communication complexity results for abihlity; in particular, any
distributed algorithm must communicat®™ bits over at leasf2(n) edges in the worst-
case. We also prove lower bounds for the class of forbidé¢preferences.

¢ Finally, we consider labeling the nodes so that they carfiably and locally check if the
current path assignment is a stable routing tree. We sho@(ah lower bound on the
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proof size and give a proof labeling scheme of si¥e ), hence this is tight in the worst
case.

These results suggest that routing trees are not a goodadgalfcy routing, even for simple
networks (bounded treewidth) and simple policies (forbiudet).

1.3 Chapter 4. Towards compact forbidden-set routing

In Chapter 4 we forget about using routing trees, and try teldgva model that will allow us to
construct efficient routing schemes for the forbidden-geting problem. The results of Griffin
et al. [GSWO02] show that for policy routing, it may be impossito construct a stable routing
tree and so it is not always possible to route on lowest-catsispusing this method.

Consider the following simple (non-tree-based) scheme édicy routing. Each nodev
stores a table where the entiy, v) specifies the next hop from on the path fromu to v of
lowest cost ta:. When a node wants to send a packet to destinatigt writes into the header
of the packet the string:, v). Now when some node receives this packet, it looks up the entry
(u,v) to find the next link for this packet. This way, each node canegon its lowest-cost path
to each destination. However, the downside is that eacleroww stores)(n?) entries in its
local routing table, which is too demanding in a large nekwoWith a routing tree, all the
sources whose paths pass through the samemnadehe same destinatianmust agree to use
the same path fromv and therefore each node can stof@:) entries. However, we know that
stable routing trees are not guaranteed to exist, so we taflways route on lowest-cost paths
(even though the path clearly exists in the network!).

The above scheme can be seen as a simple instance of theifigllmedel of routing. Each
node is assigned a data structure (called its routing talolé)a label, which identifies the node
to other nodes. Routing is then done as follows: if nad&ants to route ta it writes v's
label into the packet header. Nodes can then use their gpiatinles and’s label to decide how
to forward the packet through the network. This model is km@scompact routingand was
introduced in a series of papers by Peleg and Upfal [PU89] s¥itwaved how to do stretch-
routing usingn®(/*) bits per label. Cowen [Cow99] showed how to route on stretcheBtest
paths using)(n?/?) bits per nodé These are both substantial improvements orthe) space
required by simply using routing trees. Indeed, a routingeste is said to beompactif the

Lf(n) = O(g(n)) if 3¢ > 0 such thatf (n) = O(g(n) log® n)
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space requirement at each node(s), i.e. sublinear in the number of nodes in the network.
For more details about localized and compact data struigfareshortest-path routing, we refer
the reader to the excellent survey paper by Gavoille andgf&E03]. In fact, it is known that
compact routing is almost-optimal for approximate shaspegh routing: Thorup and Zwick
[TZ01b] have given a scheme that routes on paths of stretele tfa path has stretdhif its
length is within a factor: of optimal) using routing tables of size(n'/?) and O(logn)-bit
labels. By a proven conjecture of Erdos, related to the giréngraph, this space requirement
is optimal to within logarithmic factors.

The guestion we wish to answer is the following: for the specase of forbidden-set rout-
ing, can we do better than spa@én?) per node, while still being able to route ah forbidden-
set-avoiding paths? We answer this in the positive by coosirg a compact routing scheme
that routes on the shortest path- v that avoidsS(«). Our main results are the following. Let
k be the size of the largest forbidden set, ke= max, |S(u)|, and letd be the degree af.

e We show how to do forbidden-set routing on trees usitig log n) bits per node. How-
ever, the problem on trees is simple since assista separator af, v in 7' iff at least one
element ofS lies on the unique path betweenu.

e For the class of bounded cliquewidth graphs, we can constrfiorbidden-set routing
scheme using)(dk log” n) bits per node and labels of siz&logn) bits. However, the
hidden constant may be a tower of exponentials in the cliggteywmaking the scheme
quite impractical, but nevertheless hinting at the existest more efficient schemes.

e For graphs of treewidth, we give a forbidden-set routing scheme usin@?dk log® n)-
bit labels.

e We give a space lower bound 9fn) bits per node for any forbidden-set routing scheme
in general graphs.

We argue that for policy-based routing on the Internet, cachpouting schemes are bet-
ter than using routing trees. Since no routing trees are @vastructed, our routing schemes
can send packets on all lowest-cost paths between nodesgwdrethey are reachable in the
network. In contrast, packets can be sent only if a stablenguree exists where the source
node is not assigned the empty path (and deciding if sucheaettists is NP-complete even
with forbidden-set policies on bounded treewidth grapl®).far nothing is known about the
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S(a) = {d}

Figure 1.1: The only good path from a to g is marked in bold. The same path in reverse is not
a good path from g to a

viability of compact routing schemes for policy routing. particular, it may be that the space
requirements are higher th&in) per node. The idea of using compact routing on the Internet
has been suggested elsewhere. For example, Krioukov eK&lY(4] suggest that existing
compact routing schemes perform excellently for Intetikettopologies. However, this ig-
nores the freedom offered by policy routing, which is the matitraction of BGP. Until there
exists a scheme that can handle policy routing (even foricesd policies such as forbidden-
set), there will remain no viable alternative to BGP. We haithat our algorithms take us an
important step closer towards this goal, and also provideesateresting and difficult questions
along the way.

1.4 Chapter 5: Handling intermediate nodes

In the previous chapter, we constructed forbidden-setrrgsthemes under the assumption that
intermediate nodes will always forward packets, even ifgatthh on which they are forwarding
the packets is costly to them. We call a pgtodif all its subpaths have zero cost. An example
of this is shown in Figure 1.1. Note that for shortest-patitirg this is not an important
concern, because every subpath of a shortest path is itstlbrdest path. The problem of
routing on good paths can be seen to model a common situati®&GP routing: if nodes
only advertise paths of zero cost (to themselves), then de moll ever discover a non-good
path. It is important to note that this ‘goodness’ propestyniplicit in stable routing trees —
if 4 has a lower cost path available than its current one thenlithoose it, regardless of the
preferences of other nodes that may need to route throghthough this may be restricted by
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the requirement that the new path does not create a cycl®je Sie are interested in compact
routing schemes, we ask ourselves the following questidratwifference does routing on only
good paths make to the complexity of routing schemes foran@dden-set routing problem?

In Chapter 5, we show that the answer is somewhat negativengtaito account the costs
of intermediate nodes makes the problem much more diffit@t.k be the size of the largest
forbidden set, i.ek = maxy |S(u)|. Our main results are the following.

e We show that if the forbidden sets are of size at mioshen on trees, labels of size
Q(y/n + klogn) are required to decide if there is a good path between twosobes
should be compared with th@(log n) bound shown in Chapter 4 for simply routing on
zero-cost paths to the source node.

e We prove an almost-optimél(+/kn) upper bound and show various time-space tradeoffs
for centralized versions of the problem.

e We also show that routing can be done using:)-bit routing tables and labels, but a
packet may traverse(n) edges before being returned if a good path does not exist.

Our results imply that it may not be practical to construebfdden-set routing schemes that
take into account costs incurred by intermediate nodesssnte are willing to sacrifice features
such as the ability to decide if there exists a good path befending the packet.

1.5 Chapter 6: Approximating forbidden-set routing

We finish by considering an approachdpproximatingforbidden-set routing. We partition
the network into connected clusters and instead of choaaibirary subsets of nodes, the
forbidden sets are a subset of these clusters. This hasféwt ef avoiding whole clusters
rather than individual nodes. We define the problem of obtgia cluster graph with good
graph-theoretic properties, and motivate the problem tdiolng a cluster graph with bounded
treewidth. We show that if we can construct a cluster grapinigesmall treewidth, then we can
apply our forbidden-set routing schemes from Chapter 4 fthits may be of interest when the
network lends itself naturally to clustering.

We begin by considering an approach inspired by the work mfdfdaum et al. [FKMSO05]
— they considered a relaxed version of shortest-path r@utimere each link has a number of
objective values associated with it, representing for gxarnis delay, its bandwidth and other
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metrics. All nodes agree on these values, in the same wawlihaides agree on the weights
of edges for shortest-path routing. Each node has an ingilwbst function, which is a convex
combination of the objective values assigned to edges xemmele, one node may be interested
in paths minimizing the sum of delays, while another may lierested in paths minimizing
another metric). They showed that using a small number dfrrgurees (instead of a single
routing tree) is sufficient for all nodes to route on almogthmal paths. Their scheme does
not immediately imply a space-efficient routing schemepgio We shall show how to use
their construction to build a space-efficient compact r@ugcheme with a small increase in
the approximation factor. We can then observe that thisiptelbbjective cost problem can be
seen as a special case of clustering the network and asgigosts to clusters. Since we are
interested in forbidden-set routing, it is natural to askéf can cluster the graph so as to obtain
efficient forbidden-set routing algorithms for it.



CHAPTER 2

Preliminaries

In this chapter, we give some useful preliminary definitiansl background to areas and basic
results that we shall frequently refer to.

2.1 Graph theory

We assume familiarity with basic concepts in graph theoeg [WVil86] for a good reference
text on graph theory. We shall model the network by an untiBcesimple grapltz: = (V, E)
havingn nodes andn edges. The size of a graph is the number of nodes in the graipban G
a graphG, its node set is denoted(G) and its edge sel(G). Thedegreeof a nodeu in
G is denoted bylegi(u) and themaximal degreef a node ofG is denoted byA(G). The
neighbourhoof a nodeu € V(G) is denoted byg (u) = {v € V(G) : {u,v} € E(G)} and
the neighbourhood of a set of nodgs- V() is denoted byV(S) = [J,.q N(s)\S. We shall
drop the subscripts when it is clear which graph we are riefgto. Thetransitive closurgor
reachability graphof a graphG is denoted by-*.

A pathis a sequence of nodes such that from each of its nodes thanesidge to the next
node in the path, and no nodes are repeated. I@ihgth of a path is the number of edges
contained in the path. Aycleis a path, except that the start and end nodes are the same. A
graph isacycliciff it contains no cycles of length- 1. We shall denote the empty path by

10
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If P=wvy,...,v,andQ = vy, ...,v, thenPQ = vy,...,v, IS the concatenation aP and(
(eP = P = Pe¢). A Hamiltonianpath is one that visits each node of the graph exactly once. A
graph that contains a Hamiltonian path is called Hamiltonihe distance from to v in G is
the length of the shortest path framto v and is denoted by (u, v).

A separator(cut) is a set of nodes (edges) whose removal disconnects thh griapcon-
nected subgraphs. A cut is denoted(By, Y) whereX,Y C V(&) and thevalue(or sizg of
the cut is the number of edges needed to partition the graplih V). A graph isk-connected
(k-edge-connectedlf it remains connected after removing ahy- 1 nodes (edges). A graph
is k-connected iff it containg node-disjoint paths between any two nodes. €Toenectivity
x(G) of a graphG is the minimum number of nodes needed to discontecBy convention,
K, has connectivity: — 1 and a disconnected graph has connectivity O.

2.1.1 Graph layouts

A linear layout or layout, of an undirected grapi = (V, E) with n nodes is a bijective
functiong : V — {1,...,n}. Given a layouw of a graphG: and an integef, we define the set
L(i,¢0,G) = {u € V]p(u) < i} and the seRR(i, ¢, G) = {u € V|o(u) > i}. We shall usd.(7)
andR(i) when¢ andG are obvious. Thedge cugt position: of ¢ is defined as

O(i, ¢, G) = [{{u,v} € Elu € L(i) Nv € R(i)}|.

A common way to represent a layout is to align the nodes hotatly, mapping each node

,,,,,

graph is the minimum cutwidth over all possible layoutgpfdenoted by:w(G).

2.1.2 Treewidth

Many problems have efficient algorithms when restrictedrées. The notion of treewidth,
introduced by Robertson and Seymour [RS86] as part of theik worgraph minors, captures
the idea that a graph may be ‘tree-like’. It is often possibleonstruct efficient algorithms for
difficult problems, when restricted to small treewidth drapWe shall make frequent reference
to the concept of treewidth, so we define it here for refereAcigee decompositionf a graph

G = (V,FE)isapair(X,T) whereT = (I, F) is a tree and each node 06f T" is associated
with a subsetX; C V' with the following properties.
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Figure 2.1 : An example of a graph and a tree decomposition of width 2

1. TheX;'s cover the nodes af, i.e.|J,.; Xi = V;
2. For every edgév, w} € F, there is some nodec 7' wherev, w € X;;

3. Forevery € V, the set{i € I|v € X,} is a connected subtree of

Thewidth of a tree decompositionX, 7') is defined asnax;c; | X;| — 1. Thetreewidthof
a graphG is the minimum width over all tree decompositions(ofand we shall denote it by
tw(G). For example, trees have treewidth one and cliqgues haveunded treewidth. Figure
2.1 shows an example of a graph and a tree decompositiontre sases]” will be considered
to be a rooted tree, in which case a specific nod& shall be its root. A tree decomposition
with 7" a rooted tree is called a rooted tree decomposition. For ahead/, we call the setX;
thebagof i. More details about the history and uses of treewidth cambed in the paper by
Bodlaender [Bod93b].

2.2 Labeling schemes

Implicit in any distributed algorithm is a representatiohtioe network, and many network
representations are inherently global; for example eadeng assumed to know the entire
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network. A common distributed representation of a grapb @sisign nodes unique identifiers
from {1,...,n} and then store at each node the identifiers of its neighbbussich a scheme,
answering a query such as ‘what is the distance betwesrdv?’ may require access to data
distributed across the entire network, e.g. by running atekbpath algorithm. Another idea
Is to use a completely local representation of the netwankekample having each node know
the entire graph. The problem is that both these represamadre inefficient: the first has high
guery time and second has high space requirements at eaeh nod

Labeling schemes were introduced in [KNR92]. Assume that,, ..., x;) is some graph
property on nodes,, . . ., x; that we want to answer, e.@(xy, z2) = d(z1,x2) Of P(xy, ..., x) =
1 iff the subgraph induced by, ...,z is a clique. AP-labeling scheméL, f) consists of
two things:

1. A marker algorithmthat takes as input the graph and assigns a |label to each node
(L is called aabelingof the nodes);

2. Adecoder algorithimy such thatf (L(z1), ..., L(zg)) = P(x1,. .., xx).

Thesizeof a labeling is the maximum size of a label given to some nédea family of graphs

G we denote a labeling scheme bY, f), whereL is the labeling computed by the marker on
the particular graplt; € G and f is the decoder algorithm (that depends only on the marker
algorithm, not the particula# € G).

The labelingl can be viewed as a distributed data structure, with the deesda distributed
algorithm that answerB(x, . . ., z;) using data only stored at, . . . , 2. If the labels are short
then they can be given as part of the query, by using them repdé the traditionalg n-bit
node identifier (e.g. in packet headers). We shall be intedaa themaximunlabel size rather
than thetotal label size since the graph given to the marker algorithm kswawn and so any
node could be assigned a label of the maximum size, whichdu@gjuire that each node has
sufficient memory to store it. Clearly, a good bound on thewviddial label size gives a good
bound on the total size but not the other way around. It is @lsar that labels of unrestricted
size can be used to encode any desired property (by storengritire graph). For a labeling
scheme to be useful the labels should be short (say of lemdytogarithmic in the number of
nodes), and the time to answer a query given the labels be @isal polylogarithmic).
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2.2.1 An example — adjacency labeling

We now give an example of adjacency labeling in trees, to gibetter understanding of the
local nature of these schemes. Adjacency labeling schemesfinst introduced in [KNR92] for
the implicit representation of graphs. In particular, aelaiy scheme using log n-bit labels
for the class of trees was given, which we now describe. Garen-node treel’, labels are
assigned to nodes as follows. Choose a root and associatgueudentifiedD(v) € {1...n}
with each node € T, then assign a nodewith parentw the label(ID(v), ID(w)) (the rootr

is assigned the labéID(r),0)). Now, given two label§ID(v),ID(w)) and(ID(v'), ID(w")),
the nodes), v’ are neighbours iff eithelD(v) = ID(w’) or ID(v’) = ID(w). The scheme can
be extended to families of graphs having separators of eiste such as-decomposable
graphs (e.g. bounded genus graphs and bounded treewigitinsyra

Another basic result in the area of graph labeling concerstamnte labeling schemes. A
distance labeling scheme is a labeling schémef) wheref(u, v) is the distance between two
nodesu, v in the graph. It has been shown [KNR92] that a clasz™§f ") n-node graphs must
use adjacency labels (and thus distance labels) whosecttabined length i€2(n!™) bits.
Hence, at least one label must beXxjf.¢) bits. More specifically, for the class of all unweighted
graphs, any adjacency (and hence distance) labeling scimersteassign some node a label of
sizeQ)(n) bits.

Given the)(n) lower bound for general graphs, a large amount of researckealcéled the
problem of constructingpproximatedistance labeling schemes. Thorup and Zwick [TZ01a]
give a distance labeling scheme with approximation fazkor 1 usingO(kn'/*) bits per label,
which is essentially optimal by a 1963 girth conjecture al&s that has been proven for certain
small values of: includingk = 2.

2.3 Communication complexity

In Chapters 3 and 4 we shall make use of results from commumicabmplexity. Therefore,
we give some basic concepts here but for further informatimmhdetails of proofs, we refer the
reader to the excellent and interesting book [KN97] by Klestiiz and Nisan.

Let X, Y, Z be arbitrary finite sets and l¢t: X x Y — Z be an arbitrary function. There
are two players, Alice and Bob, who wish to evaludie;, y) for some inputsc € X and
y € Y. The difficulty is that Alice only knows: and Bob only knowg. Thus, to evaluate the
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function, they will need to communicate with each other. Thenmunication will be carried
out according to some fixed protocBl(which depends only on the functigf). The protocol
consists of the players sending bits to each other in turtil the value of f(x,y) can be
determined. We are usually only interested in the amounbwfaunication between Alice and
Bob, so we ignore the internal computations each of them makkss, Alice and Bob are
assumed to both have unlimited computational power. cdstof a protocolP on input(z, y)

is the number of bits communicated on that input. The costmfo#ocol P is the worst case
cost of P over all inputs(z, y). Thecommunication complexif f is the minimum cost of a
protocol that computeg.

Although we assume that the players have unlimited comipatpower, the way that the
choices are made at each step of the protocol can have antiorpde amount of communica-
tion required. Theleterministiccommunication complexity of a functiofy, denotedD( f), is
the minimum cost of any deterministic protocol that compifta.e. one that makes no random
choices and computes the answer deterministically.rihdomizeccommunication complex-
ity is defined similarly, except that the protocols used by phayers are randomized, and the
result must be known with a sufficiently high probability.€lbook [KN97] gives several exam-
ples of functions whose deterministic complexityig:), yet there exist randomized protocols
that use onlyO(log n) bits of communication (for example, the set equality fuoia}i

We shall also be interested in nondeterministic commuimicgtrotocols. In a nondeter-
ministic protocol, we can imagine the presence of an allgrfuV prover who knows the inputs
of both players (and hence the answer). Therefore, the coneation required is equiva-
lent to that needed to verify a nondeterministic guess ofat®ver. For example, consider
the disjointness functio®S.J on n-bit strings whereDISJ(P,Q) = 1iff PN Q = 0. If
DISJ(P,Q) = 1 then there exists an indexsuch thatP, = ;. The prover can tell both
playersi and they can verify thaP, = @Q; with O(logn) bits of communication. We define
the nondeterministicommunication complexity of a functiofi is the minimum cost of any
nondeterministic protocol that verifies thatr,y) = 0 foranyx € X,y € Y, and is denoted
NO(f). Similarly, theco-nondeterministicommunication of a functiorf is the minimum cost
of any nondeterministic protocol that verifies thfdt:,y) = 1 foranyz € X,y € Y, and is
denotedV*(f).
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2.4 Boolean circuits

In Chapter 3 we make use of boolean circuits and boolean fumxin proving some of our
lower bound results for the complexity of finding stable mgtrees. Results on the complexity
of boolean functions also underly some of our results indlsedection of Chapter 3. Therefore
we now give a brief overview of the main (mostly simple) cqotsehat we shall use; for more
details and related results in this deep and interesting, ave refer the reader to the book by
Clote and Kranakis [CKOZ2].

A boolean circuitis a directed acyclic graph with labeled nodes as follows:

e Inputnodes have fan-in 1 and are labeled with a variabler a constant i{0, 1}.

e Gatenodes have fan-ik > 0 and are labeled with a boolean functiofAND), V(OR),
—(NOT) on thek inputs. In the case that the labeHsthe fan-in is restricted to be 1.

e Outputnodes have fan-out 0.

A boolean formulas a boolean circuit having only one output gate. The edg@sanfcuit are
calledwires Thedepthof a circuit is the maximum distance from an input to an outate.

It is important to note that any circuit can be modified, byngsile Morgan’s laws, to push all
the negations to the input gates, without changing the defptine circuit. Therefore, we will
assume wlog that all gates are one/ofv, and that the negated versions of each variable are
available as inputs, i.ez; andz;. Similarly, adjacent gates of the same type can be combined
together, so we assume wlog that a circuit contains levedsrating betweew and A gates.

A T1% formula is a boolean formula of depthwhere the top level gate (the output) ig\aate,

and with fan-in bounded by. A % formula is defined similarly, except that the top level gate
is aV gate.ll; andY; formulae are single literals and correspond to input gatelse circuit.
Figure 2.2 shows an example oflg formula.
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CHAPTER 3

Routing Trees

In this chapter we consider policy-based routing usingingurees. The chapter is structured in
two parts. In the first part, we use the formalism of routirggllras and the stable paths problem
to show hardness results on the computational complexpyplkdy-based routing using routing
trees, even for simple policies. These extend other reduédo Feigenbaum et al. [FKMSO05]
and Griffin et al. [GSWO02].

In the second part of the chapter, we consider the stables gmtiblem as a problem in
distributed computing and prove the first communication glexity lower bounds for it. In
the final section, we describe the notion of proof labelingesces, which provide a distributed
representation of a solution that is locally verifiable. Weve a lemma that lets us use our
communication lower bounds to give lower bounds on the psoad of deciding solvability of
a stable paths problem.

The aim of this chapter is to convince the reader that routiegs are not practical for
policy-based routing, even for seemingly simple policieshsas forbidden-set routing.

3.1 The stable paths problem

That BGP is not guaranteed to converge was first observed laylWan et al. [VGE96]. More
recently, Griffin et al. [GSWO02] introduced tistable paths probler(SPP) as a tool to model
the instabilities that can arise from using routing tresdabalgorithms such as BGP. They use

18
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210 5210
20

Figure 3.1: An instance of the stable paths problem. The nodes’ path preferences are ordered
from most preferred to least preferred, and the routing tree representing the solution is marked
with bold edges.

the following motivating analogyif Dijkstra’s algorithm solves the shortest path problerarh
BGP solves the stable paths problem.

We now describe the stable paths problem. &et (V, E') be an undirected rooted graph,
with the root having identifier 0. All nodes wish to establespath to the root. For each node
v € V, the set ofpermitted pathgrom v to the root is denoted by.,. Each node has a total
order (%, C,) over its permitted paths. We assume that foral, contains the empty path
¢, ande C, o forall o € X, i.e. any nonempty path is preferable to the empty patstable
paths instancés written S = (G, 3, C) whereX = {3,} andC= {C,}.

A path assignment is a function that assigns a permitted pattv) € X, to each node
v € V (the root’s assigned path i§0) = €0). We say that a pat® = v, ...,0 assigned to
v = v IS consistenwith a path assignment if for all v; € P,v; # v implies that the path
7(v;) is a subpath of. A path assignment is valid if for all v, the pathr(v) is consistent with
7. Intuitively, the assigned paths of a valid path assignraeatconfluent, i.e. they form a tree
rooted at node O.

Valid assignments are important as this is how routing tpk&se over the Internet; routers
examine the destination of incoming packets and simply &mdithem to the next hop on the
route to that destination, which is the parent in the tre¢amat the destination. The problem
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is that even though may be valid, some nodemight prefer (perhaps for economic reasons)
another path?’ € 3, to its assigned patk = = (v). Therefore, as long a&’ is also consistent
with 7, v may (at its own will) switch to using”’. We say that an assignmenits stable at node

v if there is no other permitted path k, consistent withr thatv prefers overr(v). A path
assignmentr is stable or is asolution toS, iff it is stable at every node. Stable routing trees
are important since we assume that the only routing treeésvli@an use for routing are those
corresponding to stable path assignments. A stable pagteniceS = (G, X, C) is solvable

if there exists a solution t6, and unsolvable otherwise. We can now define the problem SPP-
SOLVABILITY:

Problem SPP-SOLVABILITY
Input: A stable paths instance = (G, X, C).
Output: Is S solvable?

The main difference between the stable paths problem arghtirvéest paths problem is that
the latter always has a unique solution, while the former haye one, none or many solutions.
As an example, consider the network in Figure 3.1. A stabletiso is indicated with bold
edges. Note that node 5 prefers path 5210 to the empty pdttheéopath 210 is not part of this
solution, so node 5 is assigned the empty path. It is easyetthse there is no stable solution
where node 5 is assigned a nonempty path — node 3 will alwafsmiand be able to switch
to) path 30 and so node 1 will always be able to choose path ¥&01®. Therefore node 2
will have to choose path 20 and so node 5 will be assigned theyepath. Also, note that
although node 2 prefers the path 210 to the path 20, it wilenée able to use this path in a
stable solution because node 3 will always be able to choat$e3® and so node 1 will always
be able to choose path 130.

3.1.1 Results of this chapter

Compared to the shortest paths problem, very little is knolaguathe complexity of the sta-
ble paths problem. Griffin et al. [GSWO02] showed that deciddiP-SOLVABILITY is NP-
complete for general graphs. Given this result, there acenatural ways that we could hope
to reduce the complexity. We could restrict the class ofguedi allowed, in the hope that the
reduction in expressiveness will permit efficient alganth Another direction is to restrict the
class of networks allowed, in the hope that this will allowrmefficient algorithms.
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Feigenbaum et al. [FKMSO05] investigated restricting thégyo They studied the class
of next-hop preferenceshere the cost of a path can depend only on the next-hop orathe p
They showed that deciding solvability is trivial since axgerouting tree always exists. Gao and
Rexford [GROO] suggest that next-hop preferences captureftbet of ASes having different
commercial relationships with neighbouring ASes, in thessethat the cost of a path depends
only on whether the next-hop is a customer or provider ett@y(tlo not capturgansit policies
where the next-hop depends on the previous hop). There arg us&ful policies that cannot
be expressed in terms of next-hop preferences. For examplegdeu may wish to avoid any
route that goes through nodeperhaps becausds a competitor who may drogs data or due
to some economic agreement between them. This leads forthidden-set routingorroblem:
each node: has a forbidden sef(u) C V' of nodes where the cost toof a path is the number
of nodes it contains from§(u). Forbidden-set preferences capture a fundamental yet&sipe
class of routing policies, so showing that we can handle teficiently would be an important
positive result. Our main results are the following:

e We show (by a simple extension of a result of [FKMSO05]) a sgitgmegative result —
deciding solvability for forbidden-set preferences on rted treewidth graphs is NP-
complete. Thus, even if we severely restrict both the cldgsobicy and the class of
graphs, the problem of deciding solvability is still inttalsle. This almost certainly rules
out the possibility of using a single routing tree for polegtsed routing.

e We show that a small change in policy can give a huge changemplexity of decid-
ing solvability — deciding solvability of an SPP is triviabrf next-hop preferences but
NP-complete for the class of two-hop preferences. We ctunjecthat there exists a di-
chotomy theorem for the problem of deciding solvabilitg, ifor a given routing algebra
it is either NP-complete or trivial.

e We prove that any distributed algorithm that decides if¢hera set of stable paths must
communicate2®(™ bits across each of at leaQ{n) edges in the worst-case. We also
prove lower bounds for the communication complexity of abllity using forbidden-set
preferences.

e Finally, we consider labeling the nodes so that they carfiably and locally decide
whether the current routing tree is stable, and prové&amn lower bound on the label
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size. We show that this is tight in the general case by givimpgo®f labeling scheme
usingO(n)-bit labels.

3.2 Routing algebras

In this section we describe the formalismrotiting algebrasntroduced by Sobrinho [Sob03].
We then describe how they naturally generate instancegat#le paths problem. This allows
us to completely separate the complexity of the policy frowen ¢complexity of the graph used.
Note that the path preferencesover implicitly encode information about the graphdthe
policy. The advantage of using the routing algebra formalsthat it separates policy and net-
work. This will enable us to understand what makes certdicyolasses hard by studying their
algebraic properties, independent from the class of grapéd. In the work presented here, we
do not study the link between algebraic features of poliaresthe complexity of the SPPs that
they generate. Our main use for routing algebras is to sottgiand accurately describe the
policy classes that were are interested in studying. Adeelaork, Chau et al. [KCGGO06]
have investigated how the algebraic features of policiescathe convergence properties of
Bellman-Ford-style iterative algorithms. However, the g@ah problem of understanding how
the algebraic properties of routing algebras relate to tmwergence properties of algorithms
and their complexity is still an open problem.

We shall now introduce routing algebras. Routing algebraseahought of as generalising
shortest-path routing in the following way. Consider FigBr2(a): there is a path fromto w
of weightm and nodeu has an edge to nodeof weightn, henceu has a path ta of weight
at mostn + m. Now let us generalise this as in Figure 3.2(b). Each edgalelsel | < L,
and each path is described bysignaturesc € . We assume that there is a special ‘zero’
signaturec € Y (similar to the zero element of a group) that denotes the ypgtth. Paths are
composed using the binary operator: L x ¥ — 3 (paths are assumed to begin at the root,
and are extended towards the source node). Finally, thexgatally-ordered set ofveights
(W, <) and acost functionf : ¥ — W. We can now define suting algebraA as the tuple
A= (L3 e®,(W,<),f).
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Figure 3.2: How path lengths are computed in the shortest path setting (a), and how path
signatures are computed in the routing algebra setting (b).

3.2.1 Generating stable paths problems

Routing algebras naturally generate instances of the sfaites problem. Given a routing
algebra4 and a rooted grapf¥ with edges labelled fromi, we say thatd generates an instance
A(G) of a stable paths problems follows. For every path from a nodedhto the root node,
its signature is generated by recursively applyibdo the labels along the path. Every node
then ranks its paths to the root using the cost funciipmnd a node prefers a path with
signatures to a pathP’ with signatures’ iff f(o) < f(¢’). We can now define the problem
of solvability, restricted to SPP instances that are geadray some routing algebra. L&t =

(L, %, ¢e,®, (W, <), f) be arouting algebra.

Problem A-SPP-SOLVABILITY
Input: An undirected rooted grapti with edges labeled from
Output: Is the stable paths problem instandé&=) solvable?

3.2.2 Next-hop routing

We now present a routing algebra for the next-hop policyinguproblem. In this case, the
cost of a path can depend only on the next hop on the path. rimgen et al. [FKMSO05]
studied the class of next-hop preferences and showed tbiglirfg solvability is trivial since a
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stable routing tree always exists. The reason for this istlkacan take the labeled rooted graph
and build a minimum weight spanning tree rooted at the rothefgraph. Such a tree always
exists, and by the optimality property of minimum spanniregs (that every subpath of an
optimal path is also an optimal subpath), this tree includesminimum weight edge adjacent
to each node. The class of next-hop preferences capturdfédot ef ASes having different
commercial relationships with neighbouring ASes, and thiglel was suggested by Gao and
Rexford [GROQ] as a policy class for BGP routing where convergemould be guaranteed.
The figure below shows a routing algebk&H for next-hop preferences. The algebra takes
weights assigned to edges (representing the next-hoprenefes) and computes the cost of a
path from a node to the destination by setting the cost of #ik  be equal to the cost of
the first edge on the path. This operation is implemented byctimposition operatap, as
described in Figure 3.2.

L = N

Y = N
W = (N,<)
fle) = ¢
[dec =1

Figure 3.3 : A routing algebra A'H for the next-hop preferences routing problem

Any SPP instance generated by a next-hop preferences aligediwvays solvable [FSS04],
thus the complexity of deciding if there exists a stableirmtree, i.e N’H-SPP-SOLVABILITY,
is trivial.

3.2.3 Two-hop routing

We now consider a class of policies that we call two-hop pegfees. Here, each node can rank
paths based only on the first two hops on each path. It might se¢ural that this provides a
small degree of extra expressiveness over next-hop prefesebut here we prove the surprising
result that deciding solvability of two-hop preference SRPNP-complete. This shows that
there is a complete change in the character of the problermimmgdrom next-hop to two-hop
preferences, and so there must be some important propetig afgebra that permits this.
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Figure 3.4 : The bad triangle gadget. There is no stable set of paths that form a tree rooted at
the center node, due to the cyclic preferences of the outer nodes.

To prove this, we make use of the following important condinn of [FKMSO05] known as
‘bad triangle’, which is a variation of the bad gadget camstion introduced by Griffin et al.
[GSWO02]. The bad triangle is shown in Figure 3.4. It is not difft to see that this network has
no stable solution, and that the preferences can be ordsieglthe first two hops. Consider any
routing tree that has the center nodas its root, for examplea’0, cbb'0, bb'0 (we can assume
that the inner nodes all go directly to the center). Sinceeiquiefers pattbaa’0 to bb'0, it will
switch tobaa’0 without creating a cycle. But nowtakes the path via, which is less preferred
than the patlac’0, soc will switch to this path. But nowe will prefer to switch to the pathec0,
which will force b to switch tobb’0, which will in turn forcec to switch back tacbd’0. This
process clearly continues for ever, and for any possiblengaree. Therefore the bad triangle
has no stable routing tree to its center. However, it is irtgodrto note that if we are using the
bad triangle as part of a larger network and at least one iofc has an alternative path to the
centre (for example, using some external path) that is m@teped than any path in the bad
triangle then we say that this ‘breaks’ the bad triangle aft be seen that this allovedl other
nodes in the triangle to have paths to the centre node usiesethly from the bad triangle.

We can now prove our main result for two-hop routing prefesmn

Theorem 3.2.1 Let.4 be arouting algebra for two-hop preferences. TheisPP-SOLVABILITY
is NP-complete.

Proof. The proof is by a reduction from the 3-SAT problem, which iskmn to be NP-complete
[GJ90]. Given a 3CNF formula, we shall take the clauses anddmthem into bad triangle
gadgets, one for each clause (for this reduction we shatirggthe nodeg/’, v’, ¢ in the bad
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triangle). We shall then take these gadgets and connecttth#m destination via a long chain
of nodes. The network is shown in Figure 3.5. The clausesrareded by the edges between
the bad triangles and thg nodes as follows. For each nodén a bad triangle, there is an
edge(v, y;) iff v represents either of the literals or T;. Assumev represents the literal,.
Thenwv prefers any path through the bad triangle to any path cantaif), and vice-versa it
represents the literal;. We claim that there is a solution iff the 3-CNF formylas satisfiable.

Let (v, v2,v3, ¢) be a bad triangle, with nodeat the centre (the bad triangle can be con-
structed using 2-hop preferences). Assumedtha¢presents the literal;, v, is x; andvs is xy.
Thenws’s path preferences are as follows (remembering that we obnooder paths based on
the first two hops):

U3 Yk T > V3 V2 € > V3 €+ > V3 Y Ty > V3 V1 Y; > VU3 V2 Yj

and similarly forv,, v, (using the bad triangle preferences). The order exprekaes;tprefers
to route throughr;, than to route through the bad triangle (the second and ttands), which
are preferred to routing througt,.. The last item says that prefers to go through the bad
triangle than to escape through the othemodes.

Claim 1: Any satisfying assignment fof gives a solution to the SPP instance.

Proof. Assign they; nodes paths consistent with the satisfying assignment)y EKIMSO05].
Then each bad triangle will have at least one node that hasoss preferred path through the
y;'S, SO the other nodes can then route through their bad teang m

Claim 2: Every solution to the SPP instance gives a satisfying assgifor f.

Proof. We will prove that if there are no satisfying assignmentsittieere is no solution. If

has no satisfying assignment then there is no assignmeattuf o they; nodes such that every
bad triangle has at least one node with its top preferendegvailable (sinc¢ is unsatisfiable).
Assume now that in some bad triangle, some nadereaks up the triangle by going via ijs
node. Then the other two nodes v, will prefer to route via the bad triangle rather than escape
via v3 andy;. But thenv; would now prefer to go via the bad triangle. Hence no bad gten
will be broken up and there is no solution. n

The above claims establish thats satisfiable iff the SPP instance is solvable. n
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Figure 3.5: Encoding a 3-SAT instance into an SPP instance using 2-hop preferences. The
SPP is solvable iff the formula is satisfiable.
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Remark. The original 3-SAT reduction in [GSW02, Theorem V.1] alsoyonses two-hop
preferences.

The above result raises several interesting questiwhg:does changing from next-hop to
two-hop preferences result in a completely different ctigreof problem, and in general, what
makes deciding solvability of some stable paths problems &ad others easy? This is an open
problem, and something that is outside the scope of thissthes

3.3 Forbidden-set routing

There are many natural and desirable classes of policy émetat be expressed using next-hop
preferences, or even using two-hop preferences. For eearti@d government of country
may want to avoid any path that goes through some other gotntperhaps becausk is
afraid thatY” may do bad things to its packets, or because it does not Waotknow who

it is communicating with. Another example is that nodes mayeheconomic agreements to
not forward traffic for each other, and so they should avoithigaassing through each other’s
networks. This motivates tHerbidden-set routingproblem, introduced by Feigenbaum et al.
[FKMSO05]: each node: has a forbidden sef(u) C V(G) of nodes, and the cost,(P) of

a pathP from « is the number of nodes it contains frofitu), i.e. ¢, (P) = [S(u) N P|. In
addition to being an interesting class of routing polictas,problem is interesting from a graph
theory point of view, since there is no pathfrom w to v with ¢, (P) = 0 iff S(u) separates
andv in G.

We shall begin by presenting a routing algebra for the clédsrbidden-set preferences,
in Figure 3.6. Applying the algebra to a graphcan be described as follows — for a directed
edgee = (z,y), letc,(e) = 1iff v € S(u), and0 otherwise. A label € L assigned to an
edgee contains two things — the first endpoint of the edge and a veletscribing the cost, (e)
of the edges to each node; in the network. We shall use this vector to add up the cost of a
path to each individual node, then finally project out the ponent that we are interested in.
A signatures € X contains the first node on the path described-pgnd the cost of the path
to each node. The operateraccumulates the costs by doing component-wise additioh@n t
cost vectors, and sets the new first node on the path. Finlaéyfunctionf projects out the
element of the cost vector corresponding to the currentrfode on the path.

In their paper, Feigenbaum et al. [FKMSO05] considered alampiroblem but using costs
taken from{0, 1, 2}. They showed that deciding solvability of the resulting $$RP-complete.
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L {1,...,n} x {0,1}"
W = (Z,x)
z {1,...,n} x 2"
(u,¢) ® (v,d) = (u,c+d)
f((wv,d) = dy

Figure 3.6 : A routing algebra FS for the forbidden-set routing problem

We now show how a simple extension to this result showsHEHSPP-SOLVABILITY is also
NP-complete, and hence constructing stable routing treefofbidden-set preferences is an
intractable problem for general graphs.

3.3.1 Forbidden-set solvability is NP-complete

In this subsection we show th&S-SPP-SOLVABILITY is NP-complete by a reduction from
I1,-SAT. In the second part of the chapter we use this reductiacharacterise the commu-
nication complexity of deciding solvability by proving awer bound on the communication
complexity of decidingll,-SAT. Recall that for each family of boolean circuits, thesean
associated satisfiability decision problem:

Problem I1,-SATISFIABILITY
Input: A II, formula f, given as a circuit.
Output: Is f satisfiable?

The above problem is known to be NP-complete [GJ90]. We nawdtow to encodél,-SAT
into forbidden set routing preferences. We make use of tderiengle presented earlier for the
two-hop preferences reduction. Feigenbaum et al. [FKMSBA&yv how the bad triangle can be
expressed using fs-preferences: Set) = {da’,b,b'}, S(b) = {V,¢, '} andS(c) = {c,a,d’}.

It can be verified that this corresponds to the bad triangtesitacts for the case of two-hop
preferences earlier, so it follows that this small netwddodnas no stable solution.

Theorem 3.3.1 #C-SPP-SOLVABILITY is NP-complete.

Proof. The proof is by reduction from 3-SAT. The proof is essengiiiat of Feigenbaum et
al., except that we show that we only need costfir } instead of{0, 1,2}. We feel that the
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Figure 3.7 : The reduction from 3-SAT to FS-SPP-SOLVABILITY

proof is quite important, therefore we state it in full. Giva set of variable¢z,, ..., z,} and
a set of clause§Cy, . .., C,, }, where claus€’; contains three literals;;, =2, z;3, we construct
a stable paths instance with fs-preferences, which is blgv# the 3-CNF formulap = (z; Vv
12 V x13) A (T21 V Toa V Tog) A oo A (T V Tima V T3) IS satisfiable.

The network is constructed as in Figure 3.7 with the destinatode0. Each claus€’; is
represented by a bad triangle as described above, with the tiuter nodes;;, v, v;3 repre-
senting the three literals of the clause.vif corresponds to the literal,, then{z,, 7} } is in
v;;'s forbidden set (this corresponds to settings subjective cost of;, to 2 in [FKMSO05]). If
it corresponds t@, then{zy, x} } is in v;;’s forbidden set.

We now show that any stable solution gives a satisfying assémt to the formula. In
this case, the assignment shall consist of all the literalthe path fromy,, to 0 in the stable
solution. Since no path can contain bathandz;, and every stable solution contains a path
through they; nodes, the assignment constructed in this way is valid. Nevshow that it is
also a satisfying assignment. Since each bad triangle ©@vaide, there must be at least one
node in each bad triangle that has a routeé tiorough they; nodes. Each nodg, could always
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route to0 through its centre;, using a path of cost 1, and so it only routes throughythtthis

is a path of zero cost, which is the case only if the literategponding ta;; is true. Since
there exists such a node for every bad triangle, every ciawssgisfied and so the assignment is
a satisfying assignment.

We now show that any satisfying assignment to the formulag@ stable solution. We can
find this stable solution by constructing a path using the titerals of the assignment, from
y, 10 0. We then assign to all nodes;, corresponding to a true literal the long route through
yn. This route has zero cost tg;, and so it cannot strictly prefer any other route. Since the
satisfying assignment has at least one true literal in ekalse, at least one node in every bad
triangle has a path of zero cost frgmto 0, and so each bad triangle is ‘broken up’, leaving the
remaining nodes to route toon stable paths through their bad triangle centres.

[

3.3.2 NP-completeness on bounded treewidth graphs

We now show that deciding"S-SPP-SOLVABILITY is NP-complete on graphs of bounded
treewidth. This implies that forbidden-set routing usiogiting trees is almost certainly im-

practical even for very restricted classes of graphs tha¢apin practice (for example, even if

we wanted to do fs-routing only on the Internet backbone &tgtibackbone was strongly tree-
like). This shows that the problem has a very difficult coog;,domparison, many NP-complete
problems such as maximum independent set are solvablesiarltrme on bounded treewidth

graphs.

Theorem 3.3.2 FS-SPP-SOLVABILITY is NP-complete on graphs of treewidth &t [éa

Proof. Figure 3.8 shows a suitable tree decomposition of the graeld in the reduction of
Theorem 3.3.1 with treewidth 7, and this completes the pftbefdefinition of treewidth can be
found in the preliminaries in Chapter 2). ]

We now pause to consider the results of this chapter so far.nTdin message is that even
with simple tree-like networks (treewidth at most 7) and @enpolicies (forbidden-set), the
problem of deciding if there exists a stable routing treeaiesm NP-complete.
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Figure 3.8 : A tree decomposition of the forbidden set reduction graph. The T; represents the
nodes of the ith bad triangle, each containing 7 nodes. Since each bag contains at most 8
nodes from G, the graph has treewidth at most 7.

3.4 Communication complexity of solvability

In this second part of the chapter, we shall consider thdesfadihs problem as a problem in
distributed computing, and prove the first communicatiompi@xity lower bounds for it. We
then describe the notion of proof labeling schemes, whichige a distributed representation
of a solution that is locally verifiable. We prove a lemma tled$ us use our communication
lower bounds to give lower bounds on the proof size of degidiolvability of a stable paths
problem.

We begin by proving a communication complexity lower bouod $PP-SOLVABILITY.
The lower bound relies on a construction that gives a lar¢@fsleng stable paths, and this
is based on a recursive construction of the DISAGREE gadgétihs used by Griffin et al.
[GSWO02] in their original reduction from 3-SAT to SPP-SOLVABTY. The idea of the con-
struction is as follows. The DISAGREE gadget has nadesand the root). Bothz andz
prefer to go through each other to reach the root, but arerelppy to go direct to the root.
Hence there are exactly two stable states. We say that tlgegisdn the configuration if all
paths ta) pass through, and in the configuration if all paths to0 pass througkr, as in Figure
3.9.

The gadgetj-DISAGREE is constructed by joining togetheDISAGREE gadgets as fol-
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Figure 3.9 : The two stable states of the DISAGREE gadget.

lows. Let 1-DISAGREE be equal to DISAGREE, and fojidDISAGREE by adding a copy of
DISAGREE on{z;,7;} to (j — 1)-DISAGREE and using the node_; in place of the root
node. We will say that the nodes, z,, ..., z; form thespineof j-DISAGREE. Figure 3.10
shows 3-DISAGREE.
Now we define the policies of the nodes ifDISAGREE. Let},, = (z17,0,2,0) and
Yz = (712,0,7,0), as for DISAGREE. Recursively defing,, andX;, as follows:
Y, =

K3

(xifizxi_17xizxi_l) Efl - (Ei‘rizxi_17fi21’i_1>

wherex;,, , is the order obtained by prefixing all the paths¥ip_, by z; and then adding
them in their original order. The construction is a recuegxtension of DISAGREE, wheng
prefers all paths to 0 that pass througliin the order that; _; prefers them) to those not passing
throughz; and vice-versa. The next lemma proves the main propertyi®ttunstruction.

Lemma 3.4.1 The SPP defined by-DISAGREE hag" distinct stable states where each path
has length.

Proof. We show an injection between the powerset{®f...,n} and the set of stable path
assignments to nodesi, (the function is actually a bijection but we do not requirsthFor
asetX C {1,...,n},if i € X then assign th&¢h DISAGREE gadget of the construction the
configurationz, otherwise assign it the configuratior(see Figure 3.9). It is clear that this path
assignment forms a tree rooted at the node 0, that each patlgththe structure has length at
leastn, and that there arg® distinct assignments (the set of configurations of the gdige
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Figure 3.10 : The construction 3-DISAGREE. The path preferences are recursively constructed
from right to left, with the most preferred path at the top of each list.

We show that every such assignment is stable by inductioh@tength of the spine. The
assignment to 1-DISAGREE is stable since it is just the gaB§8AGREE. Assume the as-
signmentr to j-DISAGREE specified by the injection is stable. Assume that(ftr1)th DIS-
AGREE gadget is placed in the configurationthe caser is similar). Then noder;;, is
assigned the path;,,7(z;) and nodez; , is assigned the path;z,;7(z;). Sincen(x;)
is part of a stable assignment, the only thing that could ntakenew assignment unstable
is for the (j+1)th gadget to switch to configuratian but this cannot happen as the assigned
configurationz is already stable. n

We are now ready to prove the lower bound by an approximgiplieserving reduction
from set-disjointness. We will make use of the bad gadgeM{fG3), as shown in Figure 3.11.
The useful property of bad gadget is that it has no stablegsstignment, and hence no solutions
to the stable paths problem on it.

Figure 3.12 shows the network used for the lower bound. Itk by taking the bad gadget
and adding a path so that if the sets are not disjoint thenddegbdget can be broken up, and
then SPP becomes solvable.

We shall encode a large set into the path preferebgesf nodeC as follows. For some
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Figure 3.11: The construction bad gadget

Px (i) = x;7; otherwisé. We encodet’ by adding for everyX € X the pathC'(Px0) to X¢, in
any order. The set of paths@tincludes all the paths going to the root node 0, includingého
not in the setX. However,C' prefers the patld’0 (avoiding n-DISAGREE) over any path that
passes through n-DISAGREE but represents an element ot in

The nodey; encodes a se¥ in a similar way — for everyy” € ) we add the pathy;C Py 0.

In addition, we add t&,, the bad gadget pathgy.y»100, ys100, ysC0 and the empty pathin

that order, so that the paths correspondiny’tare preferred to any path that goes through the
centery, of the bad gadget angl prefers to go through the bad gadget than taking the shortcut
pathC0.

The idea is that if there is no valid assignmenthat is stable at nodg; then the system
reduces to bad gadget, hence there is no assignment thalblis aty;, hence no assignment is
stable. The next lemma completes the proof by giving theatalu from the set-disjointness
problem.

The setsX, Y are not disjoint iff there exists a stable path assignment.

Proof. We first prove the= direction: every solution gives a counterexample to digjoess.
Let 7 be a solution, i.e. a stable assignment whefre) is the path assigned to node Then
7(y3) must pass through the DISAGREE gadget (otherwiseuld not be a solution since one
side of the network would reduce to bad gadget). TherefGrmust have a path through the

We use2® to denote the powerset 6f
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Figure 3.12 : The reduction from set-disjointness to SPP-SOLVABILITY, for n = 3 and the sets
X = {{2,3},{3}},Y = {{1,2},{3},{2}} C 21123} . A stable solution is shown by the bold
edges.
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DISAGREE gadget that it prefers to the p&th. Hence the pathg;7(C) andn(y3) must be
equal, and this represents an element in the intersectithre dfvo sets.

Now consider the= direction: not-disjoint implies there exists a solutiofithle sets are not
disjoint then there must exist some (not necessarily sigialth assignment such thagr (C)
andr(ys) are equal. By Lemma 3.4.1, there exists a path assignmenistetble at all the
nodes inn-DISAGREE that is consistent with(C'). Hence a stable solutianexists. O]

We say that a distributed algoritheolvesa problem if it terminates in finite time with at
least one node knowing the answer. We do not need to conkeleotnmunication model in our
lower bounds (and so they hold for both synchronous and a&sgnous models); all we require
Is that some node knows the answer. In this sense, our boumg@siigely information-theoretic.
In the following proof, we require that all the nodes in onetgeorresponding to either Alice
or Bob) know the answer, but it also holds for the case whenglesimode knows the result,
since it can broadcast the result using o6l§) bits of communication. We can use Lemma
3.4.2 and the communication complexity of set-disjoingn&N97] to prove the following.

Theorem 3.4.3 Any distributed algorithm that computes SPP-SOLVABILITH wiobability
at least2/3 must send at lea$?(2"/?) bits acrossO(1) links in the worst case.

Proof. Let there be two players Alice and Bob where Alice knows ongygatP and Bob knows
only the set). Partition the network into two parts by cutting the ed§€sy; }, {yo,0}. Now
Alice and Bob can respectively construct their parts of thevagk knowing only their set. Now
assume that Alice and Bob run a protocol that decides SPP-8BILVTY with probability p.
We show that they can solve set-disjointness on sets oR8jagith the same probability. It
is known that any protocol that solves disjointness on det&zer with probability at leas®/3
must use2(r) bits [KN97]. Since the construction of Figure 3.12 contains+ O(1) nodes,
this gives a lower bound &2(2"/?) for networks of sizex. O

Remarks. The theorem implies that any distributed algorithm mustiifigh congestion,
since an exponential number of bits must be sent over a acgnatanber of edges. Assuming
that it takes one unit of time to send one bit, we also get angttower bound on the time
to solve the problem, since the cut between the two partseoh#twork is of constant size
(even assuming that all nodes are computationally unbal)nddote that if messages are of
unbounded size the number of rounds required is constak siach node can simply send its
entire list of preferred paths.
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3.4.1 Communication complexity of FS-SPP-SOLVABILITY

In this subsection we prove a lower bound on the communicationplexity of deciding solv-
ability when forbidden-set preferences are used. We fitshekthe reduction of Theorem 3.3.1
to encode satisfiability ofl; formulae. The original construction only encodiég formulae,
but it can be easily verified that if we use forbidden sets pé 8k, then this corresponds to
adding a level of AND gates at the bottom level of the cirdugt, IT; formulae. Without affect-
ing the solvability of the construction, we can partitios fifodes into two sided and B, with
the chain ofr;’s andy;’s in A, and half the bad triangles ia and the other half irB. We add
extra nodeg/,, 0’ in B and edgesy.,, v.}, {0, 0}, with all the bad triangles i3 connecting to
y, instead ofy,,. This ensures that the c(fl, B) contains at most two edges.

Now, any balanced partition of the clauses between two pafkce and Bob corresponds
to a balanced partition of the bad triangles as above. Toexehny distributed algorithm
that computesFS-SPP-SOLVABILITY must communicate at led3tg(n)) bits across the cut
(A, B), whereg(n) is the communication complexity &f5-SAT.

Finally, we can replace the two edges in the ¢4t B) by two lines each of:/2 edges
without affecting either the solvability of the construstj or the forbidden sets required. Di-
etzfelbinger [Die97] proves a version of the linear arrapjeoture implying that asymptoti-
cally, no distributed algorithm can do any better than toptynuse these new nodes as relays,
and therefore must send at le&&ty(n)) bits over at leasf2(n) edges. We shall show that
g(n) = Q(nlogn) in the deterministic case, which implies the following laovi®und.

Lemma 3.4.4 Any deterministic distributed algorithm that computEs-SPP-SOLVABILITY
must communicate at leaQ{n log n) bits overQ2(n) edges in the worst case.

To prove this lemma, we now prove a lower bound on the comnatinic complexity of
decidinglT%-SAT. Consider som8% formulaf = f; A f, onn variables with at most clauses,
and give Alicef; and Bobf,. Nothing appears to be known about the communication com-
plexity of deciding satisfiability off.

In fact, we conjecture that in the deterministic case, mgfltian beat the simple protocol of
Bob sending his whole formulf to Alice. Since each clause ofl§ formula can be described
withlog (%") = O(klog(n/k)) bits, this simple protocol uses at métnk log(n/k)) bits.More
precisely, we conjecture that the following holds.
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Conjecture 3.4.5 Let P be any two-party deterministic protocol that decides satisfity of
any I1% formula onn variables with at most gates, where the top gate is an AND, and the
gates have unbounded fan-in except for the bottom level hwiaee fan-in at most. Then
there exists a formulg = f; A f, such thatP communicates at lea$t(nk log(n/k)) bits on

the input(fi, f2).

Conjecture 3.4.6 Let P be as above but fails formulae onn variables with at most gates,
l.e. in k-CNF. Then the same lower bound as above holds.

We can prove the conjectures in the case tha a T3 formula with n variables and:
clauses. For largér > 2, the problenmiI4-SAT is at least as hard d&-SAT and so the same
lower bound applies. Since the trivial protocol uses comigation linear ink, this means that
the trivial protocol is asymptotically optimal for decidgjil;-SAT with constant.

We now state the lower bound in terms of the number of gatesvéned of a boolean func-
tion as this leads to an appealing way of describing the ntibveunds. Any boolean function
with m wires andn gates can be described using at masfiog n bits for some constant yet
we can only show a lower bound ©6f(n logn) bits. Therefore, this gap is due to some gates
being connected to many wires (which occurs when the fasdiarge). Note thalfl% formulae
with large values of: have a large number of wires.

Lemma 3.4.7 Let P be a deterministic two party protocol for deciding satisflapiof a for-
mula withm wires andn gates. Then there exists a formufla= f; A f, such that? communi-
cates at leasf)(n log n) bits on the input fi, f2).

Proof. We give two proofs of the lemma; the first one can only proveveeltobound of
Q(nlogn) bits but is simpler to state, and the second proof is morergea@d may help
to prove the conjecture in more general cases.

For the first proof, we appeal to thEn log n) bits communication lower bound for deciding
st-connectivity, which was proved in [HMT88]. We can reddicen st-connectivity to 2-SAT
as follows:

e Make one variable for each node in the graph.
e If the edge(u, v) is in the graph, include the clauge = v), i.e. (v V ).

e Also, include the clauses) A ().
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Then the formula is satisfiable if and only if there is no patnfs to ¢ in the graph. The lower
bound in [HMT88] holds for sparse graphs (where the numbexdggs is linear in the number
of nodes). It can be seen that the reduction described alvodeiges formulae with a number
of clauses linear in the number of edges in the graph. Itvalrom the result of Hajnal et al.
[HMT88] that we can find a constantsuch that the communication complexity of 2-SAT is at
leastcn log n, where the formulae have at mostwariables and at most clauses (and so they
have at most: gates and’n wires, for some constant).

The above lower bound is for 2-SAT, and we want to get a stnobgend fork-SAT, where
the number of wires i% times the number of gates. With this in mind, we give a reduncfiiom
a partition problem that we now describe.

A partition of a setS is a set{S,... Sy} of disjoint subsets, calledlocks of S whose
union isS. We say that a partitio® refinesa partition() iff every block of P is contained in
some block ofp, i.e. VP, € P, 3Q); €  such thatP; C ();. Thejoin of two partitionsP, () is
denotedP Vv @, and is the finest partitio® such that both? and(@ are refinements ok (i.e.
R refines every partitio’ that is also refined by botR and@). The problem PARTITION is
as follows:

Problem PARTITION:
Input: Two partitionsP, @ of {1,...,s}
Output: Are elements 1,2 in the same block in the partitiorwv QQ?

We can construct a reduction I-SAT as follows. Alice has a partitio® and Bob has a
partition Q). Given a partition® = {P,..., P} of {1,...,n}, order its blocks (the order can
be chosen arbitrarily) and 1€t(i) = j iff i € P;. Alice then constructs a formulg as follows.
Foreach € {1,...,n} with P(i) = j then add the two claus€g, VvV z;) A (Z; V y;) to f;. Bob
constructs a formuld, in the same manner with the partitioh but uses variables in place
ofthex;. Let f = fi A fo, thenf is a 2-CNF formula andl;, f, can each be constructed with no
communication between Alice and Bob. Now, the elements k2nathe same block i v )
iff the formula(f A y1 A 3,) is unsatisfiable.

The idea of the construction can be easily explained withxamgle. Consider the two
partitions P = {{1,3},{2,4}} and@ = {{1,4},{2},{3}}. We construct the formulae as
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follows:
fi = V) AN@ V) AT Vo) ATV ys)
N Ty Vx2) A (T2 Vya) ATy V 22) A (T2 V)
for= @WV2)ANEVYU)AGLY 21) A(Z1LV ya)

N (T Vz2) N(Z2 V) AUV z3) A(Z3V ys3).

Now we can test satisfiability of A f> A y1 A7, by deciding whether 1,2 are in the same block
in PV @Q. The intuition is that a ‘path’ from element 1 to element 2Ividrce the variables
11, 12 to take the same value in any satisfying assignment of thedlta. Sincey, is true, this
forcesx; to be true, which forceg; to be true (since 1,3 are in the same blockPin Since

y3 IS now true, this forces; to be true (since the first block @f also contains the element 1).
This in turn forcegy, to be true (sincé) contains the blocK1, 4}), which forcesr, to be true.
Finally, 4, becomes true, which contradicts the clagseve already had, and so the formula
cannot be satisfiable. It is useful to think of theas communicating within the same formula
fi,» and they; as communicating between the two different formulae.

It is known [HMT88, Reference [8]] that the deterministic amwomication complexity of
deciding PARTITION on sets of sizeis log(Bs — Bs_1) = (slogs) where By is the sth
Bell number. It follows that any two-party deterministic fyool that decides satisfiability of
a 2-CNF formula om variables and withD(n) clauses, must communicate at le@st logn)
bits. O

Combined with the reduction described above, this provesmha®.4.4.

Remarks. Since all, formula is a special case oflg formula, with fan-in 1, the previous
lower bounds immediately apply 16} formulae. However, there is hope that we can prove the
conjecture forll; formulae, as they are more expressive thanformulae. We have tried to
prove the conjecture for larger valueskobut without much success.

The following idea may be helpful. Withi; formulae, we can express each block of a
partition of {1, ..., n} with a single clause, rather than using 1 clause per elerasrin thell,-
SAT reduction above). Therefore, a reduction from PARTINI® II;-SAT can be obtained as
follows. Recall that thgth block of a partition” is denotedP;. For each block?; € P, Alice



42 Chapter 3. Routing Trees

adds the following two clauses 16:

AN A RN EAA A

]{:EP]' k‘EPj

Bob does the same f@p, using variableg; in place of they;. The same claim holds as for the
original reduction, except that we now only use two clausgdbjock of each partition, whereas
the reduction tdI,-SAT uses two clauses pelement

We can consider the nondeterministic communication coxitgl®f the problem, which
will be useful later. It is known [KN97] that the determinsand nondeterministic communi-
cation complexities are related By(f) = O(N°(f)N'(f)) (recall thatD, N°, N are the de-
terministic, nondeterministic and co-nondeterministiencnunication complexities). Lemma
3.4.7 proves thaD(I1,-SAT) = Q(nlogn), where the formula has at mostclauses and:
variables. Observe that! = O(n) (the complexity of verifying that a formula is satisfi-
able) since a satisfying assignment (if one exists) can beriteed withO(n) bits. Therefore,
N = Q(nlogn)/N' = Q(logn) bits.

3.4.2 A randomized lower bound

We can show amf2(n) randomized lower bound fdil5-SAT by a reduction from the set dis-
jointness problem.

Lemma 3.4.8 Let P be a two party randomized protocol for decidifi§-SAT. There exists an
input such that? communicates at lea$k(n) bits on this input.

Proof. Assume thatn = 2! is a power of two. The proof is by reduction from set-disjoigs
on sets of sizen. Assume that Alice has a sét C {0,...,m—1} and Bob has a se&p C
{0,...,m—1}, and there exists a randomized protoPdahat computeg (¢y, ¢2) = 1if p1 Ao

is satisfiable and otherwise, where,, ¢, arell formulae. Assume that the protocol has error
probability p.

We can associate a sub3étC {0, ..., m—1} with its characteristic Boolean functiofy :
{0,1}* — {0,1} by settingf(y) = 1iff y € Y. Alice constructs the CNF formula, for the
truth table of fp corresponding to the characteristic function of herBdity making a clause
for every 0-entry in the table, i.e. at m@St= m clauses each of siZze This is done as follows:
for an assignment of values to thhgs such thatf (v, ...,y) = 0, add a clause containing
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if y; = 1, andx; if y; = 0 (each clause is a disjunction of literals). Therefore, these is not
satisfied iff the element does not appeak'inSo, for a setting of variables corresponding to an
element inY’, all the clauses are satisfied. Therefore the formla ¢, is satisfiable iff there
is an element common to bofhand@, i.e. they are not disjoint. Similarly, Bob constructs the
CNF formulag, corresponding to the characteristic function of his(get

This gives a protocol to decide disjointness with the samar @robabilityp. The lemma
follows since the randomized communication complexity jaintness on sets of size is
Q(n) bits [KN97]. O

3.4.3 Communication complexity of (35 A X5)-SAT

As an interesting aside we can show that the communicatioplexity of deciding satisfiabil-
ity of (35 A X2k) formulae, i.e. the conjunction of twio-DNF formulae, is exponentially lower
than fork-CNF formulae wherk = O(1). This is quite surprising.

We can decide satisfiability of a formufa Vv f; (where Alice hasf; and Bob hag,) using
a single bit, regardless of the complexity 6f f>. It might be tempting to blame the high
communication complexity on that fact that the formgiles split at a conjunction rather than a
disjunction. We now show that this is not the case, by giving#ticient protocol for deciding
satisfiability of f; A fo, wheref;, f, are eachk-DNF formulae. The problem is as follows:

Problem (35 A X5)-SAT

Alice’s Input: A k-DNF formulaf, onn variables{z, ..., x,} having< n clauses.
Bob’s Input: A k-DNF formula f, onn variables{z, ..., z,} having< n clauses.
Output: Is f1 A\ f> satisfiable?

Lemma 3.4.9 The deterministic communication complexity(8f A X%)-SAT isO(log n), for
fixedk.

Proof. We give a recursive protocol for the conjunction of tis®NF formulae, for any con-
stantk. We prove the existence of our protocol by inductively camging a protocol for
deciding satisfiability of the conjunction of tweDNF formulae, by assuming that we have a
protocol for satisfiability of the conjunction of tw@ — 1)-DNFs, which (inductively) satisfies
our time bound. This will give a communication bound thatelegs exponentially oh.
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A k-DNF formula f is badiff there is a set of at most variables so that every term ¢f
contains as a literal one of these variables (appearingreitbgated or unnegated). fifis not
bad, we call itgood We make use of the following lemma.

Lemma 3.4.101f f; is a goodk-DNF and f; is a non-empty:-DNF, thenf; A f; is satisfiable.

Proof. Pick an arbitrary term of f,. If f1 A f IS not satisfiable then every termof f; must
contain a variable from (occurring negated im iff it occurs unnegated im). But thenf; is
bad. O

The protocol is as follows. We assume that Alice and Bob bottoke any inconsistent
terms in their formulae before beginning the protocol. Alitst checks if her formula is good.
Ifitis, fi A fo is satisfiable unlesg, is empty, in which case it is unsatisfiable. They ugé)
bits of communication to discuss this. We then do the comegdimg check with Alice and Bob
switching roles. So we can henceforth assume that lfpotind f, are bad, so by the lemma
there is a seb; of at mostk variables, occurring in every term of Alice’s formula anded S,
of at mostk variables, occurring in every term of Bob’s formula. AlicewneendsS; to Bob
and Bob sends), to Alice, usingO(k logn) bits of communication in total. They now run the
protocol for(k — 1)-DNFs on the2?* subproblems corresponding to fixing the variables in the
setS; U Sy, trying all possible truth assignments. They output “$atide” if and only if one of
these runs says “satisfiable”.

For the communication complexity bound, &tn, k) = O(klogn)+2%*C(n, k—1), which
givesC(n, k) = k24* log n. Therefore for fixed: the protocol use®(logn) bits. O

3.5 Proof labeling schemes

Solvability of an SPP is global property of the network, yet in a large network we would
like to be able to verify that the assigned routing tree iadla solution, by using onlgcal
information. For example, if each nodes assigned a path(i), we would like to construct
a distributed representation afin order that we carocally andverifiably check if the path
assignmentr is stable. This is the idea of proof labeling schemes, whiehevintroduced by
Korman et al. [KKPO5].

Imagine that there is some graph propeftythat we want to verify (e.g. can the current
graph be coloured with colours?) and that we have a candidate solution (e.g. acotpaf the
nodes) that is encoded by giving each node a local state aih We assume that the decoder
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algorithm, when run at a node can observe the state ofand the labels of’s neighbours.
The decoder must be able to verifiably check if the propertgda.e. the neighbours cannot
convince a node that the property holds if in actual fact ésloot.

3.5.1 Definition

We now define proof labeling schemes as in [KKPO5]mArker algorithm)/ is an algorithm
that given a graplds, assigns a label(v) to each node. For a marker algorithm and a node,
let Adj’; (v) be a set of fields, one field per neighbour. Each field corredipgrto an edge
e = (v,u) contains the labeL(u). Let Adj.(v) = (s,, L(v), Adj; (v)). Informally, Adj(v)
contains the labels given to all ofs neighbours, along with the edges connectirtg them. It
also containg’s state and labelL(v).

A decoder algorithmD is an algorithm that can be run separately at each node. \When
run at a node, its input isAdj.(v) and its output is denoted by (v, L). The idea is that the
decoder algorithm, when run at a nodecan see’s state in addition to the labels forand all
its neighbours.

Let f be some boolean function over a family of graghsA proof labeling scheme =
(M, D) for f overgG consists of a marker algorithd/ and a decoder algorithrf?, such that
the following properties hold:

1. For every grapltx € G, if f(G) = 1thenD(v, L(M,G)) = 1 for every nodev € G,
whereL (M, G) is the labeling produced hy/ onG.

2. For every grapltz € G, if f(G) = 0 then foranylabeling L there exists a node € G
such thatD(v, L) = 0, i.e. the property cannot be verified at some point in the agtw

Thesizeof a proof labeling schemeis the maximum number of bits assigned to some label
over all graphsg7 € G and node® € (. For a familyG of graphs and a functioffi, the proof
sizeof f on @ is the smallest size of any proof labeling schemeffon G.

3.5.2 Proof size and communication complexity

We now prove a lemma that relates the size of any proof lafpedeheme for a problem to
the communication complexity of any protocol for the samebpgm, when played between
two players. We combine this with our communication comipyesesults for the problem of
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deciding solvability of a stable paths instance (SPP-SNATY) to obtain lower bounds for
the size of proof labeling schemes for SPP-SOLVABILITY.

Let f be a boolean graph property on graghs G for some familyG (in our case later on,
f will be the property ‘is a particular routing tree ghstable?’). We shall partition the nodes
of G between two players Alice and Bob, in order to construct theparty communication
problem associated witfiandG. Let (X,V \ X) be a (not necessarily balanced) partition of
the nodes ofy. Denote byN x 1\ x)(f, G) the nondeterministic communication complexity of
the best protocol fof on the familyG, when run on the grapff and this partition of nodes. To
avoid confusion, we usdd;j(X) for the neighbours of¢, and Adj(X) = Adj(X) N (V \ X)
for the set of neighbours of nodes M that are in the other side of the partition. We can now
prove the main result of this section.

Lemma 3.5.1 Let f be a graph property on a family of graplys The proof size of is at least

Nxox)(f, G) — O(1)

maxmax —

GeG XCV | Adj(X) U Adj(V \ X)|’

and the total label size is at leastaxgcg maxxcy Nx v\ x)(f) — O(1).

Proof. Let G € G be a graph. Lef(v) be the label assigned to nodéy the marker algorithm
M, and letD be the corresponding decoder algorithm. Given a labelinthefnodes and
a partition (X, V' \ X) of nodes, we construct a reduction showing how we can usea pro
labeling scheme fof on G to construct a two party nondeterministic protocol to sghen G,
when the players are given nod&sandV \ X.

Alice is given the nodes and Bob is giverd/ \ X as in Figure 3.13, and they each non-
deterministically guess a labeling for their nodes. Notd thice and Bob can independently
run the decoder algorithm on the nodes in their part of thplgthat have no neighbours in the
other side. Therefore we can assume thét, L) = 1 for all the nodes ifX \ Adj(V \ X))
and(V \ X)\ Adj(X), since Alice and Bob can discuss this usi) bits of communication.
Now they just need to run the decoder on the remaining nodds|laws. Bob sends the labels
L(Adj(X)) to Alice who runs the decoder on the remaining nodeX jrand then Alice sends
to Bob L(Adj(V \ X)) who runs the decoder on the remaining node¥ af X. They can then
discuss withO(1) bits whether the decoder failed on any nodé&ofind hence comput& G).

The protocol that is described above has nondeterministiecnaunication complexity at
most|L(Adj(X))|+|L(Adj(V\ X))|+O(1) on the grapht, since the labels are communicated
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X (Alice) V'\ X (Bob)

Figure 3.13: lllustrating Lemma 3.5.1

by simply sending their bit string representations. Itdals that for any grapl: € G that is
partitioned into( X, V' \ X),

Y IL@)|+0(1) 2 |L(A(X))| + [L(Adj(V \ X))| + O(1) = N (£, G),

veV
which gives the lower bound on the total label size. For trdvidual label size, we can
divide the above inequality biyddj(X) U Adj(V \ X)|. Therefore at least one node in the set
Adj(X) U Adj(V \ X) must be assigned a label of size at least

e e (f,6) — 0(1)
XSV | Adj(X) U Adj(V \ X)|

bits. Finally, we take the maximum of this quantity over athghsG € G, since the size of a
proof labeling scheme is the maxmimum label size over ajlgsé: € G. ]

Remarks. The bound on individual size can be improved if a smaller nemab labels are
sent, since the middle term in the inequality concerns fewseles and so the denominator can
be made smaller. A better strategy may be possible in e.qidsalitreewidth graphs.

Intuitively, since the marker algorithm can examine the lglgvaph in order to construct the
proof labeling, the marker algorithm can be thought of agiptathe role of the ‘all-powerful
prover’ in nondeterministic complexity [KN97]. In this walie bound on the label size fol-
lows naturally from the bound on the communication requii@dAlice and Bob to verify a
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nondeterministic guess of a solutionf0G).

The lemma implies that in order to get a good lower bound optbef size off, we should
look for a partition involving few nodes having edges in bsitles of the partition, yet where
the functionf still has high nondeterministic communication complextythis partition.

3.5.3 Proof labeling schemes for solvability

We now apply the above lemma to some of our communication taxity lower bounds, to
obtain lower bounds on the proof size for deciding solvabih networks.

Lemma 3.5.2 The proof size of SPP-SOLVABILITYI$n) bits.

Proof. Theorem 3.4.3 shows that we can solve disjointnes8@i/?)-element sets by a re-
duction to SPP-SOLVABILITY. A closer look at the reductionos¥s that the SPP is solvable
iff the two sets are not disjoint. Since the decoder algoritten only decide locally if the

graph propertyf doesnot hold (since the property holds globally iff there is no nodeeve

it does not hold locally, i.e. there is no node that has a podafon-solvability), we need to

consider the communication complexity of proving that iwelement sets are disjoint, i.e. the
co-nondeterministic complexity ! (DI1S.J) = Q(logr) bits [KN97].

Since the reduction in Theorem 3.4.3 is from sets of §igg/?), it follows from Lemma
3.5.1 that the total label size is at le&5t) bits. For the proof size, the network partition used
in the reduction has at most(1) nodes having edges in both sides and so the proof size is also
Q(n). N

The lower bound is almost tight since we can construct a plaleéling scheme using
O(nlogn) bits per label. Assume that = {r;} is a stable routing tree where the path
7, IS assigned to node. Let p(v) be the parent ob in T (p(v) = e iff v is the root or
T, = €, 1.e. v is assigned the empty path). We construct the labélg = 7 (v), and the state
sy = (¢, m(v), p(v)), i.e. v’s cost functionp’s path and the parent ofin 7.

The decoder algorithm is givetdj., (v) = (s,, L(v), Adj; (v)) and outputd (v, L) = 1 iff
all of the following hold, and 0O otherwise.

1. p(v) is a neighbour of in G (for the root, assume thais a neighbour of);

2. vo L(p(v)) = 7(v) (the paths form a confluent routing tree);
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3. For all neighbours of v in G such that ¢ L(u), we haver,(L(v)) < ¢,(v o L(u)) (the
path assignments are stable and switching cannot creatdeg.cy

Note that the functiom,(-) can be computed by consultings local state. We now claim
that the scheme satisfies both properties of a proof labsthgme:

Claim. Let 7 be a stable solution and |étbe the labeling computed as above fomhen there
is no nodev whereD(v, L) = 0.

Proof. Assume thatr is a stable solution and that there is some nedach that at least one of
the three properties above fails to hold. Then we showihathich equalsr, is not a solution
— a contradiction.

If the first property fails then the set of pathsloes not exist itz and sor is not a solution.

If the second property fails then the set of paths pévhich are the same ds do not form a
confluent routing tree. If the third property fails then #exists a neighbour of v such that

would prefer the path via, and switching would not create a cycle. Therefore if anyheke
properties fail to hold then the labelidgis not a solution. O

Claim. If the SPP is unsolvable then for any labelibhghere exists a nodewith D(v, L) = 0.

Proof. If the SPP is unsolvable then by definition there does not exétable solutiomr. Now

consider any labeling. We show that there is a nodesuch thatD (v, L) = 0.

We can assume wlog that the labeling is a valid path assignmen the paths form a
confluent rooted tree, rooted at 0. If this were not the case fome node would clearly fail
at properties 1 or 2. Therefore we can assume that both giregpérand 2 hold at all nodes. It
remains to show that property 3 fails at some nodé&ssume, to the contrary, that property 3
holds at all nodes under the labelihgBut then all nodes have a path (possibly the empty path)
that they would not switch from. By definition, this is exacélystable path, and so there must
be some node whereD(v, L) = 0. O

It is important to note that the above lower bounds are indéeet of the distributed repre-
sentation of a solution.

Proof size of unsolvability

We can also consider the problem of decidingsolvabilityof an SPP, i.e. the function SPP-
UNSOLVABILITY, which is the negation of the function for SPFOLVABILITY.

Lemma 3.5.3 The proof size of SPP-UNSOLVABILITX1&"/?) bits.
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Proof. We use the same construction as for the previous lemma, buthefunction is true
iff the SPP is unsolvable iff the two sets are not disjointefidiore, the decoder outputs true iff
no node has a proof of solvability. In this case, we need tsiden the complexity of proving
that two sets are not disjoint, i.e. the nondeterministimptexity N°(DI1SJ). It is known that
N°(DISJ) = Q(r) [KN97] for r-element sets. Applying Lemma 3.5.1 as in the previous proof
shows that the proof size §3(2"/2) bits. O
Intuitively, the proof size of unsolvability is so high bersz a node must be able to reject a
false proof, which is at least as hard as verifying a proofobfability of the SPP.

3.5.4 Forbidden-set preferences

For the forbidden-set routing algebras, Theorem 3.3.1sgaveeduction fronil;-SAT where
the formula is satisfiable iff the network is solvable. Theadission following Lemma 3.4.7
implies thatN°(T13-SAT) = Q(logn) bits. A similar argument to Lemma 3.5.2 shows that the
proof size of FS-SPP-SOLVABILITY is2(log n) bits (the reduction in Theorem 3.3.1 can be
modified to have) (1) nodes having edges in both sides by adding two extra ndaesinected
to 0, andy/, connected tay,,, where0, y,, are in one side and’,y/, are in the other side and
all previous connections from the bad triangle9)t@, are now connected t0/, y,, instead.
This modification does not affect the solvability of the doastion.) We have been unable to
improve theO(n) upper bound of the general protocol. Therefore it is open agether there
exists a more compact distributed representation of aisal(éind hence a better proof labeling
scheme) fotF S-SPP-SOLVABILITY.

3.6 Discussion

At this point it is worth discussing the results for the threeting algebras we have considered:
forbidden-set, two-hop and next-hop. First let us condidecomplexity of deciding solvability
— of all these, only next-hop routing does not give an NP-deteproblem, but it is trivial as
there always exists a solution. This gives the followingropeoblem.

e Fully characterise the relationship between the algelpeoperties ofA and the com-
putational (or communication) complexity a-SPP-SOLVABILITY. The results of this
chapter show only that some algebras generate hard instédBecomplete, or exponen-
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tial communication) and others generate easy instane@sljt‘As yet, there is no known
algebraA where A-SPP-SOLVABILITY is neither trivial nor NP-complete.

We conjecture that for any non-trivial routing algebra (égefra is non-trivial if it can gen-
erate both solvable and unsolvable SPP instances), théepralf deciding solvability is NP-
complete. In addition to the strong negative results in ¢higpter, this would be a strong ar-
gument against the use of stable routing trees for polieetaouting. Feamster et al.[FIB05]
have also considered the additional problem of verifyirgnifiterative algorithm will converge
on a collection of policies fromanyinitial state. They call this propergafetyand show that any
SPP that is both solvable and safe must have policies thasaentially equivalent to ranking
based on path lengths.

Now we consider the communication complexity of decidintyability. Let us call an
SPP instance generated using the forbidden-set algéBrasparseinstance if the size of each
forbidden set is bounded, amgnseotherwise. In the case of sparse forbidden-set instances,
Lemma 3.4.4 implies that no deterministic distributed alhon for deciding solvability can
do better than sending all the forbidden sets to a centrag,nosing a spanning tree of the
network. For dense instances, it is open as to whether theiggotan be compressed to save
communication (and hence space in a proof-labeling schemyeltilising redundancy in the
policies. Also, it is an interesting open question as to Wweebne can do better (in both the
sparse and dense cases) by using randomization.

However, for next-hop algebras, constructing a solutioith(minimum cost) reduces to
constructing a (minimum cost) spanning tree and therefasepossible to do useful intermedi-
ate computation in the network in order to save communinaff@r two-hop algebras, there is
still anQ2(n log n) bits communication bound on the associated two-party ghaotehe stretch-
ing trick that we used for the forbidden-set case fails, beeat would require policies that
could distinguish between paths, based on nodes at a distdng from the source node.
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Towards Compact Routing

4.1 Introduction

In the previous chapter, we showed several intractab#isylts for the problem of constructing
and verifying stable routing trees for forbidden-set rogti In this chapter, we shall forget
about using routing trees and try to construct alternatwging schemes. To do this, we study
the model of compact routing, for which good schemes are knimwv shortest-path routing.
We then show how to construct compact routing schemes te $ohthe forbidden-set routing
problem for various classes of graphs.

Routing tree-based schemes construct a forest of routieg,tene for each destination,
and forward packets along the tree for each destinationreftre, each node stores one port
number for each destination, i.©(n logn) bits. A routing tree istableiff no node can switch
to a strictly lower-cost path without creating a cycle. Thiiculty with routing tree-based
schemes is that since nodes are free to choose paths, weolessitne that stable routing trees
are the only ones that can exist. Unfortunately, stablestnegy not exist and deciding if they
do is intractable, both in communication and computationr @pal is to route omll lowest-
cost paths while still having low space requirements, padfly sublinear i (we will show
that this is impossible for general graphs, but possiblyeaetile for some restricted classes of
graphs).

52
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4.2 Motivation

Shortest-path routing can be done by storing at each nogéable that lists for every destina-
tion v, the next-hop on the shortest path framto v. It is easy to see that the paths used for
routing in this way form a forest of shortest-path trees edadt each destination. Since every
subpath of a shortest path is also a shortest path, a shpatestouting tree is always stable.
The results of Griffin et al. [GSWO02] show that for policy-bdgeuting it may be impossible
to construct a stable routing tree, so it is not always ptsstroute on lowest-cost paths using
this method. Consider the following simple scheme for pebeaged routing. Each node
stores a table where the entry, v) specifies the next hop from on the path fromu to v of
lowest cost ta:. When a node: wants to send a packet to destinatigiit writes into the header
of the packet the stringu, v). Now when some node receives this packet, it looks up the en-
try (u, v) to find the next link for this packet. This way, each node caneg®n its lowest-cost
path to each destination. However, the downside is that eathr now store®(n?) entries in

its local routing table, which is too demanding in a largenwek. With a routing tree, all the
sources whose paths pass through the samemnadehe same destinatianmust agree to use
the same path fromy and therefore each node can store at must) entries.

The central question we want to answer is tleisn we reduce the space to bel®n?) per
node, while still being able to route on all lowest-cost pat&shsider the case of shortest-path
routing; it is known [GPPRO04] th&?(n) bits are required if we wish to route on exactly shortest
paths, but this can be reduced if we are willing to accept@pprately-shortest paths. We say
that a path has stretdhif it has cost within a factok of the optimal path. Proven cases of a
conjecture of Erdos imply that any scheme that routes orspathtretch three must use space
Q(n'/?) at some node (as remarked in [TZ01b]).

A promising direction is to make use of a compact and locdliepresentation of the graph
— each node is assigned a data structure (called its rowbig)tand a label, which identifies
the node to other nodes. Routing is then done as follows: iEmogants to route ta it writes
v's label into the packet header. Nodes can then use theingptaibles and’s label to decide
how to forward the packet through the network. This is kno&oanpact routingand was first
introduced by Peleg and Upfal [PU89]. More details aboualized data structures for routing
can be found in the excellent survey paper by Gavoille anddg&P03]. Compact routing has
been extremely successful for approximate shortest-patting: Thorup and Zwick [TZ01b]
gave an almost-optimal stretch-3 scheme using routing@satil sizeD (n'/?) andO(log n)-bit
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labels where each routing decision takes just constant time.

We argue that for policy-based routing on the Internet, cachpouting schemes are better
than using routing trees. Since no routing trees are cartettucompact routing schemes can
send packets whenever two nodes are reachable. In copimakets can be sent only if a stable
routing tree exists where the source node is not assigneehtipgy path (and deciding if such
a tree exists is NP-complete even with forbidden-set pedi@n bounded treewidth graphs).
So far nothing is known about the viability of compact rogtschemes for policy routing. In
particular, it may be that the space requirements are hipher(n) per node.

The idea of using compact routing on the Internet has beegestied elsewhere, for example
[KFYO04]. However, the suggestion is to make use of the sclsdoreapproximate shortest-path
routing. The freedom offered by policy routing is importand therefore until a scheme exists
that can handle policy routing (even for restricted poicgeich as forbidden-set), there will
remain no viable alternative to BGP.

4.3 Preliminaries

We now introduce the model of routing that we will use for thisd subsequent chapters.
Readers familiar with compact routing may wish to skip thistiea. A routing schemas a
distributed algorithm for delivering packets between pssors in a network. Assume that a
labeling of the nodes of the network has been given. Eachgphels dheaderthat contains the
label of the destination of the packet and perhaps someiauiaiinformation that can be used
to guide the routing of the packet. Each edge adjacent to @epsor is identified by itport
number. Each processor stores a local data structure ta#eauting table When a processor
receives a packet on an incoming port, it uses its routinig tdbe incoming port number and
packet header to decide whether the packet has reachedtiisadi®n or, if not, which outgoing
port the packet is to be sent on and what the new header sheuld b

Let G be a graph representing a communication network. We shalinas that= is con-
nected, undirected and unweighted. Each nodé& dfas an identifieiD(u) € {1,...,n}.
However, the routing scheme uses a routing ldhel) to identify . The difference between
the identifiers and labels is that the labels may be used todenadditional information about
nodes, which may enable more efficient routing strategiég tased. Given a graph with labels

Lf(n) = O(g(n)) if 3¢ > 0 such thatf (n) = O(g(n) log® n)
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host processor

0

router u;
Pi

Figure 4.1 : A model of a router

L(-), arouting functionR on G is a distributed algorithm for routing a#. The algorithm builds
a path from the source to the destination by selecting, d&tieéermediate node, the next link on
which to forward the packet. More preciseR,= (P, H) whereP is theport functionand 4 is
theheader functionFor any two distinct nodes, v, R computes aouteu = ugu; ... u, = v,

a sequenceégh; ... h, of headers, and a sequenge; . . . p, of output port numbers. The port
numbers identify the links connected to a given node, and lbeagarticular to that node; for
example a link connecting to y may have a different port number into its port number in
y. The port numbers at a nodeare uniquely chosen frofi, ..., deg(u)}. The restriction of
R to u is calledu’s local routing function and this is what we shall refer to a% local data
structure.

Figure 4.1 shows the model of a router that we use. A messagmgrat a node; through
an input porty; is given a new headér;.; = H(u;, ¢;, h;) and is forwarded on the output port
pi = P(u;,q;, h;). We require thaty, = p,. = 0, andhy = L(v), i.e. the initial header provided
by the source is the label for the destination node.

A routing strategyis an algorithm that computes, for a gra@h a routing function? on
G. Therefore, the strategy consists of a preprocessing stagessigns labels to nodes and
constructs the distributed data structures necessaryutingoscheme can be thought of as an
implementation of a function. Awbliviousrouting function is a routing function that only
depends on the header, and not the input poriréct routing function is an oblivious routing
function that only depends on the destination, and theedfpe= h; = --- = h, = L(v). The
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routing functions we shall consider are all oblivious, anths of them are also direct. Direct
routing has the advantage that it is usually faster, asmgutecisions can be made quickly. A
routing scheme is said to m®mpactf the local data structures are sublinear in size, d(e.)
bits, and the packet headers are all polylogarithmic in,siee at mostiog®n bits for some
constant.

4.4 Deciding if there exists a zero-cost path

We begin by considering a simpler problem than routing. path cost labelingoroblem is
as follows: given a graphy and costgc,(v)}, assign labeld.(v) to nodes so that given only
L(u), L(v), we can compute the minimum casf( P) of a pathP from u to v. We shall call
such a label gath cost labefor the costs{¢, }. Throughout the chapter, we shall assume that
the costs represent forbidden-set policies,d.¢P) = |S(u) N P| for a pathP from u to v, so
we will refer to the forbidden setS(u) instead of the costs. In theero-cospath problem, we
are only interested in whether there is a pBtbf zero cost fromu to v. Letdg(u, v) represent
the (unweighted) distance betweenw in the graphG. Then the zero-cost path problem is
equivalent to deciding whethéi(u) is a separator of, v in G. This relationship implies that
our problem may also be of interest from a graph theory petsfe— constructing small zero-
cost labels is equivalent to constructing an efficient digted localized representation of all
the separators of a graph.

The motivation for this problem is that any routing schena ttan route on approximately
lowest-cost paths must be able to distinguish between gewhere there exists a path of zero
cost and when there is no zero-cost path. The problem is gmasato deciding reachability in
graphs (labels of siz€(log n) bits suffice to decide reachability in undirected graphsnpsy
label each node with the identity of its connected compgn& can now state our first result.
Let k£ be an upper bound on the size of a forbidden setki®.max, |S(u)|.

Theorem 4.4.1 Let nodes have forbidden-set policies of maximum/sizéth cost as defined
above. Then any undirected graghhas zero-cost path labels of sizdkA(T") logn) bits,
whereA(T)) is the degree of a minimum degree spanning tre€.ofSiven the labels, we can
decide whether there is a zero-cost path in tithéog kA(T)).

We shall prove Theorem 4.4.1 by first proving a similar refuitthe case where the sets
S(u) are sets of edges rather than nodes. In this case, we aresieetin deciding if a set(u)
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is a cut between, v in G. First we shall assume that the s81s:) are edges instead of nodes,
so we are interested in the problem of detecting cuts. Asalswethat|S(u)| < k. An Euler
tour of a graph is a cycle that traverses each edge exactly, afitbhough it may visit a node
more than once. Euler’s theorem says that a graph has an tbuleiff every node has even
degree. We can assume tldats Eulerian by doubling up each edge into its two directecesdg
so deleting an edge fro corresponds to deleting two edges from its Euler tour. Fon eade
u, partition the tour into at mogk — 1 intervals corresponding to deleting the s¢t.). Now
build an auxiliary graphf (u) on the intervals where two intervals are adjacent iff thethbo
have an occurrence of the same node. Now we consider retigshabthe graphH (u). Let
R(u) be the set of nodes df (u) that can be reached from an interval containing an occuerenc
of nodeu. (It is easy to see that all the nodesHiiu) whose intervals contain an occurrence of
the same node, form a clique inH (u). Therefore for a node in GG, we can arbitrarily pick a
node ofH (u) containing an interval of in order to determine reachability i (u).)

The label for node: contains two things:

1. The set of interval®(u) (usingO(k log n) bits);

2. The positionP(u) on the Euler tour of some (arbitrarily-chosen) occurreniceanle u
(usingO(log n) bits).

Now, given two labeld.(u), L(v), we check whetheP(v) is contained in an interval aR(u).
If not, thenS(u) is auv-cut in G. The intervals?(u) can be stored in an interval search tree
(a binary search tree where the key for an interval is its tameit) so that we can make the
decision in timeD(log k) (assuming tha® (log n)-bit comparisons take constant time).

Proof of Theorem 4.4.1.1f S(u) is a set of nodes, things are harder (it seems). We could
delete all adjacent edges to a node, but this would incurtarfat A(G), the maximum degree
of a node inGG. Alternatively, if G has a Hamiltonian cycle, we can use the Hamiltonian cycle
in place of the Euler tour, but cutting nodes instead of edges more general graphs, we can
do the following. Construct a minimum-degree spanningfre¢ G (i.e. a tree whose maximal
degree is smallest), and then construct the Euler tour ofré&l” (this tour contains at most
2(n — 1) edges after doubling up the edgesigf Now, we can build the auxiliary grapH (u)
where two intervals are adjacent iff at least one of the Yaihg holds:

1. both intervals both have an occurrence of the same node;
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2. one interval contains an occurrenceucdnd the other an occurrenceqfand the edge
(u,v)isin E(G) \ E(T).

The setR(u) and the labels are constructed as for the edge case. Nownedehappears at
mostA(7") times in the tour, s&(u) contains at mosD(kA(T")) intervals. Therefore the labels
are of size at mogD(kA(T) logn) bits. As for the edge case, we can store the/¥et) in an
interval search tree, so the decoder takes tileg kA(T')) = O(logn). O]
Note that finding a minimum-degree spanning tree is NP-hardtas a Hamiltonian cycle
iff it has a spanning tree with degree two. So for the ring, &® gse the above construction to
find labels of size)(klogn). Graphs of bounded independence numbap)(1)-tough graphs
and almost all--regular graphs (for fixed > 3) have spanning trees of bounded degree, so
they have labels of)(klogn) bits. There are many cases where the bound is far from tight;
for example, the:-star hasO(1)-bit labels (we just need to store whether each forbidden set
contains the center node) but any spanning tree has degrge We believe that it is possible
to improve the space bound (possibly at the expense of athigheing time), but we have been
unable to do so.

4.5 A forbidden-set routing scheme

We now consider the forbidden-set routing problem, i.e.tingupackets on paths that avoid
the source node’s forbidden set. Imagine how we might usedkelabels constructed in the
previous section to guide the routing of packets througm#teork. We begin with an example
— consider the network of Figure 4.2 where nadeants to send a packet toon a path that
avoids node$, e. Shouldu first send the packet to or ¢? Either node is not in the forbidden
set ofu, so assume thatsends it ta. Now ¢ has to decide where next to send it. We can write
the set{b, e} into the packet header so thatnows not to forward it td. Perhaps we can also
write into the packet header the route that the packet has ted far (although this will violate
our requirement of small packet headers). Thémows that the packet just came framso
the only alternative is to send tb But then what should it do? Should the packet ga @r

to f? The problem is thaf does not know that cannot reach while avoidingb, e, without
returning tod. One possible solution is to construdi@ding protocol where each node sends
the packet to all its neighbours except those in th&géej. Although this would ensure that the
packet reaches the destination if there exists a zero-adist ipis extremely inefficient in terms
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S(u) = {b,e}

Figure 4.2 : Motivating distance separator labels. Consider a packet from w« that arrives at d
with destination v, and forbidden set {b, e}. Where should d forward the packet? The distance
separator labels allow d to compute the distances to v in G'\ {b, e} from each of its neighbours.
It can then forward the packet to the neighbour that minimizes this distance.

of communication complexity and congestion. We wahbravarding protocolwhere packets
are only forwarded, not replicated.

4.5.1 Distance separator labels

This motivates the following approach: what if we could domst labels in a different way,
so that intermediate nodescan decide which of their neighbours cannot reach the cgdgim
without returning to the current path? We could then guaatiat the packet always makes
progress towards the destination, i.e. the distance \nS to the destination always decreases.

Definition 4.5.1 (Distance separator label)A distance separator lakisla labelZ(v) such that
givenL(u), L(v) and L(sy), ..., L(si), we can computéc s(u, v), whereS = {si,..., sy}

If S is a separator ofi,v in G then by definition,dc\s(u,v) = oo, and we shall define
dens(u,s) = oo for all s € S. We shall call such labeldistance separator labelsince they
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measure the distance in a graph with a given set of nodes emdvinally, note that we are
interested in measuring the unweighted distances inS, not the path costs using tlhg(v).
The distances il \ S will be used to guide the packet through the network.

Imagine that we have assigned distance separator labetslés mn an undirected gragh
and each node knows its forbidden s¢t.) C V (G) (the separator labels are constructed with-
out any knowledge of these sets). Also assume that eachunkdews the distance separator
label for each of its neighbours, . . . ug4, with |L(u;)| < [ for all ;. We can then route on a
shortest zero-cost path fromto v in G as follows: the source nodewrites the labeld.(v) and
L(s) for eachs € S(u) into the packet header. It then sends the packet to its neight that
minimizes the distancé: s(.(u;,v). This is done by consulting the distance separator labels
(if all the distances arec thenw declares that there is no zero-cost path). Each interneediat
nodew does a similar thing — it examines the incoming packet anddads it to the neighbour
w; that minimizes the distanae&; s (w;, v) (without changing the packet header).

If there exists a path of zero-cost fromto v, this scheme always routes packets on the
shortest zero-cost path, i.e. a path not containing anyeienf.S(u) and having length equal
to densw)(u,v). This is because a packet is always forwarded to a node tlwddger to the
destination inG \ S(u) than the current node. If, v are not connected i \ S(u) thenu can
detect this sincéq\ s (us, v) = oo for all its neighbours;. Since each node stores the label
for itself, the labels for each of its neighbours and eacmel® ofS () (usingO(lkA(G)) bits)
and the packet headers contain the label of the destinatidthe labels of5(u) (usingO(lk)
bits), we have shown the following.

Lemma 4.5.2 Assume that a family of graplishave distance separator labels of sidsts and
forbidden sets of size at madst Then every grapli- € G has a forbidden-set routing scheme
usingO(lkA(G))-bit routing tables and)(lk)-bit packet headers. Packets are sent on shortest
paths inG \ S(u).

Remarks. It is important to note that we neexxactdistances; approximate distances will
not suffice. If the labels only returrapproximate distances, i.e. a distad@%(u, v) where

<1/C)CZG\S<U’7 U) < dG\S<u> 1)) < CCZG\S<U7 U)7

then the scheme may create routing loops (since the packdeheéoes not store the route).
Figure 4.3 gives a simple example of this. With exact distanthe distance labels ensure that
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Figure 4.3 : How routing loops can occur using approximate instead of exact distances. The
distances shown are 2-approximate distances to the destination e, but there is a routing loop

a,b,c, ...

the scheme does not create loops in the routing. Itis not iél&@ can make use of approximate
distance labels for routing, without using large packetleesto store the path taken so far.

Our job is now to find efficient distance separator labels &rous graph families, in order
to construct forbidden-set routing schemes using the aleowma.

45.2 A lower bound

Before continuing, we give a lower bound on the size of labetgiired by any forbidden-set
routing algorithm. The lower bound is for the problem of dieg if there exists a zero-cost
path between two nodes, but this is also a lower bound for amydden-set routing algorithm
that can decide if there exists a zero-cost path before isgride packet. The lower bound is
approximately linear in the size of the forbidden sets, dad holds for trees. Therefore, for
small k£, sayO(logn), it might be possible to construct routing schemes withisebr space

requirements.

Theorem 4.5.3 Any forbidden-set routing algorithm omvertex trees with forbidden sets of
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size at mosk must assign labels of size at le&xtk log n/k) bits in the worst case.

Proof. Consider a tree with roat andn childrenu; . .. u,. Eachu; can independently select
as its forbidden set an arbitrary subset of giz# {u,, ..., u,}. For every distinct collection of
forbidden set§S(u,), ..., S(u,)}, it can be seen that there exists a distinct pair of nages;
whose reachability has changed. Each of these requireeaetiif set of labels to be assigned
to the graph, so at least ((Zf:o (?)>n> = Q((n/k)"*) distinct labelings of the graph are
required. Taking logs and dividing by, it follows that at least one of these nodes must receive
a label of size2(k log n/k) bits. We can also prove a bound for the case wh#rgis a set of
edges — let each(u;) independently choose a subset of thedges and then the same argument

also applies. O

4.6 Distance separator labels

In the previous section we motivated the construction otCieifit distance separator labels,
by showing how they can be used to construct a reasonablyeeffidistributed forbidden-
set routing scheme. In this section we try to construct effic{(by which we mean of size
polylogarithmic in the number of nodes in the graph) distaseparator labels.

46.1 Trees

We shall show how to exploit the very simple structure of$r@emely that there is a unique
path between each pair of nodes, to construct efficient agpdabels for them. Assume that
we have a rooted tree (the root can be chosen arbitrarilyestris not important for deciding
if a node is a separator of two nodes — the unique path is the sagardless of the root). It
is well-known that we can assign labels of sidéog n] bits to nodes, so that given the labels
L(x), L(y) we can decide in constant time:fis an ancestor of [KNR92]. This is done as
follows. Do a depth-first traversal from the root, labeliragle node with its identifier/ D(v)
in the depth-first traversal. For each nodelet f,, be the descendant af with the largest
identifier. Theancestor labefor v is defined ad.(v) = (ID(v), f,). A nodev is a descendant
of wiff ID(v) € [ID(w), fu]-

We also need the related concept of the least common ancestaode w is the least
common ancestaiLCA) of two nodesu, v iff w is the unique node that is furthest from the
root and on both the paths fromandv to the root. Peleg [Pel00] showed that we can assign
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O(log” n)-bit labels such that givel(u), L(v) we can deduce the LCA af, v. We can also
deduce its ancestor label by storing a mapping from theiiknstof ancestors stored in a label
to their ancestor labels with a constant increase in lalzel. sMore recently, Alstrup et al.
[AGKRO02] showed the following theorem.

Theorem 4.6.1 (JAGKRO02]) There is a linear-time algorithm that labels the nodes of ateal
tree T with distinct labels of lengti®(log n) bits such that from the labels of v € T we can
compute in constant time the labellof A (u, v).

Remarks. It should be noted that the difference between the schemglsiolip and Peleg
is that Alstrup’s scheme only computes th€A labelfor the LCA, whereas Peleg’s scheme
computes thédentifier of the LCA. Peleg has also shown a lower boundgfog® n) for any
labeling scheme that computes the identifier of the LCA node sWéll be able to make use of
Alstrup’s scheme, and therefore use oflflog n)-bit labels.

Our scheme relies on the following observation: a nedgauv-separator iff iff LCA (u, v)

Is an ancestor aby andw is an ancestor of eitheror v. AsetS = s4,..., s IS auv-separator
in 7" iff at least one member of' is auv-separator ifil’, so to see ifS is a separator we can
test each member of independently. We can solve this using Alstrup’s LCA labglstheme
as follows. Let7 be the LCA label for node. Then we compute the LCA label for the node
LCA(u,w) and check if it equalsy. If so, u is an ancestor ofv. Therefore Alstrup’s LCA
labels suffice to decide the ancestor relation.

The separator label far is simply Alstrup’s LCA label foru in T'. Given L(u), L(v) and
L(s1),...,L(sx), we compute the LCA label for.CA(u,v) using the scheme of Alstrup et
al. [AGKRO02] and then test if each is auwv-separator ofl’ using the observation described
above. Therefore the label héglogn) bits. To construct distance separator labelsfpwve
can combine any distance labeling scheme [GPPRO04] for trgbsthe separator labels. To
compute the distanaér s(u,v), use the separator labels to decide whetheg(u,v) = 0; if
not, thend s(u, v) = dr(u,v), SO we can use the distance labeling scheme. Peleg et aledhow
that unweighted trees have distance labeling schemes Xing” 1) bits per label (and this
is known to be tight). By combining these two scheme, we geadce separator labels using
O(log® n) bits. This is asymptotically optimal, since there is a loweund ofQ(log” n) bits
for distance labeling in trees [GPPRO04].

Interestingly, the size of the distance separator labebmsidated by the size of the distance
label, not the separator label. It is an interesting questibether we can do better if we accept
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approximate distances in distance separator labels. lergkthere are an exponential number
of possible separators, so at this stage it is not obviousheh¢he scheme for trees can offer
much insight into how to deal with more general graphs.

4.6.2 Bounded cliquewidth graphs

We now consider the class of bounded cliquewidth graphs. cligeewidthof a graph is a
measure of its complexity, closely related to treewidth imaire powerful since every graph
having bounded treewidth has bounded cliquewidth but tlwerse is not true (cliques have
cliquewidth two but unbounded treewidth). For a given grépltliquewidth is defined as the
minimum number of distinct labels required to constructdhregph by only using the following
operations:

e create a node with a given label;
e p — ¢ relabel all the nodes having some lapa&b another labey;
e p X ¢. connect every node having laketo all the nodes having label

We can therefore represent a graph by its algebraic expressi term tree where the leaves
are labelled nodes of the graph and the interior nodes ofrélgerépresent either a relabelling
operatiornp — ¢ or a join operatiomn x q.

Many graph problems can be formulated in monadic seconerdagjic (MS), by using
logical operationgA, Vv, =), quantification(V, 3), membership tests, C) and adjacency tests
({u,v} € FE) over subset$.X;, X,,...) of nodes of a graph. As an example, consider the
following graph property.

“Iis the subgraph of GG induced by Z connected?”

Partition(U, V, Z) =Z=UUMANUNV=0)ANU#Z)NV #2Z)
Adjacent(U, V) =Ju,v(u e UAveVA{u,v} € EG)))
Connected(Z2) = VU, V (Partition(U,V, Z) = Adjacent(U,V))

A property P is said to beMS-definabléf it can be expressed in MS logic. éraph property
is a property where the variables denote the nodes of thégnagier consideration. Courcelle
and Vanicat showed that for any MS-definable graph propemtycan construct small labels
that can be used to efficiently decide the property:
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Lemma 4.6.2 ([CV03]) Letq be aninteger and®(z, . . ., z,,) an MS-definable graph property.
LetG a graph withn nodes cliquewidth at mogt Then we can assign to nodes(ofabels of
sizeO(logn) bits so that given only.(z4), ..., L(zx), we can decide’(z1, ..., z;) in worst-
case time&)(klogn). The constants in the big-oh notation depend only and P.

We now show that the property required by distance sepalatets is MS-definable, which
will enable us to appeal to the above result.

Lemma 4.6.3 Bounded cliquewidth graphs have separator labels of Sideg n) bits, and a
decoder with worst-case time complexityk log n).

Proof. We first show that the graph property “a set of nodesus-geparator” is MS-definable.
We can use the propertonnected to construct the following property.

“Iis the subgraph induced by Z connected andr, y € Z?”
Connected(z,y,2) = (xe ZANye Z A Connected(Z2))

Now we can express our desired property of deciding if the zero-cost path from to .
We can do this by testing if there exists a set of noglesch thatS does not contain a forbidden
set and there exists a path through only the nodesfadm x to y.

“is there a path x to y that avoids nodes inZ?”
Path(z,y, Z) =35((Z N S =) A Connected(z, y, 9))

It is clear that the propertRath(zx,y, Z) is MS-definable, and it is not difficult to check that
Path(z,y, Z) holds iff Z is not auv-separator irG. O

In the same paper, Courcelle and Vanicat defined an optimizagrsionmin(y) of an
MS-definable property. Here, there is a free variable that denotes a set of nodeshand
cardinality of the set denoted by the free variable is mimgdi Using this, we can compute
distance separator labels by appealing to the followingréma.

Lemma 4.6.4 ([CVO03]) Letq be aninteger and®(z, . .., z,,) an MS-definable graph property.
Let G a graph onn nodes with cliquewidth at mogt Then we can assign to nodes @f
labels of sizeD(log”n) bits so that given only.(xz1), ..., L(z;), we can compute the value
min P(zy, ..., x;) in worst-case timé (k log® n). The constants in the big-oh notation depend
only ong and P.
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Combining this with the routing scheme in Lemma 4.5.2 givesftiiowing result.

Theorem 4.6.5 Bounded cliquewidth graphs have a forbidden-set routing@swh with routing
tables of siz&)(A(G)klog® n) bits and packet headers of si@ék log” n) bits.

Proof. We just need to show how to define the property of distanceagpdabels as a monadic
second-order logic optimization property over the graptlaso This is easily done using the
following:

“what is dg(u,v)?”
dg(u,v) + 1 = min(p) wherep(u, v, Z) = Connected(Z) A (u € Z) A\ (v € Z)

“what is d(;\g(u, ’U)?”
dens(u,v) + 1 = min(p) where
o(u,v,5,7) = Connected(Z) AN(u€e Z)N(ve Z)AN(SNZ =10)

In both cases, the cardinality of the s&ts one greater than the length of the path. Combining
the distance separator labels with the routing scheme imharh5.2 gives the stated result]

Remarks

The bounded-clique width scheme suffers from two major lerois:

1. Aclique decomposition of the graph needs to be given taldparithm. Unfortunately, it
is known that given a grapfi’ and a positive integey, the problem of deciding iz has
clique width at most; is NP-complete [FRRSO06], for arbitrary valuesqofHowever, a
result of Oum [iIO05] gives, for fixed, a cubic algorithm that computes a clique decom-
position of width2°(@, which is enough if we are only interested in graphs havirguel
width bounded by some fixed integer.

2. The hidden constant in the label size is hugei-i# the number of quantifier alternations
in the formula for P, then the constant is a tower of exponentials in the cliqueithwi
having heighO(h) :

2..,2q
22
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The second problem is due to the tree automaton approachbysédurcelle and Vanicat to
construct the labels. Since their result is for general M8ndble properties, a result of Grohe
and Frick [FG04] implies that (unless P=NP), this tower gi@xentials is unavoidable. There-
fore, although the general scheme is somewhat impracbtcalur specific problem of distance
separator labels, it is important since it shows that lalvllsse size is only polylogarithmically-
dependent om are possible. Our aim will now be to try to reduce the depecéem the
cliguewidth (or other graph parameter) to polynomial orreliaear for various, often more
specific, families of graphs. We do this by exploiting the gienstructure offered by separators
in graphs.

4.6.3 Cographs

Before tackling graphs with small tree width, we warm up by stderingcographs which
are graphs having clique width at most two. The family of eiys can be defined using two
operations:

e disjoint union for graphsG, H on disjoint vertices(z + H is the graph formed by the
union of the edges and vertices@fand H.

e complete productG x H is the graph formed by taking the union@fand H and adding
edges{u,v} forallu € G,v € H.

We can write the algebraic expression for a cograph as a teeras in Figure 4.4. Each node
is labeled by itsaccess patlirom the root, which describes how to reach the node in tha ter
tree. In the figure, we gdt(u) = +2 x 2 4+ 2 x 1 + 1 where the numbers 1,2 indicate which
child to take at each level in the path. These labels are ef(3{z) bits whereh is the height
of the term tree.

Let T be a term tree defining a cograph Given the labels for two nodes v andk nodes
S ={s1,..., sk}, the setS is auv-separator iff

e The least common ancestor= LCA (u, v) is labeled with %+, and;

e For every ancestor of w labeled x’, with z; the child ofz whose subtree contains all
the descendants ef_; must be InS.

From L(u), L(v) we can findw, z and hence check the first property. We can then examine the
access paths for, ..., s, and check the second property by seeing if these paths nahti
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Figure 4.4: The cograph generated by the term +(s, x(y, +(z, x(+(u, v), +(w,t))))) and its
term tree. The set {y, w, t} is a uv-separator.

entire subtree rooted at (since we know that the term tree is a binary tree). As an el@mp
consider Figure 4.4 and deciding whetltee {y, w, t} is a separator ai, v. The LCA ofu, v

is labeled with *+’, and for the highest node labeled”, we havey € S. For the other ancestor
labeled <’, we also have that, ¢t € S. ThereforeS is auv-separator.

Remarks

The diameter of a cograph is at most two, so we only considéredroblem of deciding
whether a given set is a separator (rather than computindjstence around this set). This will
be enough to introduce the more involved scheme for tre&wkidtaphs in the next section. We
may hope that we could arrange for the term tree to be of héighig n); however this is not
possible using the algebra here — for a counterexample th@keograph with nodes, ..., n
where node links to every nodg < i if 7 is even, and is not linked to any nogle< i if ¢

is odd. The cograph expression is unique and of heighience we would assign some nodes
labels of siz&(n) bits.

4.6.4 Treewidth £ graphs

A graph having treewidtlt can be expressed as the nondisjoint union of graphs oftsizé,

arranged as nodes in a tree such that the set of tree nodesntogisome graph node forms a
connected subtree of the tree. Small treewidth graphs argeresting class of graphs to study
for several reasons: firstly, they capture a common clasewiarks (those having a tree-like
structure, for example the Internet backbone) and secptidiy}concept of treewidth is weaker



4.6. Distance separator labels 69

i

L(u) = ((4, d(u, 4)), (5,d(u, 5)), (6, d(u, 6)), (1, (d(u, 1)), (2, d(u, 2)), (3, d(u, 3)))

Figure 4.5: A decomposition tree for a graph with small recursive separators. Each node of
the tree is a separator in the graph, and the distance label for a node « stores its distance to
each of the nodes in its ancestor separator nodes. To find the distance from u to v, the decoder
returns the minimum value of d(u,w) + d(w, v) over all nodes w in the least common ancestor
node of u, v.

than cliqguewidth — any graph with treewidthhas cliquewidth at most.2* — 1 [CRO5]. For
this reason, we can use the result for bounded cliquewidtphgrto handle bounded treewidth
graphs, but it is nonconstant then we immediately get a huge blowup in Isizel Addition-
ally, if we can show how to construct distance separatori$atoe treewidthk graphs then it
might give us insight into how to handle cliquewidttgraphs.

We will show, as our main technical result, how to construstathce separator labels for
treewidthk graphs using) (k2 log” n) bits (Theorem 4.6.10). For comparison, the best known
distance labeling scheme for these graphs uses labelseaDgizlog” ) bits, so we will have
paid an additional factok to encode distances under node deletions. For graphs of smal
treewidth, egk = O(logn), this is a small penalty, which means that compact (¢ )-bit
labels) forbidden-set routing may be possible.



70 Chapter 4. Towards Compact Routing

Background: distance labeling for small treewidth graphs

Before tackling distance separator labels, we shall revimwesdistance labeling schemes for
treewidthk graphs. We will make use of the following definition. A gra@has a 1/3-balanced
separator of size(n) if there is a set of(n) vertices whose removal breaks the graph into two
connected components of size at least. The graphG has arecursivel/3-balanced separator
of sizer(n) if it has a 1/3-balanced separator of size), and both the components obtained
by removing the separator also have recursive 1/3-balasepdrators. Therefore, the graph
can be recursively decomposed until we reach singletomsigga binary decomposition tree
of heightO(logn). It is known that treewidtlt graphs have recursive 1/3-balanced (or simply
balanced) separators of sike

Peleg et al. [GPPRO04] showed how to easily extend a distabeding scheme for trees
to one for graphs with small recursive separators. In a theelabel foru stores the distance
d(u,w) to every ancestow of u in the decomposition tree. One can extend this by storing the
distancel(u, w), for every nodev that is in an ancestor node in the decomposition tree. Then to
compute the distance betweemndw, it suffices to compute their least common ancestar
the decomposition tree and then to compi(te, v) = min,cs(d(u, w) + d(w,v)). This works
because every path between must go through some node< S. Since each separator is of
size at most and the tree is of heighi?(log n), each label stores at maS{clogn) distances
usingO(clog” n) bits. Figure 4.5 illustrates this technique for distantelag. More precisely,
they showed the following result.

3
graphsG having recursive balanced separators of siZe), every graph inG has distance

labels of size at mogd(R(n)logn + log> n) bits. Moreover, the distance can be computed in
time O(log n) given two labels.

Theorem 4.6.6 ((GPPRO4])Let R(n) = 35,10, 7 ((2)'n) < r(n)logn. For a family of

The above result immediately implies that treewidilgraphs have distance labels of size
O(klog®n) bits. Peleg [Pel99] describes an alternative method fostrocting approximate
distance labels, based on a hierarchy of tree coversred coverof a graphG is a family

F =A{T\,..., T} of trees with the following two properties:

1. Each tree dilates distances, g, (u,v) > dg(u,v) for all u,v.

2. For any pair of nodes, v, there exists a tre€; such thatir, (u, v) = dg(u,v).
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If a graph has a tree cover of sizghen it has distance labels of si@gk logn) bits. This
follows since we can compute distance labels of 6izleg n) bits for each tree, and then simply
pick the tree that minimizes the distance. In fact, we cartlisdree cover for routing; we use
an extralog k bits in the packet header to specify the tree to route on, aod rode maintains
information for routing onk trees. This can be seen as a natural extension of using & singl
routing tree, which was the model we used to prove our negatisults in Chapter 3.

It is easy to observe that all graphs have linear-sized teers, consisting of the shortest
path trees ending at each node. In the worst-case, thisissiigce the complete gragh, does
not have a tree cover of sizg2 — 1: the union of the trees must cover all the edges of the graph,
otherwise the scheme would not be able to report that thecémidpof some edge are adjacent
(and at distance one). Since each tree has at mest edges and the undirected clique r@)s
edges, any tree cover of it must use at |§§$f (n — 1) > n/2 — 1 trees.

The scheme of Peleg uses a tree cover construction thatitsxhilradeoff between the
number of trees each node appears in (the overlap) and tlie afegach tree. By constructing
trees with deptl2 for i = 1...logn, each node appears in a small number of trees and for
every pair of nodes, there exists a tree that contains them bdsingo(log®n) bit labels,
the scheme can provide distance estimates accurate up twoa ¢ /2 log n, for arbitrary
undirected unweighted graphs.

Now we consider graphs of treewidth at més#s described above, the schemes described
by Peleg et al. [GPPRO04] construct distance labels for thesgghg by building a decomposition
tree using the property of small recursive separators. ioisclear if it is possible to use
decomposition trees to construct separator labels (sieagaed to encodal separators), nor is
it clear that the tree decomposition associated with trégwgraphs can also be used efficiently.
Therefore, we shall take a different approach and make uaa afternative representation of
small treewidth graphs, based on algebraic expressions.

Algebraic expressions for treewidth k& graphs

Every graph of treewidtlh can be represented by an algebraic expression (or termgoves
domain of source$1,...,k + 1}. A j-source graph is a graph with at mgstlistinguished
nodes calledources each tagged with one gfdistinct labels. Courcelle [Cou07, ACPS93]
shows that a graph has treewidtlif and only if it is the value of some term tree whose leaves
are(k + 1)-source graphs and where every non-leaf node is labeledongfof the following
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Parallel composition:
Erasure:

Figure 4.6: The parallel composition and erasure operations for constructing graphs of
treewidth &

operations, illustrated in Figure 4.6.

e Parallel compositionThe graphG // H is obtained from the disjoint union of graptis
and H where sources having the same label are fused together &irigla node.

e Erasure Leta be a label. Then the unary operatify) (G) erases the label and the
corresponding source (@ is no longer a source i¥.

The term tree can be constructed given a tree decomposftiba graph — Corollary 2.1.1 of
[Cou07] shows that given a tree decomposition of wiklthf a graph, it is possible to construct
in linear time a term tree using at mdst- 1 source labels. The nodes of the term tree are the
bags of the tree decomposition; hence the height and degeegnahanged. We now give a
brief sketch of how to construct the term tree. Let us assinaiente have a tree decomposition
(T, X) of width k£ of a graphG, i.e. every bag contains at mdst+ 1 nodes. Then it is possible
to colour the nodes aff using at most + 1 colours so that no two nodes in the same bag of
the tree decomposition have the same colour. We can cohattaom tree recursively: i’ is
a single node, then the term tree is the graph with sourceg lbe¢ nodes i". Otherwise, let
r be the root ofl" and letT}, ..., T, be its subtrees. For each subtf&eassociate its source
graphG; on at mostc sources, where nodeis the jth source iffz is assigned the coloyrin
the colouring ofGG. Recursively compute the terms . .., t,. For everyi, let A; be the set of
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sources that are i4; but not the root of/’. Then we can represe6tby the term

fga, () // - /] fea,(tp) /) X(r)

wherefg, (t;) is the graph obtained from by forgetting the sourced; and X (r) is the set of
edges between nodes@fin the bagr- of 7. The details of this construction are not important
for the presentation of our algorithm, since we shall singgdgume that we are given some term
tree that evaluates to the gragh

We shall assume that the term tree has heigtivg ), since the following result of Bod-
laender shows that we can always convert a tree decomposfteome graph into a binary one
of logarithmic height with only a constant increase in thetwi

Lemma 4.6.7 ([Bod89]) Given a tree decomposition of widkthand a graphG with n nodes,
one can compute a binary tree decompositioidzaff depth at mos2 log; ,(2n) and width at
most3k + 2 in timeO(n).

Therefore, we can always assume that if we are given a tremgmasition of widthk of ann-
node graph then we can construct a balanced term tree forapé gnO(k) labels and having
heightO(logn). From now on, we shall us€ = 3k + 3 = O(k) to denote the number of
distinct source labels in the (balanced) term tree.

We assume that there are no sources remaining after evajulé term tree, i.e. all sources
have been erased below the root. Therefore the nodes ofapé gan be put in bijection with
erasure operations; we shall uséo refer to both the node i@ and its unique corresponding
erasure operation in the term tree. For a nadeve shall use(u) to denote the graph that
results from evaluating the subtree of the term tree rodted a

Each node: shall have astateq(u) assigned to it. This is & x &’ matrix describing the
reachability of sources ir(u) — in this matrix, the entry(p, ¢) is 1 iff the source labelegd
can reach the source labelgdh the graphG(u), and O otherwise. For convenience, we shall
use the equivalence relatipn~ ¢ to denote reachability of sourgeq in some source graph.
By definition of parallel composition, i ~ ¢ in G(u) andg ~ r in G(v), thenp ~ rin
G(u) // G(v).

It can sometimes be confusing when there are several sowitieshe same label on an
access path (due to erasing then introducing a new sourbettvdtsame label using/ ). To
make things simpler, we shall add subscripts to the soubmdddo uniquely identify them; for
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example, instead gf appearing several times on a path, we may haygs, . ... This does not
affect the correctness of the term tree; since we never avesaurces with the same label in
the same grapt¥(u), we shall never have two sourcesp; appearing at the same time. From
now on, we assume that our source labels are subscriptet$ iwdly. This assumption will be
helpful when we try to construct separator labels.

Finally, it will be easier to deal with binary term trees thanes having a mixture of
unary and binary operations, so we compress a parallel csitiggo operation followed by
a sequence of erase operations into a single binary operasan [CV03]; the sequence
fg,(fg,(- - (G // H))) becomes= // . o H. All nodes of the graph associated with an
erase node: are now associated with the compressed operation congdinenerasure opera-
tion . In particular, we shall associatewith the graphZ(u) obtained by applying the parallel
composition operation buttotthe sequence of erasure operations. Therefore the sowma-as
ated withu still exists inG(u). We write ‘the access path far to denote the unique path from
the root tou in the term treeexcludingthe nodeu, as this simplifies the exposition. As a result,
the set of nodes adjacent to the access path &ways containg.

A connectivity labeling scheme

We begin by constructing a labeling scheme that allows ugterthine if two nodes are con-
nected iniz, and then extend it to compute connectivity when nodes aneved. Asin [CV03],
we shall store in the labdl(u) a string describing the access pathdaand the state for every
node adjacent to the access path. In addition, the labehit@the source label of the nodén
G(u) (recall thatu is always a source node @#(u)). If u has the source labe), then the string
is of the form

Q(u) = (f1,11)q(s3-4, (u1)) (f2,12)q(83-i,(u2)) - (fhsin)q(83-i, (un)) Su

whereh is the height of the term treg; . .. f;, are the operations on the path (e.g/ ¢, ..),

iy ...1, € {1,2} indicate which child to take ans (u) (respectivelys,(u)) denote the left
(respectively right) child ofi. The stateg(ss_;, (u1))q(s3—i, (u2)) ... q(ss—, (uy)) are the states
of nodes adjacent to the access pathufoSince each set of at mokt erasure operations can
be identified with%’ bits and the term tree has heightlog n), the access path can be described
usingO(k"logn) = O(klogn) bits. The reachability matrices adjacent to the path anedto
using(2logn)k? = O(k*logn) bits, so the labels have siz&k*log n) bits. Figure 4.8 gives
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80y, 1805, f8e,

/]

Figure 4.7 : (a) A graph and (b) a term tree that evaluates to the graph. The two paths from vs
to v5 are drawn in red and blue (dashed). Deleting v; removes the source node as, SO would
remove the red path.
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CONSTRUCFLABELS(G)

1 (X,I) < atree decomposition @ of width k

Convert(X, /) into a binary tree decomposition of widsk + 2 and heightO(log n)

3 Compute a binary balanced term tfBérom (X, I') with &’ = 3k + 3 labels [Cou07]

4 for each node, € T

5 do s, < the source label of in G(u)

Q(u) < the access path forand the states of nodes adjacent to the access path

L(u) — (su, Q(u))

N

~N O

Figure 4.8 : An algorithm to construct connectivity labels L(u) for treewidth k graphs

an algorithm to construct these labels.

The decoder algorithm works as follows. Let the root of tleetber, and let nodes:, v
have source labels, ands, in the graphg~(u), G(v). The following lemma shows how to use
the reachability matrices for nodes adjacent to the acasbs foru, v to construct a path from
u,v in G, if one exists. The idea is to construct a set of paths inmglwinly the source nodes
of the graphs~(w) for nodesw adjacent to the access paths fov. Sequences of non-source
nodes on each path (i.e. source nodes that have been erdmaccliberu, v in the tree) are
contracted into a single edge in these paths. Joining thebs gether will give a path i@.

Lemma 4.6.8 Let s, s, be the source labels af v in G(u), G(v). Thenu,v are connected in
G iff we can find a source € G(x) for some ancestor of LCA(u, v), and sequences of parallel
compositions establishing the following:

1. (s, ~ p) using the states of nodes adjacent to the access path for
2. (s, ~ p) using the states of nodes adjacent to the access path for

Proof. First consider the—’ direction. At each parallel compositioG(u) // G(v), the con-
nectivity of the sources in the resulting graph is completidtermined by the connectivity
of the sources irG(u) and the connectivity of the sources @q(v). In particular,p ~ r in
G(u) // G(v) iff p ~ ¢in G(u) andr ~ ¢ in G(v), for someq in both G(u), G(v). There-
fore, any sequence of parallel composition operations dbearclaim corresponds to a path
connectingu, v in G(root) = G.



4.6. Distance separator labels 77

Now we consider the other direction. Recall our assumptiahah sources are eventually
erased. If we cannot find sequences of parallel compositienis the statement of the lemma,
then this implies that there is a noden the term tree where is an ancestor of LCA( v),
the graphG(x) has no sources, ang ¢ s, in G(x). Since at each parallel composition, the
connectivity of the resulting graph is completely deterediiby the connectivity of the sources
of the child graphs, it is impossible to find a sequence thabéishess, ~ s, by any sequence
of compositions involving=(z). Thereforeu, v remain unconnected in the graph corresponding
to any ancestor of € T; in particular this holds fo7(root) = G. O

The proof of the above lemma implies thatifv are connected i, we can find a path by
examining only the connectivity of sources in the graptia), G(v) and the graphs associated
with nodes that are adjacent to the access pathsofrom the root. Replacing the entfy; in
the reachability matrix foz () by the distance frorg; to s; in G(u) allows us to find the length
of every path fromu to v. Just as the sources are the only nodes that determine ¢ivitgec
under parallel composition, they also completely deteentive distance, i.e.

da) 1/ ) (1) = min dew) (p, @) +daw) (g, 7).

This modification gives distance labels of si2ék? log® n) bits for treewidthk graphs. How-
ever, it is already known that treewidtigraphs have (k log” n)-bit distance labels [GPPR04],
so this bound is larger by a factor 6f We now show that these larger labels capture more
structure of the graph, in particular they capture the stinecof separators that will allow us to
construct distance separator labels using the same |aeel si

As an example, Figure 4.7 shows a term tree and the grapht thatluates to. In the figure,
two paths between nodes andwv; are drawn, and sources that fuse together are joined with
dashed lines (in the final graph, these are a single node) awapply Lemma 4.6.8 by tracing
subpaths in the leaf graphs and joining them together ubmgarallel composition operations.
For example, we can taketo be the source labeled, thenc, ~ ¢, using the label(v3) and
a; ~ ¢ using the label (vs).

Constructing separator labels

We now show how to decide if two nodes are connecte@d inS for some setS of nodes. We
first give a somewhat inefficient scheme, then we show howdaae the space requirement
later. For each node and each subsét of source labels (wherg C {1,...,k’}), we store a
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CONNECTED(L(u), L(v), L(s1), ..., L(sk))
> LetS = {s1,..., S}
> ReturnsTRUE iff u, v are connected ity \ S
for eachs; € S
do Recompute the statgx) for every noder on the access path fey
using the source gragh(x) \ S
Let the sources fai, v bes,, s,
Decide whethes,,, s, are connected, as in Lemma 4.6.8

N -

W

Figure 4.9 : A decoder algorithm for separator labels on treewidth k graphs

reachability matrix for sources i@(u) \ S (each node. € GG corresponds to a unique source
in G(u)). Then we use the reachability matrices €@fx) \ S for nodesz on the access paths
for sy, ..., sp to compute new reachability matricés;(x) for nodes inQ(u), Q(v) (where the
access paths for, . . ., s, become adjacent to the access paths:foi).

We now proceed in a similar way to Lemma 4.6.8; we use the néwnrationGs(x) for
r € Q(u) UQ(v) to construct subpaths, then join them together using thedlphcomposition
operations in the term tree. However, we place a restriaiothe sources that we are allowed
to use in our subpaths —if is the source corresponding to a nade S (recall that we add
subscripts to make identification easier) then we are notvalll to use the source in the
subpaths. More precisely, for each nadim the term tree we construct subpaths usifgz).
Since there are at mo&t O(log n) reachability matrices adjacent to each access path, takslab
are of sizeD (2" k" log n) = O(2*k?logn) bits. The decoder algorithm is shown in Figure 4.9.

We can now employ the same argument as before to turn ouradeplabels into distance
separator labels, with an addition@llogn) factor in the label size. We do this as before:
replace each of the* reachability matrices by a matrix storing the distance letwsources
in the graph where some s&tof sources have been removed. All the distances used involve
paths that avoid the sources representing nodes in thelttabisetS, and therefore the paths
that remain are exactly those that do not interséct
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CONSTRUCFSOURCE-CONNECTIVITY-GRAPH(G)
1 while (G contains a non-source node)

2 do Let u be any non-source node n
3 Add edgeqz, y} between all neighbouts, y of
4 Removey from G

Figure 4.10 : The procedure to construct the source connectivity graph

Reducing the space requirements using source connectivity graphs

For each node and its grapliG(v), we can avoid storing® matrices by constructing a graph
G'(v) on thek’ sources, which we call thrgource connectivity graphThis graph will have the
property that for any sef of source nodes, the reachability of source&itw) \ S equals the
reachability of sources iti(v) \ S. Therefore, we can replace the = O(2%) reachability
matrices by a single graph d@nnodes.

Constructing the graph is easy — for any path between two esuvee contract all its sub-
paths containing only non-source nodes into a single edgee lgrecisely, we want to solve the
following problem. Given a grap&y onn nodes and having distinguished source nodes, con-
struct a graplt=’ on thek source nodes so that the following holds: for any$et {1, ..., k}
of sources and two sources s;, we want that 3; ands; are connected id: \ S iff they are
connected irG’ \ S. We can construat’ using the procedure shown in Figure 4.10.

For each non-source nodegthe procedure turns the neighbourhood.afto a clique then
removesy; if u has only one neighbour then this does nothing. The graphinémgaat the end
of the procedure is the desired gra@gh It is easy to check that the nodes@f are exactly
the source nodes i@ (they are the only nodes never contracted). We now showtbkagriaph
it computes has the property described above, i.e. it captine connectivity of sources when
only sources are removed. An example is shown in Figure 4.11.

Lemma 4.6.9 The graph computed by the above procedure has the desirpénbyoi.e for any
setS C {1,...,k} of source nodes and two sourcess; ¢ S, we have thak, and s; are
connected irG \ S iff they are connected i6” \ S.

Proof. We begin by making two claims about the graph computed by thesglure.
Claim 1: The graphG’ contains no paths not i&. Every path inG’ corresponds to some
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52

S1 52 53 S1 53

S4 S4

Figure 4.11: A graph and its source connectivity graph. The source connectivity graph pre-
serves reachability between sources under deletion of sources. The source nodes are filled
and the non-source nodes are drawn unfilled.

(possibly non-unique) path i¥. Consider a path;, s;, ...s;. in G’. Thenitis easy to see that
there must exist a path, P ;,si, Pi,i, - - - P, 14,5, In G where theP;; are paths iy containing
only non-source nodes.

213 *

Claim 2: The source connectivity grapghf contains all paths between sources-inSince all
non-source pathg;; in G' betweens;, s; are contracted into a single edgedt every path of
the forms;, P, i, Si, Piyis - - - Pi._,i.5i, In G corresponds to the unique paths;, . .. s;. in G'.

The lemma now follows from the claims. If two sources are @med inG \ S then there
exists a path between them that avoids the sourc8samd by claim 2 there also exists a path
in G’ that avoidsS. If two sources are connected @1 \ S then there exists a path between
them that avoids$S, and by claim 1 there also exists a path between the@ that avoids the
sources inS, and possibly uses some non-source nodes. Since tite@dy contains source
nodes, these pattig; still existinG \ S. O

Using the above construction gives the following labelicgesme: construct the labels as
before, except that we store the ‘source connectivity grighG (u) in place of the2*' reach-
ability matrices for sources i¥(u). Note that for each node and set of sourceS, we can
take the source connectivity graph f8f«) and compute the reachability matrix for sources in
G(u)\ S. Therefore, the decoder algorithm can simulate the deaderithm using the reach-
ability matrices. This reachability matrix can be compuitetime O (k"% log k') = O(k*log k)
by running an all-pairs shortest path algorithm on the seeannectivity graph and ignoring
nodes inS.

For distance separator labels, we shall show how to assigyhtgdo the edges of the source
connectivity graph such that the minimum weight path in thérse connectivity graph between
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CONSTRUCFSOURCE-DISTANCE-GRAPH(G)
1 Setw(u,v) =w(v,u) = 1for all edges{u, v} of G, andoco otherwise
2 while (G contains a non-source node)
do Let u be any non-source node n
For each pair of neighbouis y of u
Setw(z,y) = w(y, ) = min{w(x,u) + wu,y), w(z,y)}
Removeu from G (also setw(v, u) = w(u,v) = oo for all v)

o 01 b~ W

Figure 4.12 : The procedure to construct the source distance graph

52 $2

S1 53 S1 53

S4 S4

Figure 4.13: An example of a graph and its source distance graph. The distances between
sources are preserved under deletion of source nodes. Note that deleting the source node sy
increases the distance between sq, s3.

s;, s; equals the length of the shortest path betwges; in G that only uses non-source nodes.
Furthermore, we show that this property is preserved unédkatidn of sources. We call this
graph the source distance graph, and the algorithm to castis given below (as before, the
input graphG has a distinguished set bfsource nodes).

The graphi?’ constructed by the above procedure has the following ptppfar any setS
of source nodes and two sourcgss; ¢ S, dens(si, sj) = da\s(si, ;). The reason that we
only contract edges connected to non-source nodes is thetvwose there may be an edge in
G’ that represents a path containing a source ngdand then setting; € S would give an
incorrect distance using this edge. An example of the coatm is given in Figure 4.13.

For each grapli’(u) in the term tree, we can use its source connectivity grapgdonstruct
the distance matrix for sources@u) \ S for any setS of sources. This allows us to simulate
the scheme where we explicitly construct fiedistance matrices, so we can use the argument
in that case to construct separator distance labels andue &or its correctness. Since the edge
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weights in the source connectivity graph may be in the ranhge, the graph can be represented
usingO (k"% log n) bits. Therefore the distance separator labels are of¥(&&log® n) bits. We
have now proved the following result.

Theorem 4.6.10 The family of treewidttk graphs has separator labels of si@ék? log n) bits,
and distance separator labels of si2ék?log® n) bits.

Remarks

Unfortunately, the problem of determining whether thewieéh of a given graph is at most
a given integerk is NP-complete [ACP87] (although, for constanthere exist linear-time
algorithms [Bod93a]). Our algorithm works even when the tleeomposition given to it is
not optimal — the only cost we pay is that then the label size becomes the treewidth of the
decomposition given to the algorithm. There exist polyrartime approximation algorithms
that compute tree decompositions with treewidth a fac¢y/log k) of optimal, wherek is
the optimal treewidth of the graph [AmiO2, FHLO5]. Thereddor graphs having non-constant
treewidthk, we can use af(p)-factor approximation algorithm to obtain distance sefuara
labels of sizeD(p?k?log® n) = O(k?log® k log® n) bits in polynomial time.

4.7 A partial forbidden-set routing scheme for planar graphs

We now show how to utilise some of our results for small trekfwigraphs to obtain results

for some special types of planar graphs. Eppstein [Epp@@jroving on a previous result of

Baker [Bak94], showed the following connection between bednrglenus graphs and treewidth,
known as the ‘diameter-treewidth property’.

Lemma 4.7.1 (Eppstein [EppO0]) Let G be a graph with genug and diameterD. ThenG
has treewidttO(gD).

It follows immediately from Theorem 4.6.10 on treewidigraphs that genuggraphs with
diameterD have distance separator labels of gi#g?>D? log” n) bits.

Eppstein [Epp95] considered the following problem on piagraphs: given a nonegative
integerl, construct a centralized data structure so that given tvdesowve can decide if their
distance is at modt and if so, construct a path between them. We now show howtiirob
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a similar result for the case of forbidden-set routing, ksihg a distributed data structure (the
labels). Fix some nonnegative intedgekVe shall assign labels to nodes so that given the labels
for v, v and the nodes o C V(G), we can either return the distanég, s(u, v) or determine
that it is greater thah Once we can do this, we can use the labels with the routingnselof
Section 4.5 to route on a shortest pattGin S if deys(u,v) < 1. Since these labels represent
a restricted version of distance separator labels, we salhhem ‘distancd-separator labels’.
We will make use of the following planar graph covering rés@iEppstein.

Lemma 4.7.2 (Eppstein [Epp95]) Let G be a planar graph and a nonnegative integer. Then
in time O(n) we can find a collection of subgraphi with the following properties:

1. For every node of G, thel-neighbourhood of v is contained in one of the subgraphs
Gi;

2. Every node of7 is included in at most two subgraphis;
3. Every subgrapld; has treewidthO(7).

By applying Theorem 4.6.10 separately to each subgftapive can construct distancde-
separator labels of siz@(/?log” n) bits. If dg(u,v) < I for two nodesu, v then the only way
thatdes(u,v) > de(u,v) for some setS is if some nodes of' are within a distancé from
w in G. Therefore, if the distance i \ S is at most/ then it suffices to consider only those
elements ofS that lie within a distancé of «. The above lemma guarantees that we shall only
have to consider a single subgraph to do this. Therefore awve the following result.

Theorem 4.7.3 Let G be a planar graph and’(u) C V(G) the forbidden set of node, with
k < max, |S(u)| for all u. Let! be a nonnegative integer such th&f(u, S(u)) < I for all w.
Then we can construct a distributed forbidden-set routirgeste such that for any, v, we can
route on the shortest path that avoifisu), or declare that their distance i@ \ S(u) is greater
than!. The routing tables hav® (kA (G)I? log” n) bits and the label®) (k1% log® n) bits.

Remarks. ldeally, we would like to have a scheme that can route betvadlepairs of
nodes, still with the restriction tha{u, S(u)) < [ for all u. However, the problem is that even
if deyseu)(u,v) > 1, we could still have thatl sy (u, v) > dg(u,v). We would need to be
able to know which node on the ‘fringe’ of the subgraply; containingu that we should

2Thel-neighbourhood of a nodeis the set of nodes at distance at miosom v.
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Uy U1
Ug U2 t
Unp, Vk

Figure 4.14 : lllustrating the lower bound for separator labels (Proposition 4.7.4). Nodes u;, v;
are not adjacent iff the set V' \ {v;} is a separator of u; and t.

route to, in order to reachon the shortes$(u)-avoiding path. We could then route tausing
the forbidden-set routing scheme @, and then fromr to v using any shortest-path routing
scheme.

4.7.1 Lower bounds for distance separator labels

We now prove an easy lower bound on the size of separatoslbpel reduction from adjacency
labeling. We shall parametrise our lower boundipyhe maximum size of a separator that we
are interested in detecting. The motivation for this is thatould correspond to the maximum
size of any forbidden set in a forbidden-set routing scheme.

Proposition 4.7.4 Assume that we are only interested in detecting separatos&zefat most
k < n. At least one node must be assigned a separator label of)izebits onn-node graphs
in the worst case.

Proof. Let G = ((U,V), E) be an undirected bipartite graph on the node §gtg where
U=A{uy,...,u,},V ={vy,...,v,}. Constructz’ by adding a node connected to each node
of V' as in Figure 4.14. Now consider two nodess U andv € V. Itis clear thatu is not
adjacent taw in G iff V' \ {v} is a separator betweenandt in G’ (we can use the separator
labels for the seV’ \ {v} andu, v to decide whether this is the case). Therefa(&*/?) distinct
bipartite graphg~, and for any two such graplis,, G, there are two nodes, v whereu, v are
adjacent inz; but not inG,. The corresponding grapldg , G, must also have two nodesv
whereV \ {v} does not separate ¢ in G, but does in,. Therefore the sum of all the labels
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assigned to nodes must be at l€@gbg 2"%/?) = Q(nk) bits, so some node must be assigned a
label of sizeQ)(k) bits. O

Remarks. Even whenk is unrestricted, the lower bound does not appear to be tigit.
storing the entire graph in each label, we can get a trivial?) upper bound. Unfortunately,
nothing better is known for general graphs and sditwe) lower bound leaves a large gap. Itis
worth examining the lower bound to see that it is most likalyffom tight. In particular, it does
not seem to make good use of the combinatorial nature of th@qan since each nodeis im-
plicitly associated with its witness skt\ {v}. For this reason, we expect that the lower bound
can be strengthened (n*/?) or evenQ(n?) but we have been unable to do so. Most likely,
the current construction will not suffice and some more inisiigto how the structure of the for-
bidden sets affects the connectivity of the graph will bedeee The interesting (but seemingly
difficult) case is wherk is small, sayO(log n). In this case, it would be very interesting to show
that we can construct sublinear-sized separator labetgeioeral graphs.

For the case of distance separator labels, the situaticmmewhat different — if the sei
Is empty then it reduces to the problem of distance labelingnidirected graphs. It is known
that there are graphs ennodes andn edges where some node must be assigned a label of size
Q(m/nlog(n?/m)) bits [CHKZ02]. Therefore, distance separator labels mustfsize2(n),
regardless of the size of the setllowed. This immediately gives the following lower bound.

Proposition 4.7.5 There aren-node graphs where some node must be assigned a distance sep-
arator label of siz&)(n) bits, regardless of the size of the skt

Since distance separator labels are more general tharasapkbels, the remarks made
above for separator labels also apply here; in particulardarnot expect tha®(n) is a tight
lower bound for distance separator labels in general graph$ortunately, we have not been
able to prove anything stronger and improving this is a cetey open problem.

4.8 Decremental graph connectivity

In this final section, we use some of the techniques for coasiig separator labels, combined
with a novel reduction to orthogonal range searching, tonshow to solve dynamic graph
connectivity with good worst-case query time. We then show ho use this technique to
construct efficient algorithms for solving the problemteédge witness.
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Definition 4.8.1 (k-vertex witness) Given a graphG, the k-vertex witness problem is to pre-
process~ so that giverk nodesS, we can quickly decide wheth@ris a separator ofi, v in G,
i.e. whethelS is a witness to the fact that, v are notk-connected irG.

Separator labels can be seen as a distributed version éftkeex witness problem. The
k-edge witness problem is defined similarly but we want to kmdvetheru andv arek-edge-
connected. These two problems are closely related to thestuelied problem oflecremental
graph connectivity Here, we wish to construct a data structure that efficiestigports the
following operations on a graph: ERETE(u, v), which deletes edgéu, v} from the current
graph, @®NNECTED(u, v), which returnsTRUE iff u,v are still connected. The node version
of the problem is similar, except that we instead supp@&t®EXe(u), which deletes a single
node and all its adjacent edges. It is easy to seekthatrtex witness can be solved using a
decremental connectivity algorithm — delete the Seif nodes, test connectivity of, v and
then reinsert the nodes deleted. In fact, the best knowndsofank-vertex witness (ané-edge
witness) are obtained in this way.

We are interested in worst-case bounds because the proltenase trying to solve are
fundamental network problems and therefore are most likelye used as subroutines in higher-
level applications. Without a good worst-case bound on #opmance of the underlying
algorithms, it is difficult for algorithms that use them tapide good performance guarantees
of their own. Despite much work, the best known worst-case fior DELETE(u, v) is O(y/n)
due to Eppstein et al. [EGIN97] who improved the result ofdérickson [Fre83] fron®(y/m)
to O(y/n) per update using the sparsification technique.

All known algorithms that have better update time haweortizedtime bounds. The first
algorithm with polylogarithmic update time was given by Hemger, King and Thorup [HK99,
HT97]. They gave a fully dynamic algorithm (supporting batkertions and deletions) such
that for a sequence 6i(m,) update operations (where, is the number of edges in the initial
graph), an update takes expected amortized @fleg” n) and a connectivity query takes time
O(logn/loglogn). This gives an algorithm fok-edge witness with update tim@(log” n)
and amortized expected query tirék log” n). This query time is amortized over the updates
made, so this is not a worst-case bound for a sikegelge witness query.

Holm et al. [HALTO1] obtained a deterministic version of taigorithm with O(log® n)
amortized time per update. However, as before, this timentéas amortized over a large
sequence of edge insertions followed by deletions. Thezetbere is no guarantee that the cost
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of a deletion will be small when taken over some isolated Eétexlge deletions.

We improve the worst-case bound foredge witness in general graphs when the number of
deletions is fairly small, i.ek = O(/n). Our algorithms are simple, and reduce the problem
of maintaining decremental connectivity to maintainintlyfadynamic connectivity (supporting
both insertions and deletions) on some auxiliary gr&phwhich usually has size linear in
the number of deletions already performed. We can then userkmalgorithms to maintain
connectivity onH, and answer queries d@r by quickly translating them to queries @h. An
artifact of our approach is that the time for a deletion dejsesn the number of nodes or edges
already deleted from the original graph, which explains wiopnly works for small numbers of
deletions. Our main results for this are the following:

e We give an algorithm for decremental connectivity that Hasdhekth edge deletion in
worst-case time(k logn) and answers connectivity queries in tidék?). The down-
side is that it may use spacEnA(G)?).

e Using the above algorithm, we solkeedge witness in general graphs with worst-case
query timeO(k?log n) and spac®(k*n?). This improves thé®(k+/n) bound of Eppstein
[EGIN97] for k = O(y/n). Our algorithm uses a novel reduction from orthogonal range
searching.

e Let 7" be a spanning tree of G with degreg 7). We give a decremental connec-
tivity algorithm using space(n*logn/loglogn), handling thekth deletion in time
O(A(T)?1logn + klogn) and connectivity queries i®(k?). For Hamiltonian graphs,
graphs with bounded independence numbgp)(1)-tough graphs and almost alregular
graphs (for fixed- > 3), this givesO(k log n) time for deletions.

4.8.1 Preliminaries

We begin by describing the algorithm of Henzinger and Kin&)IHHK99], since our algorithm
works in a conceptually similar way. They achieve both pmddrithmic update and query time
but this bound is expected and amortized dvér,) updates, where, is the number of edges
in the initial graph. We remove this amortization but at tlestcof additional space and an
update time that depends linearly on the the number of edgleted thus far.

They maintain a spanning forest of the graph, starting wothes arbitrary spanning trege
(we assume that the graph is initially connected). When addege is removed froml it
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breaksT into two subtreed,T5; and a replacement edgéfor e needs to be found (if one
exists) to reconnecty, T, into another spanning tré€ = 77 U T, U {¢'}. To do this, they
maintain a partition of the edges inf®logn) levels; to find a replacement fer the nontree
edges in a particular level are randomly sampled. If one emtltonnectd’ to 73, then the
trees are reconnected using this edge. Otherwise, all thieegoedges adjacent to nodes/pf
are searched exhaustively. By carefully managing thistparing and sampling, they obtain
good amortized bounds on the update times.

They also employ a technique to efficiently represent trestie a linear form, which allows
trees to be efficiently spliced or reconnected at a given.etigis data structure is known as the
Euler tour tree Since we also make use of it, we shall now describe it.

Euler tours

An Euler tour of a graph is a path that traverses every edgetlgxance in each direction.
Henzinger and King [HK99] use an Euler tour of a spanning Trex ¢, constructed by calling
the following procedure with the root node.

ET(v)
o> Constructs an Euler tour of the tree
1 visitv
2 for each childu of v
3 do ET(u)
4 visit u

Figure 4.15 : Constructing an Euler tour of a tree

Each edge is visited twice (traversed once in each diréctod every degreé-noded
times. Each time any nodeis encountered in the tour, we call this aacurrenceof « and
denote the set of occurrenceswoby O(u). We shall refer to a particular occurrence by its
unique position in the tour. If the sequent& (T') is stored in a balanced binary search tree,
then one may insert an interval or splice out an intervaldigean edge of the tour) in time
O(logn), while maintaining the balance of the tree.

Some of our algorithms use an Euler tduif’ (&) of the entire graplkis instead of a spanning
tree. In this case, we can use the well-known theorem of Ehdrstates that a graph has an
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Euler tour iff every node has even degree. Therefore a sitripketo ensure that: has an Euler
tour is to ‘double up’ each undirected edge so that it get@tseed once in each direction.

Sparse connectivity certificates

The concept of a spargeconnectivity certificate is important for some of our aligfoms. A
sparsek-connectivity certificatdéor a graphG is a subgraply’ of G, containing at mostn
edges, such that any cut of value at mbogt G has the same value in the certificate. The idea
of using such a certificate is that if we are only interestediatecting cuts (or separators, if we
are in the node case) of size at mastthen without any penalty we can work on the sparse
graphG’ instead of the (possibly dense) gra@gh

Nagamochi and Ibaraki [NI92] show how to construct a sparsennectivity certificate
in linear-time. The problem is also known to be in NC [NH98daran be solved using a
distributed algorithm [Thu95, JM96].

4.8.2 The algorithm

We now present our algorithm for solvirkgedge witness for general graphs using a centralized
algorithm. As described earlier, Henzinger and King [HK@8¢ an Euler tour data structure to
represent a spanning tree@f In contrast, we shall construct an Euler tour of émtire graph

The algorithm can be explained as follows. We maintain anlianx undirected graph{
where we associate with each nodefdfa connected interval of7'(G) (i.e. a connected
subpath of the Euler tour) and the nodesibfform a disjoint partition of the subpaths of
the tour. There is an edge between two nodeg/dff there is some node € V(G) with
an occurrence in both intervals. We denote/ify) a node ofH whose interval inET'(G)
contains an occurrence af(if there is more than one, choose one arbitrarily). For aeger
i corresponding to an occurrence of a node, we denotefythe (unique) node off whose
interval on the tour contains(the version used will be clear from the context).

For a nodeu € V(G), let H, be the subgraph off induced by the nodes whose intervals
contain an occurrence af. Let iy, ho be any two nodes off,, then there must be an edge
{h1, ho}. It follows that the subgraph/, is a clique, for all.. We shall represent the graph
by storing a balanced binary search tree (e.g. a 2-3 tredjeoimtervals associated with nodes
of H. This allows us to find the nodg«) in worst-case timé(log |H|). The following lemma
states a simple property &f.
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Lemma 4.8.2 Nodesu, v € V(G) are connected id7 iff h(u), h(v) are connected irH.

Proof. First, note that sincél,,, H, are cliques, we can choose to compute reachability between
any pair of nodes, € H,,b € H,. The lemma now follows from the definition ¢f — every
path fromu to v in G corresponds to a set of paths frérfu) to ~(v) in H, and every path from
h(u) to h(v) in H corresponds to a collection of paths franto v in G. O

Now we can describe our algorithmf/ starts as a singleton representing the entire tour
ET(G). Todelete an edggu, v} € E(G) the Euler tour is spliced at this edge in ti¢log ).
This corresponds to splitting exactly one nddef H into two new node$,, hy with N (h) =
N(hy) U N(hy). Therefore to construct the new edgesipfandh,, we do not need to test for
edges between all the nodesf- it suffices to test only the old edges/oto see if they are
also edges ok, or hy. By definition of H, there is an edge between two nodedHofff their
corresponding intervals in the Euler tour both contain azuaence of some node < V (G).

We shall show that this ‘edge test’ can be done in worst-case @ (logm) = O(logn) for
each edge by making use of orthogonal range trees.

To maintain connectivity o/ under node insertions and both edge deletions and insgrtion
we can use any fully dynamic connectivity algorithm. A simpiethod is to store the adjacency
list representation off; each edge insertion and deletion then takes tinie), and connectiv-
ity queries can be answered by running a depth-first seartmsO(|V (H)| + |E(H)|) =
O(|H|*). An alternative is to use the fully-dynamic algorithm of Bpgin et al. [EGIN97],
which handles edge insertions and deletions in tiM¢/|H]) and answers connectivity queries
intime O(1).

To answer connectivity queries, we use the fact that theraplbhd?,, is a clique, so one node
of H, can reach some nodeof H iff all of H, can reach. A connectivity query for, v is
then handled by finding(u), 2(v) and then calling ONNECTEDy (h(u), h(v)). To handle the
guery @NNECTEDWe simply call ®NNECTEDy, sinceG is connected ifff is connected.

Reduction from orthogonal range searching

The crucial part of our algorithm is the ability to test for etige in the auxiliary grapki. We

do this by using a reduction to two-dimensional orthogoaagye searching as follows. range
treeis a data structure that supports two operations on a tweskional spaceNSERT(z, y),
which inserts a poinfz,y), and BoxX-EMPTY((x1,v1), (z2,v2)), which returns true iff the
box with corners(xy, ;) and (xs,y,) does not contain any points (sometimes we shall use
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(3, 4)

(4,1) (4,5)

Figure 4.16 : The box (2,4) x (3,5) is empty iff there are no edges between the intervals [2.. 3]
and [4..5] on the graph

Box-NoT-EmMPTY for the negation of this function).

Given an undirected grapfi and a unique identifief(u) € [1..n| for each node:, each
undirected edgéu, v} of G is mapped to two point&/ (u), [(v)) and(I(v), I(u)) on ann x n
grid. Then there is an edge @ with endpoints having identifiers in both the intervals. b
and[c. . d] iff the box (a, ¢) x (b, d) is nonempty (fo < b, ¢ < d) as illustrated in Figure 4.16.
Orthogonal range searching has been extensively studrathdbie last thirty years, with many
applications to databases and computational geometryeTdre several dynamic algorithms
having efficient worst-case update and query times. Thisaditst time we know of that they
have been used for graph connectivity. The transformatesctibed above may also be of
independent interest.

The transformation described above is used as follows, larstrated in Figure 4.17. For
each ordered pair of occurrenaesu; of nodeu, add a pointu;, u;) to the space and associate
with each node off a unique intervali .. j] (with i < j) on the Euler tour. Then the two
nodes ofH associated with the intervals..b] and|c..d] are adjacent irff iff there exists
some node: € V(G) with occurrences ija .. b] and|c..d] in the tour, which occurs iff the
box (a,c) x (b, d) is nonempty. The algorithm of this section does not needrtwwe points
(splitting nodes of{ keeps track of the deleted edgesHf so a static range tree algorithm will
suffice (in contrast, the algorithm of the next section reggia dynamic range tree). Chazelle
[Cha88] has given an algorithm for the static case that stonesints with space)(r) and
answers emptiness box queries in worst-case €@leg ).

The decremental connectivity algorithm is given in full ig&re 4.18, and the procedure
for k-edge witness in Figure 4.19.
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d (@) The graph G

Cc

b/

(c,d) (ea)(ae) (dl,C)

(b) An Euler tour of G

(only edges corresponding to
occurrences of node c are drawn)

|
|
|
|
|
|
|
|
|
|

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |
|

| |
| |
' rood ! Deleting edges {a,e} and {c,d}
a—b—c--d— eJ:_ ai— e d—e—c— a— 6—b—a cut the tour at the points indicated
o | by the dashed vertical lines

|

|
|
|

(c) The graph H corresponding

Cabc) (de )(a ) ( ed) (abca) to deleting {a,e} and {c,d}.
The edges of H indicate regions of
the tour containing occurrences
of the same node

Figure 4.17: A graph G and an Euler tour of G with the edges between occurrences of the
same node marked. The dashed lines represent the splicing of the tour from deleting edges
{a,e} and {c, d}. The auxiliary graph H at this point is shown below. There is no path between
any nodes of H containing occurrences of e and b, therefore {a, e}, {c,d} is a cut between e, b
in G.
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INITIALISE (G)

Double up each edge of
ET(G) « an Euler tour o7
for each node:
do O(u) « the set of occurrences afin ET(G)
for each pain;, u; € O(u)
do RANGE-TREE-INSERT(u;, ;)
Let H be a graph with a single node. . 2m)].

~NOoO ok wWwN P

DELETE({u,v})
1 for each appearande,i + 1} of edge{u,v} in ET(G)

2 do EULER-TOUR-DELETE({i,i + 1})
> Split & into two new node#, ho
3 h « [a..b] = h(i)
4 hy < INSERTFNODEg([a . . 1))
5 hy < INSERFNODEg ([t + 1..0])
> Check for an edge betweeén andh,
6 if BOX-NOT-EMPTY((a,i+ 1), (i,0))
7 then INSERFEDGE (hy, hs)
> Check for edges betwee¥i(h) and N (hy), N (hs)
8 for each neighbout’ = [c¢..d| of hin H
9 do if Box-NOT-EMPTY((a, ¢), (i,d))
10 then INSERFEDGEy (hq, 1)
11 if BOX-NOT-EMPTY((i + 1,¢), (b,d))
12 then INSERFEDGE (hs, 1)
13 DELETE-NODEg (h)

CONNECTED(u, v)

> Returns true iffu, v are connected itr
1 return CONNECTEDy (h(u),h(v))

CONNECTED

> Returns true iffG¢ is connected
1 return CONNECTEDy

> O(logn)

> O(log | H])

> O(1)

> O(logn)
> O(1)

> O(logn)

> O(1)

> O(A(H))

> O(|H[?)

> O(|H|?)

Figure 4.18 : The decremental connectivity algorithm
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k-EDGE-WITNESS(w, v, {1, 1}, - -, {Tk, Yk })

1 G < asparsé-connectivity certificate ofs
2 INITIALISE(G')

3 LetH contain a single nodg . . 2m]

4 for eachi € {1,...,k}

5 do DELETE({z;,v;})

6 return CONNECTED(u,v)

Figure 4.19 : The algorithm for k-edge witness

Complexity

Let DELETE[k| denote the worst-case time taken byUETE for any sequence of edges.
Assume that edges have been deleted frafm Then the grapt has at mos2k + 1 nodes,
since each edge af appears twice in the Euler tour ¢f. Also, it takes timeO(logn) to
splice out an interval of the Euler tour, and each range tresygtakes timeOD(logn). If
we use the adjacency list representationtfthen the times for each line are as shown in
the code above. The loop at line 6 oEDETE is repeated)(A(H)) = O(k) times and so
DELETE[k] = O(klogn). Therefore the procedure EDGE-WITNESS takes worst-case time
O(k?*logn).

Alternatively, using the fully-dynamic connectivity algihm of Eppstein et al. makes lines
4,5,8,9 take time) (/| H|) and line 11 takes tim&(A(H)+/|H][), so DELETE[k] = O(k*/? +
klogn), but CONNECTED(u, v) and GONNECTEDNoOw takeO(log k) time. This might be more
useful if the algorithm was being used for decremental cotivity. However, for solvingk-
edge witness, using the adjacency representatidh gives the best time bound.

The space requirement is dominated by the cost of storingdhs representing the node
occurrences in the range tree. Since each nodé/ (G) appearsl;(v) times in the tour, there
aredg(v)? points in the range tree correspondingtdJsing the range tree of Chazelle [Cha88]
gives a data structure usitg(> ", _ dc(v)?*) = O(nA(G)?) bits of space.

For k-edge witness we are only interested in cuts of size at imoahd so we can reduce
the space requirement by using sparsmnnectivity certificates. The modified algorithm is the
same except that we replaGewith its sparse:-connectivity certificat&s” in INITIALISE. The
correctness follows from the connectivity properties @& tonnectivity certificate. The space
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complexity is reduced to that needed to store the node caoces in the range tree for the Euler
tour of the certificate, i.eO(}", .\, der(v)?) = O(nk) bits in the worst case that we have a
complete bipartite graph dtk nodes. The query time is unchanged, as it only depended on the
set of edges being deleted.

Note that this idea can be applied to any decremental comitglgorithm when we are
only interested in cuts of small value. Since there are #lyos [Tho00] that use space(m),
this would transform them to use spagékn) for solving k-edge witness.

4.8.3 An more space-efficient algorithm for tree-like graph S

In this section we reduce the space requirement of the prevadgorithm but increase the
query time for general graphs. For graphs having a spanreegitith small maximum degree,
however, we shall show how to maintain a small query time.

Let 7" be a spanning tree aff having degreeA(7T"). We give a decremental connec-
tivity algorithm that uses spad@(n?logn/loglogn) and handles théth deletion in time
O(A(T)*logn + klogn). It answers connectivity queries in tinigk?) and therefore gives an
O(kA(T)? log n+ k? log n)-time algorithm fork-edge witness, which i©(k? log n) for Hamil-
tonian graphs, graphs of bounded independence nurmmb@r,l)-tough graphs and almost all
r-regular graphs (for fixed > 3). As before we can use a different algorithm to maintain con-
nectivity on the auxiliary graph, and this give§A(T)?log n + k%2 logn) time for deletions
but with O(log k) query time.

The algorithm is more similar to that of Henzinger and King<®9] than the one of the
previous section, in that we use a spanning forest ratharttit@Euler tour of the entire graph.
The main difference is that instead miintaininga spanning forest af?, we do not bother to
replace tree edges when they are deleted. Instead we kegmfréne fragmented parts of the
forest as tree edges are deleted, and use this to answeirctigitpgueries efficiently.

Initialisation

The algorithm works as follows. Consider an undirected cotetegraphG = (V, E) and

a spanning tred” = (V, F') of G. We construct the Euler tout7(T") of T' (note that in the
previous section we used the Euler tourf and maintain an undirected graphwhose nodes
represent intervals on the Euler touriaf As before, we build a range tree with a point for each
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pair of occurrences of the same nade.e. the seO(u) x O(u). Therefore there are at most

Z degr(v (Z degr(v ) (2n — 2)?

veV veV

points since in any tre€ we have) . degr(v) = (n — 1).

We must also handle the nontree edge&ofAssume that there are’ such nontree edges.
We do this by adding to the range tree for each nontree ¢dge} ¢ G, a point(u;,v;) for
each pair of occurrences i(u) x O(v). Since each node appears in the Euler tour af
degr(v) times, the number of nontree edge points is

2
Z degr(u)degr(v) < Z degr(u)degr(v (ZdegT ) < 4n?

{u,w}EE\F {uv}leE veV

for any spanning tre&'. If the number of nontree edges is small (e(g.is tree-like) then it
makes sense to bound this bymn (m’A(T)?, 4n?) (by subtracting the sum containing the tree
edges). Combining the space requirements for tree and eoatiges, the algorithm uses at
mostmin (8n2, (m’ + n)A(T)?) points in total.

Deleting an edge

Assume that we represent the auxiliary graphvith its adjacency list (so that edge operations
takeO(1) time). Deleting a tree edge is handled as before: we deleteath appearances of
the edge from the Euler tour @f, each of which splits some node &f into two nodes. We
then test for edges adjacent to the new nodeX afsing emptiness queries on the range tree.
This takes total timé&(k log n) afterk edges have been deleted (since the gidphill contain

at mostO(k) nodes).

Deleting a nontree edde:, v} has no effect on the Euler tour &f but now we must delete
all the points(u;, v;) € O(u) x O(v) from the range tree, corresponding to the eflge} and
the occurrences af andv in T'. After deleting each point.;, v;) we do a range query to check
that an edge still exists ifiY between the nodes whose intervals contgin;. If this check
fails then we delete the corresponding edge fi@min total, this require®(A(T)?) emptiness
gueries in the worst-case.
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Answering connectivity queries

Connectivity queries are answered exactly as before: to en€@aNNECTED(u, v), we find
h(u) andh(v) and check whethéei(u) can reacth(v) in H. As before, the correctness of this
follows from Lemma 4.8.2 and that the subgraphsare cliques inf.

Complexity

Mortensen [Mor03] has given a dynamic range tree data streithat handles emptiness queries
and deletions in worst-case timi&log ), and uses spae@(r log r/ log log r) to storer points.

If we use this algorithm then we obtain a decremental comngcalgorithm that handles the
kth deletion in worst-case tim@(A(T')* logn + klogn) and uses spad@(rlogr/loglogr),
wherer = min(8n?, (m’' + n)A(T)?).

It is clear that our algorithm relies on constructing a spagitree of the graph having small
maximum degree. In fact, it actually requires a spanning sch that if{u, v} is a nontree
edge ofGG, then the productegr(u)degr(v) should be small. There are several results known
about graphs with spanning trees of small degree A'ét7, T') be the smallest integefrsuch
that G has a spanning tree of maximum degieeDeterminingA*(G, T') exactly is NP-hard,
since A*(G,T) = 2 iff G has a Hamiltonian path, which is NP-complete [GJ90]. On the
other hand, Furer and Raghavachari [FR94] give a polynonmed-approximation algorithm
that outputs a spanning trdéewith degree at mosh*(G,T') + 1. A theorem of Dirac [Dir52]
says that if each node @f has degree at leas{/2, thenG contains a Hamiltonian cycle, and
therefore a spanning tree of degree 2. It is known that al@mbstregular graphs (for > 3)
have a Hamiltonian cycle.

An alternative characterisation &f (G, T') is in terms of theaoughnes®f the input graph.

A graphG = (V, E) is t-toughif the number of connected components’df S is at most.S|/t
for every separatay C V. In 1989, Win proved the following theorem.

Theorem 4.8.3 ([Win89]) Lett be a positive integer. Every/t-tough graphGG has a spanning
tree of degree + 2, i.e. A*(G,T) = O(t).

Combining the above theorem with the algorithm of this sexgives the following result.

Theorem 4.8.4 Let G be 1/t-tough. Then we can solve decremental connectivitgzphan-
dling thekth deletion in timeD(¢? log n + klogn) and answering connectivity queries in time
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O(k?). The algorithm uses spa@@(n?logn/loglogn) bits. Furthermore, only polynomial
preprocessing time is required.

The above theorem immediately implies that we can also Soldge witness in worst-case
time O(kt?logn + k*log n) on1/t-tough graphs.

Remarks. If the number of edges itv \ 1" is zero (i.e.G is a tree) then we can ignore the
analysis in the case of the nontree edges and setlthdeletion takes timé@(k logn). Similarly,
if the number of nontree edges is small (for examplas ‘tree-like’), it may be possible to do
better. For example, a good randomized bound may be pos$sitdensidering the probability
of deleting a nontree edge at each step. We leave it as an opleleqm to obtain such bounds.
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INITIALISE

1 T « aminimum degree spanning tree®@f

2 FET(T) « the Euler tour ofl’

3 for eachnode: € T

4 do O(u) < the set of occurrences afin ET(T")

5 for each pair of occurrences, u; € O(u) x O(u)
6 do RANGE-TREE-INSERT(u;, ;)

7 for each nontree edde:, v} € G

8 do for each pair of occurrences, v; € O(u) x O(v)
9 do RANGE-TREE-INSERT(u;, v;)

10 H «+ agraph with a single node representing the intefvaln|.

DELETE({u,v})
> Assumev is the parent ofi
1 if {u,v}is atree edge
2 then for each appearande, i + 1} of edge{u, v} in ET(G)

3 do EULER-TOUR-DELETE({7,7 + 1}) > O(logn)
> Split & into two new node#, hy
4 h « [a..b] = h(i) > O(log |H|)
5 hy «+ INSERFNODEg([a. . 1)) > O(1)
6 ho < INSERFNODEy([i + 1..0])
> Check for an edge betweeén andh,
7 if BOX-NOT-EMPTY((a,i + 1), (,b)) > O(logn)
8 then INSERFEDGE (hy, ho) > O(1)
> Check for edges betweée¥i(h) and N (hy), N (h2)
9 for each neighbout’ = [¢..d] of hin H
10 do if Box-NoOT-EMPTY((a, ¢), (i,d)) > O(logn)
11 then INSERFEDGEy (hy, 1) > O(1)
12 if BOX-NOT-EMPTY((i + 1, ¢), (b,d))
13 then INSERFEDGEy (ha, 1)
14 DELETE-NODEy (h) > O(A(H))
15 else > {u, v} is not a tree edge
16 do for each pair of occurrences, v; € O(u) x O(v)
17 do RANGE-TREE-DELETE(u;, v;)
> Check for an edge betweértu,;) andh(v;)
18 hy « [a..b] = h(u;) > O(log |H|)
19 hy «— [c..d] = h(v;)
20 if BoX-EMPTY((a, ), (b,d)) > O(logn)
21 then DELETE-EDGEy (hy, h2) > O(1)

Figure 4.20: The decremental connectivity algorithm for graphs having a spanning tree with
low degree



CHAPTER 5

Handling Intermediate Nodes

The previous chapter considered the problem of routing feosourceu to a destinatior,
using the lowest-cost path to. However, the routing process relies on intermediate nodes
forwarding packets towards the destination, possibly @legiths that are of high cost to them.
If we assume that the nodes are autonomous, competing sagianis (such as the autonomous
systems on the Internet), then these intermediate nodesimgyy drop these packets. This
type of behaviour is can be seen in the BGP Internet routingriigm — nodes may choose to
only advertise routes that are of low cost to them, so nodesgly discover routes where every
subpath is also of low cost to its source. This problem do¢snse in shortest-path routing,
since every subpath of a shortest path is also a shortesabylamd therefore the intermediate
nodes will always route on shortest subpaths.

In this chapter, we extend the routing model of the previdwegpter to take into account the
costs incurred by intermediate nodes, when we use forbiddepolicies. We shall call a path
P,, a good path if all of it subpathB,,, have zero cost, i.e,(P,,) = 0. We shall also assume
thatk is an upper bound on the size of a forbidden set,/i.€ max, |S(u)|. Our main results
are the following.

e Taking into account intermediate nodes is hard. Consideramyng scheme that can
decide if there exists a good pdikforesending the packet. We show that such a scheme
must assign labels to nodes (not just routing tables) of®izén + & logn/k) bits. This

100
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lower bound holds even for trees, and stands in contraseto thlog n) bound shown in
the previous chapter for distance labels in trees. Sinctatieds are placed in the packet
header, this makes routing on ‘good’ paths infeasible.

e We show that the lower bound is almost tight by giving a schérmaecan decide if there
Is a good path in trees. Our scheme uses labels off?s@z%) bits and makes routing
decisions in tim&)(log kn). We also show how to extend the scheme to compute a 2-
approximation to the sum of costs along the path ugitg’kn) bits per label.

e We show that it is possible to avoid the lower bound by not kimegif there is a good
path before sending the packet, and instead letting thespaeturn if it cannot be routed
on a good path. In this case, we show a simple routing scheatentrks in general
graphs, and uses(k)-bit labels. The price is that the packet headers may becarge,|
and a packet may travel the diameter of the graph before betoghed.

e Finally, we show how to construct centralized algorithmsstfee problem, with various
time-space tradeoffs.

Recall that each node assigns a non-negative cost to evenyraitiec, (v) = 1iff v € S(u)
and0 otherwise. Define theost tou of a pathP,, asc.(Pu,) = >~ ,cp,. cu(w), and the full
cost (or simply cost) of’,, as

C<Puv) = Z Cw(Pwv> (51)

WE Py
whereP,,, is the subpath of’,, from w to v. A good path is then a path with zero cost, and
a ‘forbidden-set-avoiding’ (fs-avoiding) path is a pathttwcost zero to the source node. If
there exists a good path fromto v then we say that can reach, and we call the problem of
deciding if there is a good path-reachabilityfor short.

5.1 An Q(y/n) lower bound

Section 4.6.1 showed that trees enjoylog n)-bit separator labels. Let us now consider the
problem of deciding if there is a good path framto v. The most obvious idea might be for
L(u) to store the separator labels for the forbidden sets of ehith ancestorsv, and then to
use these to check that none of themiseseparator. Unfortunately this scheme would require
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7N

U1

<~ n s

Figure 5.1 : The y/n lower bound of Theorem 5.1.1

Q(n) bit labels in the case of a line. We now show that labels of Qizgn) bits are required to
decide if the path is good in a tree.

Theorem 5.1.1 Any labeling scheme for fs-reachability emode trees with forbidden sets of
sizek must assign to some node a label of size at Igast+ 2(k logn/k) bits.

Proof. Consider the tree as in Figure 5.1 with a 8eof \/n leavesuy, ..., u ; each linked to
the root nodew by node-disjoint paths of lengtfyn. The forbidden sets are either empty or
contain a single element from the €étof leaves. Nowy,; can reachu; (for ¢ # j) iff there is

no node on the path, to w whose forbidden set contains. By assigning forbidden sets in
this way to the nodes on the paths, the nodes on each pathufrtomo can collectively select
one onij (Vf) = 2V™ subsets of/, and for each distinct choice, a distinct labeling of the
setU U {u;} = U is required.

Since the paths from thgy; } to the children ofw are node-disjoint, the labelings required
are independent for each path (since the forbidden seteohmsnode-disjoint paths will not
interfere with the output of the decoder) and so we can apyglyabove argument independently
to each path — for each of tie” distinct choices of nodes on the path framto w, there are
2v™ distinct choices of nodes on the path framto w (and each of these requires a distinct
labeling) and so on. Hence there are at l€8©v™ ... 2v" = 2" distinct labelings of the

\/ﬁ
nodes ofU. As |U| = /n, it follows that at least one node ih must be assigned a label of size

\/Lﬁ log 2" = \/n bits.
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This bound holds fok = 1 and we have been unable to extend it to depenkl. dtowever,
we can combine it with the lower bound of Theorem 4.5.3 to iobta Q(\/n + klogn/k)
bound, i.e. wherk is approximately greater thagn the lower bound grows linearly with
k. O

This lower bound rules out the possibility of extending teparator label scheme of the
previous chapter with only a small (polylogarithmic) inase in size. For the tree in Figure 5.1,
it is quite easy to achieve a matching upper bound: for eadenc U, the labell(u) stores
(usingO(4/n) bits) for every other node € U, whetheru has a good path te. Unfortunately,
this strategy is doomed to fail for the complete binary tnebere v would end up storing
reachability separately fa2(n) leaves.

5.2 A O(Vkn) upper bound

In this section we show an almost optimal upper bound on thellsize for trees. Define
fr(u,v) = 1iff there is a good path from to v in 7'. First we look at two simple cases from
which we derive the scheme for general trees.

Line scheme.On the line, labels of siz&[log n| bits suffice: number the nodes from left to
right, then store in.(v) the position ofv and the positions of the two closest nodes 1g§fgnd
right(v) that cannot reach, from each side of. Given L(u) and L(v), the decoder declares
thatu can reach iff u lies between left{) and right¢). Notice that the label size is independent
of k, the size of the forbidden sets.

Tree scheme.Next, consider a complete binary tree @modes — each of the/2 leaves
may be independently unreachable frarao listing these regions as for the line will U3¢n)
bits. However,O(khlogn) bit labels suffice for a tree of height the label foru stores, for
every ancestow of u, (f(u,w), f(w,u), Lsgp(S(w))), whereLsgpp(S(w)) are the separator
labels forS(w) in the tree. Giver.(u) and L(v), the decoder finds the least common ancestor
w of w andv and checks thaf(u, w) = 1, f(w,v) = 1 and that none of the forbidden sets on
the pathu to w areuv-separators in the tree. This scheme is clearly inefficenaflong path.

The above discussion shows that, while lines and complees thave efficient schemes,
each fails on the other case. We now show how to tradeoff lestilee two schemes to obtain
a scheme with labels of size at ma@st\/kn) bits. We first need some preliminary definitions.

A separatorof a rooted tred’ is a nodew whose removal partitions the tree into connected
components, each with at mast2 nodes. In 1869, Jordan proved that such a node always
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Figure 5.2 : An example of a separator tree.

exists and can be obtained in the following way. Pick an eabitnodeu from the tree. Ifv
partitions the tree into components of size at mg@then we are done. Otherwise, there exists
a component with more thaim/2 nodes — let. be the node adjacent toin that component,
changev to u and repeat the process. Since there are a finite number o$ motlee tree, and
each node is visited at most once, this process terminate®ar time and finds a separator
The separators can be used to buildeparator tree7” for T as follows. First, find a
separator of 7" and make it the root df”. Then, recursively construct the separator trees of
the components df \ {w} and make the roots of these trees the childrem of 7. It is clear
that the separator tree has depttiogn) and can be constructed in tinign logn) since we
can find the separator nodes in time linear in the size of theeses. An example of a separator
tree is illustrated in Figure 5.2. We also need the notion phiating. Apainting y of a tree
T partitions the nodes df into disjoint subsetShallow(x) andDeep(x). An a-paintingis a
painting with the following properties:

1. The shallow nodes induce a connected subtrdéwith at mostn/« leaves;
2. For every node € T, there are at most deep nodes on the path framto the root.

The following ‘painting lemma’ is key to the labeling scheied shows how we can tradeoff
the space required between the deep and shallow nodes.
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Lemma 5.2.1 For anyn-node tre€l” and any integel < « < n, there exists am-painting of
T, computable in linear time.

Proof. Assume that the tree is rooted; if not then choose a root nddeaily. We claim that
the following procedure is suitable: for all subtrees/ofiaving depth exactly, paint all their
nodes deep All remaining nodes (above these subtrees) @ire painted shallow.

Condition (1) of the definition of a painting implies that dlktshallow nodes must be above
all the deep nodes. Now we just have to look for the frontiéwken the shallow nodes (above)
and the deep nodes (below). Consider all the nodes whosesslhtave depth exacily Each
such subtree has at leashodes in it, so there may be at masty such subtrees in the tree. If
we paint all these subtrees deep and everything above thaiowshthen (1) is clearly satisfied
and the subtree induced by the shallow nodes contains attpadeaves.

It is easy to see how to do the painting in tif¢n): do a depth-first search from the root
of the tree, keeping track of the height of nodes on the ctpath. On the way back up, if the
height of a node is at most, then paint it deep, otherwise paint it shalfowrhis takes time
O(|V|+ |E|) = O(n). O

For some seX’ C V of nodes, we defin&* C X as theancestor-free subsetf X. X*

Is the uniqgue maximal subset &f where no distinct pair of nodes ik* are ancestors of each
other. We can define it a&* = {x € X|#ly € X : y # x andy is an ancestor of}. For
example, ifX is a set of leaves theX* = X, and if X is a path thenX* is the node ofX
closest to the root.

In the remainder, we shall use the following notatiéhjw] is the treeT rerooted atw,
idr(w) is the identifier of nodev in a depth-first search of a rooted tr€eand.A;(X) is the
set of ancestor labels for a sEtC V in a treeT'.

The labeling scheme

We now describe the labeling scheme for trees. The idea isstacbmpute the separator tree
for T. Then for every ancestar of u in the separator tree, we rerodtat w and do the
following to T'[w]: for all the deep ancestors of we apply the strategy for the binary tree (i.e.
L(u) contains the separator labels for their forbidden sets}h®remaining shallow nodes, we
apply the strategy for the line to each path of shallow noda®s the root to a shallow leaf.

1The depth of a subtree is the length of its longest path freendbt to a leaf.
2The height of a node is the minimum distance from it to a leaf.
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MARKER(T):
Letn = |V(T)| andk = max,er |S(v)].

If T contains a single node, setL(w) < (1,{},{}, fr(w,w), fr(w,w),0) and return.
Find and remove a separatoiof 7', breaking!” into subtreeqT;} of size< |T'|/2.
Recursively calM (T;); let each node € T; be given the labeL;(v).

Lety be a\/n/k-painting ofT[w] i.e. paint the nodes df as if it were rooted atv.

o &~ w0 e

For each node € T; do the following:
(@) LetDeep(v) = S(Deep(x) N P,,) be the forbidden nodes of the deep nodes on the
path fromo to w.

(b) LetS = {u € (Shallow(x) \ T;) | fr(u,v) = 0} be the shallow nodes that cannot
reachv and letShallow(v) = §* C S be its ancestor-free subset, using the ancestor
relation fromT'[w].

(c) Construct the sublabgf(v) for nodewv as follows:
j(?)) — (idT<v)7 AT[w] (Deep(v)), AT[UJ] (Shallow(v)), fT(Uv w)v fT(w7 U)7 Z)

(d) Append this ta’s label in the componerit; by doingL(v) < J(v) o L;(v)

Figure 5.3 : The marker algorithm

The marker algorithm. The marker algorithm works as follows. Consider some free
rooted atw, a paintingy of 7', and a node: with w an ancestor in the separator tfEe The
deep nodes on the path,, are stored in_(u), and the ancestor-free subset of shallow nodes
beloww that cannot reach (have no fs-avoiding path to) is stored inL(v). This is done for
each ancestow of u in the separator tree. The marker algorithm is given in FedgauB and
uses a recursive procedure, initially called with the entiee. It is clear that the marking
is done in polynomial time. Note that each tree is rerooteitsageparator before painting it.
The reason for this is that if we used the paintingofather thari’[w], then the shallow/deep
tradeoff given by the painting lemma would not carry throtiglthe size of the labels. This is
because the path fromto v must be ‘split’ at the same node used as the root in the pgintin
i.e. the separatap.

The decoder algorithm. The decoder algorithm is given in Figure 5.4. Givefu), L(v),
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DECODER L(u), L(v)):

Assume that.(u), L(v) are of the form
Lu) = Fi(u)o...oT,(u)
L(v) = Ji(v)o...oJ,v)

1. If ¢ = 1 thenw is the separator df, so return the value of(u,v) € J;(u). If p = 1 then
return the value of (u,v) € J1(v). Forp,q > 1 let

Ji(u) = (id(u),Deep(u), Shallow(u), f(u,w), f(w,u),1)
Ji(v) = (id(v), Deep(v),Shallow(v), f(v,w), f(w,v), )

2. If i # j thenu,v are in different subtrees andis the least common ancestorwafv in
the separator tree. Do the following:

(a) Check that: can reachov and thatw can reachy via forbidden-set avoiding paths
(by checkingf (u,w) A f(w,v)) It remains to decide whether any of the forbidden
sets of nodes on the path,, appear on the patR,,,.

(b) Using L(u), check that none of the forbidden nodedieep(u) are ancestors of
in T'[w], by checking thatd(v) ¢ [i, j] for all [, j] € Deep(u).

(c) UsingL(v), check that none of the unreachable nodeShisllow(v) are ancestors
of u in T'[w], by checking thatd(u) ¢ [i, j] for all [, j] € Shallow(v).

Return thatf (u, v) = 1 iff all the above are satisfied.

3. If i = j thenw, v are in the same subtree. In this case, discard the sublabel$ and
J1(v) and invoke the decoder recursively on the labels

L'(u) = F(u)o...oT,(u)
L'(v) = Jw)o...oT,(v),

returning the value oD (L/(u), L'(v)).

Figure 5.4 : The decoder algorithm
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its first computes the least common ancestof «, v in the separator tree far, and then checks
(1) v can reachw (usingL(u)), (2) w can reach (usingL(v)) and (3)S(P,w) N P, = 0, where
S(P,) I1s the union of forbidden sets of the nodes/y,. The third check is conducted in two
parts. In the first part, the decoder uses the ldljel) to examine the forbidden sets of deep
nodes orP,,,. In the second part, it uségv) to examine the subtrees bfw| containing nodes
not having a good path ta

5.2.1 Proof of correctness
Lemma 5.2.2 The labeling schem@M, D) is correct, i.e.D(L(u), L(v)) = fr(u,v).

Proof. For L(u), L(v), letw = LCA(u,v) and considef'[w]. We know that: can reach iff
(1) u can reachw, (2) w can reach and (3) none of the forbidden sets of nodes on the path
appear on the patk,,. Conditions (1) and (2) are handled by just lookinglét:) and L(v)
independently.

To see that the decoder correctly decides (3), note thay exate on the pat®,,, is either
painted deep or shallow. The forbidden sets of the deep rmulésis path are stored ib(u),
and only those that are in the same subtreg[of] are stored in the label. Hence if one of them
is an ancestor af, then it must be on the path,,. It remains to check that none of the shallow
nodes on the pathk,,, have forbidden sets on the pat,.

Imagine that there is some shallow naden the path?,,, where an element &f(y) is on
the pathP,,,, so thatv is unreachable fronp. Some ancestor af in 7'[w] must be in the set
of unreachable shallow nodes stored.ifv). Finally, if no shallow node on the paif,, has a
forbidden set that intersects the pdtl,, then no unreachable shallow node stored.{n) is
an ancestor ofi. O

5.2.2 Complexity

The efficiency of the labeling scheme relies on the obsemaétat it is possible to paint the
nodes of the tree so that there are not too many deep nodeslopaih (and henck(u) does
not need to store too many forbidden sets), and so that theegslcontaining shallow nodes
that cannot reach can be described with a small amount of space.

Our initial idea was to use the painting as described in the laB&ling scheme of [Pel00]:
a node is painted light if its subtree contains at most hafrtbdes of the subtree of its parent.
This guarantees that each node has at most one heavy chiltha@nelery node has at most
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O(logn) light ancestors. However, this is not what we need as we castet instances
where the forest induced by the heavy nodes would kHve leaves and therefore require lots
of space. The following lemma gives the main result of thigise.

Theorem 5.2.3 The labeling computed byl (7)) has labels of siz€&(v/kn) bits and the de-
coder algorithm answers queries in tifi#log kn) on this labeling.

Proof. Assume that the painting used by the marker algorithm on each subtree igsvan
painting, for some integer < o < n. Lemma 5.2.1 implies that in a subtree witthodes and
forbidden sets of size at mokt the setShallow(v) will contain at most:/a nodes and the set
Deep(v) will contain at most« nodes.

Since each ancestor label requitdsg n bits to store the interval of identifiers of its de-
scendants, the sublabel§v) are each of size at mosta + n/a)(2logn) + 3logn + 2 <
3(ka + n/a)logn bits (for large enough such thatcae + n/a > 3). Since the separator tree
has depth at mosbg n, the recursion has logn levels, so each label is composed of at most
this number of sublabels.

It follows that there is a scheme with labels of at md&ta + n/a)log” n bits for any
choicel < o < n. Minimizing the quantityka + n/a givesa = /n/k, and using this
choice ofa for each subtree of size and with forbidden sets of size at mds{note that the
value ofa is recomputed for each subtree) gives a labeling schemg latiels of size at most
3(ky/n/k +n/\/n/k)log’n = 63/knlog®n bits.

The time complexity of the decoder is dominated by step (2jictwis executed exactly
once per query. Step (2a) takes ti@¢1). For steps (2b) and (2c), consider the following
related problem: there is a sg¢of intervals{[l;, ;] } (wherel;,r; € {1,...,n}) and we want to
decide if some integer € [1,n] is contained in any of the intervals. This can be done in worst
case timeD(log n) using aninterval treg as described in [PS85]. The tree uses spage|),
where|S| is the number of intervals stored. Using this method to stioeeancestor labels of
the forbidden sets, step (2b) takes timéog |Deep(v)|) = O(log ko)) and step (2c) takes time
O(log |Shallow(v)|) = O(logn/«). The decoder may iteratetimes before executing step (2),
whereh is the height of the separator tree. Since the separaton&edepthog n, the decoder
takes total time)(logn + log(ka) + log(n/a)) = O(log kn). O

Remarks. Note that the constant factors involved are small—ifef 1 the lower bound is
v/n and the upper bound &,/ log? n.
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o
ololiloRol(c)

Figure 5.5: The tree used for the example and the first two levels of its recursive partitioning.

5.2.3 An example

Figure 5.5 shows a tréE that we will use to illustrate the labeling scheme. The same is
drawn in Figure 5.2.3 with the shallow nodes filled and thepdeedes unfilled. Each node
is drawn with its identifier from a depth-first search of theetr(note that the identifiers are
recomputed for each subtree in the recursion). The forlide¢s are indicated by the dashed
edges in the figure:

S(e) = {J,0},5(d) = {f},5(e) = {9}, 5(f) = {p}, S(m) = {b}

We first rootT" at its separatow. To compute the sublabel for nodeve first find the union
of the forbidden sets of its deep ancestors. The forbiddeafdae nodef containsp, whose
ancestor label i7" is [16, 18]. Next we find the set of shallow nodesn\ 7; that: cannot
be reached from (nodes in the trfEecontaining: are not considered as this part of the label is
only used for nodes in different subtrees). This is the{aetn, n}, whose ancestor-free subset
is a. The ancestor label far is [10, 18]. Finally, we check ifi can reach the root ¢f and if
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3,40 {[10,18]},1,1,1) o (6,{},{},1,1,2) o (1, {},{},1,1,0)
9, {[16, 18]}, {[10,18]},1,0, 1) o (4, {}, {[5.8]},1,1,2) o

=

=
o {1 {1 1,1,2) o (1,{},{},1,1,0)

Lig) = (7 {hL{} 1L, L2) o {}{}11,3)o(1,{},{},1,1,0)

Figure 5.6 : lllustrating the marker algorithm. Shallow nodes are filled and deep nodes are
unfilled, and a dashed edge (7, j) means that j € S(7)
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the root can reach (which it cannot, due to the forbidden set«@f This gives the sublabel
(9, {[16, 18]}, {10, 18}, 1,0, 1).

The next sublabel foris computed by repeating this process on the subiftreas shown in
the figure. Note that at each level the subtrees are repaanithe identifiers are recomputed,
hence a node has an identifier for each subtree. The finaklabelshown in the figure. As an
example of the non-symmetry of the fs-reachability relatibcan be seen thdt(c, q) = 1 but

f(g,c) =0.

5.3 A 2-approximate scheme

For general graphs, our aim is to efficiently route on goothgaSince the path is unique in a
tree, this reduces to deciding if the path is good or not. Hewnat may be acceptable to use
paths of low cost (recall that cost of a pathe{$’,,) = > cp. |[S(w) N P.[)). We have been
unable to construct an efficient labeling scheme to comp@exact cost of a path, but we can
give a 2-approximate scheme with a logarithmic increasabellsize. Lek be the maximum
size of a forbidden set.

Theorem 5.3.1 There exists a 2-approximate labeling scheme for treesocost:( P, ) using
labels of size)(v/kn) bits and answering queries in tint&(log kn).

Proof. We augment the labeling scheme of Section 5.2 with a teckniguapproximately
counting the number of forbidden elements intersectedst Eonsider a line as in the top of
Figure 5.7, where a dashed directed edlger) means thav € S(u). The key observation
is that fori < j, the coste(FP;;) equals the number of crossing edges going from left to right
that have both endpoints i, j], and for fixed:i this number is monotone increasing with
Therefore the label for the root node in the figure stores @istipns of thellg kn| = O(log kn)
intervals to the right of it, which have cokt2,4, ..., kn. Itis easy to see that this indeed gives
a 2-approximation to the actual cost.

This extends naturally to a 2-approximate scheme for trege apply the scheme for the
line down every path of the tree. A region is now a subtreatified by the root of the subtree,
l.e. its ancestor label. The tree at the bottom of Figure [fugtrates this. We do this for the
subtree induced by the shallow nodes. There are at masides and hence at mdsg kn |
intervals on each path. By Lemma 5.2.1, the subtree inducelebshallow nodes has at most
n/« leaves. Therefore, the marker algorithm can be modifiedatoeich sublabef (u) stores
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Figure 5.7 : lllustrating the 2-approximation of ¢(7;;). The cost of a path from the root to a node
j is the number of crossing edges with both endpoints on the path. For a node j in region r,
the algorithm returns 2".
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at most(n/a)O(log kn) intervals of shallow nodes, so this gives only a logarithimarease in
the label size.

The forbidden sets of the deep ancestors aan be handled in a similar way. Instead of
storing only the ancestor labels of forbidden sets of deepstors of:, we store ancestor labels
denoting each of thivg kn intervals. We construct (for each ancestoof « in the separator
tree) O(log kn) intervals (representing subtrees), where the identifier of contained inr
intervals iff the path fromw to v intersects betweei’ and2"*! elements of the forbidden sets
of u’s deep ancestors . In additioh(u) can store thewumberof forbidden nodes intersected
on the paths to and froma in place of the boolean valugu, w). This increases the label size
by a constant factor (since we already gaftog n) to store the separator labels).

For the time complexity, the intervals in the ancestor laloain be stored in an interval tree
[PS85] such that in worst-case timEk + 1gn) we can list allk intervals that contain a given
integer. Since there are at ma@stlog kn) intervals that contain an identifier (by construction
in both the shallow and deep cases), we can compute the nwhbegervalsr containing an
identifier in timeO(log kn), hence a 2-approximatid2i to the cost in each case. This is the
same time complexity as in the original decoder. Since we ba&+approximation to the cost of
intersecting the forbidden sets of the deep ancestarsafl the cost of intersecting the shallow
nodes of7’[w] (in addition to the exact cost of the patRs, and P,,), adding them together
gives a 2-approximation to the cost Bf,. O

5.4 Bounded-distance forbidden sets

One of the difficulties that the algorithm must handle is thatforbidden sef(«) may contain
nodes that are far away from as large as the diameter @f In practical scenarios, we expect
that the forbidden set af will contain nodes that are ‘near’ tq perhaps within its own cluster.
Another factor is the following: in graphs with good conneity, it is likely that the minimum
size of auv-separator will increase with the distance frdfw, v), and therefore the forbidden
sets will only interfere with routing to nodes far away, iktlforbidden set contains a large
number of nodes.

Based on this observation, we consider a restricted poliogrevithe setS(u) may only
contain nodes within some bounded distafic# «. As before, assume that the forbidden sets
are of size at most. Define thej-fs-reachability problem to be fs-reachability except tiza
every nodeu, every node ofS(u) lies within a distancé of v, i.e. d(u, S(u)) < §. We shall
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give a lower bound on label size for the problemyedt-reachability.

Note thatl-fs-reachability is no harder than routing with next-hopfprences (where the
costc,(P,,) depends only on the next hop). In this case, we can make ude dact that
the costc(P,,) is equal to the cost of the same path in the directed géAplvhere the edge
(u,v) has weighte, (v) (we assume that,(v) is finite). We can therefore make direct use of
the distance labeling schemes from e.g. Gavoille et al. [BPP. Note that only the weights
are directed in’, i.e. there is an edgg, j) iff there is an edg€j,i). Hence reachability
is undirected and can be done witilog n)-bit labels, but the distances are not symmetric.
Together with the distance labeling schemes of Gavoillé. 4GP PR04], this gives a next-hop
cost labeling scheme usiriglog® n)-bit labels for trees. It can most likely be extended to other
classes of graphs supporting an efficient distance labstthgme (with directed edge weights).

5.4.1 Lower bound for trees

We start by extending the lower bound of Theorem 5.1 &f®reachability. The idea is simple
— for smallé we flatten the tree, creating a large number of short paths.

Lemma 5.4.1 Any é-fs-reachability labeling scheme with< 2,/n must assign some node a
label of size&2(d log n/4?) bits onn-node trees.

Proof. The argument is similar to the lower bound of Theorem 5.1.Insiter the tree having
2n/§ node-disjoint paths each of lengili2. Each path to the root can independently choose a
set of leaves of size at Iea@}é‘s) and by a similar argument to Theorem 5.1.1 the label size is
bounded below by

/8 200
ﬁ log (25 /2 5) ~ (5/2)1og(2n/5 — 6/2) — (5/2) log(5/2)
= (0/2)log(4n/8* — 1)
and this holds fon /2 < 2n/0,i.e.d < 2/n. O

5.4.2 Lower bound for general graphs

When the forbidden set(«) contains only neighbours af we can prove afe(n) lower bound
on the label size for general graphs.
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U1 (1,2) 5((1,2)) = {vi}
L U2 (3,1) S((3,1)) = {vs}
AN
U4 —=1s U3 \(3, 2) 5((3,2)) = A{vs}
U4 (47 3) S<<47 3)) = {U4}
G H

Figure 5.8 : The reduction in Lemma 5.4.2

Lemma 5.4.2 Any 1-fs-reachability labeling scheme fér= 1 must use labels of siZe(/n)
bits.

Proof. The proof is by reduction from reachability on directed drapGiven a directed graph
G onn nodesu, ...w,, construct the undirected bipartite graphon node set$; andV; as
follows. In V] there aren nodesu; ... v, and the sel;, contains a nodéi, j) for each edge
(v, vj) of G. Now for each directed edde;, v,;) of G, add the undirected edgeés, (7, j)) and
(vj, (4,7)) to H. Finally assign the nodes ir; the forbidden setS§((4, j)) = {v;} (the nodes in
V7 all have empty forbidden sets). Figure 5.4.2 illustratés ¢bnstruction.

We claim thatv; can reachy; in G iff there exists a good path from to v; in H. The “=”
direction is clear — if there is a path = v;,,v;,, ..., v;, with no repeated nodes i@, then
the pathP’ = v;,, (i1,42), iy, - - ., (ix—1, k), v;,, IS @ good path inf. For the other direction,
assume thaf’ is a good path inf from v;, to v;,. We claim that the pat# corresponds to a
path inG. Each node il has degree exactly two, and the forbidden sets ensure tlatyin
good path offf containing. .., v;, (¢,7),vj, ..., the edg€v;, v;) exists inG.

Given a 1-fs-reachability scheme féf usingr bits per label we can construct a directed
reachability labeling scheme f6t usingr bits per label by setting.(v;) = (v;). Since there
existn-node directed graphs that require reachability labeldzaf @(n) bits [CHKZ02], the
construction gives a family ab(n?)-node graphs requirin@(n) bits per label. O

For the case where the size of the forbidden sets is unboungechn show af(n) lower
bound, which is clearly optimal in the worst-case.
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Lemma 5.4.3 Any 1-fs-reachability labeling scheme must use labels of Qize bits when the
forbidden sets are unbounded in size.

Proof. We can prove the lemma by reduction from adjacency in dicebipartite graphs.
Given a bipartite grapli(V;, V2), E) on node setd/, V, with edges directed fron; to 1%,
we construct the same grapti/;, V»), E’) but with undirected edges, and fore Vi, S(v) =
Vo \ N(v) (N(v) is the set of neighbours o). It is clear that there is a good path frame V;
tov, € V4 iff (v1,1,) € E. It follows (by a similar argument to [CHKZ02]) that there &f¥"*)
distinct labelings of)(n) nodes, and so at least one node must be assigned a label 9f size
bits. O

5.5 Compact routing on good paths

The lower bound of Theorem 5.1.1 implies that any schemedieitles if there exists a good
path between:, v by consulting onlyZ(u), L(v) must use labels of siz&(y/n) bits. This is
much too large to place in the headers of packets. In thigogsest show that it is possible to re-
duce this space by using a compact routing scheme. We descsitheme that uségk logn)
bits of storage at each node and uses labels of(3{z&z n) bits in each packet header. How-
ever, this comes at a price — a packet may travel 6\ern edges before the algorithm realises
that there does not exist a good path.

5.5.1 Overview of compact routing on trees

Our scheme makes use of any compact routing scheme for seege begin by giving an
overview of compact routing on trees. The standard ‘infenwvating’ technique due to Santoro
and Khatib [SK85] is as follows. We root the tree arbitradgd do a depth-first traversal,
labeling each node with its identifier in the depth-first &eal. This is known as the ancestor
label for the node. For each nodg let f,, be the descendant af with the largest identifier.
By the property of the ancestor labels, a neds a descendant af iff v € [w, f,,]. A packet
destined for that arrives taw is routed as follows: ifv = v then the packet has reached its
destination. Ifv ¢ [w, f,], the packet is sent to the parent«of using the parent pointer of
w. Otherwise, a search among the childeen ..., w, of w is performed and the packet is
forwarded to the last child; whose identifier is smaller than or equakts.



118 Chapter 5. Handling Intermediate Nodes

The packet headers are only of si2¢logn) bits, but the routing table at a nodeis of
sizeO(deg(w) log n) bits, making this inefficient for large degree nodes. Furtiege, routing
decisions at these large degree nodes takedifdeg(w)). This scheme has been improved; the
most space-efficient scheme for trees is due to Thorup andkqwiz01b] (and independently
in [FGO1]). Their scheme uses routing tables and labelszaf(3i+ o(1)) g n bits, and each
routing decision takes constant time.

Interestingly, it is known that an address space larger anbits is needed for efficient
routing on trees — if the address spacdis...,n} and the packet header only contains the
destination address then [EGPO03] implies that no loop-foeging strategy can guarantee a
local memory space better thér,/n) bits on every family of graphs, including trees.

5.5.2 A scheme for routing on good paths

Our scheme is simple and makes use of any compact routingnecfue trees such as that of
Thorup and Zwick (TZ) [TZ01b] (or the scheme in [FGO1]). Thiting table for a node
stores the separator labels foand the nodes i§(u) in addition to the requirements of the TZ
routing scheme. To send a packet frarto v, the labelL(v) that is placed in the packet header
by the TZ routing scheme is augmented with the separatol fabe. Therefore the packets
have headers of siz@(logn) + (1 + o(1))lgn = O(logn) bits, and the routing tables are of
sizeO(klogn) bits.

Now consider a packet that originatedatand arrives atv, destined forv. Using the
separator labelsy checks whether the sél(w) is awv-separator iril". If so, the packet is
returned tou (using the routing scheme in place). Otherwise it is foredrtb the next node
using the TZ routing scheme. Since each TZ routing decisikes constant time and deciding
if a set of sizek auv-separator takes tim@(k), each routing decision takes timgk).

The reason that this scheme breaks tHg/n) space lower bound is that reachability is
not decided locally at:; in the worst-case, the packet may travef§e ) links before being
returned, and so the worst-case time complexity of thismehean be(n). In many cases,
such a delay is not acceptable and moreoveannot know that it cannot reactuntil it tries
sending the packet. On the other hand, i§ to be able to decide reachability with only local
information, then it must use spaf¢,/n) and receive a label of size(,/n) from v.

Instead of returning the packet if there is no path of zero, ®as can consider the following
operation: route a packet fromto v iff there is a pathP,, with ¢(P,,) < r. Given the separator
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Algorithm Space Time Space Time
Table method O(n?) O(1) O(n?)
Theorem 5.2.3 O(Vkn?/?) O(log kn) O(Vkn?/?)
Theorem5.6.1| O(n?/a+kn) O(ka+log™) O("=log™ + kn® + ak?n)

(1<a<n)

Figure 5.9: Summarising the space-time tradeoffs for deciding whether there exists a good
path in forbidden-set routing.

labels foru, v, S, we can determine the size of the intersectiBp N.S| by counting the number
of nodes ofS that are auv-separator. By using an extra fieldlgfr < lgn bits into the packet

header, the nodes can keep track of the cost of the path sodaeturn the packet if the cost
exceeds at any point. The routing table and header sizes are&{illog n) andO(log n) bits.

5.6 Nondistributed data structures

Any labeling scheme usingbits per label on some famil§ of graphs can be converted into
a non-distributed data structure gnusing O(ns) bits of space and supporting queries with
the same time complexity as the decoder. Therefore, Thebr2rd implies a non-distributed
data structure for fs-reachability usiﬁq\/En3/2) bits space and having query time complexity
O(log kn).

There are of course many non-distributed data structurds-f@achability. One could build
atable that lists for each pair of nodes whether there is a good path framo v, usingO(n?)
space and havin@(1) time complexity (and of course this would work for generaghs).

For trees, we can achieve a tradeoff between query time axksg-orl < o < n the
scheme of Section 5.2.2 has labels of size O(n/a + ka) and timet = O(log kn), so the
label size is minimized by choosing = \/W This gives a non-distributed data structure
that may use spaces = O(v/kn®/?) in the worst case. We now show how to construct data
structures using space betwea@fkn) andO(n?) but at the expense of increased query time.

Theorem 5.6.1 For everyl < o < n, there is a non-distributed data structure for forbidden-
set reachability om-node trees using spad@(n?/a + kn) and answering queries in time
O(ka +log(n/a)).
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Proof. We will show how with a small modification we can reduce thecgpaquired ta) (kn)

but at the expense of an increased query time. Instead afigtihre set of deep ancestors (and
their forbidden sets) of each node us'@glma) space as in the distributed labeling scheme of
Section 5.2, in a centralized data structure all this cartdred once using)(kn) space. This
gives a data structure having space: O(n?/a + kn) instead ofO(n?/a + kna). Note that
the strategy for shallow nodes is unchanged.

However, the search tree method used in Theorem 5.2.3 e tht®iancestor label intervals
cannot be used, since it constructs a different binary betiee for every node. The best
alternative we can find is the following: by the painting leenthemma 5.2.1), the deep nodes
induce a forest of heightat mosta below the shallow subtree. Hence for any nadets
deep ancestors can be found in timand the ancestor intervals for their forbidden sets can be
checked to see if they contain the destinatioin time O(|Deep(u)|) = O(k«a). The shallow
nodes are handled as before (using a balanced binary seaeghrt timeO(log(n/«)). This
gives total timeD (ka + log(n/a)). O

Table 5.9 gives a summary of the space-time tradeoffs addamthis section. Faot = n/k,
Theorem 5.6.1 gives a data structure with sp@¢en) yet having query tim@(n + log k) =
O(n). These results show that, even on a simple family of grapkeg}, the problem still
allows for some non-trivial algorithms.

5.7 Dynamic labeling schemes

So far we have considered only static labeling schemes,enthernetwork and the forbidden
sets are fixed in advance. These schemes rely on a centrada@r algorithm that is given an
entire description of the network and uses this to outpuetiige set of labels. Therefore while
the labels allow the problem to be solved using local infdrama the process of generating the
labels has been centralized. In a dynamic network whereshodg join or leave and policies
are updated, it is desirable to update the distributed septation offered by the labels in an
efficient and distributed fashion. A centralized markeoalipm clearly limits the applicability
of such labeling schemes in real dynamic networks.

Korman et al. [KPR02] describe a general method for conwgiistatic labeling scheme
onn-node trees to a fully dynamic one with onlya n factor increase in the label size. Since

3The height of a forest is the maximum height of any tree in tredt
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the new marker algorithm is now a distributed algorithm,ctenmunication complexity (to
recompute the labels after a change) is an important prppkdrman et al. show that if the
static scheme hasdistributedmarker algorithm that computes the labels in the statienggtt
and sends\IC messages (of siz@(logn)) then it can be converted into a distributed marker
algorithm for updating the labels in the dynamic settinghvatmortized message complexity
O((logn)MC).4

We shall show that (assuming we use the notion of shallowy sgtsan do no better asymp-
totically than to recompute from scratch when there is a ghamo transform our static scheme
into a dynamic scheme we need to convert the sequential maldierithm into an efficient
distributed one. Let us consider a distributed marker #lgorhaving three distinct phases:

1. Painting. As in the proof of Lemma 5.2.1, nodes of depth at mestre painted deep,
and the rest are painted shallow. This can be done efficibgtly distributed depth-first
search of the tre@.

2. Deep nodes. For each node), the algorithm computes the part of the label that con-
tains the forbidden sets of the deep ancestors dthis can be done by propagating the
forbidden sets of the deep nodes down to each of their deeggi@snts. Since all de-
scendants of a deep node are also deep, each path is no Ibagerdnd there may be
O(n) deep leaves. Therefore, the total number of forbidden elésreent over edges is

O(nka) = O(Vkn?/?) (by settinge = /n/k).

3. Shallow nodes. The final step is to inform each nodeabout its seShallow(v), i.e.
the shallow nodes that cannot reach However, this step appears to be costly — the
following lemma shows thanydistributed algorithm that computes these sets must have
high communication complexity.

Lemma 5.7.1 Any distributed algorithm that terminates with every nedaowingShallow(v)
must communicat®(n log n) bits overQ)(n) edges in am-node tree, even for = 1.

Proof. Assume that the parametex o < n is given. Now construct the following tree, as in
Figure 5.7 —there is a roet a path of(n 4+ «) nodeshy, . . ., h,+, hanging fromr andn nodes
v1, ..., 0, €ach being a child of. Consider some permutatienof {1,...,n} whereo (i) is

“4In fact, the value of, depends on the size of the network at a particular time, buasseme for simplicity
that it never grows by more than a polynomial factor.
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Vi

h(n+o¢) T hn s hl r

Vn

Figure 5.10: The tree used in the proof of Lemma 5.7.1. The forbidden sets of nodes h; ... h,
choose a permutation of {v; ...v,}. The nodes h; ... h,, are all painted shallow.

theith element of the permutation. For= 1,... n, setS(h;) = {v,q)} ash;'s forbidden set.
The set{S(hy)...S(hy,)} is a permutation over the nodés, ..., v, }.

Now we show how to reduce from the two-party communicatiabfgm of deciding set-
disjointness. Partition the nodes between the two playécg And Bob as follows: give Alice
the long path (and implicitly) and Bob the nodes, . .., v, andr. By construction, all the
nodesh, .. ., h, will be painted shallow and therefoséallow(v,) = {h;} iff o(i) = j. There-
fore, given the set§Shallow(v;)}, Bob can know the permutation

Define the uniqueank encodingdf a permutation by replacing each symbol in the permu-
tation by its rank among the remaining symbols. For exantpke rank encoding of 341562
is 331221. The rank encoding of a permutation can be exmessa binary string by re-
placing each symbol by its unique binary expansion. Theegiar— i) possible values for
theith symbol in the rank encoding of a permutation{of . . n} and so every binary string of
2?1_01 logi = 1g(n!) bits corresponds to a unique rank encoding and hence a umégoreitation
of {1,...,n}.

Now for the reduction — given sef® Q C {1,...,n}, Alice receivesP and Bob receives
Q. Alice computes the unique permutatiercorresponding td@ and uses this to construct the
forbidden sets in her side of the tree. Then they run the pobto® compute the shallow sets.
From this, Bob can determineand thus als@. He can then locally decide ®, () are disjoint.

Since the randomized communication complexity of disjuésts on sets of sizeis ()
bits, at least)(lg(n!)) = Q(nlogn) bits must cross the cut between Alice and Bob, which
consists of a single edge. We can replace this edge by a patleddes. It is known [Die97]
that asymptotically, these nodes can no better than to amlags, and so each must have
Q(nlogn) bits communicated across it. O
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The lemma implies that fat = O(1) the following algorithm is asymptotically optimal for
computing the shallow sets: broadcast the entire treeu@ing the forbidden sets) to all nodes
using O(k:nz) bits then let each node locally compute its label using th@raézed marker
algorithm.

It is worth noting that this lower bound does not exclude tbssibility of a labeling scheme
with bothO(/n)-bit labels and low communication complexity, but such aesel would have
to avoid using the shallow sets as defined here.

5.8 Discussion

The most interesting open issue here is to investigateafshiability on other families of graphs
such as those of small treewidth (although we have beenemalshow good bounds for these
families). Knowing the complexity of fs-reachability on neogeneral graphs would be inter-
esting as reachability is a fundamental problem for anyingudcheme.

We have been unable to prove a stronger lower bound for gegreyzhs than in Section 5.1.
In fact, we conjecture that it does not get any harder thatrées:

Conjecture 5.8.1 For any graph familyF, there is a labeling scheme for fs-reachability #n
(with & = O(1)) having®(,/n)-bit labels.

Roughly, the intuition behind the conjecture is that to abbtagood lower bound, one should
find a large setd of nodes where, for each distinct pair of nodes € A, there is a pattP,,
that contains a ‘large’ numberof nodes disjoint from any other path,, where at least one
of w, z is notu, v. The tree construction in Section 5.1 has this property withQ(,/n) and
attempting to increase this forces the paths to be nontdisjplowever, it is not clear how to
efficiently encode the reachability information for a largember of paths between any pair of
nodes.

Classical reachability on undirected graphs has a schenmelgvit-bit labels: label each
node with the identity of its connected component. On themlland, it is known that directed
reachability requires labels of total sig&m logn?/m) bits on somen-nodem-edge graph
[CHKZ02]. Forbidden-set reachability is at least as hard rrdirected reachability: just set
all the forbidden sets to be the empty set. Below is a simplaatamh showing that it is no
harder than directed reachability. Hence for forbiddes sésizeO(1), the label size for fs-
reachability lies somewhere between undirected and éidaetachability.
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Lemma 5.8.2 Forbidden-set reachability on undirected graphs is no learthan directed-
graph reachability.

Proof. Given an undirected grapi on n nodesu; ..., and a forbidden sef(v) for each
nodew, construct the bipartite grapH on 2n nodesz; ...z, andy; ...y, where there is an
edge(z;, y;) iff there is a good path from, to v; in G. Itis easy to see that iff, x; can reachy;

iff they are neighbours, and so the adjacency relatiai iepresents the fs-reachability relation
inG. [



CHAPTER 6

Approximating Forbidden-set Routing

In Chapter 4 we showed that there is@(¥% logn/k) lower bound on the space requirements
(per node) for any forbidden-set routing scheme, where an upper bound on the size of
a forbidden set (Theorem 4.5.3). For smigllthis means that good routing schemes may be
possible. However, we believe that for general graphs tisemdower bound of2(n) bits. To
avoid this bound, it is natural to think about ways of relgxthe problem, for example are
we happy with an approximate solution? The difficulty witltswan idea is that the problem
of deciding if there exists a path of zero cost between twcerasl a decision problem not an
optimization problem, so there is no natural notion of agpnation.

In this chapter we consider one such approacapproximatingthe forbidden-set routing
problem. We partition the network into connected clusters mstead of choosing arbitrary
subsets of nodes, the forbidden sets must choose a subbketefdlusters. This has the effect
of grouping nodes together and treating them as the samdoiaithe purposes of forbidden-set
routing. We define the problem of obtaining a cluster grajalh las good graph-theoretic prop-
erties, and motivate the problem of obtaining a cluster lyraiph bounded treewidth (deciding
if there is a cluster graph with treewidth at méshay be an NP-complete problem, even though
deciding if a given graph has treewidth at méstan be done in linear time). We show that if
we can construct a cluster graph having small treewidtm tire can apply our forbidden-set
routing schemes from Chapter 4 to it.

125
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We begin, however, by considering an approach inspired &yvtrk of Feigenbaum et al.
[FKMSO05] — they considered a relaxed version of shorte#it-pauting where each link has a
number of objective values associated with it, for exam@kyg packet loss, bandwidth and
so on. All nodes agree on these values, in the same way thaiggls agree on the weights of
edges for shortest-path routing. Each node has an indivashisa function, which is a convex
combination of the objective values assigned to edges xEmmele, one node may be interested
in paths minimizing the sum of delays, while another may lerested in paths minimizing
another metric). They showed that a small number of routiegst (instead of a single routing
tree) is sufficient for all nodes to route on almost-optimaths. Their scheme does not imme-
diately imply a space-efficient routing scheme, since eactenwould store a small number of
trees for each destination, giving super-lineén) routing table sizes.. We shall show how to
use their construction to build a space-efficient compadtimg scheme with a small increase
in the approximation factor. We can then observe that thikiphel objective cost problem can
be seen as a special case of clustering the network and mgsapsts to clusters. Since we are
interested in forbidden-set routing, it is natural to askeéf can cluster the graph so as to obtain
efficient forbidden-set routing algorithms for it.

6.1 Compact routing with a small number of objective costs

In this section we consider a variation on the forbiddern@eting model introduced by Feigen-
baum et al. [FKMSO05]. They considered a restricted modelrerieach nodev is assigned!
objectivecosts(l; (w), ..., ls(w)), which are assumed to be integers bounded by a polynomial,
l.e. less tham® for some constant. Then the policy of a node is a probability distribution
overd local variables) < \;(u) < 1fori = 1,...,d such thats_? | \;(u) = 1. The policy

can be interpreted as defining the cost tof routing throughw as a convex combination of the
objective costs assignedtq i.e.

The motivation for this cost model is that the costs may regmeobjective measurements such
as latency and packet loss, but nodes may assign differ@ribop to their relative importance.
They showed that for the case &f= 2, a small number of routing trees suffices to route on
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approximately-optimal paths. This is a promising resultce Feigenbaum et al. showed that
finding a single minimal-cost tree in the case of 2 metricsis¢Aard.

Theorem 6.1.1 ([FKMSO05]) Assume that the costs(-), ..., l;(-) are at mostn©. Fix some
destination nodea). Given anye > 0, there is a set of routing tre€s;, ..., T, with r =

O(%(logn + log %)) such that the following holds — for each nodgthere exists a tred,

such thate,(73,) < (1 + €)cu(P},), whereP? is the path fromu to v minimizinge,(-) (i.e. of
minimum cost ta).

Proof. Let o« = (1 + ¢). Each tre€l; in the collection is the shortest-path tree for a specific
convex combination of the two metriés(-), l>(-). We name the trees after the metrics they
optimize:

Tw : 11(+), with ties broken by minimuni, ().

T« : l5(+), with ties broken by minimun, (-).

Ty () = 125 0() + ela() for t € {—k,—(k —1),...,—1,0,1,...,k} wherek =
[log,, (26 1nt1)].

Thus, there are a total of = 2k + 3 = O(logn) trees. These trees can be constructed
with r shortest-path computations on node-weighted graphsg@som Dijkstra’s algorithm)
and hence can be done in polynomial time. The proof goes ohde ghat the collection of
trees do indeed achieve the desired approximation factor. O

They also showed that for generél> 2, approximatelyO(4?log? n) routing trees are
sufficient (depending on the parameteesd the size.© of the costs;(-)). Using their result we
can construct a routing scheme by applying the theorem atghato each node as a destination:
construct a functiont(u,v) = argmin;dr,(u,v) wheret(u,v) = k means that the tre@
contains the lowest cost path framto v out of all the trees constructed. Each node also stores
the port number for the edge to its parent in each tree. Thean route tov by sending a
packet to its parent iffy, ., writing ¢(u,v) in the packet header to indicate which tree the
packet should be sent on. The problem with using this as @angpoatheme is that each node
stores a routing table of size(n log ) bits to identify the tree used for each destination.

Before presenting the scheme, we need to deal with the fatttthaabove result is for
node-weighted graphs, but the compact shortest-patmgstihemes we will use require edge-
weighted graphs. We therefore apply a simple transformatgofollows. Given an undirected
node-weighted grapty = (V, E') onn nodes where has weight (v), we compute the edge-
weighted dual’ = (V', E’) on w with 2n nodes as follows (the construction is shown in
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Figure 6.1). The node s&t’ = VV U {v/|v € V'} contains the nodes df and a node’ for
every nodev of V. The edge set’ = F U {{v,v'}|v € V} contains the edges df and an
edge{v, v’} for every nodev of V. For an edgdu, v} whereu,v € V, assign it the weight
l(u,v) = l(v,u) = l(u) + I(v). For an edggv,v'}, assign it the weight(v). It is easy to
see thaRdg(u,v) = de (v, ") for u,v € V(G), and that ifP,,,, is a path fromu’ to v’ in G’
then the subpatl?,, obtained by removing the first and last edge$’pf, is a path inG. The
following simple lemma shows that the edge-weighted gragshthe same lowest cost paths as
in the original graph, so we can apply any routing schente lby using the corresponding node
veGqG.

Lemma6.1.2 If P,, is the lowest-costv-path (Icp) in the dual grapli=’ then P, is also the
lcpinG.

Proof. Assume for the sake of contradiction thay, is the Icp inG’ and some other patR/,
is the Icp inG. Let c¢q(P) denote the cost i/ of the pathP andcg(v) denote the weight of
a nodev (similarly, ccr({u,v}) denotes the cost of an edge, v} in the dualG’). Therefore,
ca(Puy) > cq(P.,). Now consider the cost of the pa#tj, in G'. We will show thatce/(P,,) >
cer(Pl,), contradicting the assumption thaj, is the Icp inG’. We know that for a pati®,,
fromuto v, cq(Pu) = 3 (cer(Puv) + ca(u) + ca(v)). It follows that

ce'(Puw) = 2cc(Pu) — ca(u) — ca(v)
> 2c6(Py,) — ca(u) = ca(v)
= CG,(P’L/L’U)7
so P, cannot be the Icp id+’. O

We now show how to construct a routing scheme based on The@rkih by combining
it with a compact approximate shortest-path routing sch@&@nguch as Thorup-Zwick (TZ)
[TZ01b]. We also assume that we have access to distances lglwahg the lengths of the
paths used by the routing scheme. Our modification is quitelei — letG = (V, E) be an
undirected unweighted graph, and denotehy= (V| E') the node-weighted graph with node
weights given by, (-). For eacht = 1,...,r we compute the edge-weighted daglof G, and
then run the routing schenf® on G;. This gives for each node a sequence of laligls) =
Lyi(v),..., L.(v) and routing tableR7T'(v) = RTi(v),..., RT,(v) whereL;(v), RT,(v) are
the label and routing table given tan G by R (we assume that the labelg(v) also contain
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Figure 6.1 : Constructing the edge-weighted dual G’ from the node-weighted graph G.

information for the distance labeling scheme).

Routing fromwu to v in G is done as follows. Node is given the labeld.(v), L(v") for
the destinations € G and runs the distance decoder bfiv’) and L;(v’) in G’ to compute
the approximate distancei@; (u',0") fori = 1,...,r. Lett, be the value of for which the
reported distancéggi (uv',v") is smallest. Node: then uses the routing tablT7;, (u) and label
L;,(v) € L(v) to compute the port number of the outgoing edge for the negt:h@n the
path inG. It uses the routing schenf@ to construct the packe? to be sent tav and adds the
identifiert,, and the label,, (v) to the header of.

When a packet containing,, (v) andt, is received by an intermediate node it uses
the routing tableRT;, (v) and L, (v) to compute the port number for its next outgoing edge,
computes the next packet (keepihg (v) andt, in the header) and forwards it (we assume that
the routing scheme is able to decide when the packet has reached its destihation

Lemma 6.1.3 If the routing schem& routes on paths of stretchusing routing tables of size
R7T and distance labels of siz& then the routing scheme described above uses routingstable
of sizer. R7, labels of size~.£ and routes fromu: to v on a pathP,, wherec,(P,,) < s(1 +
€)cy(Pr)), whereP? is the path fromu to v minimizinge,(+).

Proof. The main observation is the following: for any destinatigrsince each of the tre&s
is a shortest-path routing tree in the gragh any stretchs shortest-path routing scheme 1Gf
will produce a pathP,, from u to v of length within a factow of d¢, (u, v). Since the path iff;
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is within a factor(1 + ¢) of optimal with respect to the costsin G, it follows that the patiP,,

in G, is also within a factog(1 + ¢) of optimal with respect to the costsin G. O
The compact routing scheme TZ [TZ01b] has stretch 3, usegptables and distance

labels of sizeD(n!/?). This gives the following result.

Theorem 6.1.4 Assume thatl = 2. Given anye > 0, there is a compact routing scheme that
routes packets from to v on a pathP,, satisfyinge,(P,.,) < 3(1+¢€)c,(Ps,). The scheme uses
routing tables and labels of siié(#(log n+log 1)).

6.2 Approximate separator labels

We now show that the model described in the previous sectiadsl to a natural notion of
approximation for constructing separator labels. If weadlehe costd;(v) to be binary values
we can consider the cluste¥s = {v | [;(v) = 1}, and can require that they form a disjoint
partition of G into connected components. If we also require that the monkeall take the
same value, then we have a simple structure where each nodsesha set of clusters.

Define thequotient graptcorresponding to the partitidh = {V4, ..., V,} as the undirected
graphGn = (V', E') whereV’ = {V;,...,V;} (i.e. each cluster of the partition is contracted
into a single node) and” = {{V;,V;} | 3z € V,,y € V; where{z,y} € E(G)} (i.e. if
there is an edge between two nodes in different clustersttieze is an edge in the quotient
graph between the nodes representing the clusters). TH& sek; # 0} then corresponds to
choosing a set of nodes in the quotient graph to avoid, whictesponds to a set of nodes in
G.

For forbidden-set routing (where the sets are arbitrargstgof nodes), we would need to
haven objective costs per node (dimensions), so Theorem 6.1.1dwmnstruct((logn)™)
routing trees. However, it is clear thattrees suffice to allow choosing the exact lowest-cost
path for every node, regardless of the policies. Therefoneuld be good if we could make use
of the simple structure described above to improve thesadsouWe now show that if we can
construct quotient graphs with good properties then we &areamtly approximate forbidden-
set routing. It is an approximation in the sense that forbidslets are now arbitrary subsets of
the set of clusters in the partition rather than arbitradysets of nodes, so nodes are grouped
together in the forbidden sets by the partition chosen.

We will apply the compact forbidden-set routing scheme bigaxl in Chapter 4 directly on
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the quotient graph. Given any labelidgfor the quotient graplds;, we construct a labeling
L' for G by assigning to all the nodes in a clustérthe labelL(V;) for V; in G|. Given a set
of labels for nodes iid7, the decoder for.” simply runs the decoder fdr on the labels. If the
partition is chosen so that;; has good properties (e.g. bounded cliquewidth) then theditadp
L' will be as if G has the same good properties but the price we pay is thathleensctreats all
nodes ofGG in the same cluster as being the same node. Note that thisjgaoximation since
if there is a fs-avoiding path in the quotient graph thenehsralso a fs-avoiding path in the
original graph (if the query set now contains all the nodegaoed in the forbidden clusters).
Routing is done as follows ofi - for each edgé X, Y'} in the quotient graph, we store two
nodesr € X,y € Y where{z,y} € G. Then we route on the quotient graph using the compact
forbidden-set routing scheme, and route in connected coergse between the corresponding
nodes inG using a separate shortest-path routing scheme (eg Thamigk} We now define
the problem of constructing a quotient graph with smallwdgyidth since we have separator
labels withO(log n) bits on bounded cliquewidth graphs.

Problem CLIQUEWIDTH- k£ QUOTIENT GRAPH

Input: A connected graphy.

Output: A partitionIT of V() into connected components,
such that ;; has cliquewidth at mosi.

Objective: Maximize the size of the quotient graph, i|&|

Remarks. Note that the parametdr is not part of the input. Also note that the problem
of asking for a quotient graph with minimum cliquewidth i&i@l, since taking the partition
II = {{V(G)}} always gives a solution with cliquewidth 1 (sinCg; is the graph having one
node). Ifk is part of the input then the problem is NP-complete, sindlws et al. [FRRS06]
have recently shown that given a gragland an integek, deciding whether the cliquewidth of
G is at mostk is NP-complete, by asking whethgf| = n. However, the recognition problem
(for fixed £, is the cliquewidth of7 at mostk?) is still open, and since our problem is closely-
related to (and at least as hard as) the recognition probdenieave it as an intriguing open
problem.

We can also consider the similar problem TREEWIDEHQUOTIENT GRAPH. Since
there is a linear-time algorithm for deciding if the treethidf a graph is at most [Bod93a],
this may be a more tractable problemKifs part of the input then it is NP-complete [ACP87]).
For the casé = 1, the problem is asking for the largest integesuch that there is a partition
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of the nodes of> whose quotient graph is a tree ©hodes. This can can be solved in linear
time by contracting all cycles aF using the linear-time biconnected components algorithm of
Tarjan [TV84]. One idea for solving this in practice may beuse similar heuristics to those
for treewidth, such as the minimum-degree heuristic [Bod@5kshown below. This procedure

TREEWIDTH-k QUOTIENT GRAPH

1 GG

2 repeat

3 if treewidtfG') < k > O(n) time [Bod93a]
4 then return G’

5 else choose a node € G of minimum degree

6 contracty with all its neighbours

Figure 6.2 : lllustrating the minimum-degree heuristic for TREEWIDTH-k£ QUOTIENT GRAPH

is guaranteed to terminate sin€eis connected and we eventually reach the singleton graph,
which has treewidtlh. We leave it as an open problem to construct efficient saistfor larger
values ofk.



CHAPTER 7

Discussion

In this thesis, we have studied the problem of routing indatigtributed networks where nodes
are free to define their own routing policies. In particulae focused on the case where each
node is free to specify a set of nodes that it wishes to avolds—gives rise to the forbidden-
set routing problem. Although we have succeeded in ansgeome basic questions about
the complexity of forbidden-set routing — some in the negafsuch as can we efficiently use
routing trees), and some in the positive (for example, othiflulen-set routing algorithms for
small treewidth and bounded cliquewidth graphs), we fes thur work represents a small step
toward understanding how to deal with the additional coxiplef policy-based routing. From
a practical point of view, we believe that developing efintiand reliable algorithms for policy
routing is important — as the number of nodes using policyinguncreases, the intractability
and space problems associated with routing-tree basethsstmich as BGP will only become
amplified. We propose the model of compact routing as the waydrd for policy routing
algorithms, but at the moment very little is known about thebem, even for the simple case
of forbidden-set policies. From a theoretical point of vi¢lae forbidden-set routing problem
has fundamental open questions related to graph theorytaed @areas that are likely to be of
independent interest (for example, how to construct anieffidistributed representation of
all the separators in a graph). In this final chapter we tryuggest interesting directions and
summarise some of the open questions arising from our work.

133
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7.1 SPPs and routing trees

In Chapter 3 we presented some negative results about usitiggérees for forbidden-set (and

more generally, policy-based) routing. We used this as gnnaent against the use of routing
trees. Although the NP-completeness results rule out dversiinple case of forbidden-set
preferences, it may be that there is a class of policies tiedtactable yet more expressive than
next-hop preferences. It would be very interesting to ustaed how the algebraic properties of
a routing algebra relate to the complexity of solving the 8BRances that it generates — for ex-
ample, what makes deciding solvability of SPPs with two-pogferences NP-complete, while

those with next-hop preferences are always solvable? T8waission in Section 3.6 contains
more details about these open problems.

Another interesting problem (perhaps of independentastgis to consider the-SAT com-
munication complexity conjecture — Lemma 3.4.7 provesritife= O(1) and only holds in the
deterministic case. It would be interesting to prove or digp the conjecture for larger values
of k. We have only been able to prove a weaker randomized lowerdbewhether we can do
better with randomization is open.

7.2 Compact routing schemes

Since this is the first time that the problem of forbiddentsetting (and in general, compact
algorithms for policy routing) have been studied, thereratirally many fundamental open
problems remaining. Here we list what we consider to be sdrtifeanost important problems
associated with the work in this chapter.

Open problem 1: Construct distance separator labels for other graph fasnilie

One direction is to attempt to construct distance sepatabmis for cliquewidth graphs
using labels of size polynomial, or even linear, in the aligiidthcw (G). Alternatively, it would
be interesting to prove a lower bound for the label size wviwvgl the cliquewidth. One difficulty
in extending the treewidth scheme to handle small cliqugwiglaphs may be in constructing
a binary term tree of small height that represents the gr&phtreewidthk graphs, we relied
on a result that enables us to convert any tree decompositiandth & into a balanced one
with heightO(log n) and widthO(k). For cliquewidth graphs, no such result is known; if we
want abalancedterm tree (having heigh(log n)), it is not known if we can avoid suffering
an exponential increase in the cliquewidth. In the caseaswidth, we made use of the fact
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that there is only a linear increase in treewidth. It is anmpe@blem to reduce this cliquewidth
blowup to even a polynomial factor increase [CV03].

Open problem 2: Tighten the gap between the upper and lower bounds for tleeddiz
distance separator labels for general graphs.

We showed arf)(n) bits lower bound, but there is nothing better than the ticign?)
bound for general graphs (store at each node a copy of thre ginéiph). Can this be improved
to O(n*?) or O(n'*) bits, or is it optimal? One way of attacking this may be to typtove
that treewidthk graphs have separator labels of si2g:) bits. If this were true, then since
Is an upper bound of the treewidth of any graph withodes (construct a tree decomposition
having a single bag), é)(n) upper bound for general graphs would follow. We believe thigt
problem has deep connections with many other areas of gnaoinyt

Open problem 3: Construct a more efficient routing scheme by removing the ruggecy
on the degree af;.

We showed how to construct forbidden-set routing schemessinyg distance separator
labels and a simple routing scheme using these distancegeudq the simple routing scheme
involves storing the neighbours for each node, so we paytarfaf A(G)) in addition to the
size of the distance separator labels and the size of theltteb sets. We believe that it is
possible to apply similar ideas to those of Cowen [Cow99] anarljr and Zwick [TZ01b] by
using carefully-selected ‘landmarks’ in the graph to restine space requirements. This would
immediately improve many of our results in Chapter 4.

Open problem 4: Investigate randomization and approximation as a mearedoicing the
complexity.

The motivation for approximate shortest-path routing isngrily due to theQ2(n) lower
bound in the case of exact shortest-path routing in geneaphg. Since we also have a high
Q(n) lower bound for the problem of deciding if a given set of nodesseparator of two nodes,
we would like to investigate if we can circumvent this, buviausly at the cost of something
else. One interesting idea, pioneered by Karger [Kar94jsmiork on network cuts, is to use
randomization. Is it possible to construct smaller sepatabels that give a correct answer with
high probability? If, in addition we are interested in dista separator labels then it might be
possible to consider approximate distance separatorslabgiven labels for, v, .S, we would
like to compute an approximation to the distanggs(u, v). If we can achieve sublinear label
sizes in this case then that would be a good result.
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