
Compact Forbidden-set Routing

Andrew David Twigg

King’s College

University of Cambridge

A dissertation submitted for the degree of

Doctor of Philosophy

September 2006

Abstract

Routing on the Internet is policy-based, meaning that each node is free to decide how to assign

costs to paths. This freedom is important since the nodes areautonomous, competing organiza-

tions whose path preferences may be dictated by external factors (such as economic or political)

rather than simply by path length. Although shortest-path routing is well-understood, little is

known about the complexity of policy routing. The only knownalgorithms for policy routing

use routing trees – for each destination, construct a routing tree and forward packets along it.

A negative result of Griffin et al. shows that routing tree-based algorithms (including the

Internet routing algorithm, BGP) may not converge when arbitrary policies are used, and de-

ciding whether they will is NP-complete. Yet there are no better algorithms known for policy

routing; one possible reason is that the problem is much harder than shortest-path routing.

We study the complexity of policy routing withforbidden-setpolicies – each node specifies

a set of forbidden nodes and wants to route on paths that avoidthem. We begin by proving

some new intractability results and reviewing known ones about routing tree-based algorithms.

We show that routing trees are both impractical (they may notexist) and intractable (deciding if

they exist is NP-complete) for forbidden-set policies on tree-like networks. We also prove the

first communication complexity results for deciding if stable routing trees exist – for general

policies, we show that communication exponential in the network size is needed. This implies

that routing trees are a bad choice, even for some simple policy routing problems.

We describe the first compact forbidden-set routing schemesthat do not suffer from non-

convergence. For degree-d n-node graphs of treewidtht, our schemes use spaceÕ(t2d) bits per

node; a trivial scheme usesO(n2) and routing trees usẽO(n) per node1. We also show how to do

forbidden-set routing on planar graphs between nodes whosedistance is less than a parameterl.

We prove a lower bound on the space requirements of forbidden-set routing for general graphs,

and show that the problem is related to constructing an efficient distributed representation of all

the separators of an undirected graph. Finally, we considerrouting while taking into account

path costs of intermediate nodes and show that this requireslarge routing labels. We also study

a novel way of approximating forbidden-set routing using quotient graphs of low treewidth.

1These results have since been improved and extended [CT07]

i

Acknowledgements

This dissertation would not have been possible without the help of many people. I must thank

my supervisor, Ken Moody for supporting almost everything Ihave wanted do (including far

too much rowing) and for his advice when I got stuck or confused.

Thanks to my friends - Athena, John, Jason and James for supporting me and for the nu-

merous – and often humorous – coffee and lunch breaks. Also thanks to everyone else at the

Computer Laboratory – Dave Eyers, Tim Moreton, Brian Shand, Sid Chau, David Ingram, Eiko

Yoneki, Lauri Pesonen, Tim Griffin and others, for always being ready with encouraging advice,

reminding me to eat lunch and letting me test my strange ideason them.

I once read that you should always try to surround yourself with people who are smarter

than you. During my stay at BRICS in Aarhus, this was annoyingly easy – I want to thank

Mogens Nielsen for his inspiring enthusiasm, and also Karl Krukow and Marco Carbone. I also

want to thank everyone that I have had useful discussions with, especially Rahul Sami, Peter

Bro Miltersen, Bruno Courcelle, Andrew Thomason, Elan Pavlov,Mike Paterson, Tim Griffin,

Sid Chau, Rob Ennals (from whom this LATEX thesis style is inherited) and many more.

I wish to thank the Engineering and Physical Sciences Research Council (EPSRC), British

Telecommunications Research (BTexact), The Marie Curie Foundation, King’s College Cam-

bridge and the Cambridge Philosophical Society for providing generous financial support.

Finally, and most of all I thank my parents and younger siblings Nicky and Stephanie.

ii

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Chapter 3: Routing trees .2

1.3 Chapter 4: Towards compact forbidden-set routing 5

1.4 Chapter 5: Handling intermediate nodes 7

1.5 Chapter 6: Approximating forbidden-set routing 8

2 Preliminaries 10

2.1 Graph theory . 10

2.2 Labeling schemes .12

2.3 Communication complexity .. . 14

2.4 Boolean circuits .16

3 Routing Trees 18

3.1 The stable paths problem .. . 18

3.2 Routing algebras . 22

3.3 Forbidden-set routing 28

3.4 Communication complexity of solvability 32

3.5 Proof labeling schemes .. . 44

3.6 Discussion . 50

4 Towards Compact Routing 52

4.1 Introduction .52

4.2 Motivation . 53

4.3 Preliminaries .54

4.4 Deciding if there exists a zero-cost path 56

4.5 A forbidden-set routing scheme 58

iii

iv CONTENTS

4.6 Distance separator labels 62

4.7 A partial forbidden-set routing scheme for planar graphs 82

4.8 Decremental graph connectivity 85

5 Handling Intermediate Nodes 100

5.1 AnΩ(
√

n) lower bound . 101

5.2 A Õ(
√

kn) upper bound . 103

5.3 A 2-approximate scheme .. 112

5.4 Bounded-distance forbidden sets 114

5.5 Compact routing on good paths .. . 117

5.6 Nondistributed data structures 119

5.7 Dynamic labeling schemes .. . 120

5.8 Discussion . 123

6 Approximating Forbidden-set Routing 125

6.1 Compact routing with a small number of objective costs 126

6.2 Approximate separator labels 130

7 Discussion 133

7.1 SPPs and routing trees .. 134

7.2 Compact routing schemes .. 134

CHAPTER 1

Introduction

1.1 Introduction

A fundamental task for any communications network is routing – the process of discovering

paths between nodes in the network and using them for communication. Without a path con-

necting two nodes, they cannot send packets to each other andso the problem of deciding

reachability is crucial to any routing algorithm. The basicjob of any routing algorithm is to

allow nodes to route on paths having low cost – but what do we mean by a low-cost path? The

usual view of routing is to assign weights to edges, and definethe cost of a path as the sum of

its edge costs. This is known as the shortest-path routing problem.

We study a problem motivated by routing in networks having the following properties:

1. There is no centralized control, so all decisions should be made usinglocal information.

2. The nodes areautonomous, meaning they are free to make their own independent deci-

sions (we shall explain later what these decisions are).

3. The network is large, so nodes cannot store a piece of information for every other node,

i.e. we wanto(n) space per node.

The Internet is an example of such a network – each node may be an independent orga-

nization with its own economic aims, possible competing with other organizations to provide

1

2 Chapter 1. Introduction

connectivity in the network. We shall not be interested in the economics of Internet routing, but

we shall be interested in the routing problems that such a situation creates. We begin by de-

scribing at a high level, how Internet routing is done. Lateron, we shall use this as an abstract

model for routing in which we can prove various results.

The main protocol used for routing on the Internet is known asthe Border Gateway Protocol

(BGP). It works roughly as follows: a node advertises to its neighbours the route it currently

uses to each destination. A node with many neighbours will thus learn about many routes to

some destinationj. It then selects one of these routes as the route that it will use to send data to

j; subsequently, it can advertise this route to all of its neighbours. This process repeats until the

set of routes stabilises (and so the protocol converges), and each node discovers at least one route

to every destination (if such a route exists). Since there may be many possible routes to choose

from, a crucial decision a node must make is route selection:given all the currently available

routes to a destinationj, which one should it choose? In the early days of the Internet(when it

was known as ARPANET), each node simply chose theshortestavailable path [MW77]. In this

case, the algorithm we have just described can be seen as a distributed algorithm for solving

the shortest-path problem, and indeed it is possible to showthat this algorithm will converge in

finite time and every node will discover the shortest path to every destination.

However, today’s Internet no longer consists of machines owned and run by a single organ-

isation; instead it consists of independent competing organisations whose routing preferences

are influenced by external factors other than path length, such as commercial relationships with

other organizations in the network. For this reason, shortest-path routing is often not appro-

priate or desirable (the shortest path fromu may go via another organization thatu wishes to

avoid). BGP allows nodes complete freedom to pick routes according to localrouting policies,

and this leads us to thepolicy routingproblem – each node has a policy that defines how it

assigns costs to paths, and each node wants to route on paths that are of low cost to itself. Very

little is known about the complexity of policy routing, in contrast to the problem of shortest-

path routing, which is very well-understood. Our aim is to develop an understanding of policy

routing, and how to design good algorithms for routing with specific classes of policies.

1.2 Chapter 3: Routing trees

We begin by discussing a simple but widely-used method of routing, that we shall refer to as a

‘routing tree’-based scheme. Imagine that we want to send packets on shortest paths between

1.2. Chapter 3: Routing trees 3

nodes. Arouting treefor a nodev is simply a spanning tree rooted atv. Imagine that we con-

struct a forest of routing trees, one for each node in the network. Then to route to a destination

v, we find its routing tree and forward the packet along the edges of the tree until it reaches the

root. The set of shortest paths to each nodev is a routing tree forv. Therefore we can construct

the forest by running an efficient distributed shortest-path algorithm, and storing at each node

the parent node for each routing tree. This scheme uses spaceO(n) at each node for a network

of n nodes (from now on, we shall usen to denote the number of nodes).

For routing in autonomous networks with no centralized control, we need our routing trees

to satisfy an additional property, calledstability. A routing tree isstableif no node in the tree

can switch to a lower cost path without creating a cycle in thetree. Throughout the thesis, we

shall assume that stable routing trees are the only ones thatwe can use for routing. The reason

for this is that if the nodes are autonomous, then given the choice between a path of high cost

and a path of low cost to a destination, we have to assume that they will pick the low cost

path for routing to that destination. The collection of shortest paths to some node has a useful

property, sometimes referred to as the principle of optimality: any subpath of a shortest path is

a shortest subpath. This property implies that a shortest-path routing tree will always be stable,

if all nodes prefer shorter paths over longer paths. In modelling policy routing, we shall assume

that each nodeu has a policycu that assigns a nonnegative costcu(P) to each pathP . Clearly,

it is possible to construct a set of policies so that the principle of optimality no longer holds. In

this case, it is natural to ask if we can still construct stable routing trees.

Griffin et al. [GSW02] answered this question in the negative.Furthermore, they showed

that given a set of policies (encoded in a particular way) anda network, it is NP-complete to

decide whether there exists a stable routing tree to some fixed destination. This intractability

result is particularly surprising because it models how routing actually happens on the Internet

– not only is it possible that the BGP algorithm may not converge to a solution (i.e. a set of

stable routing trees), but it is NP-complete to decide if it will do so. Why then do we still use

BGP? The main answer is that it still works ‘in practice’, but as the Internet grows and we

become more reliant on it as a means of communication, this answer will eventually not be a

good enough one.

In light of this hardness result, there are two natural ways in which we might hope to attack

the problem, if we wish to construct useful algorithms for the policy routing problem. One di-

rection is to restrict the class of policies allowed in the hope that the reduction in expressiveness

will permit an efficient algorithm. Another direction is to restrict the class of networks.

4 Chapter 1. Introduction

Feigenbaum et al. [FKMS05] investigated the first direction. They studied the simple class

of next-hop preferenceswhere the cost of a path depends only on its next-hop. They showed that

a stable routing tree always exists and so deciding solvability is trivial. Gao and Rexford [GR00]

suggested that next-hop preferences capture the effect of ASes having different commercial

relationships with neighbouring ASes. However, there are many desirable classes of policies

that cannot be expressed in terms of next-hop preferences. For example, the government of

countryX may want to avoid any path that goes through some other country Y , perhaps because

X is afraid thatY may do bad things to its packets, or because it does not wantY to know

who it is communicating with. This motivates theforbidden-set routingproblem, introduced

by Feigenbaum et al. [FKMS05]: each nodeu has a forbidden setS(u) ⊆ V (G) of nodes,

and the costcu(P) of a pathP from u is the number of nodes it contains fromS(u), i.e.

cu(P) = |S(u) ∩ P |. In addition to being a relevant and interesting class of routing policies,

the problem is interesting from a graph theory point of view,since there is no pathP from u to

v with cu(P) = 0 iff S(u) separatesu andv in G.

In Chapter 3, we further the study of routing trees for the policy routing problem. Our main

results are following.

• We show that deciding if there exists a stable routing tree where the nodes use forbidden-

set preferences is NP-complete, even on bounded treewidth graphs. This shows that even

if we severely restrict both the class of policyand the class of networks, deciding solv-

ability is still intractable. This rules out the possibility of using a single routing tree for

policy-based routing, even in simple cases.

• We show that a small change in policy can give a huge change in complexity of deciding

solvability – it is trivial for next-hop preferences but NP-complete for two-hop prefer-

ences. We conjecture that there exists a dichotomy theorem for SPP solvability, i.e. for a

given class of policy, it is either NP-complete or trivial.

• We prove the first communication complexity results for solvability; in particular, any

distributed algorithm must communicate2Ω(n) bits over at leastΩ(n) edges in the worst-

case. We also prove lower bounds for the class of forbidden-set preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally check if the

current path assignment is a stable routing tree. We show anΩ(n) lower bound on the

1.3. Chapter 4: Towards compact forbidden-set routing 5

proof size and give a proof labeling scheme of sizeO(n), hence this is tight in the worst

case.

These results suggest that routing trees are not a good idea for policy routing, even for simple

networks (bounded treewidth) and simple policies (forbidden-set).

1.3 Chapter 4: Towards compact forbidden-set routing

In Chapter 4 we forget about using routing trees, and try to develop a model that will allow us to

construct efficient routing schemes for the forbidden-set routing problem. The results of Griffin

et al. [GSW02] show that for policy routing, it may be impossible to construct a stable routing

tree and so it is not always possible to route on lowest-cost paths using this method.

Consider the following simple (non-tree-based) scheme for policy routing. Each nodew

stores a table where the entry(u, v) specifies the next hop fromw on the path fromu to v of

lowest cost tou. When a nodeu wants to send a packet to destinationv, it writes into the header

of the packet the string〈u, v〉. Now when some nodew receives this packet, it looks up the entry

〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost path

to each destination. However, the downside is that each router now storesO(n2) entries in its

local routing table, which is too demanding in a large network. With a routing tree, all the

sources whose paths pass through the same nodew to the same destinationv must agree to use

the same path fromw and therefore each node can storeO(n) entries. However, we know that

stable routing trees are not guaranteed to exist, so we cannot always route on lowest-cost paths

(even though the path clearly exists in the network!).

The above scheme can be seen as a simple instance of the following model of routing. Each

node is assigned a data structure (called its routing table)and a label, which identifies the node

to other nodes. Routing is then done as follows: if nodeu wants to route tov it writes v’s

label into the packet header. Nodes can then use their routing tables andv’s label to decide how

to forward the packet through the network. This model is known ascompact routingand was

introduced in a series of papers by Peleg and Upfal [PU89] whoshowed how to do stretch-k

routing usingnO(1/k) bits per label. Cowen [Cow99] showed how to route on stretch-3 shortest

paths using̃O(n2/3) bits per node1. These are both substantial improvements on theO(n) space

required by simply using routing trees. Indeed, a routing scheme is said to becompactif the

1f(n) = Õ(g(n)) if ∃c ≥ 0 such thatf(n) = O(g(n) logc n)

6 Chapter 1. Introduction

space requirement at each node iso(n), i.e. sublinear in the number of nodes in the network.

For more details about localized and compact data structures for shortest-path routing, we refer

the reader to the excellent survey paper by Gavoille and Peleg [GP03]. In fact, it is known that

compact routing is almost-optimal for approximate shortest-path routing: Thorup and Zwick

[TZ01b] have given a scheme that routes on paths of stretch three (a path has stretchk if its

length is within a factork of optimal) using routing tables of sizẽO(n1/2) andO(log n)-bit

labels. By a proven conjecture of Erdos, related to the girth of a graph, this space requirement

is optimal to within logarithmic factors.

The question we wish to answer is the following: for the special case of forbidden-set rout-

ing, can we do better than spaceO(n2) per node, while still being able to route onall forbidden-

set-avoiding paths? We answer this in the positive by constructing a compact routing scheme

that routes on the shortest pathu− v that avoidsS(u). Our main results are the following. Let

k be the size of the largest forbidden set, i.e.k = maxu |S(u)|, and letd be the degree ofG.

• We show how to do forbidden-set routing on trees usingO(k log n) bits per node. How-

ever, the problem on trees is simple since a setS is a separator ofu, v in T iff at least one

element ofS lies on the unique path betweenu, v.

• For the class of bounded cliquewidth graphs, we can construct a forbidden-set routing

scheme usingO(dk log2 n) bits per node and labels of sizeO(log n) bits. However, the

hidden constant may be a tower of exponentials in the cliquewidth, making the scheme

quite impractical, but nevertheless hinting at the existence of more efficient schemes.

• For graphs of treewidtht, we give a forbidden-set routing scheme usingO(t2dk log2 n)-

bit labels.

• We give a space lower bound ofΩ(n) bits per node for any forbidden-set routing scheme

in general graphs.

We argue that for policy-based routing on the Internet, compact routing schemes are bet-

ter than using routing trees. Since no routing trees are everconstructed, our routing schemes

can send packets on all lowest-cost paths between nodes, whenever they are reachable in the

network. In contrast, packets can be sent only if a stable routing tree exists where the source

node is not assigned the empty path (and deciding if such a tree exists is NP-complete even

with forbidden-set policies on bounded treewidth graphs).So far nothing is known about the

1.4. Chapter 5: Handling intermediate nodes 7

b e g

da

c

S(a) = {d}

f

S(b) = {e, a}

Figure 1.1 : The only good path from a to g is marked in bold. The same path in reverse is not
a good path from g to a

viability of compact routing schemes for policy routing. Inparticular, it may be that the space

requirements are higher thanΩ(n) per node. The idea of using compact routing on the Internet

has been suggested elsewhere. For example, Krioukov et al. [KFY04] suggest that existing

compact routing schemes perform excellently for Internet-like topologies. However, this ig-

nores the freedom offered by policy routing, which is the main attraction of BGP. Until there

exists a scheme that can handle policy routing (even for restricted policies such as forbidden-

set), there will remain no viable alternative to BGP. We believe that our algorithms take us an

important step closer towards this goal, and also provide some interesting and difficult questions

along the way.

1.4 Chapter 5: Handling intermediate nodes

In the previous chapter, we constructed forbidden-set routing schemes under the assumption that

intermediate nodes will always forward packets, even if thepath on which they are forwarding

the packets is costly to them. We call a pathgoodif all its subpaths have zero cost. An example

of this is shown in Figure 1.1. Note that for shortest-path routing this is not an important

concern, because every subpath of a shortest path is itself ashortest path. The problem of

routing on good paths can be seen to model a common situation in BGP routing: if nodes

only advertise paths of zero cost (to themselves), then no node will ever discover a non-good

path. It is important to note that this ‘goodness’ property is implicit in stable routing trees –

if u has a lower cost path available than its current one then it will choose it, regardless of the

preferences of other nodes that may need to route throughu (although this may be restricted by

8 Chapter 1. Introduction

the requirement that the new path does not create a cycle). Since we are interested in compact

routing schemes, we ask ourselves the following question: what difference does routing on only

good paths make to the complexity of routing schemes for the forbidden-set routing problem?

In Chapter 5, we show that the answer is somewhat negative – taking into account the costs

of intermediate nodes makes the problem much more difficult.Let k be the size of the largest

forbidden set, i.e.k = maxk |S(u)|. Our main results are the following.

• We show that if the forbidden sets are of size at mostk then on trees, labels of size

Ω(
√

n + k log n) are required to decide if there is a good path between two nodes. This

should be compared with theO(log n) bound shown in Chapter 4 for simply routing on

zero-cost paths to the source node.

• We prove an almost-optimal̃O(
√

kn) upper bound and show various time-space tradeoffs

for centralized versions of the problem.

• We also show that routing can be done usingÕ(k)-bit routing tables and labels, but a

packet may traverseΩ(n) edges before being returned if a good path does not exist.

Our results imply that it may not be practical to construct forbidden-set routing schemes that

take into account costs incurred by intermediate nodes, unless we are willing to sacrifice features

such as the ability to decide if there exists a good path before sending the packet.

1.5 Chapter 6: Approximating forbidden-set routing

We finish by considering an approach toapproximatingforbidden-set routing. We partition

the network into connected clusters and instead of choosingarbitrary subsets of nodes, the

forbidden sets are a subset of these clusters. This has the effect of avoiding whole clusters

rather than individual nodes. We define the problem of obtaining a cluster graph with good

graph-theoretic properties, and motivate the problem of obtaining a cluster graph with bounded

treewidth. We show that if we can construct a cluster graph having small treewidth, then we can

apply our forbidden-set routing schemes from Chapter 4 to it.This may be of interest when the

network lends itself naturally to clustering.

We begin by considering an approach inspired by the work of Feigenbaum et al. [FKMS05]

– they considered a relaxed version of shortest-path routing where each link has a number of

objective values associated with it, representing for example its delay, its bandwidth and other

1.5. Chapter 6: Approximating forbidden-set routing 9

metrics. All nodes agree on these values, in the same way thatall nodes agree on the weights

of edges for shortest-path routing. Each node has an individual cost function, which is a convex

combination of the objective values assigned to edges (for example, one node may be interested

in paths minimizing the sum of delays, while another may be interested in paths minimizing

another metric). They showed that using a small number of routing trees (instead of a single

routing tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does

not immediately imply a space-efficient routing scheme, though. We shall show how to use

their construction to build a space-efficient compact routing scheme with a small increase in

the approximation factor. We can then observe that this multiple objective cost problem can be

seen as a special case of clustering the network and assigning costs to clusters. Since we are

interested in forbidden-set routing, it is natural to ask ifwe can cluster the graph so as to obtain

efficient forbidden-set routing algorithms for it.

CHAPTER 2

Preliminaries

In this chapter, we give some useful preliminary definitionsand background to areas and basic

results that we shall frequently refer to.

2.1 Graph theory

We assume familiarity with basic concepts in graph theory; see [Wil86] for a good reference

text on graph theory. We shall model the network by an undirected simple graphG = (V,E)

havingn nodes andm edges. The size of a graph is the number of nodes in the graph. Given

a graphG, its node set is denotedV (G) and its edge setE(G). The degreeof a nodeu in

G is denoted bydegG(u) and themaximal degreeof a node ofG is denoted by∆(G). The

neighbourhoodof a nodeu ∈ V (G) is denoted byNG(u) = {v ∈ V (G) : {u, v} ∈ E(G)} and

the neighbourhood of a set of nodesS ⊆ V (G) is denoted byN(S) =
⋃

s∈S N(s)\S. We shall

drop the subscripts when it is clear which graph we are referring to. Thetransitive closure, or

reachability graphof a graphG is denoted byG∗.

A path is a sequence of nodes such that from each of its nodes there isan edge to the next

node in the path, and no nodes are repeated. Thelength of a path is the number of edges

contained in the path. Acycle is a path, except that the start and end nodes are the same. A

graph isacyclic iff it contains no cycles of length> 1. We shall denote the empty path byǫ.

10

2.1. Graph theory 11

If P = v1, . . . , vk andQ = vk, . . . , vr thenPQ = v1, . . . , vr is the concatenation ofP andQ

(ǫP = P = Pǫ). A Hamiltonianpath is one that visits each node of the graph exactly once. A

graph that contains a Hamiltonian path is called Hamiltonian. The distance fromu to v in G is

the length of the shortest path fromu to v and is denoted bydG(u, v).

A separator(cut) is a set of nodes (edges) whose removal disconnects the graph into con-

nected subgraphs. A cut is denoted by(X,Y) whereX,Y ⊆ V (G) and thevalue(or size) of

the cut is the number of edges needed to partition the graph into (X,Y). A graph isk-connected

(k-edge-connected)iff it remains connected after removing anyk − 1 nodes (edges). A graph

is k-connected iff it containsk node-disjoint paths between any two nodes. Theconnectivity

κ(G) of a graphG is the minimum number of nodes needed to disconnectG. By convention,

Kn has connectivityn− 1 and a disconnected graph has connectivity 0.

2.1.1 Graph layouts

A linear layout, or layout, of an undirected graphG = (V,E) with n nodes is a bijective

functionφ : V → {1, . . . , n}. Given a layoutφ of a graphG and an integeri, we define the set

L(i, φ,G) = {u ∈ V |φ(u) ≤ i} and the setR(i, φ,G) = {u ∈ V |φ(u) > i}. We shall useL(i)

andR(i) whenφ andG are obvious. Theedge cutat positioni of φ is defined as

Θ(i, φ,G) = |{{u, v} ∈ E|u ∈ L(i) ∧ v ∈ R(i)}|.

A common way to represent a layout is to align the nodes horizontally, mapping each nodeu

to its positionφ(u). Thecutwidthof a layout ismaxi∈{1,...,n} Θ(i, φ,G) and thecutwidthof a

graph is the minimum cutwidth over all possible layouts ofG, denoted bycw(G).

2.1.2 Treewidth

Many problems have efficient algorithms when restricted to trees. The notion of treewidth,

introduced by Robertson and Seymour [RS86] as part of their work on graph minors, captures

the idea that a graph may be ‘tree-like’. It is often possibleto construct efficient algorithms for

difficult problems, when restricted to small treewidth graphs. We shall make frequent reference

to the concept of treewidth, so we define it here for reference. A tree decompositionof a graph

G = (V,E) is a pair(X,T) whereT = (I, F) is a tree and each node ofi of T is associated

with a subsetXi ⊆ V with the following properties.

12 Chapter 2. Preliminaries

a

b

c d h

e g

i
j

k

f

a b
c

c
d

e

d
e

f

f
g

d
h

f
h i

i j

i k

Figure 2.1 : An example of a graph and a tree decomposition of width 2

1. TheXi’s cover the nodes ofG, i.e.
⋃

i∈I Xi = V ;

2. For every edge{v, w} ∈ E, there is some nodei ∈ T wherev, w ∈ Xi;

3. For everyv ∈ V , the set{i ∈ I|v ∈ Xi} is a connected subtree ofT .

Thewidth of a tree decomposition(X,T) is defined asmaxi∈I |Xi| − 1. The treewidthof

a graphG is the minimum width over all tree decompositions ofG, and we shall denote it by

tw(G). For example, trees have treewidth one and cliques have unbounded treewidth. Figure

2.1 shows an example of a graph and a tree decomposition. In some cases,T will be considered

to be a rooted tree, in which case a specific node ofT shall be its root. A tree decomposition

with T a rooted tree is called a rooted tree decomposition. For a node i ∈ I, we call the setXi

thebagof i. More details about the history and uses of treewidth can be found in the paper by

Bodlaender [Bod93b].

2.2 Labeling schemes

Implicit in any distributed algorithm is a representation of the network, and many network

representations are inherently global; for example each node is assumed to know the entire

2.2. Labeling schemes 13

network. A common distributed representation of a graph is to assign nodes unique identifiers

from {1, . . . , n} and then store at each node the identifiers of its neighbours.In such a scheme,

answering a query such as ‘what is the distance betweenu andv?’ may require access to data

distributed across the entire network, e.g. by running a shortest path algorithm. Another idea

is to use a completely local representation of the network, for example having each node know

the entire graph. The problem is that both these representations are inefficient: the first has high

query time and second has high space requirements at each node.

Labeling schemes were introduced in [KNR92]. Assume thatP (x1, . . . , xk) is some graph

property on nodesx1, . . . , xk that we want to answer, e.g.P (x1, x2) = d(x1, x2) orP (x1, . . . , xk) =

1 iff the subgraph induced byx1, . . . , xk is a clique. AP -labeling scheme(L, f) consists of

two things:

1. A marker algorithmthat takes as input the graph and assigns a labelL(v) to each nodev

(L is called alabelingof the nodes);

2. A decoder algorithmf such thatf(L(x1), . . . , L(xk)) = P (x1, . . . , xk).

Thesizeof a labeling is the maximum size of a label given to some node.For a family of graphs

G we denote a labeling scheme by(L, f), whereL is the labeling computed by the marker on

the particular graphG ∈ G andf is the decoder algorithm (that depends only on the marker

algorithm, not the particularG ∈ G).

The labelingL can be viewed as a distributed data structure, with the decoder as a distributed

algorithm that answersP (x1, . . . , xk) using data only stored atx1, . . . , xk. If the labels are short

then they can be given as part of the query, by using them in place of the traditionallg n-bit

node identifier (e.g. in packet headers). We shall be interested in themaximumlabel size rather

than thetotal label size since the graph given to the marker algorithm is unknown and so any

node could be assigned a label of the maximum size, which would require that each node has

sufficient memory to store it. Clearly, a good bound on the individual label size gives a good

bound on the total size but not the other way around. It is alsoclear that labels of unrestricted

size can be used to encode any desired property (by storing the entire graph). For a labeling

scheme to be useful the labels should be short (say of length polylogarithmic in the number of

nodes), and the time to answer a query given the labels be small (also polylogarithmic).

14 Chapter 2. Preliminaries

2.2.1 An example – adjacency labeling

We now give an example of adjacency labeling in trees, to givea better understanding of the

local nature of these schemes. Adjacency labeling schemes were first introduced in [KNR92] for

the implicit representation of graphs. In particular, a labeling scheme using2 log n-bit labels

for the class of trees was given, which we now describe. Givenan n-node treeT , labels are

assigned to nodes as follows. Choose a root and associate a unique identifierID(v) ∈ {1 . . . n}
with each nodev ∈ T , then assign a nodev with parentw the label(ID(v), ID(w)) (the rootr

is assigned the label(ID(r), 0)). Now, given two labels(ID(v), ID(w)) and(ID(v′), ID(w′)),

the nodesv, v′ are neighbours iff eitherID(v) = ID(w′) or ID(v′) = ID(w). The scheme can

be extended to families of graphs having separators of bounded size such asc-decomposable

graphs (e.g. bounded genus graphs and bounded treewidth graphs).

Another basic result in the area of graph labeling concerns distance labeling schemes. A

distance labeling scheme is a labeling scheme(L, f) wheref(u, v) is the distance between two

nodesu, v in the graph. It has been shown [KNR92] that a class of2Ω(n1+ǫ) n-node graphs must

use adjacency labels (and thus distance labels) whose totalcombined length isΩ(n1+ǫ) bits.

Hence, at least one label must be ofΩ(nǫ) bits. More specifically, for the class of all unweighted

graphs, any adjacency (and hence distance) labeling schememust assign some node a label of

sizeΩ(n) bits.

Given theΩ(n) lower bound for general graphs, a large amount of research has tackled the

problem of constructingapproximatedistance labeling schemes. Thorup and Zwick [TZ01a]

give a distance labeling scheme with approximation factor2k−1 usingÕ(kn1/k) bits per label,

which is essentially optimal by a 1963 girth conjecture of Erdos that has been proven for certain

small values ofk includingk = 2.

2.3 Communication complexity

In Chapters 3 and 4 we shall make use of results from communication complexity. Therefore,

we give some basic concepts here but for further informationand details of proofs, we refer the

reader to the excellent and interesting book [KN97] by Kushilevitz and Nisan.

Let X,Y, Z be arbitrary finite sets and letf : X × Y → Z be an arbitrary function. There

are two players, Alice and Bob, who wish to evaluatef(x, y) for some inputsx ∈ X and

y ∈ Y . The difficulty is that Alice only knowsx and Bob only knowsy. Thus, to evaluate the

2.3. Communication complexity 15

function, they will need to communicate with each other. Thecommunication will be carried

out according to some fixed protocolP (which depends only on the functionf). The protocol

consists of the players sending bits to each other in turn, until the value off(x, y) can be

determined. We are usually only interested in the amount of communication between Alice and

Bob, so we ignore the internal computations each of them makes. Thus, Alice and Bob are

assumed to both have unlimited computational power. Thecostof a protocolP on input(x, y)

is the number of bits communicated on that input. The cost of aprotocolP is the worst case

cost ofP over all inputs(x, y). Thecommunication complexityof f is the minimum cost of a

protocol that computesf .

Although we assume that the players have unlimited computational power, the way that the

choices are made at each step of the protocol can have an impact on the amount of communica-

tion required. Thedeterministiccommunication complexity of a functionf , denotedD(f), is

the minimum cost of any deterministic protocol that computesf , i.e. one that makes no random

choices and computes the answer deterministically. Therandomizedcommunication complex-

ity is defined similarly, except that the protocols used by the players are randomized, and the

result must be known with a sufficiently high probability. The book [KN97] gives several exam-

ples of functions whose deterministic complexity isΩ(n), yet there exist randomized protocols

that use onlyO(log n) bits of communication (for example, the set equality function).

We shall also be interested in nondeterministic communication protocols. In a nondeter-

ministic protocol, we can imagine the presence of an all-powerful prover who knows the inputs

of both players (and hence the answer). Therefore, the communication required is equiva-

lent to that needed to verify a nondeterministic guess of theanswer. For example, consider

the disjointness functionDISJ on n-bit strings whereDISJ(P,Q) = 1 iff P ∩ Q = ∅. If

DISJ(P,Q) = 1 then there exists an indexi such thatPi = Qi. The prover can tell both

playersi and they can verify thatPi = Qi with O(log n) bits of communication. We define

the nondeterministiccommunication complexity of a functionf is the minimum cost of any

nondeterministic protocol that verifies thatf(x, y) = 0 for anyx ∈ X, y ∈ Y , and is denoted

N0(f). Similarly, theco-nondeterministiccommunication of a functionf is the minimum cost

of any nondeterministic protocol that verifies thatf(x, y) = 1 for anyx ∈ X, y ∈ Y , and is

denotedN1(f).

16 Chapter 2. Preliminaries

2.4 Boolean circuits

In Chapter 3 we make use of boolean circuits and boolean functions in proving some of our

lower bound results for the complexity of finding stable routing trees. Results on the complexity

of boolean functions also underly some of our results in the last section of Chapter 3. Therefore

we now give a brief overview of the main (mostly simple) concepts that we shall use; for more

details and related results in this deep and interesting area, we refer the reader to the book by

Clote and Kranakis [CK02].

A boolean circuitis a directed acyclic graph with labeled nodes as follows:

• Inputnodes have fan-in 1 and are labeled with a variablexi or a constant in{0, 1}.

• Gatenodes have fan-ink > 0 and are labeled with a boolean function∧(AND), ∨(OR),

¬(NOT) on thek inputs. In the case that the label is¬, the fan-in is restricted to be 1.

• Outputnodes have fan-out 0.

A boolean formulais a boolean circuit having only one output gate. The edges ofa circuit are

calledwires. Thedepthof a circuit is the maximum distance from an input to an outputgate.

It is important to note that any circuit can be modified, by using de Morgan’s laws, to push all

the negations to the input gates, without changing the depthof the circuit. Therefore, we will

assume wlog that all gates are one of∧,∨, and that the negated versions of each variable are

available as inputs, i.e.x1 andx1. Similarly, adjacent gates of the same type can be combined

together, so we assume wlog that a circuit contains levels alternating between∨ and∧ gates.

A Πk
d formula is a boolean formula of depthd where the top level gate (the output) is a∧ gate,

and with fan-in bounded byk. A Σk
d formula is defined similarly, except that the top level gate

is a∨ gate.Π1 andΣ1 formulae are single literals and correspond to input gates in the circuit.

Figure 2.2 shows an example of aΠ3 formula.

2.4. Boolean circuits 17

x1x1 x3

∧∧

∨∨

∧

x2x2 x3

∧

Figure 2.2 : A Π3 formula ((x1 ∧ x2) ∨ (x2 ∧ x3)) ∧ ((x2 ∧ x3) ∨ (x2 ∧ x3))

CHAPTER 3

Routing Trees

In this chapter we consider policy-based routing using routing trees. The chapter is structured in

two parts. In the first part, we use the formalism of routing algebras and the stable paths problem

to show hardness results on the computational complexity ofpolicy-based routing using routing

trees, even for simple policies. These extend other resultsdue to Feigenbaum et al. [FKMS05]

and Griffin et al. [GSW02].

In the second part of the chapter, we consider the stable paths problem as a problem in

distributed computing and prove the first communication complexity lower bounds for it. In

the final section, we describe the notion of proof labeling schemes, which provide a distributed

representation of a solution that is locally verifiable. We prove a lemma that lets us use our

communication lower bounds to give lower bounds on the proofsize of deciding solvability of

a stable paths problem.

The aim of this chapter is to convince the reader that routingtrees are not practical for

policy-based routing, even for seemingly simple policies such as forbidden-set routing.

3.1 The stable paths problem

That BGP is not guaranteed to converge was first observed by Varadhan et al. [VGE96]. More

recently, Griffin et al. [GSW02] introduced thestable paths problem(SPP) as a tool to model

the instabilities that can arise from using routing tree-based algorithms such as BGP. They use

18

3.1. The stable paths problem 19

30

420
430

10
130

5210

4

0
1

3

2
5

210
20

Figure 3.1 : An instance of the stable paths problem. The nodes’ path preferences are ordered
from most preferred to least preferred, and the routing tree representing the solution is marked
with bold edges.

the following motivating analogy:If Dijkstra’s algorithm solves the shortest path problem then

BGP solves the stable paths problem.

We now describe the stable paths problem. LetG = (V,E) be an undirected rooted graph,

with the root having identifier 0. All nodes wish to establisha path to the root. For each node

v ∈ V , the set ofpermitted pathsfrom v to the root is denoted byΣv. Each node has a total

order(Σv,⊑v) over its permitted paths. We assume that for allv, Σv contains the empty path

ǫ, andǫ ⊑v σ for all σ ∈ Σv, i.e. any nonempty path is preferable to the empty path. Astable

paths instanceis writtenS = (G, Σ,⊑) whereΣ = {Σv} and⊑= {⊑v}.
A path assignmentπ is a function that assigns a permitted pathπ(v) ∈ Σv to each node

v ∈ V (the root’s assigned path isπ(0) = ǫ0). We say that a pathP = v1 . . . vr0 assigned to

v = v1 is consistentwith a path assignmentπ if for all vi ∈ P, vi 6= v implies that the path

π(vi) is a subpath ofP . A path assignmentπ is valid if for all v, the pathπ(v) is consistent with

π. Intuitively, the assigned paths of a valid path assignmentare confluent, i.e. they form a tree

rooted at node 0.

Valid assignments are important as this is how routing takesplace over the Internet; routers

examine the destination of incoming packets and simply forward them to the next hop on the

route to that destination, which is the parent in the tree rooted at the destination. The problem

20 Chapter 3. Routing Trees

is that even thoughπ may be valid, some nodev might prefer (perhaps for economic reasons)

another pathP ′ ∈ Σv to its assigned pathP = π(v). Therefore, as long asP ′ is also consistent

with π, v may (at its own will) switch to usingP ′. We say that an assignmentπ is stable at node

v if there is no other permitted path inΣv consistent withπ that v prefers overπ(v). A path

assignmentπ is stable, or is asolution toS, iff it is stable at every node. Stable routing trees

are important since we assume that the only routing trees that we can use for routing are those

corresponding to stable path assignments. A stable paths instanceS = (G, Σ,⊑) is solvable

if there exists a solution toS, and unsolvable otherwise. We can now define the problem SPP-

SOLVABILITY:

Problem SPP-SOLVABILITY

Input: A stable paths instanceS = (G, Σ,⊑).

Output: Is S solvable?

The main difference between the stable paths problem and theshortest paths problem is that

the latter always has a unique solution, while the former mayhave one, none or many solutions.

As an example, consider the network in Figure 3.1. A stable solution is indicated with bold

edges. Note that node 5 prefers path 5210 to the empty path, but the path 210 is not part of this

solution, so node 5 is assigned the empty path. It is easy to see that there is no stable solution

where node 5 is assigned a nonempty path – node 3 will always prefer (and be able to switch

to) path 30 and so node 1 will always be able to choose path 130 over 10. Therefore node 2

will have to choose path 20 and so node 5 will be assigned the empty path. Also, note that

although node 2 prefers the path 210 to the path 20, it will never be able to use this path in a

stable solution because node 3 will always be able to choose path 30 and so node 1 will always

be able to choose path 130.

3.1.1 Results of this chapter

Compared to the shortest paths problem, very little is known about the complexity of the sta-

ble paths problem. Griffin et al. [GSW02] showed that decidingSPP-SOLVABILITY is NP-

complete for general graphs. Given this result, there are two natural ways that we could hope

to reduce the complexity. We could restrict the class of policies allowed, in the hope that the

reduction in expressiveness will permit efficient algorithms. Another direction is to restrict the

class of networks allowed, in the hope that this will allow more efficient algorithms.

3.1. The stable paths problem 21

Feigenbaum et al. [FKMS05] investigated restricting the policy. They studied the class

of next-hop preferenceswhere the cost of a path can depend only on the next-hop on the path.

They showed that deciding solvability is trivial since a stable routing tree always exists. Gao and

Rexford [GR00] suggest that next-hop preferences capture theeffect of ASes having different

commercial relationships with neighbouring ASes, in the sense that the cost of a path depends

only on whether the next-hop is a customer or provider etc. (they do not capturetransit policies

where the next-hop depends on the previous hop). There are many useful policies that cannot

be expressed in terms of next-hop preferences. For example,a nodeu may wish to avoid any

route that goes through nodev, perhaps becausev is a competitor who may dropu’s data or due

to some economic agreement between them. This leads to theforbidden-set routingproblem:

each nodeu has a forbidden setS(u) ⊆ V of nodes where the cost tou of a path is the number

of nodes it contains fromS(u). Forbidden-set preferences capture a fundamental yet expressive

class of routing policies, so showing that we can handle themefficiently would be an important

positive result. Our main results are the following:

• We show (by a simple extension of a result of [FKMS05]) a strongly negative result –

deciding solvability for forbidden-set preferences on bounded treewidth graphs is NP-

complete. Thus, even if we severely restrict both the class of policy and the class of

graphs, the problem of deciding solvability is still intractable. This almost certainly rules

out the possibility of using a single routing tree for policy-based routing.

• We show that a small change in policy can give a huge change in complexity of decid-

ing solvability – deciding solvability of an SPP is trivial for next-hop preferences but

NP-complete for the class of two-hop preferences. We conjecture that there exists a di-

chotomy theorem for the problem of deciding solvability, i.e. for a given routing algebra

it is either NP-complete or trivial.

• We prove that any distributed algorithm that decides if there is a set of stable paths must

communicate2Ω(n) bits across each of at leastΩ(n) edges in the worst-case. We also

prove lower bounds for the communication complexity of solvability using forbidden-set

preferences.

• Finally, we consider labeling the nodes so that they can verifiably and locally decide

whether the current routing tree is stable, and prove anΩ(n) lower bound on the label

22 Chapter 3. Routing Trees

size. We show that this is tight in the general case by giving aproof labeling scheme

usingO(n)-bit labels.

3.2 Routing algebras

In this section we describe the formalism ofrouting algebrasintroduced by Sobrinho [Sob03].

We then describe how they naturally generate instances of the stable paths problem. This allows

us to completely separate the complexity of the policy from the complexity of the graph used.

Note that the path preferences⊑ overΣ implicitly encode information about the graphand the

policy. The advantage of using the routing algebra formalism is that it separates policy and net-

work. This will enable us to understand what makes certain policy classes hard by studying their

algebraic properties, independent from the class of graphsused. In the work presented here, we

do not study the link between algebraic features of policiesand the complexity of the SPPs that

they generate. Our main use for routing algebras is to succinctly and accurately describe the

policy classes that were are interested in studying. As related work, Chau et al. [kCGG06]

have investigated how the algebraic features of policies affect the convergence properties of

Bellman-Ford-style iterative algorithms. However, the general problem of understanding how

the algebraic properties of routing algebras relate to the convergence properties of algorithms

and their complexity is still an open problem.

We shall now introduce routing algebras. Routing algebras can be thought of as generalising

shortest-path routing in the following way. Consider Figure3.2(a): there is a path fromv to w

of weightm and nodeu has an edge to nodev of weightn, henceu has a path tow of weight

at mostn + m. Now let us generalise this as in Figure 3.2(b). Each edge hasa label l ∈ L,

and each path is described by asignatureσ ∈ Σ. We assume that there is a special ‘zero’

signatureǫ ∈ Σ (similar to the zero element of a group) that denotes the empty path. Paths are

composed using the binary operator⊕ : L × Σ → Σ (paths are assumed to begin at the root,

and are extended towards the source node). Finally, there isa totally-ordered set ofweights

(W,≤) and acost functionf : Σ → W . We can now define arouting algebraA as the tuple

A = (L, Σ, ǫ,⊕, (W,≤), f).

3.2. Routing algebras 23

(a) wn
u v

m

n + m

(b) wλ
u v

σ

λ ⊕ σ

Figure 3.2 : How path lengths are computed in the shortest path setting (a), and how path
signatures are computed in the routing algebra setting (b).

3.2.1 Generating stable paths problems

Routing algebras naturally generate instances of the stablepaths problem. Given a routing

algebraA and a rooted graphG with edges labelled fromL, we say thatA generates an instance

A(G) of a stable paths problemas follows. For every path from a node inG to the root node,

its signature is generated by recursively applying⊕ to the labels along the path. Every node

then ranks its paths to the root using the cost functionf , and a node prefers a pathP with

signatureσ to a pathP ′ with signatureσ′ iff f(σ) ≤ f(σ′). We can now define the problem

of solvability, restricted to SPP instances that are generated by some routing algebra. LetA =

(L, Σ, ǫ,⊕, (W,≤), f) be a routing algebra.

ProblemA-SPP-SOLVABILITY

Input: An undirected rooted graphG with edges labeled fromL

Output: Is the stable paths problem instanceA(G) solvable?

3.2.2 Next-hop routing

We now present a routing algebra for the next-hop policy routing problem. In this case, the

cost of a path can depend only on the next hop on the path. Feigenbaum et al. [FKMS05]

studied the class of next-hop preferences and showed that deciding solvability is trivial since a

24 Chapter 3. Routing Trees

stable routing tree always exists. The reason for this is that we can take the labeled rooted graph

and build a minimum weight spanning tree rooted at the root ofthe graph. Such a tree always

exists, and by the optimality property of minimum spanning trees (that every subpath of an

optimal path is also an optimal subpath), this tree includesthe minimum weight edge adjacent

to each node. The class of next-hop preferences capture the effect of ASes having different

commercial relationships with neighbouring ASes, and thismodel was suggested by Gao and

Rexford [GR00] as a policy class for BGP routing where convergence would be guaranteed.

The figure below shows a routing algebraNH for next-hop preferences. The algebra takes

weights assigned to edges (representing the next-hop preferences) and computes the cost of a

path from a node to the destination by setting the cost of the path to be equal to the cost of

the first edge on the path. This operation is implemented by the composition operator⊕, as

described in Figure 3.2.

L = N

Σ = N

W = (N,≤)

f(c) = c

l ⊕ c = l

Figure 3.3 : A routing algebra NH for the next-hop preferences routing problem

Any SPP instance generated by a next-hop preferences algebra is always solvable [FSS04],

thus the complexity of deciding if there exists a stable routing tree, i.e.NH-SPP-SOLVABILITY,

is trivial.

3.2.3 Two-hop routing

We now consider a class of policies that we call two-hop preferences. Here, each node can rank

paths based only on the first two hops on each path. It might seem natural that this provides a

small degree of extra expressiveness over next-hop preferences, but here we prove the surprising

result that deciding solvability of two-hop preference SPPs is NP-complete. This shows that

there is a complete change in the character of the problem in going from next-hop to two-hop

preferences, and so there must be some important property ofthe algebra that permits this.

3.2. Routing algebras 25

0

c′

acc′0 > aa′0 > acbb′0 > abb′0 baa′0 > bb′0 > bacc′0 > bcc′0

cbb′0 > cc′0 > cbaa′0 > caa′0

a′

c

b′

ba

Figure 3.4 : The bad triangle gadget. There is no stable set of paths that form a tree rooted at
the center node, due to the cyclic preferences of the outer nodes.

To prove this, we make use of the following important construction of [FKMS05] known as

‘bad triangle’, which is a variation of the bad gadget construction introduced by Griffin et al.

[GSW02]. The bad triangle is shown in Figure 3.4. It is not difficult to see that this network has

no stable solution, and that the preferences can be ordered using the first two hops. Consider any

routing tree that has the center noder as its root, for exampleaa′0, cbb′0, bb′0 (we can assume

that the inner nodes all go directly to the center). Since node b prefers pathbaa′0 to bb′0, it will

switch tobaa′0 without creating a cycle. But nowc takes the path viaa, which is less preferred

than the pathcc′0, soc will switch to this path. But nowa will prefer to switch to the pathacc′0,

which will force b to switch tobb′0, which will in turn forcec to switch back tocbb′0. This

process clearly continues for ever, and for any possible routing tree. Therefore the bad triangle

has no stable routing tree to its center. However, it is important to note that if we are using the

bad triangle as part of a larger network and at least one ofa, b, c has an alternative path to the

centre (for example, using some external path) that is more preferred than any path in the bad

triangle then we say that this ‘breaks’ the bad triangle. It can be seen that this allowsall other

nodes in the triangle to have paths to the centre node using edges only from the bad triangle.

We can now prove our main result for two-hop routing preferences.

Theorem 3.2.1 LetA be a routing algebra for two-hop preferences. ThenA-SPP-SOLVABILITY

is NP-complete.

Proof. The proof is by a reduction from the 3-SAT problem, which is known to be NP-complete

[GJ90]. Given a 3CNF formula, we shall take the clauses and encode them into bad triangle

gadgets, one for each clause (for this reduction we shall ignore the nodesa′, b′, c′ in the bad

26 Chapter 3. Routing Trees

triangle). We shall then take these gadgets and connect themto the destination via a long chain

of nodes. The network is shown in Figure 3.5. The clauses are encoded by the edges between

the bad triangles and theyi nodes as follows. For each nodev in a bad triangle, there is an

edge(v, yi) iff v represents either of the literalsxi or xi. Assumev represents the literalxi.

Thenv prefers any path through the bad triangle to any path containing xi, and vice-versa ifv

represents the literalxi. We claim that there is a solution iff the 3-CNF formulaf is satisfiable.

Let (v1, v2, v3, c) be a bad triangle, with nodec at the centre (the bad triangle can be con-

structed using 2-hop preferences). Assume thatv1 represents the literalxi, v2 is xj andv3 is xk.

Thenv3’s path preferences are as follows (remembering that we can only order paths based on

the first two hops):

v3 yk xk > v3 v2 c > v3 c · > v3 yk xk > v3 v1 yi > v3 v2 yj

and similarly forv1, v2 (using the bad triangle preferences). The order expresses thatv3 prefers

to route throughxk than to route through the bad triangle (the second and third items), which

are preferred to routing throughxk. The last item says thatv3 prefers to go through the bad

triangle than to escape through the otheryi nodes.

Claim 1: Any satisfying assignment forf gives a solution to the SPP instance.

Proof. Assign theyi nodes paths consistent with the satisfying assignment, as in [FKMS05].

Then each bad triangle will have at least one node that has itsmost preferred path through the

yi’s, so the other nodes can then route through their bad triangles.

Claim 2: Every solution to the SPP instance gives a satisfying assignment forf .

Proof. We will prove that if there are no satisfying assignments then there is no solution. Iff

has no satisfying assignment then there is no assignment of paths to theyi nodes such that every

bad triangle has at least one node with its top preference path available (sincef is unsatisfiable).

Assume now that in some bad triangle, some nodev3 breaks up the triangle by going via itsyi

node. Then the other two nodesv1, v2 will prefer to route via the bad triangle rather than escape

via v3 andyi. But thenv3 would now prefer to go via the bad triangle. Hence no bad triangle

will be broken up and there is no solution.

The above claims establish thatf is satisfiable iff the SPP instance is solvable.

3.2. Routing algebras 27

v13

(x1 ∨ x3 ∨ x4) (x2 ∨ x3 ∨ x4)

· · ·
c1

cm

x1

x1 x2

0

x3 x4

y1 y2 y3

v11 v12

x3
x2 x4

y4

∧ · · · ∧

vm3

vm1 vm2

Figure 3.5 : Encoding a 3-SAT instance into an SPP instance using 2-hop preferences. The
SPP is solvable iff the formula is satisfiable.

28 Chapter 3. Routing Trees

Remark. The original 3-SAT reduction in [GSW02, Theorem V.1] also only uses two-hop

preferences.

The above result raises several interesting questions:whydoes changing from next-hop to

two-hop preferences result in a completely different character of problem, and in general, what

makes deciding solvability of some stable paths problems hard and others easy? This is an open

problem, and something that is outside the scope of this thesis.

3.3 Forbidden-set routing

There are many natural and desirable classes of policy that cannot be expressed using next-hop

preferences, or even using two-hop preferences. For example, the government of countryX

may want to avoid any path that goes through some other country Y , perhaps becauseX is

afraid thatY may do bad things to its packets, or because it does not wantY to know who

it is communicating with. Another example is that nodes may have economic agreements to

not forward traffic for each other, and so they should avoid paths passing through each other’s

networks. This motivates theforbidden-set routingproblem, introduced by Feigenbaum et al.

[FKMS05]: each nodeu has a forbidden setS(u) ⊆ V (G) of nodes, and the costcu(P) of

a pathP from u is the number of nodes it contains fromS(u), i.e. cu(P) = |S(u) ∩ P |. In

addition to being an interesting class of routing policies,the problem is interesting from a graph

theory point of view, since there is no pathP from u to v with cu(P) = 0 iff S(u) separatesu

andv in G.

We shall begin by presenting a routing algebra for the class of forbidden-set preferences,

in Figure 3.6. Applying the algebra to a graphG can be described as follows – for a directed

edgee = (x, y), let cu(e) = 1 iff v ∈ S(u), and0 otherwise. A labell ∈ L assigned to an

edgee contains two things – the first endpoint of the edge and a vector describing the costcu(e)

of the edgee to each nodeu in the network. We shall use this vector to add up the cost of a

path to each individual node, then finally project out the component that we are interested in.

A signatureσ ∈ Σ contains the first node on the path described byσ, and the cost of the path

to each node. The operator⊕ accumulates the costs by doing component-wise addition on the

cost vectors, and sets the new first node on the path. Finally,the functionf projects out the

element of the cost vector corresponding to the current firstnode on the path.

In their paper, Feigenbaum et al. [FKMS05] considered a similar problem but using costs

taken from{0, 1, 2}. They showed that deciding solvability of the resulting SPPis NP-complete.

3.3. Forbidden-set routing 29

L = {1, . . . , n} × {0, 1}n
W = (Z,≤)

Σ = {1, . . . , n} × Zn

(u, c)⊕ (v, d) = (u, c + d)

f((v, d)) = dv

Figure 3.6 : A routing algebra FS for the forbidden-set routing problem

We now show how a simple extension to this result shows thatFS-SPP-SOLVABILITY is also

NP-complete, and hence constructing stable routing trees for forbidden-set preferences is an

intractable problem for general graphs.

3.3.1 Forbidden-set solvability is NP-complete

In this subsection we show thatFS-SPP-SOLVABILITY is NP-complete by a reduction from

Π2-SAT. In the second part of the chapter we use this reduction to characterise the commu-

nication complexity of deciding solvability by proving a lower bound on the communication

complexity of decidingΠ2-SAT. Recall that for each family of boolean circuits, there is an

associated satisfiability decision problem:

Problem Π2-SATISFIABILITY

Input: A Π2 formulaf , given as a circuit.

Output: Is f satisfiable?

The above problem is known to be NP-complete [GJ90]. We now show how to encodeΠ2-SAT

into forbidden set routing preferences. We make use of the bad triangle presented earlier for the

two-hop preferences reduction. Feigenbaum et al. [FKMS05]show how the bad triangle can be

expressed using fs-preferences: setS(a) = {a′, b, b′}, S(b) = {b′, c, c′} andS(c) = {c′, a, a′}.
It can be verified that this corresponds to the bad triangle constructs for the case of two-hop

preferences earlier, so it follows that this small network also has no stable solution.

Theorem 3.3.1FC-SPP-SOLVABILITY is NP-complete.

Proof. The proof is by reduction from 3-SAT. The proof is essentially that of Feigenbaum et

al., except that we show that we only need costs in{0, 1} instead of{0, 1, 2}. We feel that the

30 Chapter 3. Routing Trees

cm

· · ·
0

c1

vm2

vm1

vm3

v11

v12

v13

x2 xn

x1

x′

1

x1

x′

1

x2

x′

2

y2 yn−1

x′

n

xn

yn

x′

n

x′

2

y1

Figure 3.7 : The reduction from 3-SAT to FS-SPP-SOLVABILITY

proof is quite important, therefore we state it in full. Given a set of variables{x1, . . . , xn} and

a set of clauses{C1, . . . , Cm}, where clauseCi contains three literalsxi1, xi2, xi3, we construct

a stable paths instance with fs-preferences, which is solvable iff the 3-CNF formulaφ = (x11 ∨
x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3) is satisfiable.

The network is constructed as in Figure 3.7 with the destination node0. Each clauseCi is

represented by a bad triangle as described above, with the three outer nodesvi1, vi2, vi3 repre-

senting the three literals of the clause. Ifvij corresponds to the literalxk, then{xk, x
′
k} is in

vij ’s forbidden set (this corresponds to settingvij ’s subjective cost ofxk to 2 in [FKMS05]). If

it corresponds toxk, then{xk, x
′
k} is in vij ’s forbidden set.

We now show that any stable solution gives a satisfying assignment to the formula. In

this case, the assignment shall consist of all the literals on the path fromyn to 0 in the stable

solution. Since no path can contain bothxi andxi, and every stable solution contains a path

through theyi nodes, the assignment constructed in this way is valid. Now we show that it is

also a satisfying assignment. Since each bad triangle is unsolvable, there must be at least one

node in each bad triangle that has a route to0 through theyi nodes. Each nodevjk could always

3.3. Forbidden-set routing 31

route to0 through its centrecj, using a path of cost 1, and so it only routes through theyi if this

is a path of zero cost, which is the case only if the literal corresponding tovjk is true. Since

there exists such a node for every bad triangle, every clauseis satisfied and so the assignment is

a satisfying assignment.

We now show that any satisfying assignment to the formula gives a stable solution. We can

find this stable solution by constructing a path using the true literals of the assignment, from

yn to 0. We then assign to all nodesvjk corresponding to a true literal the long route through

yn. This route has zero cost tovjk, and so it cannot strictly prefer any other route. Since the

satisfying assignment has at least one true literal in each clause, at least one node in every bad

triangle has a path of zero cost fromyn to 0, and so each bad triangle is ‘broken up’, leaving the

remaining nodes to route tor on stable paths through their bad triangle centres.

3.3.2 NP-completeness on bounded treewidth graphs

We now show that decidingFS-SPP-SOLVABILITY is NP-complete on graphs of bounded

treewidth. This implies that forbidden-set routing using routing trees is almost certainly im-

practical even for very restricted classes of graphs that appear in practice (for example, even if

we wanted to do fs-routing only on the Internet backbone and if the backbone was strongly tree-

like). This shows that the problem has a very difficult core; for comparison, many NP-complete

problems such as maximum independent set are solvable in linear time on bounded treewidth

graphs.

Theorem 3.3.2FS-SPP-SOLVABILITY is NP-complete on graphs of treewidth at least 7.

Proof. Figure 3.8 shows a suitable tree decomposition of the graph used in the reduction of

Theorem 3.3.1 with treewidth 7, and this completes the proof(the definition of treewidth can be

found in the preliminaries in Chapter 2).

We now pause to consider the results of this chapter so far. The main message is that even

with simple tree-like networks (treewidth at most 7) and simple policies (forbidden-set), the

problem of deciding if there exists a stable routing tree remains NP-complete.

32 Chapter 3. Routing Trees

0x1x1x
′
1x

′
1y1

0x2x2x
′
2y2x′

2

...

0xnxnx
′
nx

′
nyn

qqqqqqqqqq

MMMMMMMMMM

0T1 · · · 0Tm

Figure 3.8 : A tree decomposition of the forbidden set reduction graph. The Ti represents the
nodes of the ith bad triangle, each containing 7 nodes. Since each bag contains at most 8
nodes from G, the graph has treewidth at most 7.

3.4 Communication complexity of solvability

In this second part of the chapter, we shall consider the stable paths problem as a problem in

distributed computing, and prove the first communication complexity lower bounds for it. We

then describe the notion of proof labeling schemes, which provide a distributed representation

of a solution that is locally verifiable. We prove a lemma thatlets us use our communication

lower bounds to give lower bounds on the proof size of deciding solvability of a stable paths

problem.

We begin by proving a communication complexity lower bound for SPP-SOLVABILITY.

The lower bound relies on a construction that gives a large set of long stable paths, and this

is based on a recursive construction of the DISAGREE gadget that was used by Griffin et al.

[GSW02] in their original reduction from 3-SAT to SPP-SOLVABILITY. The idea of the con-

struction is as follows. The DISAGREE gadget has nodesx, x and the root0. Both x andx

prefer to go through each other to reach the root, but are alsohappy to go direct to the root.

Hence there are exactly two stable states. We say that the gadget is in the configurationx if all

paths to0 pass throughx, and in the configurationx if all paths to0 pass throughx, as in Figure

3.9.

The gadgetj-DISAGREE is constructed by joining togetherj DISAGREE gadgets as fol-

3.4. Communication complexity of solvability 33

x

x

0

x

x

0

xx0
x0

xx0
x0

configurationx configurationx

Figure 3.9 : The two stable states of the DISAGREE gadget.

lows. Let 1-DISAGREE be equal to DISAGREE, and formj-DISAGREE by adding a copy of

DISAGREE on{xj, xj} to (j − 1)-DISAGREE and using the nodexj−1 in place of the root

node. We will say that the nodesx1, x2, . . . , xj form thespineof j-DISAGREE. Figure 3.10

shows 3-DISAGREE.

Now we define the policies of the nodes inj-DISAGREE. LetΣx1 = (x1x10, x10) and

Σx1 = (x1x10, x10), as for DISAGREE. Recursively defineΣxi
andΣxi

as follows:

Σxi
=
(
xixiΣxi−1

, xiΣxi−1

)
Σxi

=
(
xixiΣxi−1

, xiΣxi−1

)

wherexiΣxi−1
is the order obtained by prefixing all the paths inΣxi−1

by xi and then adding

them in their original order. The construction is a recursive extension of DISAGREE, wherexi

prefers all paths to 0 that pass throughxi (in the order thatxi−1 prefers them) to those not passing

throughxi and vice-versa. The next lemma proves the main property of this construction.

Lemma 3.4.1 The SPP defined byn-DISAGREE has2n distinct stable states where each path

has lengthn.

Proof. We show an injection between the powerset of{1, . . . , n} and the set of stable path

assignments to nodes inTn (the function is actually a bijection but we do not require this). For

a setX ⊆ {1, . . . , n}, if i ∈ X then assign theith DISAGREE gadget of the construction the

configurationx, otherwise assign it the configurationx (see Figure 3.9). It is clear that this path

assignment forms a tree rooted at the node 0, that each path through the structure has length at

leastn, and that there are2n distinct assignments (the set of configurations of the gadgets).

34 Chapter 3. Routing Trees

x3
x1x2

0x3 x2
x1

x2x2x1x10
x2x2x10
x2x1x10
x2x10

x2x2x1x10
x2x2x10
x2x1x10
x2x10

x1x10
x10

x1x10
x10

Figure 3.10 : The construction 3-DISAGREE. The path preferences are recursively constructed
from right to left, with the most preferred path at the top of each list.

We show that every such assignment is stable by induction on the length of the spine. The

assignment to 1-DISAGREE is stable since it is just the gadgetDISAGREE. Assume the as-

signmentπ to j-DISAGREE specified by the injection is stable. Assume that the (j+1)th DIS-

AGREE gadget is placed in the configurationx (the casex is similar). Then nodexj+1 is

assigned the pathxj+1π(xj) and nodexj+1 is assigned the pathxj+1xj+1π(xj). Sinceπ(xj)

is part of a stable assignment, the only thing that could makethe new assignment unstable

is for the (j+1)th gadget to switch to configurationx, but this cannot happen as the assigned

configurationx is already stable.

We are now ready to prove the lower bound by an approximability-preserving reduction

from set-disjointness. We will make use of the bad gadget [GSW02], as shown in Figure 3.11.

The useful property of bad gadget is that it has no stable pathassignment, and hence no solutions

to the stable paths problem on it.

Figure 3.12 shows the network used for the lower bound. It is built by taking the bad gadget

and adding a path so that if the sets are not disjoint then the bad gadget can be broken up, and

then SPP becomes solvable.

We shall encode a large set into the path preferencesΣC of nodeC as follows. For some

setX ∈ 2{1,...,n} and an elementX ∈ X , define the pathPX asPX(i) = xi if i ∈ X and

3.4. Communication complexity of solvability 35

3

1 2

4

0

2 1 0
2 0

4 2 0
4 3 0

3 4 2 0
3 0

1 3 0
1 0

Figure 3.11 : The construction bad gadget

PX(i) = xixi otherwise1. We encodeX by adding for everyX ∈ X the pathC(PX0) to ΣC , in

any order. The set of paths atC includes all the paths going to the root node 0, including those

not in the setX. However,C prefers the pathC0 (avoiding n-DISAGREE) over any path that

passes through n-DISAGREE but represents an element not inX.

The nodey3 encodes a setY in a similar way – for everyY ∈ Y we add the pathy3CPY 0.

In addition, we add toΣy3 the bad gadget pathsy3y4y2y00, y3y00, y3C0 and the empty pathǫ in

that order, so that the paths corresponding toY are preferred to any path that goes through the

centery0 of the bad gadget andy1 prefers to go through the bad gadget than taking the shortcut

pathC0.

The idea is that if there is no valid assignmentπ that is stable at nodey3 then the system

reduces to bad gadget, hence there is no assignment that is stable aty3, hence no assignment is

stable. The next lemma completes the proof by giving the reduction from the set-disjointness

problem.

Lemma 3.4.2 Consider the reduction (as in Figure 3.12), for two arbitrary setsX,Y ⊆ 2{1,...,n}.

The setsX,Y are not disjoint iff there exists a stable path assignment.

Proof. We first prove the⇐ direction: every solution gives a counterexample to disjointness.

Let π be a solution, i.e. a stable assignment whereπ(u) is the path assigned to nodeu. Then

π(y3) must pass through the DISAGREE gadget (otherwiseπ would not be a solution since one

side of the network would reduce to bad gadget). Therefore,C must have a path through the

1We use2S to denote the powerset ofS

36 Chapter 3. Routing Trees

X ∈ X
{

Cx3x2x1x10
Cx3x2x2x1x10
C0

X 6∈ X





Cx3x2x10
Cx3x3x2x2x1x10
...

y3 y1

y0

x2

x3x3

x1

0

C
y2

x2

x1

y4

y1y3y00
y1y00

y3Cx3x3x2x10
y3Cx3x2x2x1x10
y3Cx3x3x2x1x10
y3y4y2y00
y3y00
y3C0
...

y2y1y00
y2y00

y4y2y00
y4y3y00
y4y3C0
...

Figure 3.12 : The reduction from set-disjointness to SPP-SOLVABILITY, for n = 3 and the sets
X = {{2, 3}, {3}}, Y = {{1, 2}, {3}, {2}} ⊆ 2{1,2,3} . A stable solution is shown by the bold
edges.

3.4. Communication complexity of solvability 37

DISAGREE gadget that it prefers to the pathC0. Hence the pathsy3π(C) andπ(y3) must be

equal, and this represents an element in the intersection ofthe two sets.

Now consider the⇒ direction: not-disjoint implies there exists a solution. If the sets are not

disjoint then there must exist some (not necessarily stable) path assignment such thaty3π(C)

andπ(y3) are equal. By Lemma 3.4.1, there exists a path assignment thatis stable at all the

nodes inn-DISAGREE that is consistent withπ(C). Hence a stable solutionπ exists.

We say that a distributed algorithmsolvesa problem if it terminates in finite time with at

least one node knowing the answer. We do not need to consider the communication model in our

lower bounds (and so they hold for both synchronous and asynchronous models); all we require

is that some node knows the answer. In this sense, our bounds are purely information-theoretic.

In the following proof, we require that all the nodes in one part (corresponding to either Alice

or Bob) know the answer, but it also holds for the case when a single node knows the result,

since it can broadcast the result using onlyO(n) bits of communication. We can use Lemma

3.4.2 and the communication complexity of set-disjointness [KN97] to prove the following.

Theorem 3.4.3 Any distributed algorithm that computes SPP-SOLVABILITY with probability

at least2/3 must send at leastΩ(2n/2) bits acrossO(1) links in the worst case.

Proof. Let there be two players Alice and Bob where Alice knows only the setP and Bob knows

only the setQ. Partition the network into two parts by cutting the edges{C, y1}, {y0, 0}. Now

Alice and Bob can respectively construct their parts of the network knowing only their set. Now

assume that Alice and Bob run a protocol that decides SPP-SOLVABILITY with probability p.

We show that they can solve set-disjointness on sets of size2n, with the same probabilityp. It

is known that any protocol that solves disjointness on sets of sizer with probability at least2/3

must useΩ(r) bits [KN97]. Since the construction of Figure 3.12 contains2n + O(1) nodes,

this gives a lower bound ofΩ(2n/2) for networks of sizen.

Remarks. The theorem implies that any distributed algorithm must incur high congestion,

since an exponential number of bits must be sent over a constant number of edges. Assuming

that it takes one unit of time to send one bit, we also get a strong lower bound on the time

to solve the problem, since the cut between the two parts of the network is of constant size

(even assuming that all nodes are computationally unbounded). Note that if messages are of

unbounded size the number of rounds required is constant, since each node can simply send its

entire list of preferred paths.

38 Chapter 3. Routing Trees

3.4.1 Communication complexity of FS-SPP-SOLVABILITY

In this subsection we prove a lower bound on the communication complexity of deciding solv-

ability when forbidden-set preferences are used. We first extend the reduction of Theorem 3.3.1

to encode satisfiability ofΠ3 formulae. The original construction only encodedΠ2 formulae,

but it can be easily verified that if we use forbidden sets of size 2k, then this corresponds to

adding a level of AND gates at the bottom level of the circuit,i.e. Πk
3 formulae. Without affect-

ing the solvability of the construction, we can partition its nodes into two sidesA andB, with

the chain ofxi’s andyi’s in A, and half the bad triangles inA and the other half inB. We add

extra nodesy′
n, 0

′ in B and edges{y′
n, yn}, {0′, 0}, with all the bad triangles inB connecting to

y′
n instead ofyn. This ensures that the cut(A,B) contains at most two edges.

Now, any balanced partition of the clauses between two players Alice and Bob corresponds

to a balanced partition of the bad triangles as above. Therefore, any distributed algorithm

that computesFS-SPP-SOLVABILITY must communicate at leastΩ(g(n)) bits across the cut

(A,B), whereg(n) is the communication complexity ofΠk
3-SAT.

Finally, we can replace the two edges in the cut(A,B) by two lines each ofn/2 edges

without affecting either the solvability of the construction, or the forbidden sets required. Di-

etzfelbinger [Die97] proves a version of the linear array conjecture implying that asymptoti-

cally, no distributed algorithm can do any better than to simply use these new nodes as relays,

and therefore must send at leastΩ(g(n)) bits over at leastΩ(n) edges. We shall show that

g(n) = Ω(n log n) in the deterministic case, which implies the following lower bound.

Lemma 3.4.4 Any deterministic distributed algorithm that computesFS-SPP-SOLVABILITY

must communicate at leastΩ(n log n) bits overΩ(n) edges in the worst case.

To prove this lemma, we now prove a lower bound on the communication complexity of

decidingΠk
3-SAT. Consider someΠk

3 formulaf = f1∧f2 onn variables with at mostn clauses,

and give Alicef1 and Bobf2. Nothing appears to be known about the communication com-

plexity of deciding satisfiability off .

In fact, we conjecture that in the deterministic case, nothing can beat the simple protocol of

Bob sending his whole formulaf2 to Alice. Since each clause of aΠk
2 formula can be described

with log
(
2n
k

)
= O(k log(n/k)) bits, this simple protocol uses at mostO(nk log(n/k)) bits.More

precisely, we conjecture that the following holds.

3.4. Communication complexity of solvability 39

Conjecture 3.4.5 Let P be any two-party deterministic protocol that decides satisfiability of

any Πk
3 formula onn variables with at mostn gates, where the top gate is an AND, and the

gates have unbounded fan-in except for the bottom level, which have fan-in at mostk. Then

there exists a formulaf = f1 ∧ f2 such thatP communicates at leastΩ(nk log(n/k)) bits on

the input(f1, f2).

Conjecture 3.4.6 Let P be as above but forΠk
2 formulae onn variables with at mostn gates,

i.e. ink-CNF. Then the same lower bound as above holds.

We can prove the conjectures in the case thatf is a Π2
2 formula with n variables andn

clauses. For largerk > 2, the problemΠk
2-SAT is at least as hard asΠ2

2-SAT and so the same

lower bound applies. Since the trivial protocol uses communication linear ink, this means that

the trivial protocol is asymptotically optimal for deciding Πk
2-SAT with constantk.

We now state the lower bound in terms of the number of gates andwires of a boolean func-

tion as this leads to an appealing way of describing the current bounds. Any boolean function

with m wires andn gates can be described using at mostcm log n bits for some constantc, yet

we can only show a lower bound ofΩ(n log n) bits. Therefore, this gap is due to some gates

being connected to many wires (which occurs when the fan-in is large). Note thatΠk
2 formulae

with large values ofk have a large number of wires.

Lemma 3.4.7 Let P be a deterministic two party protocol for deciding satisfiability of a for-

mula withm wires andn gates. Then there exists a formulaf = f1 ∧ f2 such thatP communi-

cates at leastΩ(n log n) bits on the input(f1, f2).

Proof. We give two proofs of the lemma; the first one can only prove a lower bound of

Ω(n log n) bits but is simpler to state, and the second proof is more general and may help

to prove the conjecture in more general cases.

For the first proof, we appeal to theΩ(n log n) bits communication lower bound for deciding

st-connectivity, which was proved in [HMT88]. We can reducefrom st-connectivity to 2-SAT

as follows:

• Make one variable for each node in the graph.

• If the edge(u, v) is in the graph, include the clause(u⇒ v), i.e. (v ∨ u).

• Also, include the clauses(s) ∧ (t).

40 Chapter 3. Routing Trees

Then the formula is satisfiable if and only if there is no path froms to t in the graph. The lower

bound in [HMT88] holds for sparse graphs (where the number ofedges is linear in the number

of nodes). It can be seen that the reduction described above produces formulae with a number

of clauses linear in the number of edges in the graph. It follows from the result of Hajnal et al.

[HMT88] that we can find a constantc such that the communication complexity of 2-SAT is at

leastcn log n, where the formulae have at mostn variables and at mostn clauses (and so they

have at mostn gates andc′n wires, for some constantc′).

The above lower bound is for 2-SAT, and we want to get a stronger bound fork-SAT, where

the number of wires isk times the number of gates. With this in mind, we give a reduction from

a partition problem that we now describe.

A partition of a setS is a set{S1, . . . Sk} of disjoint subsets, calledblocks, of S whose

union isS. We say that a partitionP refinesa partitionQ iff every block ofP is contained in

some block ofQ, i.e. ∀Pi ∈ P , ∃Qj ∈ Q such thatPi ⊆ Qj. Thejoin of two partitionsP,Q is

denotedP ∨ Q, and is the finest partitionR such that bothP andQ are refinements ofR (i.e.

R refines every partitionR′ that is also refined by bothP andQ). The problem PARTITION is

as follows:

Problem PARTITION:

Input: Two partitionsP,Q of {1, . . . , s}
Output: Are elements 1,2 in the same block in the partitionP ∨Q?

We can construct a reduction toΠ2
2-SAT as follows. Alice has a partitionP and Bob has a

partitionQ. Given a partitionP = {P1, . . . , Pk} of {1, . . . , n}, order its blocks (the order can

be chosen arbitrarily) and letP (i) = j iff i ∈ Pj. Alice then constructs a formulaf1 as follows.

For eachi ∈ {1, . . . , n} with P (i) = j then add the two clauses(yi ∨ xj)∧ (xj ∨ yi) to f1. Bob

constructs a formulaf2 in the same manner with the partitionQ, but uses variableszi in place

of thexi. Letf = f1∧f2, thenf is a 2-CNF formula andf1, f2 can each be constructed with no

communication between Alice and Bob. Now, the elements 1,2 are in the same block inP ∨Q

iff the formula(f ∧ y1 ∧ y2) is unsatisfiable.

The idea of the construction can be easily explained with an example. Consider the two

partitionsP = {{1, 3}, {2, 4}} andQ = {{1, 4}, {2}, {3}}. We construct the formulae as

3.4. Communication complexity of solvability 41

follows:

f1 = (y1 ∨ x1) ∧ (x1 ∨ y1) ∧ (y3 ∨ x1) ∧ (x1 ∨ y3)

∧ (y2 ∨ x2) ∧ (x2 ∨ y2) ∧ (y4 ∨ x2) ∧ (x2 ∨ y4)

f2 = (y1 ∨ z1) ∧ (z1 ∨ y1) ∧ (y4 ∨ z1) ∧ (z1 ∨ y4)

∧ (y2 ∨ z2) ∧ (z2 ∨ y2) ∧ (y3 ∨ z3) ∧ (z3 ∨ y3).

Now we can test satisfiability off1∧ f2∧ y1∧ y2 by deciding whether 1,2 are in the same block

in P ∨ Q. The intuition is that a ‘path’ from element 1 to element 2 will force the variables

y1, y2 to take the same value in any satisfying assignment of the formula. Sincey1 is true, this

forcesx1 to be true, which forcesy3 to be true (since 1,3 are in the same block inP). Since

y3 is now true, this forcesz1 to be true (since the first block ofQ also contains the element 1).

This in turn forcesy4 to be true (sinceQ contains the block{1, 4}), which forcesx2 to be true.

Finally, y2 becomes true, which contradicts the clausey2 we already had, and so the formula

cannot be satisfiable. It is useful to think of thexi as communicating within the same formula

fi, and theyi as communicating between the two different formulae.

It is known [HMT88, Reference [8]] that the deterministic communication complexity of

deciding PARTITION on sets of sizes is log(Bs − Bs−1) = Ω(s log s) whereBs is thesth

Bell number. It follows that any two-party deterministic protocol that decides satisfiability of

a 2-CNF formula onn variables and withO(n) clauses, must communicate at leastΩ(n log n)

bits.

Combined with the reduction described above, this proves Lemma 3.4.4.

Remarks. Since aΠ2 formula is a special case of aΠ3 formula, with fan-in 1, the previous

lower bounds immediately apply toΠ1
3 formulae. However, there is hope that we can prove the

conjecture forΠ3 formulae, as they are more expressive thanΠ2 formulae. We have tried to

prove the conjecture for larger values ofk but without much success.

The following idea may be helpful. WithΠ3 formulae, we can express each block of a

partition of{1, . . . , n} with a single clause, rather than using 1 clause per element (as in theΠ2-

SAT reduction above). Therefore, a reduction from PARTITION to Π3-SAT can be obtained as

follows. Recall that thejth block of a partitionP is denotedPj. For each blockPj ∈ P , Alice

42 Chapter 3. Routing Trees

adds the following two clauses tof1:


xj ∨

∧

k∈Pj

yk


 ∧


xj ∨

∧

k∈Pj

yk


 .

Bob does the same forQ, using variableszi in place of theyi. The same claim holds as for the

original reduction, except that we now only use two clauses per block of each partition, whereas

the reduction toΠ2-SAT uses two clauses perelement.

We can consider the nondeterministic communication complexity of the problem, which

will be useful later. It is known [KN97] that the deterministic and nondeterministic communi-

cation complexities are related byD(f) = O(N0(f)N1(f)) (recall thatD,N0, N1 are the de-

terministic, nondeterministic and co-nondeterministic communication complexities). Lemma

3.4.7 proves thatD(Π2-SAT) = Ω(n log n), where the formula has at mostn clauses andn

variables. Observe thatN1 = O(n) (the complexity of verifying that a formula is satisfi-

able) since a satisfying assignment (if one exists) can be described withO(n) bits. Therefore,

N0 = Ω(n log n)/N1 = Ω(log n) bits.

3.4.2 A randomized lower bound

We can show anΩ(n) randomized lower bound forΠk
2-SAT by a reduction from the set dis-

jointness problem.

Lemma 3.4.8 LetP be a two party randomized protocol for decidingΠk
2-SAT. There exists an

input such thatP communicates at leastΩ(n) bits on this input.

Proof. Assume thatm = 2l is a power of two. The proof is by reduction from set-disjointness

on sets of sizem. Assume that Alice has a setP ⊆ {0, . . . ,m−1} and Bob has a setQ ⊆
{0, . . . ,m−1}, and there exists a randomized protocolP that computesf(φ1, φ2) = 1 if φ1∧φ2

is satisfiable and0 otherwise, whereφ1, φ2 areΠk
2 formulae. Assume that the protocol has error

probabilityp.

We can associate a subsetY ⊆ {0, . . . ,m−1} with its characteristic Boolean functionfY :

{0, 1}l → {0, 1} by settingf(y) = 1 iff y ∈ Y . Alice constructs the CNF formulaφP for the

truth table offP corresponding to the characteristic function of her setP by making a clause

for every 0-entry in the table, i.e. at most2l = m clauses each of sizel. This is done as follows:

for an assignment of values to theyi’s such thatf(y1, . . . , yl) = 0, add a clause containingxi

3.4. Communication complexity of solvability 43

if yi = 1, andxi if yi = 0 (each clause is a disjunction of literals). Therefore, the clause is not

satisfied iff the element does not appear inY . So, for a setting of variables corresponding to an

element inY , all the clauses are satisfied. Therefore the formulaφP ∧ φQ is satisfiable iff there

is an element common to bothP andQ, i.e. they are not disjoint. Similarly, Bob constructs the

CNF formulaφQ corresponding to the characteristic function of his setQ.

This gives a protocol to decide disjointness with the same error probabilityp. The lemma

follows since the randomized communication complexity of disjointness on sets of sizen is

Ω(n) bits [KN97].

3.4.3 Communication complexity of (Σk
2 ∧ Σk

2)-SAT

As an interesting aside we can show that the communication complexity of deciding satisfiabil-

ity of (Σk
2 ∧ Σk

2) formulae, i.e. the conjunction of twok-DNF formulae, is exponentially lower

than fork-CNF formulae whenk = O(1). This is quite surprising.

We can decide satisfiability of a formulaf1 ∨ f2 (where Alice hasf1 and Bob hasf2) using

a single bit, regardless of the complexity off1, f2. It might be tempting to blame the high

communication complexity on that fact that the formulaf is split at a conjunction rather than a

disjunction. We now show that this is not the case, by giving an efficient protocol for deciding

satisfiability off1 ∧ f2, wheref1, f2 are eachk-DNF formulae. The problem is as follows:

Problem (Σk
2 ∧ Σk

2)-SAT

Alice’s Input: A k-DNF formulaf1 onn variables{x1, . . . , xn} having≤ n clauses.

Bob’s Input: A k-DNF formulaf2 onn variables{x1, . . . , xn} having≤ n clauses.

Output: Is f1 ∧ f2 satisfiable?

Lemma 3.4.9 The deterministic communication complexity of(Σk
2 ∧ Σk

2)-SAT isO(log n), for

fixedk.

Proof. We give a recursive protocol for the conjunction of twok-DNF formulae, for any con-

stantk. We prove the existence of our protocol by inductively constructing a protocol for

deciding satisfiability of the conjunction of twok-DNF formulae, by assuming that we have a

protocol for satisfiability of the conjunction of two(k − 1)-DNFs, which (inductively) satisfies

our time bound. This will give a communication bound that depends exponentially onk.

44 Chapter 3. Routing Trees

A k-DNF formulaf is bad iff there is a set of at mostk variables so that every term off

contains as a literal one of these variables (appearing either negated or unnegated). Iff is not

bad, we call itgood. We make use of the following lemma.

Lemma 3.4.10 If f1 is a goodk-DNF andf2 is a non-emptyk-DNF, thenf1 ∧ f2 is satisfiable.

Proof. Pick an arbitrary termt of f2. If f1 ∧ f2 is not satisfiable then every termu of f1 must

contain a variable fromt (occurring negated inu iff it occurs unnegated int). But thenf1 is

bad.

The protocol is as follows. We assume that Alice and Bob both remove any inconsistent

terms in their formulae before beginning the protocol. Alice first checks if her formula is good.

If it is, f1 ∧ f2 is satisfiable unlessf2 is empty, in which case it is unsatisfiable. They useO(1)

bits of communication to discuss this. We then do the corresponding check with Alice and Bob

switching roles. So we can henceforth assume that bothf1 andf2 are bad, so by the lemma

there is a setS1 of at mostk variables, occurring in every term of Alice’s formula and a set S2

of at mostk variables, occurring in every term of Bob’s formula. Alice now sendsS1 to Bob

and Bob sendsS2 to Alice, usingO(k log n) bits of communication in total. They now run the

protocol for(k − 1)-DNFs on the22k subproblems corresponding to fixing the variables in the

setS1 ∪ S2, trying all possible truth assignments. They output “satisfiable” if and only if one of

these runs says “satisfiable”.

For the communication complexity bound, letC(n, k) = O(k log n)+22kC(n, k−1), which

givesC(n, k) = k24k2
log n. Therefore for fixedk the protocol usesO(log n) bits.

3.5 Proof labeling schemes

Solvability of an SPP is aglobal property of the network, yet in a large network we would

like to be able to verify that the assigned routing tree is indeed a solution, by using onlylocal

information. For example, if each nodei is assigned a pathπ(i), we would like to construct

a distributed representation ofπ in order that we canlocally andverifiably check if the path

assignmentπ is stable. This is the idea of proof labeling schemes, which were introduced by

Korman et al. [KKP05].

Imagine that there is some graph propertyP that we want to verify (e.g. can the current

graph be coloured withk colours?) and that we have a candidate solution (e.g. a colouring of the

nodes) that is encoded by giving each node a local state and a label. We assume that the decoder

3.5. Proof labeling schemes 45

algorithm, when run at a nodev, can observe the state ofv and the labels ofv’s neighbours.

The decoder must be able to verifiably check if the property holds, i.e. the neighbours cannot

convince a node that the property holds if in actual fact it does not.

3.5.1 Definition

We now define proof labeling schemes as in [KKP05]. Amarker algorithmM is an algorithm

that given a graphG, assigns a labelL(v) to each nodev. For a marker algorithm and a node,

let Adj′L(v) be a set of fields, one field per neighbour. Each field corresponding to an edge

e = (v, u) contains the labelL(u). Let AdjL(v) = 〈sv, L(v), Adj′L(v)〉. Informally, AdjL(v)

contains the labels given to all ofv’s neighbours, along with the edges connectingv to them. It

also containsv’s state and labelL(v).

A decoder algorithmD is an algorithm that can be run separately at each node. WhenD is

run at a nodev, its input isAdjL(v) and its output is denoted byD(v, L). The idea is that the

decoder algorithm, when run at a nodev, can seev’s state in addition to the labels forv and all

its neighbours.

Let f be some boolean function over a family of graphsG. A proof labeling schemeπ =

(M,D) for f overG consists of a marker algorithmM and a decoder algorithmD, such that

the following properties hold:

1. For every graphG ∈ G, if f(G) = 1 thenD(v, L(M,G)) = 1 for every nodev ∈ G,

whereL(M,G) is the labeling produced byM onG.

2. For every graphG ∈ G, if f(G) = 0 then forany labelingL there exists a nodev ∈ G

such thatD(v, L) = 0, i.e. the property cannot be verified at some point in the network.

Thesizeof a proof labeling schemeπ is the maximum number of bits assigned to some label

over all graphsG ∈ G and nodesv ∈ G. For a familyG of graphs and a functionf , theproof

sizeof f onG is the smallest size of any proof labeling scheme forf onG.

3.5.2 Proof size and communication complexity

We now prove a lemma that relates the size of any proof labeling scheme for a problem to

the communication complexity of any protocol for the same problem, when played between

two players. We combine this with our communication complexity results for the problem of

46 Chapter 3. Routing Trees

deciding solvability of a stable paths instance (SPP-SOLVABILITY) to obtain lower bounds for

the size of proof labeling schemes for SPP-SOLVABILITY.

Let f be a boolean graph property on graphsG ∈ G for some familyG (in our case later on,

f will be the property ‘is a particular routing tree onG stable?’). We shall partition the nodes

of G between two players Alice and Bob, in order to construct the two-party communication

problem associated withf andG. Let (X,V \ X) be a (not necessarily balanced) partition of

the nodes ofG. Denote byN(X,V \X)(f,G) the nondeterministic communication complexity of

the best protocol forf on the familyG, when run on the graphG and this partition of nodes. To

avoid confusion, we useAdj(X) for the neighbours ofX, andÃdj(X) = Adj(X) ∩ (V \X)

for the set of neighbours of nodes inX that are in the other side of the partition. We can now

prove the main result of this section.

Lemma 3.5.1 Letf be a graph property on a family of graphsG. The proof size off is at least

max
G∈G

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|
,

and the total label size is at leastmaxG∈G maxX⊆V N(X,V \X)(f)−O(1).

Proof. Let G ∈ G be a graph. LetL(v) be the label assigned to nodev by the marker algorithm

M , and letD be the corresponding decoder algorithm. Given a labeling ofthe nodes and

a partition(X,V \ X) of nodes, we construct a reduction showing how we can use a proof

labeling scheme forf onG to construct a two party nondeterministic protocol to solvef onG,

when the players are given nodesX andV \X.

Alice is given the nodesX and Bob is givenV \ X as in Figure 3.13, and they each non-

deterministically guess a labeling for their nodes. Note that Alice and Bob can independently

run the decoder algorithm on the nodes in their part of the graph that have no neighbours in the

other side. Therefore we can assume thatD(v, L) = 1 for all the nodes in(X \ Ãdj(V \ X))

and(V \X)\ Ãdj(X), since Alice and Bob can discuss this usingO(1) bits of communication.

Now they just need to run the decoder on the remaining nodes, as follows. Bob sends the labels

L(Ãdj(X)) to Alice who runs the decoder on the remaining nodes inX, and then Alice sends

to BobL(Ãdj(V \X)) who runs the decoder on the remaining nodes ofV \X. They can then

discuss withO(1) bits whether the decoder failed on any node ofG, and hence computef(G).

The protocol that is described above has nondeterministic communication complexity at

most|L(Ãdj(X))|+|L(Ãdj(V \X))|+O(1) on the graphG, since the labels are communicated

3.5. Proof labeling schemes 47

X (Alice) V \X (Bob)

Ãdj(X)
Ãdj(V \X)

Figure 3.13 : Illustrating Lemma 3.5.1

by simply sending their bit string representations. It follows that for any graphG ∈ G that is

partitioned into(X,V \X),

∑

v∈V

|L(v)|+ O(1) ≥ |L(Ãdj(X))|+ |L(Ãdj(V \X))|+ O(1) ≥ N(X,V \X)(f,G),

which gives the lower bound on the total label size. For the individual label size, we can

divide the above inequality by|Ãdj(X) ∪ Ãdj(V \X)|. Therefore at least one node in the set

Ãdj(X) ∪ Ãdj(V \X) must be assigned a label of size at least

max
X⊆V

N(X,V \X)(f,G)−O(1)

|Ãdj(X) ∪ Ãdj(V \X)|

bits. Finally, we take the maximum of this quantity over all graphsG ∈ G, since the size of a

proof labeling scheme is the maxmimum label size over all graphsG ∈ G.

Remarks. The bound on individual size can be improved if a smaller number of labels are

sent, since the middle term in the inequality concerns fewernodes and so the denominator can

be made smaller. A better strategy may be possible in e.g. bounded treewidth graphs.

Intuitively, since the marker algorithm can examine the whole graph in order to construct the

proof labeling, the marker algorithm can be thought of as playing the role of the ‘all-powerful

prover’ in nondeterministic complexity [KN97]. In this waythe bound on the label size fol-

lows naturally from the bound on the communication requiredfor Alice and Bob to verify a

48 Chapter 3. Routing Trees

nondeterministic guess of a solution tof(G).

The lemma implies that in order to get a good lower bound on theproof size off , we should

look for a partition involving few nodes having edges in bothsides of the partition, yet where

the functionf still has high nondeterministic communication complexityon this partition.

3.5.3 Proof labeling schemes for solvability

We now apply the above lemma to some of our communication complexity lower bounds, to

obtain lower bounds on the proof size for deciding solvability in networks.

Lemma 3.5.2 The proof size of SPP-SOLVABILITY isΩ(n) bits.

Proof. Theorem 3.4.3 shows that we can solve disjointness onΩ(2n/2)-element sets by a re-

duction to SPP-SOLVABILITY. A closer look at the reduction shows that the SPP is solvable

iff the two sets are not disjoint. Since the decoder algorithm can only decide locally if the

graph propertyf doesnot hold (since the property holds globally iff there is no node where

it does not hold locally, i.e. there is no node that has a proofof non-solvability), we need to

consider the communication complexity of proving that twor-element sets are disjoint, i.e. the

co-nondeterministic complexityN1(DISJ) = Ω(log r) bits [KN97].

Since the reduction in Theorem 3.4.3 is from sets of sizeΩ(2n/2), it follows from Lemma

3.5.1 that the total label size is at leastΩ(n) bits. For the proof size, the network partition used

in the reduction has at mostO(1) nodes having edges in both sides and so the proof size is also

Ω(n).

The lower bound is almost tight since we can construct a prooflabeling scheme using

O(n log n) bits per label. Assume thatT = {πi} is a stable routing tree where the path

πv is assigned to nodev. Let p(v) be the parent ofv in T (p(v) = ǫ iff v is the root or

πv = ǫ, i.e. v is assigned the empty path). We construct the labelsL(v) = π(v), and the state

sv = (cv, π(v), p(v)), i.e. v’s cost function,v’s path and the parent ofv in T .

The decoder algorithm is givenAdjL(v) = 〈sv, L(v), Adj′L(v)〉 and outputsD(v, L) = 1 iff

all of the following hold, and 0 otherwise.

1. p(v) is a neighbour ofv in G (for the root, assume thatǫ is a neighbour ofv);

2. v ◦ L(p(v)) = π(v) (the paths form a confluent routing tree);

3.5. Proof labeling schemes 49

3. For all neighboursu of v in G such thatv 6∈ L(u), we havecv(L(v)) ≤ cv(v ◦ L(u)) (the

path assignments are stable and switching cannot create a cycle).

Note that the functioncv(·) can be computed by consultingv’s local state. We now claim

that the scheme satisfies both properties of a proof labelingscheme:

Claim. Let π be a stable solution and letL be the labeling computed as above forπ. Then there

is no nodev whereD(v, L) = 0.

Proof. Assume thatπ is a stable solution and that there is some nodev such that at least one of

the three properties above fails to hold. Then we show thatL, which equalsπ, is not a solution

– a contradiction.

If the first property fails then the set of pathsπ does not exist inG and soπ is not a solution.

If the second property fails then the set of paths ofπ, which are the same asL, do not form a

confluent routing tree. If the third property fails then there exists a neighbouru of v such thatv

would prefer the path viau, and switching would not create a cycle. Therefore if any of these

properties fail to hold then the labelingL is not a solution.

Claim. If the SPP is unsolvable then for any labelingL there exists a nodev with D(v, L) = 0.

Proof. If the SPP is unsolvable then by definition there does not exist a stable solutionπ. Now

consider any labelingL. We show that there is a nodev such thatD(v, L) = 0.

We can assume wlog that the labeling is a valid path assignment, i.e. the paths form a

confluent rooted tree, rooted at 0. If this were not the case then some node would clearly fail

at properties 1 or 2. Therefore we can assume that both properties 1 and 2 hold at all nodes. It

remains to show that property 3 fails at some nodev. Assume, to the contrary, that property 3

holds at all nodes under the labelingL. But then all nodes have a path (possibly the empty path)

that they would not switch from. By definition, this is exactlya stable path, and so there must

be some nodev whereD(v, L) = 0.

It is important to note that the above lower bounds are independent of the distributed repre-

sentation of a solution.

Proof size of unsolvability

We can also consider the problem of decidingunsolvabilityof an SPP, i.e. the function SPP-

UNSOLVABILITY, which is the negation of the function for SPP-SOLVABILITY.

Lemma 3.5.3 The proof size of SPP-UNSOLVABILITY isΩ(2n/2) bits.

50 Chapter 3. Routing Trees

Proof. We use the same construction as for the previous lemma, but now the function is true

iff the SPP is unsolvable iff the two sets are not disjoint. Therefore, the decoder outputs true iff

no node has a proof of solvability. In this case, we need to consider the complexity of proving

that two sets are not disjoint, i.e. the nondeterministic complexityN0(DISJ). It is known that

N0(DISJ) = Ω(r) [KN97] for r-element sets. Applying Lemma 3.5.1 as in the previous proof

shows that the proof size isΩ(2n/2) bits.

Intuitively, the proof size of unsolvability is so high because a node must be able to reject a

false proof, which is at least as hard as verifying a proof of solvability of the SPP.

3.5.4 Forbidden-set preferences

For the forbidden-set routing algebras, Theorem 3.3.1 gives a reduction fromΠ3-SAT where

the formula is satisfiable iff the network is solvable. The discussion following Lemma 3.4.7

implies thatN0(Π3-SAT) = Ω(log n) bits. A similar argument to Lemma 3.5.2 shows that the

proof size ofFS-SPP-SOLVABILITY isΩ(log n) bits (the reduction in Theorem 3.3.1 can be

modified to haveO(1) nodes having edges in both sides by adding two extra nodes0′ connected

to 0, andy′
n connected toyn, where0, yn are in one side and0′, y′

n are in the other side and

all previous connections from the bad triangles to0, yn are now connected to0′, y′
n instead.

This modification does not affect the solvability of the construction.) We have been unable to

improve theO(n) upper bound of the general protocol. Therefore it is open as to whether there

exists a more compact distributed representation of a solution (and hence a better proof labeling

scheme) forFS-SPP-SOLVABILITY.

3.6 Discussion

At this point it is worth discussing the results for the threerouting algebras we have considered:

forbidden-set, two-hop and next-hop. First let us considerthe complexity of deciding solvability

– of all these, only next-hop routing does not give an NP-complete problem, but it is trivial as

there always exists a solution. This gives the following open problem.

• Fully characterise the relationship between the algebraicproperties ofA and the com-

putational (or communication) complexity ofA-SPP-SOLVABILITY. The results of this

chapter show only that some algebras generate hard instances (NP-complete, or exponen-

3.6. Discussion 51

tial communication) and others generate easy instances (trivial).As yet, there is no known

algebraA whereA-SPP-SOLVABILITY is neither trivial nor NP-complete.

We conjecture that for any non-trivial routing algebra (an algebra is non-trivial if it can gen-

erate both solvable and unsolvable SPP instances), the problem of deciding solvability is NP-

complete. In addition to the strong negative results in thischapter, this would be a strong ar-

gument against the use of stable routing trees for policy-based routing. Feamster et al.[FJB05]

have also considered the additional problem of verifying ifan iterative algorithm will converge

on a collection of policies fromanyinitial state. They call this propertysafetyand show that any

SPP that is both solvable and safe must have policies that areessentially equivalent to ranking

based on path lengths.

Now we consider the communication complexity of deciding solvability. Let us call an

SPP instance generated using the forbidden-set algebraFS asparseinstance if the size of each

forbidden set is bounded, anddenseotherwise. In the case of sparse forbidden-set instances,

Lemma 3.4.4 implies that no deterministic distributed algorithm for deciding solvability can

do better than sending all the forbidden sets to a central node, using a spanning tree of the

network. For dense instances, it is open as to whether the policies can be compressed to save

communication (and hence space in a proof-labeling scheme), by utilising redundancy in the

policies. Also, it is an interesting open question as to whether one can do better (in both the

sparse and dense cases) by using randomization.

However, for next-hop algebras, constructing a solution (with minimum cost) reduces to

constructing a (minimum cost) spanning tree and therefore it is possible to do useful intermedi-

ate computation in the network in order to save communication. For two-hop algebras, there is

still anΩ(n log n) bits communication bound on the associated two-party game,but the stretch-

ing trick that we used for the forbidden-set case fails, because it would require policies that

could distinguish between paths, based on nodes at a distanceΩ(n) from the source node.

CHAPTER 4

Towards Compact Routing

4.1 Introduction

In the previous chapter, we showed several intractability results for the problem of constructing

and verifying stable routing trees for forbidden-set routing. In this chapter, we shall forget

about using routing trees and try to construct alternative routing schemes. To do this, we study

the model of compact routing, for which good schemes are known for shortest-path routing.

We then show how to construct compact routing schemes to solve for the forbidden-set routing

problem for various classes of graphs.

Routing tree-based schemes construct a forest of routing trees, one for each destination,

and forward packets along the tree for each destination. Therefore, each node stores one port

number for each destination, i.e.O(n log n) bits. A routing tree isstableiff no node can switch

to a strictly lower-cost path without creating a cycle. The difficulty with routing tree-based

schemes is that since nodes are free to choose paths, we have to assume that stable routing trees

are the only ones that can exist. Unfortunately, stable trees may not exist and deciding if they

do is intractable, both in communication and computation. Our goal is to route onall lowest-

cost paths while still having low space requirements, preferably sublinear inn (we will show

that this is impossible for general graphs, but possibly achievable for some restricted classes of

graphs).

52

4.2. Motivation 53

4.2 Motivation

Shortest-path routing can be done by storing at each nodew a table that lists for every destina-

tion v, the next-hop on the shortest path fromw to v. It is easy to see that the paths used for

routing in this way form a forest of shortest-path trees rooted at each destination. Since every

subpath of a shortest path is also a shortest path, a shortest-path routing tree is always stable.

The results of Griffin et al. [GSW02] show that for policy-based routing it may be impossible

to construct a stable routing tree, so it is not always possible to route on lowest-cost paths using

this method. Consider the following simple scheme for policy-based routing. Each nodew

stores a table where the entry(u, v) specifies the next hop fromw on the path fromu to v of

lowest cost tou. When a nodeu wants to send a packet to destinationv, it writes into the header

of the packet the string〈u, v〉. Now when some nodew receives this packet, it looks up the en-

try 〈u, v〉 to find the next link for this packet. This way, each node can route on its lowest-cost

path to each destination. However, the downside is that eachrouter now storesO(n2) entries in

its local routing table, which is too demanding in a large network. With a routing tree, all the

sources whose paths pass through the same nodew to the same destinationv must agree to use

the same path fromw and therefore each node can store at mostO(n) entries.

The central question we want to answer is this:can we reduce the space to belowO(n2) per

node, while still being able to route on all lowest-cost paths?Consider the case of shortest-path

routing; it is known [GPPR04] thatΩ(n) bits are required if we wish to route on exactly shortest

paths, but this can be reduced if we are willing to accept approximately-shortest paths. We say

that a path has stretchk if it has cost within a factork of the optimal path. Proven cases of a

conjecture of Erdos imply that any scheme that routes on paths of stretch three must use space

Ω(n1/2) at some node (as remarked in [TZ01b]).

A promising direction is to make use of a compact and localized representation of the graph

– each node is assigned a data structure (called its routing table) and a label, which identifies

the node to other nodes. Routing is then done as follows: if nodeu wants to route tov it writes

v’s label into the packet header. Nodes can then use their routing tables andv’s label to decide

how to forward the packet through the network. This is known ascompact routingand was first

introduced by Peleg and Upfal [PU89]. More details about localized data structures for routing

can be found in the excellent survey paper by Gavoille and Peleg [GP03]. Compact routing has

been extremely successful for approximate shortest-path routing: Thorup and Zwick [TZ01b]

gave an almost-optimal stretch-3 scheme using routing tables of sizeÕ(n1/2) andO(log n)-bit

54 Chapter 4. Towards Compact Routing

labels1 where each routing decision takes just constant time.

We argue that for policy-based routing on the Internet, compact routing schemes are better

than using routing trees. Since no routing trees are constructed, compact routing schemes can

send packets whenever two nodes are reachable. In contrast,packets can be sent only if a stable

routing tree exists where the source node is not assigned theempty path (and deciding if such

a tree exists is NP-complete even with forbidden-set policies on bounded treewidth graphs).

So far nothing is known about the viability of compact routing schemes for policy routing. In

particular, it may be that the space requirements are higherthanΩ(n) per node.

The idea of using compact routing on the Internet has been suggested elsewhere, for example

[KFY04]. However, the suggestion is to make use of the schemes for approximate shortest-path

routing. The freedom offered by policy routing is importantand therefore until a scheme exists

that can handle policy routing (even for restricted policies such as forbidden-set), there will

remain no viable alternative to BGP.

4.3 Preliminaries

We now introduce the model of routing that we will use for thisand subsequent chapters.

Readers familiar with compact routing may wish to skip this section. A routing schemeis a

distributed algorithm for delivering packets between processors in a network. Assume that a

labeling of the nodes of the network has been given. Each packet has aheaderthat contains the

label of the destination of the packet and perhaps some additional information that can be used

to guide the routing of the packet. Each edge adjacent to a processor is identified by itsport

number. Each processor stores a local data structure calledtherouting table. When a processor

receives a packet on an incoming port, it uses its routing table, the incoming port number and

packet header to decide whether the packet has reached its destination or, if not, which outgoing

port the packet is to be sent on and what the new header should be.

Let G be a graph representing a communication network. We shall assume thatG is con-

nected, undirected and unweighted. Each node ofG has an identifierID(u) ∈ {1, . . . , n}.
However, the routing scheme uses a routing labelL(u) to identify u. The difference between

the identifiers and labels is that the labels may be used to encode additional information about

nodes, which may enable more efficient routing strategies tobe used. Given a graph with labels

1f(n) = Õ(g(n)) if ∃c ≥ 0 such thatf(n) = O(g(n) logc n)

4.3. Preliminaries 55

hi

qi

0
0

hi+1

pi

host processor

router ui

Figure 4.1 : A model of a router

L(·), arouting functionR onG is a distributed algorithm for routing onG. The algorithm builds

a path from the source to the destination by selecting, at each intermediate node, the next link on

which to forward the packet. More precisely,R = (P,H) whereP is theport functionandH is

theheader function. For any two distinct nodesu, v, R computes arouteu = u0u1 . . . ur = v,

a sequenceh0h1 . . . hr of headers, and a sequencep0p1 . . . pr of output port numbers. The port

numbers identify the links connected to a given node, and maybe particular to that node; for

example a link connectingx to y may have a different port number inx to its port number in

y. The port numbers at a nodeu are uniquely chosen from{1, . . . , deg(u)}. The restriction of

R to u is calledu’s local routing function, and this is what we shall refer to asu’s local data

structure.

Figure 4.1 shows the model of a router that we use. A message arriving at a nodeui through

an input portqi is given a new headerhi+1 = H(ui, qi, hi) and is forwarded on the output port

pi = P (ui, qi, hi). We require thatq0 = pr = 0, andh0 = L(v), i.e. the initial header provided

by the source is the label for the destination node.

A routing strategyis an algorithm that computes, for a graphG, a routing functionR on

G. Therefore, the strategy consists of a preprocessing stagethat assigns labels to nodes and

constructs the distributed data structures necessary. A routing scheme can be thought of as an

implementation of a function. Anoblivious routing function is a routing function that only

depends on the header, and not the input port. Adirect routing function is an oblivious routing

function that only depends on the destination, and therefore h0 = h1 = · · · = hr = L(v). The

56 Chapter 4. Towards Compact Routing

routing functions we shall consider are all oblivious, and some of them are also direct. Direct

routing has the advantage that it is usually faster, as routing decisions can be made quickly. A

routing scheme is said to becompactif the local data structures are sublinear in size, i.e.o(n)

bits, and the packet headers are all polylogarithmic in size, i.e. at mostlogc n bits for some

constantc.

4.4 Deciding if there exists a zero-cost path

We begin by considering a simpler problem than routing. Thepath cost labelingproblem is

as follows: given a graphG and costs{cu(v)}, assign labelsL(v) to nodes so that given only

L(u), L(v), we can compute the minimum costcu(P) of a pathP from u to v. We shall call

such a label apath cost labelfor the costs{cu}. Throughout the chapter, we shall assume that

the costs represent forbidden-set policies, i.e.cu(P) = |S(u) ∩ P | for a pathP from u to v, so

we will refer to the forbidden setsS(u) instead of the costs. In thezero-costpath problem, we

are only interested in whether there is a pathP of zero cost fromu to v. Let dG(u, v) represent

the (unweighted) distance betweenu, v in the graphG. Then the zero-cost path problem is

equivalent to deciding whetherS(u) is a separator ofu, v in G. This relationship implies that

our problem may also be of interest from a graph theory perspective – constructing small zero-

cost labels is equivalent to constructing an efficient distributed localized representation of all

the separators of a graph.

The motivation for this problem is that any routing scheme that can route on approximately

lowest-cost paths must be able to distinguish between the case where there exists a path of zero

cost and when there is no zero-cost path. The problem is analogous to deciding reachability in

graphs (labels of sizeO(log n) bits suffice to decide reachability in undirected graphs – simply

label each node with the identity of its connected component). We can now state our first result.

Let k be an upper bound on the size of a forbidden set, i.e.k ≥ maxu |S(u)|.

Theorem 4.4.1 Let nodes have forbidden-set policies of maximum sizek, with cost as defined

above. Then any undirected graphG has zero-cost path labels of sizeO(k∆(T) log n) bits,

where∆(T) is the degree of a minimum degree spanning tree ofG. Given the labels, we can

decide whether there is a zero-cost path in timeO(log k∆(T)).

We shall prove Theorem 4.4.1 by first proving a similar resultfor the case where the sets

S(u) are sets of edges rather than nodes. In this case, we are interested in deciding if a setS(u)

4.4. Deciding if there exists a zero-cost path 57

is a cut betweenu, v in G. First we shall assume that the setsS(u) are edges instead of nodes,

so we are interested in the problem of detecting cuts. Assumealso that|S(u)| ≤ k. An Euler

tour of a graph is a cycle that traverses each edge exactly once, although it may visit a node

more than once. Euler’s theorem says that a graph has an Eulertour iff every node has even

degree. We can assume thatG is Eulerian by doubling up each edge into its two directed edges,

so deleting an edge fromG corresponds to deleting two edges from its Euler tour. For each node

u, partition the tour into at most2k − 1 intervals corresponding to deleting the setS(u). Now

build an auxiliary graphH(u) on the intervals where two intervals are adjacent iff they both

have an occurrence of the same node. Now we consider reachability in the graphH(u). Let

R(u) be the set of nodes ofH(u) that can be reached from an interval containing an occurrence

of nodeu. (It is easy to see that all the nodes inH(u) whose intervals contain an occurrence of

the same nodev, form a clique inH(u). Therefore for a nodev in G, we can arbitrarily pick a

node ofH(u) containing an interval ofv in order to determine reachability inH(u).)

The label for nodeu contains two things:

1. The set of intervalsR(u) (usingO(k log n) bits);

2. The positionP (u) on the Euler tour of some (arbitrarily-chosen) occurrence of nodeu

(usingO(log n) bits).

Now, given two labelsL(u), L(v), we check whetherP (v) is contained in an interval ofR(u).

If not, thenS(u) is auv-cut in G. The intervalsR(u) can be stored in an interval search tree

(a binary search tree where the key for an interval is its lower limit) so that we can make the

decision in timeO(log k) (assuming thatO(log n)-bit comparisons take constant time).

Proof of Theorem 4.4.1.If S(u) is a set of nodes, things are harder (it seems). We could

delete all adjacent edges to a node, but this would incur a factor of ∆(G), the maximum degree

of a node inG. Alternatively, if G has a Hamiltonian cycle, we can use the Hamiltonian cycle

in place of the Euler tour, but cutting nodes instead of edges. For more general graphs, we can

do the following. Construct a minimum-degree spanning treeT of G (i.e. a tree whose maximal

degree is smallest), and then construct the Euler tour of thetreeT (this tour contains at most

2(n− 1) edges after doubling up the edges ofT). Now, we can build the auxiliary graphH(u)

where two intervals are adjacent iff at least one of the following holds:

1. both intervals both have an occurrence of the same node;

58 Chapter 4. Towards Compact Routing

2. one interval contains an occurrence ofu and the other an occurrence ofv, and the edge

(u, v) is in E(G) \ E(T).

The setR(u) and the labels are constructed as for the edge case. Now, eachnode appears at

most∆(T) times in the tour, soR(u) contains at mostO(k∆(T)) intervals. Therefore the labels

are of size at mostO(k∆(T) log n) bits. As for the edge case, we can store the setR(u) in an

interval search tree, so the decoder takes timeO(log k∆(T)) = O(log n).

Note that finding a minimum-degree spanning tree is NP-hard –G has a Hamiltonian cycle

iff it has a spanning tree with degree two. So for the ring, we can use the above construction to

find labels of sizeO(k log n). Graphs of bounded independence number,1/O(1)-tough graphs

and almost allr-regular graphs (for fixedr ≥ 3) have spanning trees of bounded degree, so

they have labels ofO(k log n) bits. There are many cases where the bound is far from tight;

for example, then-star hasO(1)-bit labels (we just need to store whether each forbidden set

contains the center node) but any spanning tree has degreeΩ(n). We believe that it is possible

to improve the space bound (possibly at the expense of a higher running time), but we have been

unable to do so.

4.5 A forbidden-set routing scheme

We now consider the forbidden-set routing problem, i.e. routing packets on paths that avoid

the source node’s forbidden set. Imagine how we might use thecost labels constructed in the

previous section to guide the routing of packets through thenetwork. We begin with an example

– consider the network of Figure 4.2 where nodeu wants to send a packet tov on a path that

avoids nodesb, e. Shouldu first send the packet toa or c? Either node is not in the forbidden

set ofu, so assume thatu sends it toc. Now c has to decide where next to send it. We can write

the set{b, e} into the packet header so thatc knows not to forward it tob. Perhaps we can also

write into the packet header the route that the packet has taken so far (although this will violate

our requirement of small packet headers). Thenc knows that the packet just came fromu, so

the only alternative is to send tod. But then what should it do? Should the packet go toa or

to f? The problem is thatd does not know thata cannot reachv while avoidingb, e, without

returning tod. One possible solution is to construct aflooding protocol, where each node sends

the packet to all its neighbours except those in the setS(u). Although this would ensure that the

packet reaches the destination if there exists a zero-cost path, it is extremely inefficient in terms

4.5. A forbidden-set routing scheme 59

4

g

v

b

e

a

u c

d

S(u) = {b, e}

∞
2

4

f

Figure 4.2 : Motivating distance separator labels. Consider a packet from u that arrives at d

with destination v, and forbidden set {b, e}. Where should d forward the packet? The distance
separator labels allow d to compute the distances to v in G \ {b, e} from each of its neighbours.
It can then forward the packet to the neighbour that minimizes this distance.

of communication complexity and congestion. We want aforwarding protocolwhere packets

are only forwarded, not replicated.

4.5.1 Distance separator labels

This motivates the following approach: what if we could construct labels in a different way,

so that intermediate nodesw can decide which of their neighbours cannot reach the destination

without returning to the current path? We could then guarantee that the packet always makes

progress towards the destination, i.e. the distance inG \ S to the destination always decreases.

Definition 4.5.1 (Distance separator label)Adistance separator labelis a labelL(v) such that

givenL(u), L(v) andL(s1), . . . , L(sk), we can computedG\S(u, v), whereS = {s1, . . . , sk}.

If S is a separator ofu, v in G then by definition,dG\S(u, v) = ∞, and we shall define

dG\S(u, s) = ∞ for all s ∈ S. We shall call such labelsdistance separator labelssince they

60 Chapter 4. Towards Compact Routing

measure the distance in a graph with a given set of nodes removed. Finally, note that we are

interested in measuring the unweighted distances inG \ S, not the path costs using thecu(v).

The distances inG \ S will be used to guide the packet through the network.

Imagine that we have assigned distance separator labels to nodes in an undirected graphG,

and each node knows its forbidden setS(u) ⊆ V (G) (the separator labels are constructed with-

out any knowledge of these sets). Also assume that each nodeu knows the distance separator

label for each of its neighboursu1 . . . ud, with |L(ui)| ≤ l for all ui. We can then route on a

shortest zero-cost path fromu to v in G as follows: the source nodeu writes the labelsL(v) and

L(s) for eachs ∈ S(u) into the packet header. It then sends the packet to its neighbour ui that

minimizes the distancedG\S(u)(ui, v). This is done by consulting the distance separator labels

(if all the distances are∞ thenu declares that there is no zero-cost path). Each intermediate

nodew does a similar thing – it examines the incoming packet and forwards it to the neighbour

wi that minimizes the distancedG\S(u)(wi, v) (without changing the packet header).

If there exists a path of zero-cost fromu to v, this scheme always routes packets on the

shortest zero-cost path, i.e. a path not containing any element ofS(u) and having length equal

to dG\S(u)(u, v). This is because a packet is always forwarded to a node that iscloser to the

destination inG \ S(u) than the current node. Ifu, v are not connected inG \ S(u) thenu can

detect this sincedG\S(u)(ui, v) =∞ for all its neighboursui. Since each nodeu stores the label

for itself, the labels for each of its neighbours and each element ofS(u) (usingO(lk∆(G)) bits)

and the packet headers contain the label of the destination and the labels ofS(u) (usingO(lk)

bits), we have shown the following.

Lemma 4.5.2 Assume that a family of graphsG have distance separator labels of sizel bits and

forbidden sets of size at mostk. Then every graphG ∈ G has a forbidden-set routing scheme

usingO(lk∆(G))-bit routing tables andO(lk)-bit packet headers. Packets are sent on shortest

paths inG \ S(u).

Remarks. It is important to note that we needexactdistances; approximate distances will

not suffice. If the labels only returnc-approximate distances, i.e. a distanced̂G\S(u, v) where

(1/c)d̂G\S(u, v) ≤ dG\S(u, v) ≤ cd̂G\S(u, v),

then the scheme may create routing loops (since the packet header does not store the route).

Figure 4.3 gives a simple example of this. With exact distances, the distance labels ensure that

4.5. A forbidden-set routing scheme 61

3 4

5

2

3

e

a

b

c

d

Figure 4.3 : How routing loops can occur using approximate instead of exact distances. The
distances shown are 2-approximate distances to the destination e, but there is a routing loop
a, b, c, . . .

the scheme does not create loops in the routing. It is not clear if we can make use of approximate

distance labels for routing, without using large packet headers to store the path taken so far.

Our job is now to find efficient distance separator labels for various graph families, in order

to construct forbidden-set routing schemes using the abovelemma.

4.5.2 A lower bound

Before continuing, we give a lower bound on the size of labels required by any forbidden-set

routing algorithm. The lower bound is for the problem of deciding if there exists a zero-cost

path between two nodes, but this is also a lower bound for any forbidden-set routing algorithm

that can decide if there exists a zero-cost path before sending the packet. The lower bound is

approximately linear in the size of the forbidden sets, and also holds for trees. Therefore, for

smallk, sayO(log n), it might be possible to construct routing schemes with sublinear space

requirements.

Theorem 4.5.3 Any forbidden-set routing algorithm onn-vertex trees with forbidden sets of

62 Chapter 4. Towards Compact Routing

size at mostk must assign labels of size at leastΩ(k log n/k) bits in the worst case.

Proof. Consider a tree with rootu andn childrenu1 . . . un. Eachui can independently select

as its forbidden set an arbitrary subset of sizek of {u1, . . . , un}. For every distinct collection of

forbidden sets{S(u1), . . . , S(un)}, it can be seen that there exists a distinct pair of nodesui, uj

whose reachability has changed. Each of these requires a different set of labels to be assigned

to the graph, so at leastΩ
((∑k

i=0

(
n
i

))n)
= Ω((n/k)nk) distinct labelings of the graph are

required. Taking logs and dividing byn, it follows that at least one of these nodes must receive

a label of sizeΩ(k log n/k) bits. We can also prove a bound for the case whereS(·) is a set of

edges – let eachS(ui) independently choose a subset of then edges and then the same argument

also applies.

4.6 Distance separator labels

In the previous section we motivated the construction of efficient distance separator labels,

by showing how they can be used to construct a reasonably efficient distributed forbidden-

set routing scheme. In this section we try to construct efficient (by which we mean of size

polylogarithmic in the number of nodes in the graph) distance separator labels.

4.6.1 Trees

We shall show how to exploit the very simple structure of trees, namely that there is a unique

path between each pair of nodes, to construct efficient separator labels for them. Assume that

we have a rooted tree (the root can be chosen arbitrarily, since it is not important for deciding

if a node is a separator of two nodes – the unique path is the same regardless of the root). It

is well-known that we can assign labels of size2⌈log n⌉ bits to nodes, so that given the labels

L(x), L(y) we can decide in constant time ifx is an ancestor ofy [KNR92]. This is done as

follows. Do a depth-first traversal from the root, labeling each nodev with its identifierID(v)

in the depth-first traversal. For each nodew, let fw be the descendant ofw with the largest

identifier. Theancestor labelfor v is defined asL(v) = (ID(v), fv). A nodev is a descendant

of w iff ID(v) ∈ [ID(w), fw].

We also need the related concept of the least common ancestor. A nodew is the least

common ancestor(LCA) of two nodesu, v iff w is the unique node that is furthest from the

root and on both the paths fromu andv to the root. Peleg [Pel00] showed that we can assign

4.6. Distance separator labels 63

O(log2 n)-bit labels such that givenL(u), L(v) we can deduce the LCA ofu, v. We can also

deduce its ancestor label by storing a mapping from the identifiers of ancestors stored in a label

to their ancestor labels with a constant increase in label size. More recently, Alstrup et al.

[AGKR02] showed the following theorem.

Theorem 4.6.1 ([AGKR02]) There is a linear-time algorithm that labels the nodes of a rooted

treeT with distinct labels of lengthO(log n) bits such that from the labels ofu, v ∈ T we can

compute in constant time the label ofLCA(u, v).

Remarks. It should be noted that the difference between the schemes ofAlstrup and Peleg

is that Alstrup’s scheme only computes theLCA label for the LCA, whereas Peleg’s scheme

computes theidentifierof the LCA. Peleg has also shown a lower bound ofΩ(log2 n) for any

labeling scheme that computes the identifier of the LCA node. We shall be able to make use of

Alstrup’s scheme, and therefore use onlyO(log n)-bit labels.

Our scheme relies on the following observation: a nodew is auv-separator inT iff LCA(u, v)

is an ancestor ofw andw is an ancestor of eitheru or v. A setS = s1, . . . , sk is auv-separator

in T iff at least one member ofS is auv-separator inT , so to see ifS is a separator we can

test each member ofS independently. We can solve this using Alstrup’s LCA labeling scheme

as follows. LetJ be the LCA label for nodeu. Then we compute the LCA label for the node

LCA(u,w) and check if it equalsJ . If so, u is an ancestor ofw. Therefore Alstrup’s LCA

labels suffice to decide the ancestor relation.

The separator label foru is simply Alstrup’s LCA label foru in T . GivenL(u), L(v) and

L(s1), . . . , L(sk), we compute the LCA label forLCA(u, v) using the scheme of Alstrup et

al. [AGKR02] and then test if eachsi is auv-separator ofT using the observation described

above. Therefore the label hasO(log n) bits. To construct distance separator labels forT , we

can combine any distance labeling scheme [GPPR04] for trees with the separator labels. To

compute the distancedT\S(u, v), use the separator labels to decide whetherdT\S(u, v) = 0; if

not, thendT\S(u, v) = dT (u, v), so we can use the distance labeling scheme. Peleg et al. showed

that unweighted trees have distance labeling schemes usingO(log2 n) bits per label (and this

is known to be tight). By combining these two scheme, we get distance separator labels using

O(log2 n) bits. This is asymptotically optimal, since there is a lowerbound ofΩ(log2 n) bits

for distance labeling in trees [GPPR04].

Interestingly, the size of the distance separator label is dominated by the size of the distance

label, not the separator label. It is an interesting question whether we can do better if we accept

64 Chapter 4. Towards Compact Routing

approximate distances in distance separator labels. In general, there are an exponential number

of possible separators, so at this stage it is not obvious whether the scheme for trees can offer

much insight into how to deal with more general graphs.

4.6.2 Bounded cliquewidth graphs

We now consider the class of bounded cliquewidth graphs. Thecliquewidthof a graph is a

measure of its complexity, closely related to treewidth butmore powerful since every graph

having bounded treewidth has bounded cliquewidth but the converse is not true (cliques have

cliquewidth two but unbounded treewidth). For a given graphits cliquewidth is defined as the

minimum number of distinct labels required to construct thegraph by only using the following

operations:

• create a node with a given label;

• p→ q: relabel all the nodes having some labelp to another labelq;

• p× q: connect every node having labelp to all the nodes having labelq.

We can therefore represent a graph by its algebraic expression, or term tree where the leaves

are labelled nodes of the graph and the interior nodes of the tree represent either a relabelling

operationp→ q or a join operationp× q.

Many graph problems can be formulated in monadic second-order logic (MS), by using

logical operations(∧,∨,¬), quantification(∀,∃), membership tests(∈,⊆) and adjacency tests

({u, v} ∈ E) over subsets(X1, X2, . . .) of nodes of a graph. As an example, consider the

following graph property.

“is the subgraph of G induced byZ connected?”

Partition(U, V, Z) ≡ (Z = U ∪ V) ∧ (U ∩ V = ∅) ∧ (U 6= Z) ∧ (V 6= Z)

Adjacent(U, V) ≡ ∃u, v(u ∈ U ∧ v ∈ V ∧ ({u, v} ∈ E(G)))

Connected(Z) ≡ ∀U, V (Partition(U, V, Z) =⇒ Adjacent(U, V))

A propertyP is said to beMS-definableif it can be expressed in MS logic. Agraph property

is a property where the variables denote the nodes of the graph under consideration. Courcelle

and Vanicat showed that for any MS-definable graph property,we can construct small labels

that can be used to efficiently decide the property:

4.6. Distance separator labels 65

Lemma 4.6.2 ([CV03]) Letq be an integer andP (x1, . . . , xn) an MS-definable graph property.

LetG a graph withn nodes cliquewidth at mostq. Then we can assign to nodes ofG labels of

sizeO(log n) bits so that given onlyL(x1), . . . , L(xk), we can decideP (x1, . . . , xk) in worst-

case timeO(k log n). The constants in the big-oh notation depend only onq andP .

We now show that the property required by distance separatorlabels is MS-definable, which

will enable us to appeal to the above result.

Lemma 4.6.3 Bounded cliquewidth graphs have separator labels of sizeO(log n) bits, and a

decoder with worst-case time complexityO(k log n).

Proof. We first show that the graph property “a set of nodes is auv-separator” is MS-definable.

We can use the propertyConnected to construct the following property.

“is the subgraph induced byZ connected andx, y ∈ Z?”

Connected(x, y, Z) ≡ (x ∈ Z ∧ y ∈ Z ∧ Connected(Z))

Now we can express our desired property of deciding if there is a zero-cost path fromx to y.

We can do this by testing if there exists a set of nodesS such thatS does not contain a forbidden

set and there exists a path through only the nodes ofS from x to y.

“is there a path x to y that avoids nodes inZ?”

Path(x, y, Z) ≡ ∃S((Z ∩ S = ∅) ∧ Connected(x, y, S))

It is clear that the propertyPath(x, y, Z) is MS-definable, and it is not difficult to check that

Path(x, y, Z) holds iff Z is not auv-separator inG.

In the same paper, Courcelle and Vanicat defined an optimization versionmin(ϕ) of an

MS-definable propertyϕ. Here, there is a free variable that denotes a set of nodes andthe

cardinality of the set denoted by the free variable is minimized. Using this, we can compute

distance separator labels by appealing to the following theorem.

Lemma 4.6.4 ([CV03]) Letq be an integer andP (x1, . . . , xn) an MS-definable graph property.

Let G a graph onn nodes with cliquewidth at mostq. Then we can assign to nodes ofG

labels of sizeO(log2 n) bits so that given onlyL(x1), . . . , L(xk), we can compute the value

min P (x1, . . . , xk) in worst-case timeO(k log2 n). The constants in the big-oh notation depend

only onq andP .

66 Chapter 4. Towards Compact Routing

Combining this with the routing scheme in Lemma 4.5.2 gives the following result.

Theorem 4.6.5 Bounded cliquewidth graphs have a forbidden-set routing scheme, with routing

tables of sizeO(∆(G)k log2 n) bits and packet headers of sizeO(k log2 n) bits.

Proof. We just need to show how to define the property of distance separator labels as a monadic

second-order logic optimization property over the graph nodes. This is easily done using the

following:

“what is dG(u, v)?”

dG(u, v) + 1 = min(ϕ) whereϕ(u, v, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z)

“what is dG\S(u, v)?”

dG\S(u, v) + 1 = min(ϕ) where

ϕ(u, v, S, Z) ≡ Connected(Z) ∧ (u ∈ Z) ∧ (v ∈ Z) ∧ (S ∩ Z = ∅)

In both cases, the cardinality of the setZ is one greater than the length of the path. Combining

the distance separator labels with the routing scheme in Lemma 4.5.2 gives the stated result.

Remarks

The bounded-clique width scheme suffers from two major problems:

1. A clique decomposition of the graph needs to be given to thealgorithm. Unfortunately, it

is known that given a graphG and a positive integerq, the problem of deciding ifG has

clique width at mostq is NP-complete [FRRS06], for arbitrary values ofq. However, a

result of Oum [iO05] gives, for fixedq, a cubic algorithm that computes a clique decom-

position of width2O(q), which is enough if we are only interested in graphs having clique

width bounded by some fixed integer.

2. The hidden constant in the label size is huge – ifh is the number of quantifier alternations

in the formula forP , then the constant is a tower of exponentials in the clique width,

having heightO(h) :

222···2
q

4.6. Distance separator labels 67

The second problem is due to the tree automaton approach usedby Courcelle and Vanicat to

construct the labels. Since their result is for general MS-definable properties, a result of Grohe

and Frick [FG04] implies that (unless P=NP), this tower of exponentials is unavoidable. There-

fore, although the general scheme is somewhat impractical for our specific problem of distance

separator labels, it is important since it shows that labelswhose size is only polylogarithmically-

dependent onn are possible. Our aim will now be to try to reduce the dependence on the

cliquewidth (or other graph parameter) to polynomial or even linear for various, often more

specific, families of graphs. We do this by exploiting the simple structure offered by separators

in graphs.

4.6.3 Cographs

Before tackling graphs with small tree width, we warm up by consideringcographs, which

are graphs having clique width at most two. The family of cographs can be defined using two

operations:

• disjoint union: for graphsG,H on disjoint vertices,G + H is the graph formed by the

union of the edges and vertices ofG andH.

• complete product: G×H is the graph formed by taking the union ofG andH and adding

edges{u, v} for all u ∈ G, v ∈ H.

We can write the algebraic expression for a cograph as a term tree as in Figure 4.4. Each node

is labeled by itsaccess pathfrom the root, which describes how to reach the node in the term

tree. In the figure, we getL(u) = +2 × 2 + 2 × 1 + 1 where the numbers 1,2 indicate which

child to take at each level in the path. These labels are of size O(h) bits whereh is the height

of the term tree.

Let T be a term tree defining a cographG. Given the labels for two nodesu, v andk nodes

S = {s1, ..., sk}, the setS is auv-separator iff

• The least common ancestorw = LCA(u, v) is labeled with ‘+’, and;

• For every ancestorz of w labeled ‘×’, with zi the child ofz whose subtree containsw, all

the descendants ofz3−i must be inS.

FromL(u), L(v) we can findw, z and hence check the first property. We can then examine the

access paths fors1, . . . , sk and check the second property by seeing if these paths contain the

68 Chapter 4. Towards Compact Routing

s

v

z

s

z

u v

u

y

t

w

w t

y

×
+

×
+

+ +

Figure 4.4 : The cograph generated by the term +(s,×(y, +(z,×(+(u, v), +(w, t))))) and its
term tree. The set {y, w, t} is a uv-separator.

entire subtree rooted atzi (since we know that the term tree is a binary tree). As an example,

consider Figure 4.4 and deciding whetherS = {y, w, t} is a separator ofu, v. The LCA ofu, v

is labeled with ‘+’, and for the highest node labeled ‘×’, we havey ∈ S. For the other ancestor

labeled ‘×’, we also have thatw, t ∈ S. ThereforeS is auv-separator.

Remarks

The diameter of a cograph is at most two, so we only consideredthe problem of deciding

whether a given set is a separator (rather than computing thedistance around this set). This will

be enough to introduce the more involved scheme for treewidth k graphs in the next section. We

may hope that we could arrange for the term tree to be of heightO(log n); however this is not

possible using the algebra here – for a counterexample, takethe cograph with nodes1, . . . , n

where nodei links to every nodej < i if i is even, and is not linked to any nodej < i if i

is odd. The cograph expression is unique and of heightn, hence we would assign some nodes

labels of sizeΩ(n) bits.

4.6.4 Treewidth k graphs

A graph having treewidthk can be expressed as the nondisjoint union of graphs of sizek + 1,

arranged as nodes in a tree such that the set of tree nodes containing some graph node forms a

connected subtree of the tree. Small treewidth graphs are aninteresting class of graphs to study

for several reasons: firstly, they capture a common class of networks (those having a tree-like

structure, for example the Internet backbone) and secondly, the concept of treewidth is weaker

4.6. Distance separator labels 69

u v

4 5 6

1 2
... 3

7 8 9

L(u) = 〈(4, d(u, 4)), (5, d(u, 5)), (6, d(u, 6)), (1, (d(u, 1)), (2, d(u, 2)), (3, d(u, 3))〉

Figure 4.5 : A decomposition tree for a graph with small recursive separators. Each node of
the tree is a separator in the graph, and the distance label for a node u stores its distance to
each of the nodes in its ancestor separator nodes. To find the distance from u to v, the decoder
returns the minimum value of d(u, w) + d(w, v) over all nodes w in the least common ancestor
node of u, v.

than cliquewidth – any graph with treewidthk has cliquewidth at most2.2k − 1 [CR05]. For

this reason, we can use the result for bounded cliquewidth graphs to handle bounded treewidth

graphs, but ifk is nonconstant then we immediately get a huge blowup in labelsize. Addition-

ally, if we can show how to construct distance separator labels for treewidthk graphs then it

might give us insight into how to handle cliquewidthk graphs.

We will show, as our main technical result, how to construct distance separator labels for

treewidthk graphs usingO(k2 log2 n) bits (Theorem 4.6.10). For comparison, the best known

distance labeling scheme for these graphs uses labels of size O(k log2 n) bits, so we will have

paid an additional factork to encode distances under node deletions. For graphs of small

treewidth, egk = O(log n), this is a small penalty, which means that compact (i.e.O(n)-bit

labels) forbidden-set routing may be possible.

70 Chapter 4. Towards Compact Routing

Background: distance labeling for small treewidth graphs

Before tackling distance separator labels, we shall review some distance labeling schemes for

treewidthk graphs. We will make use of the following definition. A graphG has a 1/3-balanced

separator of sizer(n) if there is a set ofr(n) vertices whose removal breaks the graph into two

connected components of size at leastn/3. The graphG has arecursive1/3-balanced separator

of sizer(n) if it has a 1/3-balanced separator of sizer(n), and both the components obtained

by removing the separator also have recursive 1/3-balancedseparators. Therefore, the graph

can be recursively decomposed until we reach singletons, giving a binary decomposition tree

of heightO(log n). It is known that treewidthk graphs have recursive 1/3-balanced (or simply

balanced) separators of sizek.

Peleg et al. [GPPR04] showed how to easily extend a distance labeling scheme for trees

to one for graphs with small recursive separators. In a tree,the label foru stores the distance

d(u,w) to every ancestorw of u in the decomposition tree. One can extend this by storing the

distanced(u,w), for every nodew that is in an ancestor node in the decomposition tree. Then to

compute the distance betweenu andv, it suffices to compute their least common ancestorS in

the decomposition tree and then to computed(u, v) = minw∈S(d(u,w) + d(w, v)). This works

because every path betweenu, v must go through some nodew ∈ S. Since each separator is of

size at mostc and the tree is of heightO(log n), each label stores at mostO(c log n) distances

usingO(c log2 n) bits. Figure 4.5 illustrates this technique for distance labeling. More precisely,

they showed the following result.

Theorem 4.6.6 ([GPPR04])Let R(n) =
∑

i≤log3/2 n r
(
(2

3
)in
)
≤ r(n) log n. For a family of

graphsG having recursive balanced separators of sizer(n), every graph inG has distance

labels of size at mostO(R(n) log n + log2 n) bits. Moreover, the distance can be computed in

timeO(log n) given two labels.

The above result immediately implies that treewidthk graphs have distance labels of size

O(k log2 n) bits. Peleg [Pel99] describes an alternative method for constructing approximate

distance labels, based on a hierarchy of tree covers. Atree coverof a graphG is a family

F = {T1, . . . , Tk} of trees with the following two properties:

1. Each tree dilates distances, i.e.dTj
(u, v) ≥ dG(u, v) for all u, v.

2. For any pair of nodesu, v, there exists a treeTi such thatdTi
(u, v) = dG(u, v).

4.6. Distance separator labels 71

If a graph has a tree cover of sizek then it has distance labels of sizeO(k log n) bits. This

follows since we can compute distance labels of sizeO(log n) bits for each tree, and then simply

pick the tree that minimizes the distance. In fact, we can usethe tree cover for routing; we use

an extralog k bits in the packet header to specify the tree to route on, and each node maintains

information for routing onk trees. This can be seen as a natural extension of using a single

routing tree, which was the model we used to prove our negative results in Chapter 3.

It is easy to observe that all graphs have linear-sized tree covers, consisting of then shortest

path trees ending at each node. In the worst-case, this is tight since the complete graphKn does

not have a tree cover of sizen/2−1: the union of the trees must cover all the edges of the graph,

otherwise the scheme would not be able to report that the endpoints of some edge are adjacent

(and at distance one). Since each tree has at mostn− 1 edges and the undirected clique has
(

n
2

)

edges, any tree cover of it must use at least
(

n
2

)
/(n− 1) > n/2− 1 trees.

The scheme of Peleg uses a tree cover construction that exhibits a tradeoff between the

number of trees each node appears in (the overlap) and the depth of each tree. By constructing

trees with depth2i for i = 1 . . . log n, each node appears in a small number of trees and for

every pair of nodes, there exists a tree that contains them both. Usingo(log3 n) bit labels,

the scheme can provide distance estimates accurate up to a factor of
√

2 log n, for arbitrary

undirected unweighted graphs.

Now we consider graphs of treewidth at mostk. As described above, the schemes described

by Peleg et al. [GPPR04] construct distance labels for these graphs by building a decomposition

tree using the property of small recursive separators. It isnot clear if it is possible to use

decomposition trees to construct separator labels (since we need to encodeall separators), nor is

it clear that the tree decomposition associated with treewidth graphs can also be used efficiently.

Therefore, we shall take a different approach and make use ofan alternative representation of

small treewidth graphs, based on algebraic expressions.

Algebraic expressions for treewidth k graphs

Every graph of treewidthk can be represented by an algebraic expression (or term) oversome

domain of sources{1, . . . , k + 1}. A j-source graph is a graph with at mostj distinguished

nodes calledsources, each tagged with one ofj distinct labels. Courcelle [Cou07, ACPS93]

shows that a graph has treewidthk if and only if it is the value of some term tree whose leaves

are(k + 1)-source graphs and where every non-leaf node is labeled withone of the following

72 Chapter 4. Towards Compact Routing

2

2

1

1

2

1

1

2

1

=

// =

fg2

Parallel composition:

Erasure:

Figure 4.6 : The parallel composition and erasure operations for constructing graphs of
treewidth k

operations, illustrated in Figure 4.6.

• Parallel composition: The graphG // H is obtained from the disjoint union of graphsG

andH where sources having the same label are fused together into asingle node.

• Erasure: Let a be a label. Then the unary operationfga(G) erases the labela and the

corresponding source inG is no longer a source inG.

The term tree can be constructed given a tree decomposition of the graph – Corollary 2.1.1 of

[Cou07] shows that given a tree decomposition of widthk of a graph, it is possible to construct

in linear time a term tree using at mostk + 1 source labels. The nodes of the term tree are the

bags of the tree decomposition; hence the height and degree are unchanged. We now give a

brief sketch of how to construct the term tree. Let us assume that we have a tree decomposition

(T,X) of width k of a graphG, i.e. every bag contains at mostk + 1 nodes. Then it is possible

to colour the nodes ofG using at mostk + 1 colours so that no two nodes in the same bag of

the tree decomposition have the same colour. We can construct a term tree recursively: ifT is

a single node, then the term tree is the graph with sources being the nodes inT . Otherwise, let

r be the root ofT and letT1, . . . , Tp be its subtrees. For each subtreeTi, associate its source

graphGi on at mostk sources, where nodex is thejth source iffx is assigned the colourj in

the colouring ofG. Recursively compute the termst1, . . . , tp. For everyi, let Ai be the set of

4.6. Distance separator labels 73

sources that are inGi but not the root ofT . Then we can representG by the term

fgA1
(t1) // . . . // fgAp

(tp) // X(r)

wherefgAi
(ti) is the graph obtained fromti by forgetting the sourcesAi andX(r) is the set of

edges between nodes ofG in the bagr of T . The details of this construction are not important

for the presentation of our algorithm, since we shall simplyassume that we are given some term

tree that evaluates to the graphG.

We shall assume that the term tree has heightO(log n), since the following result of Bod-

laender shows that we can always convert a tree decomposition of some graph into a binary one

of logarithmic height with only a constant increase in the width.

Lemma 4.6.7 ([Bod89]) Given a tree decomposition of widthk and a graphG with n nodes,

one can compute a binary tree decomposition ofG of depth at most2 log5/4(2n) and width at

most3k + 2 in timeO(n).

Therefore, we can always assume that if we are given a tree decomposition of widthk of ann-

node graph then we can construct a balanced term tree for the graph onO(k) labels and having

heightO(log n). From now on, we shall usek′ = 3k + 3 = O(k) to denote the number of

distinct source labels in the (balanced) term tree.

We assume that there are no sources remaining after evaluating the term tree, i.e. all sources

have been erased below the root. Therefore the nodes of the graph can be put in bijection with

erasure operations; we shall usev to refer to both the node inG and its unique corresponding

erasure operation in the term tree. For a nodeu, we shall useG(u) to denote the graph that

results from evaluating the subtree of the term tree rooted at u.

Each nodeu shall have astateq(u) assigned to it. This is ak′ × k′ matrix describing the

reachability of sources inG(u) – in this matrix, the entry(p, q) is 1 iff the source labeledp

can reach the source labeledq in the graphG(u), and 0 otherwise. For convenience, we shall

use the equivalence relationp ∼ q to denote reachability of sourcep, q in some source graph.

By definition of parallel composition, ifp ∼ q in G(u) and q ∼ r in G(v), thenp ∼ r in

G(u) // G(v).

It can sometimes be confusing when there are several sourceswith the same label on an

access path (due to erasing then introducing a new source with the same label using//). To

make things simpler, we shall add subscripts to the source labels to uniquely identify them; for

74 Chapter 4. Towards Compact Routing

example, instead ofp appearing several times on a path, we may havep1, p2, This does not

affect the correctness of the term tree; since we never have two sources with the same label in

the same graphG(u), we shall never have two sourcespi, pj appearing at the same time. From

now on, we assume that our source labels are subscripted in this way. This assumption will be

helpful when we try to construct separator labels.

Finally, it will be easier to deal with binary term trees thanones having a mixture of

unary and binary operations, so we compress a parallel composition operation followed by

a sequence of erase operations into a single binary operation as in [CV03]; the sequence

fga(fgb(· · · (G // H))) becomesG // fga,fgb...
H. All nodes of the graph associated with an

erase nodeu are now associated with the compressed operation containing the erasure opera-

tion u. In particular, we shall associateu with the graphG(u) obtained by applying the parallel

composition operation butnot the sequence of erasure operations. Therefore the source associ-

ated withu still exists inG(u). We write ‘the access path foru’ to denote the unique path from

the root tou in the term tree,excludingthe nodeu, as this simplifies the exposition. As a result,

the set of nodes adjacent to the access path foru always containsu.

A connectivity labeling scheme

We begin by constructing a labeling scheme that allows us to determine if two nodes are con-

nected inG, and then extend it to compute connectivity when nodes are removed. As in [CV03],

we shall store in the labelL(u) a string describing the access path foru and the state for every

node adjacent to the access path. In addition, the label contains the source label of the nodeu in

G(u) (recall thatu is always a source node inG(u)). If u has the source labelsu then the string

is of the form

Q(u) = (f1, i1)q(s3−i1(u1)) (f2, i2)q(s3−i2(u2)) . . . (fh, ih)q(s3−ih(uh)) su

whereh is the height of the term tree,f1 . . . fh are the operations on the path (e.g.// fga...),

i1 . . . ih ∈ {1, 2} indicate which child to take ands1(u) (respectivelys2(u)) denote the left

(respectively right) child ofu. The statesq(s3−i1(u1))q(s3−i1(u2)) . . . q(s3−i1(uh)) are the states

of nodes adjacent to the access path foru. Since each set of at mostk′ erasure operations can

be identified withk′ bits and the term tree has heightO(log n), the access path can be described

usingO(k′ log n) = O(k log n) bits. The reachability matrices adjacent to the path are stored

using(2 log n)k′2 = O(k2 log n) bits, so the labels have sizeO(k2 log n) bits. Figure 4.8 gives

4.6. Distance separator labels 75

(a)

(b)

a2 c2
v1 v2

v5

v6v3

v4

v7

fg
b2

fg
a2

, fg
b3

, fg
c2

b1a2

a2 c1

a2 b2 c2

b3a2 c2

b2a1 c2b2

fg
c1

fg
b1

//

//

//

//

fg
a1

//

c1b1

b

b2c1

Figure 4.7 : (a) A graph and (b) a term tree that evaluates to the graph. The two paths from v3

to v5 are drawn in red and blue (dashed). Deleting v1 removes the source node a2, so would
remove the red path.

76 Chapter 4. Towards Compact Routing

CONSTRUCT-LABELS(G)

1 (X, I)← a tree decomposition ofG of width k
2 Convert(X, I) into a binary tree decomposition of width3k + 2 and heightO(log n)
3 Compute a binary balanced term treeT from (X, I) with k′ = 3k + 3 labels [Cou07]
4 for each nodeu ∈ T
5 do su ← the source label ofu in G(u)
6 Q(u)← the access path foru and the states of nodes adjacent to the access path
7 L(u)← (su, Q(u))

Figure 4.8 : An algorithm to construct connectivity labels L(u) for treewidth k graphs

an algorithm to construct these labels.

The decoder algorithm works as follows. Let the root of the tree ber, and let nodesu, v

have source labelssu andsv in the graphsG(u), G(v). The following lemma shows how to use

the reachability matrices for nodes adjacent to the access paths foru, v to construct a path from

u, v in G, if one exists. The idea is to construct a set of paths involving only the source nodes

of the graphsG(w) for nodesw adjacent to the access paths foru, v. Sequences of non-source

nodes on each path (i.e. source nodes that have been erased below eitheru, v in the tree) are

contracted into a single edge in these paths. Joining these paths together will give a path inG.

Lemma 4.6.8 Let su, sv be the source labels ofu, v in G(u), G(v). Thenu, v are connected in

G iff we can find a sourcep ∈ G(x) for some ancestorx of LCA(u, v), and sequences of parallel

compositions establishing the following:

1. (su ∼ p) using the states of nodes adjacent to the access path foru;

2. (sv ∼ p) using the states of nodes adjacent to the access path forv;

Proof. First consider the ‘→’ direction. At each parallel compositionG(u) // G(v), the con-

nectivity of the sources in the resulting graph is completely determined by the connectivity

of the sources inG(u) and the connectivity of the sources inG(v). In particular,p ∼ r in

G(u) // G(v) iff p ∼ q in G(u) andr ∼ q in G(v), for someq in bothG(u), G(v). There-

fore, any sequence of parallel composition operations as inthe claim corresponds to a path

connectingu, v in G(root) = G.

4.6. Distance separator labels 77

Now we consider the other direction. Recall our assumption that all sources are eventually

erased. If we cannot find sequences of parallel compositionsas in the statement of the lemma,

then this implies that there is a nodex in the term tree wherex is an ancestor of LCA(u, v),

the graphG(x) has no sources, andsu 6∼ sv in G(x). Since at each parallel composition, the

connectivity of the resulting graph is completely determined by the connectivity of the sources

of the child graphs, it is impossible to find a sequence that establishessu ∼ sv by any sequence

of compositions involvingG(x). Thereforeu, v remain unconnected in the graph corresponding

to any ancestor ofx ∈ T ; in particular this holds forG(root) = G.

The proof of the above lemma implies that ifu, v are connected inG, we can find a path by

examining only the connectivity of sources in the graphsG(u), G(v) and the graphs associated

with nodes that are adjacent to the access paths ofu, v from the root. Replacing the entryi, j in

the reachability matrix forG(u) by the distance fromsi to sj in G(u) allows us to find the length

of every path fromu to v. Just as the sources are the only nodes that determine connectivity

under parallel composition, they also completely determine the distance, i.e.

dG(u) // G(v)(p, r) = min
q

dG(u)(p, q) + dG(v)(q, r).

This modification gives distance labels of sizeO(k2 log2 n) bits for treewidthk graphs. How-

ever, it is already known that treewidthk graphs haveO(k log2 n)-bit distance labels [GPPR04],

so this bound is larger by a factor ofk. We now show that these larger labels capture more

structure of the graph, in particular they capture the structure of separators that will allow us to

construct distance separator labels using the same label size.

As an example, Figure 4.7 shows a term tree and the graph that it evaluates to. In the figure,

two paths between nodesv3 andv5 are drawn, and sources that fuse together are joined with

dashed lines (in the final graph, these are a single node). We can apply Lemma 4.6.8 by tracing

subpaths in the leaf graphs and joining them together using the parallel composition operations.

For example, we can takep to be the source labeledc2, thenc1 ∼ c2 using the labelL(v3) and

a1 ∼ c2 using the labelL(v5).

Constructing separator labels

We now show how to decide if two nodes are connected inG \ S for some setS of nodes. We

first give a somewhat inefficient scheme, then we show how to reduce the space requirement

later. For each nodeu and each subsetS of source labels (whereS ⊆ {1, . . . , k′}), we store a

78 Chapter 4. Towards Compact Routing

CONNECTED(L(u), L(v), L(s1), . . . , L(sk))

� Let S = {s1, . . . , sk}
� ReturnsTRUE iff u, v are connected inG \ S

1 for eachsi ∈ S
2 do Recompute the stateq(x) for every nodex on the access path forsi

using the source graphG(x) \ S
3 Let the sources foru, v besu, sv

4 Decide whethersu, sv are connected, as in Lemma 4.6.8

Figure 4.9 : A decoder algorithm for separator labels on treewidth k graphs

reachability matrix for sources inG(u) \ S (each nodeu ∈ G corresponds to a unique source

in G(u)). Then we use the reachability matrices forG(x) \ S for nodesx on the access paths

for s1, . . . , sk to compute new reachability matricesGS(x) for nodes inQ(u), Q(v) (where the

access paths fors1, . . . , sk become adjacent to the access paths foru, v).

We now proceed in a similar way to Lemma 4.6.8; we use the new informationGS(x) for

x ∈ Q(u) ∪Q(v) to construct subpaths, then join them together using the parallel composition

operations in the term tree. However, we place a restrictionon the sources that we are allowed

to use in our subpaths – ifsi is the source corresponding to a nodes ∈ S (recall that we add

subscripts to make identification easier) then we are not allowed to use the sourcesi in the

subpaths. More precisely, for each nodex in the term tree we construct subpaths usingGS(x).

Since there are at most2k′

O(log n) reachability matrices adjacent to each access path, the labels

are of sizeO(2k′

k′2 log n) = O(23kk2 log n) bits. The decoder algorithm is shown in Figure 4.9.

We can now employ the same argument as before to turn our separator labels into distance

separator labels, with an additionalO(log n) factor in the label size. We do this as before:

replace each of the2k′

reachability matrices by a matrix storing the distance between sources

in the graph where some setS of sources have been removed. All the distances used involve

paths that avoid the sources representing nodes in the forbidden setS, and therefore the paths

that remain are exactly those that do not intersectS.

4.6. Distance separator labels 79

CONSTRUCT-SOURCE-CONNECTIVITY-GRAPH(G)

1 while (G contains a non-source node)
2 do Let u be any non-source node inG
3 Add edges{x, y} between all neighboursx, y of u
4 Removeu from G

Figure 4.10 : The procedure to construct the source connectivity graph

Reducing the space requirements using source connectivity graphs

For each nodev and its graphG(v), we can avoid storing2k′

matrices by constructing a graph

G′(v) on thek′ sources, which we call thesource connectivity graph. This graph will have the

property that for any setS of source nodes, the reachability of sources inG′(v) \ S equals the

reachability of sources inG(v) \ S. Therefore, we can replace the2k′

= O(23k) reachability

matrices by a single graph onk′ nodes.

Constructing the graph is easy – for any path between two sources, we contract all its sub-

paths containing only non-source nodes into a single edge. More precisely, we want to solve the

following problem. Given a graphG onn nodes and havingk distinguished source nodes, con-

struct a graphG′ on thek source nodes so that the following holds: for any setS ⊆ {1, . . . , k}
of sources and two sourcessi, sj, we want that 1si andsj are connected inG \ S iff they are

connected inG′ \ S. We can constructG′ using the procedure shown in Figure 4.10.

For each non-source nodeu, the procedure turns the neighbourhood ofu into a clique then

removesu; if u has only one neighbour then this does nothing. The graph remaining at the end

of the procedure is the desired graphG′. It is easy to check that the nodes ofG′ are exactly

the source nodes inG (they are the only nodes never contracted). We now show that the graph

it computes has the property described above, i.e. it captures the connectivity of sources when

only sources are removed. An example is shown in Figure 4.11.

Lemma 4.6.9 The graph computed by the above procedure has the desired property, i.e for any

setS ⊆ {1, . . . , k} of source nodes and two sourcessi, sj 6∈ S, we have thatsi and sj are

connected inG \ S iff they are connected inG′ \ S.

Proof. We begin by making two claims about the graph computed by the procedure.

Claim 1: The graphG′ contains no paths not inG. Every path inG′ corresponds to some

80 Chapter 4. Towards Compact Routing

s2

s1 s3

s4

s1 s3

s4

s2

Figure 4.11 : A graph and its source connectivity graph. The source connectivity graph pre-
serves reachability between sources under deletion of sources. The source nodes are filled
and the non-source nodes are drawn unfilled.

(possibly non-unique) path inG. Consider a pathsi1si2 . . . sir in G′. Then it is easy to see that

there must exist a pathsi1Pi1i2si2Pi2i3 . . . Pir−1irsir in G where thePij are paths inG containing

only non-source nodes.

Claim 2: The source connectivity graphG′ contains all paths between sources inG. Since all

non-source pathsPij in G betweensi, sj are contracted into a single edge inG′, every path of

the formsi1Pi1i2si2Pi2i3 . . . Pir−1irsir in G corresponds to the unique pathsi1si2 . . . sir in G′.

The lemma now follows from the claims. If two sources are connected inG \ S then there

exists a path between them that avoids the sources inS, and by claim 2 there also exists a path

in G′ that avoidsS. If two sources are connected inG′ \ S then there exists a path between

them that avoidsS, and by claim 1 there also exists a path between them inG that avoids the

sources inS, and possibly uses some non-source nodes. Since the setS only contains source

nodes, these pathsPij still exist inG \ S.

Using the above construction gives the following labeling scheme: construct the labels as

before, except that we store the ‘source connectivity graph’ for G(u) in place of the2k′

reach-

ability matrices for sources inG(u). Note that for each nodeu and set of sourcesS, we can

take the source connectivity graph forG(u) and compute the reachability matrix for sources in

G(u)\S. Therefore, the decoder algorithm can simulate the decoderalgorithm using the reach-

ability matrices. This reachability matrix can be computedin time O(k′2 log k′) = O(k2 log k)

by running an all-pairs shortest path algorithm on the source connectivity graph and ignoring

nodes inS.

For distance separator labels, we shall show how to assign weights to the edges of the source

connectivity graph such that the minimum weight path in the source connectivity graph between

4.6. Distance separator labels 81

CONSTRUCT-SOURCE-DISTANCE-GRAPH(G)

1 Setw(u, v) = w(v, u) = 1 for all edges{u, v} of G, and∞ otherwise
2 while (G contains a non-source node)
3 do Let u be any non-source node inG
4 For each pair of neighboursx, y of u
5 Setw(x, y) = w(y, x) = min{w(x, u) + w(u, y), w(x, y)}
6 Removeu from G (also setw(v, u) = w(u, v) =∞ for all v)

Figure 4.12 : The procedure to construct the source distance graph

2

s1 s3

s4

s2

4

11

4s1 s3

s4

s2

Figure 4.13 : An example of a graph and its source distance graph. The distances between
sources are preserved under deletion of source nodes. Note that deleting the source node s4

increases the distance between s1, s3.

si, sj equals the length of the shortest path betweensi, sj in G that only uses non-source nodes.

Furthermore, we show that this property is preserved under deletion of sources. We call this

graph the source distance graph, and the algorithm to construct it is given below (as before, the

input graphG has a distinguished set ofk source nodes).

The graphG′ constructed by the above procedure has the following property: for any setS

of source nodes and two sourcessi, sj 6∈ S, dG′\S(si, sj) = dG\S(si, sj). The reason that we

only contract edges connected to non-source nodes is that otherwise there may be an edge in

G′ that represents a path containing a source nodesj, and then settingsj ∈ S would give an

incorrect distance using this edge. An example of the construction is given in Figure 4.13.

For each graphG(u) in the term tree, we can use its source connectivity graph to reconstruct

the distance matrix for sources inG(u) \ S for any setS of sources. This allows us to simulate

the scheme where we explicitly construct the2k′

distance matrices, so we can use the argument

in that case to construct separator distance labels and to argue for its correctness. Since the edge

82 Chapter 4. Towards Compact Routing

weights in the source connectivity graph may be in the range[1, n], the graph can be represented

usingO(k′2 log n) bits. Therefore the distance separator labels are of sizeO(k2 log2 n) bits. We

have now proved the following result.

Theorem 4.6.10The family of treewidthk graphs has separator labels of sizeO(k2 log n) bits,

and distance separator labels of sizeO(k2 log2 n) bits.

Remarks

Unfortunately, the problem of determining whether the treewidth of a given graph is at most

a given integerk is NP-complete [ACP87] (although, for constantk there exist linear-time

algorithms [Bod93a]). Our algorithm works even when the treedecomposition given to it is

not optimal – the only cost we pay is that thek in the label size becomes the treewidth of the

decomposition given to the algorithm. There exist polynomial-time approximation algorithms

that compute tree decompositions with treewidth a factorO(
√

log k) of optimal, wherek is

the optimal treewidth of the graph [Ami02, FHL05]. Therefore for graphs having non-constant

treewidthk, we can use anO(ρ)-factor approximation algorithm to obtain distance separator

labels of sizeO(ρ2k2 log2 n) = O(k2 log2 k log2 n) bits in polynomial time.

4.7 A partial forbidden-set routing scheme for planar graphs

We now show how to utilise some of our results for small treewidth graphs to obtain results

for some special types of planar graphs. Eppstein [Epp00], improving on a previous result of

Baker [Bak94], showed the following connection between bounded-genus graphs and treewidth,

known as the ‘diameter-treewidth property’.

Lemma 4.7.1 (Eppstein [Epp00])Let G be a graph with genusg and diameterD. ThenG

has treewidthO(gD).

It follows immediately from Theorem 4.6.10 on treewidthk graphs that genus-g graphs with

diameterD have distance separator labels of sizeO(g2D2 log2 n) bits.

Eppstein [Epp95] considered the following problem on planar graphs: given a nonegative

integerl, construct a centralized data structure so that given two nodes, we can decide if their

distance is at mostl, and if so, construct a path between them. We now show how to obtain

4.7. A partial forbidden-set routing scheme for planar graphs 83

a similar result for the case of forbidden-set routing, but using a distributed data structure (the

labels). Fix some nonnegative integerl. We shall assign labels to nodes so that given the labels

for u, v and the nodes ofS ⊆ V (G), we can either return the distancedG\S(u, v) or determine

that it is greater thanl. Once we can do this, we can use the labels with the routing scheme of

Section 4.5 to route on a shortest path inG \ S if dG\S(u, v) ≤ l. Since these labels represent

a restricted version of distance separator labels, we shallcall them ‘distance-l separator labels’.

We will make use of the following planar graph covering result of Eppstein.

Lemma 4.7.2 (Eppstein [Epp95])LetG be a planar graph andl a nonnegative integer. Then

in timeO(n) we can find a collection of subgraphsGi with the following properties:

1. For every nodev of G, the l-neighbourhood2 of v is contained in one of the subgraphs

Gi;

2. Every node ofG is included in at most two subgraphsGi;

3. Every subgraphGi has treewidthO(l).

By applying Theorem 4.6.10 separately to each subgraphGi we can construct distance-l

separator labels of sizeO(l2 log2 n) bits. If dG(u, v) ≤ l for two nodesu, v then the only way

thatdG\S(u, v) > dG(u, v) for some setS is if some nodes ofS are within a distancel from

u in G. Therefore, if the distance inG \ S is at mostl then it suffices to consider only those

elements ofS that lie within a distancel of u. The above lemma guarantees that we shall only

have to consider a single subgraph to do this. Therefore, we have the following result.

Theorem 4.7.3 Let G be a planar graph andS(u) ⊆ V (G) the forbidden set of nodeu, with

k ≤ maxu |S(u)| for all u. Let l be a nonnegative integer such thatdG(u, S(u)) ≤ l for all u.

Then we can construct a distributed forbidden-set routing scheme such that for anyu, v, we can

route on the shortest path that avoidsS(u), or declare that their distance inG \S(u) is greater

thanl. The routing tables haveO(k∆(G)l2 log2 n) bits and the labelsO(kl2 log2 n) bits.

Remarks. Ideally, we would like to have a scheme that can route betweenall pairs of

nodes, still with the restriction thatd(u, S(u)) ≤ l for all u. However, the problem is that even

if dG\S(u)(u, v) > l, we could still have thatdG\S(u)(u, v) > dG(u, v). We would need to be

able to know which nodex on the ‘fringe’ of the subgraphGi containingu that we should

2Thel-neighbourhood of a nodev is the set of nodes at distance at mostl from v.

84 Chapter 4. Towards Compact Routing

u1

BB
BB

BB
BB

v1

??
??

??
??

u2

||||||||

//
//

//
//

//
//

//
//

v2 t

...
...

un

�����������������������
vk

����������������

Figure 4.14 : Illustrating the lower bound for separator labels (Proposition 4.7.4). Nodes ui, vj

are not adjacent iff the set V \ {vj} is a separator of ui and t.

route to, in order to reachv on the shortestS(u)-avoiding path. We could then route tox using

the forbidden-set routing scheme inGi, and then fromx to v using any shortest-path routing

scheme.

4.7.1 Lower bounds for distance separator labels

We now prove an easy lower bound on the size of separator labels by a reduction from adjacency

labeling. We shall parametrise our lower bound byk, the maximum size of a separator that we

are interested in detecting. The motivation for this is thatk would correspond to the maximum

size of any forbidden set in a forbidden-set routing scheme.

Proposition 4.7.4 Assume that we are only interested in detecting separators ofsize at most

k ≤ n. At least one node must be assigned a separator label of sizeΩ(k) bits onn-node graphs

in the worst case.

Proof. Let G = ((U, V), E) be an undirected bipartite graph on the node setsU, V where

U = {u1, . . . , un}, V = {v1, . . . , vk}. ConstructG′ by adding a nodet connected to each node

of V as in Figure 4.14. Now consider two nodesu ∈ U andv ∈ V . It is clear thatu is not

adjacent tov in G iff V \ {v} is a separator betweenu andt in G′ (we can use the separator

labels for the setV \{v} andu, v to decide whether this is the case). There areΩ(2nk/2) distinct

bipartite graphsG, and for any two such graphsG1, G2 there are two nodesu, v whereu, v are

adjacent inG1 but not inG2. The corresponding graphsG′
1, G

′
2 must also have two nodesu, v

whereV \ {v} does not separateu, t in G′
1 but does inG′

2. Therefore the sum of all the labels

4.8. Decremental graph connectivity 85

assigned to nodes must be at leastΩ(log 2nk/2) = Ω(nk) bits, so some node must be assigned a

label of sizeΩ(k) bits.

Remarks. Even whenk is unrestricted, the lower bound does not appear to be tight.By

storing the entire graph in each label, we can get a trivialO(n2) upper bound. Unfortunately,

nothing better is known for general graphs and so theΩ(n) lower bound leaves a large gap. It is

worth examining the lower bound to see that it is most likely far from tight. In particular, it does

not seem to make good use of the combinatorial nature of the problem since each nodev is im-

plicitly associated with its witness setV \ {v}. For this reason, we expect that the lower bound

can be strengthened toΩ(n3/2) or evenΩ(n2) but we have been unable to do so. Most likely,

the current construction will not suffice and some more insight into how the structure of the for-

bidden sets affects the connectivity of the graph will be needed. The interesting (but seemingly

difficult) case is whenk is small, sayO(log n). In this case, it would be very interesting to show

that we can construct sublinear-sized separator labels forgeneral graphs.

For the case of distance separator labels, the situation is somewhat different – if the setS

is empty then it reduces to the problem of distance labeling in undirected graphs. It is known

that there are graphs onn nodes andm edges where some node must be assigned a label of size

Ω(m/n log(n2/m)) bits [CHKZ02]. Therefore, distance separator labels must beof sizeΩ(n),

regardless of the size of the setS allowed. This immediately gives the following lower bound.

Proposition 4.7.5 There aren-node graphs where some node must be assigned a distance sep-

arator label of sizeΩ(n) bits, regardless of the size of the setS.

Since distance separator labels are more general than separator labels, the remarks made

above for separator labels also apply here; in particular, we do not expect thatΩ(n) is a tight

lower bound for distance separator labels in general graphs. Unfortunately, we have not been

able to prove anything stronger and improving this is a completely open problem.

4.8 Decremental graph connectivity

In this final section, we use some of the techniques for constructing separator labels, combined

with a novel reduction to orthogonal range searching, to show how to solve dynamic graph

connectivity with good worst-case query time. We then show how to use this technique to

construct efficient algorithms for solving the problem ofk-edge witness.

86 Chapter 4. Towards Compact Routing

Definition 4.8.1 (k-vertex witness) Given a graphG, thek-vertex witness problem is to pre-

processG so that givenk nodesS, we can quickly decide whetherS is a separator ofu, v in G,

i.e. whetherS is a witness to the fact thatu, v are notk-connected inG.

Separator labels can be seen as a distributed version of thek-vertex witness problem. The

k-edge witness problem is defined similarly but we want to knowwhetheru andv arek-edge-

connected. These two problems are closely related to the well-studied problem ofdecremental

graph connectivity. Here, we wish to construct a data structure that efficientlysupports the

following operations on a graph: DELETE(u, v), which deletes edge{u, v} from the current

graph, CONNECTED(u, v), which returnsTRUE iff u, v are still connected. The node version

of the problem is similar, except that we instead support DELETE(u), which deletes a single

node and all its adjacent edges. It is easy to see thatk-vertex witness can be solved using a

decremental connectivity algorithm – delete the setS of nodes, test connectivity ofu, v and

then reinsert the nodes deleted. In fact, the best known bounds fork-vertex witness (andk-edge

witness) are obtained in this way.

We are interested in worst-case bounds because the problemswe are trying to solve are

fundamental network problems and therefore are most likelyto be used as subroutines in higher-

level applications. Without a good worst-case bound on the performance of the underlying

algorithms, it is difficult for algorithms that use them to provide good performance guarantees

of their own. Despite much work, the best known worst-case time for DELETE(u, v) is O(
√

n)

due to Eppstein et al. [EGIN97] who improved the result of Frederickson [Fre83] fromO(
√

m)

to O(
√

n) per update using the sparsification technique.

All known algorithms that have better update time haveamortizedtime bounds. The first

algorithm with polylogarithmic update time was given by Henzinger, King and Thorup [HK99,

HT97]. They gave a fully dynamic algorithm (supporting bothinsertions and deletions) such

that for a sequence ofΩ(m0) update operations (wherem0 is the number of edges in the initial

graph), an update takes expected amortized timeO(log2 n) and a connectivity query takes time

O(log n/ log log n). This gives an algorithm fork-edge witness with update timeO(log2 n)

and amortized expected query timeO(k log2 n). This query time is amortized over the updates

made, so this is not a worst-case bound for a singlek-edge witness query.

Holm et al. [HdLT01] obtained a deterministic version of thealgorithm withO(log2 n)

amortized time per update. However, as before, this time bound is amortized over a large

sequence of edge insertions followed by deletions. Therefore, there is no guarantee that the cost

4.8. Decremental graph connectivity 87

of a deletion will be small when taken over some isolated set of k edge deletions.

We improve the worst-case bound fork-edge witness in general graphs when the number of

deletions is fairly small, i.e.k = O(
√

n). Our algorithms are simple, and reduce the problem

of maintaining decremental connectivity to maintaining fully dynamic connectivity (supporting

both insertions and deletions) on some auxiliary graphH, which usually has size linear in

the number of deletions already performed. We can then use known algorithms to maintain

connectivity onH, and answer queries onG by quickly translating them to queries onH. An

artifact of our approach is that the time for a deletion depends on the number of nodes or edges

already deleted from the original graph, which explains whyit only works for small numbers of

deletions. Our main results for this are the following:

• We give an algorithm for decremental connectivity that handles thekth edge deletion in

worst-case timeO(k log n) and answers connectivity queries in timeO(k2). The down-

side is that it may use spaceO(n∆(G)2).

• Using the above algorithm, we solvek-edge witness in general graphs with worst-case

query timeO(k2 log n) and spaceO(k2n2). This improves theO(k
√

n) bound of Eppstein

[EGIN97] for k = O(
√

n). Our algorithm uses a novel reduction from orthogonal range

searching.

• Let T be a spanning tree of G with degree∆(T). We give a decremental connec-

tivity algorithm using spaceO(n2 log n/ log log n), handling thekth deletion in time

O(∆(T)2 log n + k log n) and connectivity queries inO(k2). For Hamiltonian graphs,

graphs with bounded independence number,1/O(1)-tough graphs and almost allr-regular

graphs (for fixedr ≥ 3), this givesO(k log n) time for deletions.

4.8.1 Preliminaries

We begin by describing the algorithm of Henzinger and King (HK) [HK99], since our algorithm

works in a conceptually similar way. They achieve both polylogarithmic update and query time

but this bound is expected and amortized overΩ(m0) updates, wherem0 is the number of edges

in the initial graph. We remove this amortization but at the cost of additional space and an

update time that depends linearly on the the number of edges deleted thus far.

They maintain a spanning forest of the graph, starting with some arbitrary spanning treeT

(we assume that the graph is initially connected). When a treeedgee is removed fromT it

88 Chapter 4. Towards Compact Routing

breaksT into two subtreesT1, T2; and a replacement edgee′ for e needs to be found (if one

exists) to reconnectT1, T2 into another spanning treeT ′ = T1 ∪ T2 ∪ {e′}. To do this, they

maintain a partition of the edges intoO(log n) levels; to find a replacement fore, the nontree

edges in a particular level are randomly sampled. If one of them connectsT1 to T2, then the

trees are reconnected using this edge. Otherwise, all the nontree edges adjacent to nodes ofT1

are searched exhaustively. By carefully managing this partitioning and sampling, they obtain

good amortized bounds on the update times.

They also employ a technique to efficiently represent the trees in a linear form, which allows

trees to be efficiently spliced or reconnected at a given edge. This data structure is known as the

Euler tour tree. Since we also make use of it, we shall now describe it.

Euler tours

An Euler tour of a graph is a path that traverses every edge exactly once in each direction.

Henzinger and King [HK99] use an Euler tour of a spanning treeT of G, constructed by calling

the following procedure with the root node.

ET(v)

� Constructs an Euler tour of the tree
1 visit v
2 for each childu of v
3 do ET(u)
4 visit u

Figure 4.15 : Constructing an Euler tour of a tree

Each edge is visited twice (traversed once in each direction) and every degree-d noded

times. Each time any nodeu is encountered in the tour, we call this anoccurrenceof u and

denote the set of occurrences ofu by O(u). We shall refer to a particular occurrence by its

unique position in the tour. If the sequenceET (T) is stored in a balanced binary search tree,

then one may insert an interval or splice out an interval (delete an edge of the tour) in time

O(log n), while maintaining the balance of the tree.

Some of our algorithms use an Euler tourET (G) of the entire graphG instead of a spanning

tree. In this case, we can use the well-known theorem of Eulerthat states that a graph has an

4.8. Decremental graph connectivity 89

Euler tour iff every node has even degree. Therefore a simpletrick to ensure thatG has an Euler

tour is to ‘double up’ each undirected edge so that it gets traversed once in each direction.

Sparse connectivity certificates

The concept of a sparsek-connectivity certificate is important for some of our algorithms. A

sparsek-connectivity certificatefor a graphG is a subgraphG′ of G, containing at mostkn

edges, such that any cut of value at mostk in G has the same value in the certificate. The idea

of using such a certificate is that if we are only interested indetecting cuts (or separators, if we

are in the node case) of size at mostk, then without any penalty we can work on the sparse

graphG′ instead of the (possibly dense) graphG.

Nagamochi and Ibaraki [NI92] show how to construct a sparsek-connectivity certificate

in linear-time. The problem is also known to be in NC [NH98] and can be solved using a

distributed algorithm [Thu95, JM96].

4.8.2 The algorithm

We now present our algorithm for solvingk-edge witness for general graphs using a centralized

algorithm. As described earlier, Henzinger and King [HK99]use an Euler tour data structure to

represent a spanning tree ofG. In contrast, we shall construct an Euler tour of theentire graph.

The algorithm can be explained as follows. We maintain an auxiliary undirected graphH

where we associate with each node ofH a connected interval ofET (G) (i.e. a connected

subpath of the Euler tour) and the nodes ofH form a disjoint partition of the subpaths of

the tour. There is an edge between two nodes ofH iff there is some nodeu ∈ V (G) with

an occurrence in both intervals. We denote byh(u) a node ofH whose interval inET (G)

contains an occurrence ofu (if there is more than one, choose one arbitrarily). For an integer

i corresponding to an occurrence of a node, we denote byh(i) the (unique) node ofH whose

interval on the tour containsi (the version used will be clear from the context).

For a nodeu ∈ V (G), let Hu be the subgraph ofH induced by the nodes whose intervals

contain an occurrence ofu. Let h1, h2 be any two nodes ofHu, then there must be an edge

{h1, h2}. It follows that the subgraphHu is a clique, for allu. We shall represent the graphH

by storing a balanced binary search tree (e.g. a 2-3 tree) on the intervals associated with nodes

of H. This allows us to find the nodeh(u) in worst-case timeO(log |H|). The following lemma

states a simple property ofH.

90 Chapter 4. Towards Compact Routing

Lemma 4.8.2 Nodesu, v ∈ V (G) are connected inG iff h(u), h(v) are connected inH.

Proof. First, note that sinceHu, Hv are cliques, we can choose to compute reachability between

any pair of nodesa ∈ Hu, b ∈ Hv. The lemma now follows from the definition ofH – every

path fromu to v in G corresponds to a set of paths fromh(u) to h(v) in H, and every path from

h(u) to h(v) in H corresponds to a collection of paths fromu to v in G.

Now we can describe our algorithm.H starts as a singleton representing the entire tour

ET (G). To delete an edge{u, v} ∈ E(G) the Euler tour is spliced at this edge in timeO(log n).

This corresponds to splitting exactly one nodeh of H into two new nodesh1, h2 with N(h) =

N(h1) ∪ N(h2). Therefore to construct the new edges ofh1 andh2, we do not need to test for

edges between all the nodes ofH – it suffices to test only the old edges ofh to see if they are

also edges ofh1 or h2. By definition ofH, there is an edge between two nodes ofH iff their

corresponding intervals in the Euler tour both contain an occurrence of some nodeu ∈ V (G).

We shall show that this ‘edge test’ can be done in worst-case time O(log m) = O(log n) for

each edge by making use of orthogonal range trees.

To maintain connectivity onH under node insertions and both edge deletions and insertions

we can use any fully dynamic connectivity algorithm. A simple method is to store the adjacency

list representation ofH; each edge insertion and deletion then takes timeO(1), and connectiv-

ity queries can be answered by running a depth-first search intime O(|V (H)| + |E(H)|) =

O(|H|2). An alternative is to use the fully-dynamic algorithm of Eppstein et al. [EGIN97],

which handles edge insertions and deletions in timeO(
√
|H|) and answers connectivity queries

in timeO(1).

To answer connectivity queries, we use the fact that the subgraphHu is a clique, so one node

of Hu can reach some nodeh of H iff all of Hu can reachh. A connectivity query foru, v is

then handled by findingh(u), h(v) and then calling CONNECTEDH(h(u), h(v)). To handle the

query CONNECTEDwe simply call CONNECTEDH , sinceG is connected iffH is connected.

Reduction from orthogonal range searching

The crucial part of our algorithm is the ability to test for anedge in the auxiliary graphH. We

do this by using a reduction to two-dimensional orthogonal range searching as follows. Arange

tree is a data structure that supports two operations on a two-dimensional space: INSERT(x, y),

which inserts a point(x, y), and BOX-EMPTY((x1, y1), (x2, y2)), which returns true iff the

box with corners(x1, y1) and (x2, y2) does not contain any points (sometimes we shall use

4.8. Decremental graph connectivity 91

(4, 5)

5

(4, 1)

2

3

4

(1, 3)

(3, 4)

2 3 4 51

Figure 4.16 : The box (2, 4)× (3, 5) is empty iff there are no edges between the intervals [2 . . 3]

and [4 . . 5] on the graph

BOX-NOT-EMPTY for the negation of this function).

Given an undirected graphG and a unique identifierI(u) ∈ [1 . . n] for each nodeu, each

undirected edge{u, v} of G is mapped to two points(I(u), I(v)) and(I(v), I(u)) on ann× n

grid. Then there is an edge inG with endpoints having identifiers in both the intervals[a . . b]

and[c . . d] iff the box (a, c)× (b, d) is nonempty (fora ≤ b, c ≤ d) as illustrated in Figure 4.16.

Orthogonal range searching has been extensively studied during the last thirty years, with many

applications to databases and computational geometry. There are several dynamic algorithms

having efficient worst-case update and query times. This is the first time we know of that they

have been used for graph connectivity. The transformation described above may also be of

independent interest.

The transformation described above is used as follows, and illustrated in Figure 4.17. For

each ordered pair of occurrencesui, uj of nodeu, add a point(ui, uj) to the space and associate

with each node ofH a unique interval[i . . j] (with i ≤ j) on the Euler tour. Then the two

nodes ofH associated with the intervals[a . . b] and [c . . d] are adjacent inH iff there exists

some nodeu ∈ V (G) with occurrences in[a . . b] and [c . . d] in the tour, which occurs iff the

box (a, c) × (b, d) is nonempty. The algorithm of this section does not need to remove points

(splitting nodes ofH keeps track of the deleted edges ofG), so a static range tree algorithm will

suffice (in contrast, the algorithm of the next section requires a dynamic range tree). Chazelle

[Cha88] has given an algorithm for the static case that storesr points with spaceO(r) and

answers emptiness box queries in worst-case timeO(log r).

The decremental connectivity algorithm is given in full in Figure 4.18, and the procedure

for k-edge witness in Figure 4.19.

92 Chapter 4. Towards Compact Routing

de a ed abcaabc

a
d

e

c

b

a b c d e a c bde a ac

(c,d) (e,a) (d,c)(a,e)

(a) The graph G

(b) An Euler tour of G

(only edges corresponding to
occurrences of node c are drawn)

Deleting edges {a,e} and {c,d}
cut the tour at the points indicated
by the dashed vertical lines

The edges of H indicate regions of

(c) The graph H corresponding
to deleting {a,e} and {c,d}.

the tour containing occurrences
of the same node

Figure 4.17 : A graph G and an Euler tour of G with the edges between occurrences of the
same node marked. The dashed lines represent the splicing of the tour from deleting edges
{a, e} and {c, d}. The auxiliary graph H at this point is shown below. There is no path between
any nodes of H containing occurrences of e and b, therefore {a, e}, {c, d} is a cut between e, b

in G.

4.8. Decremental graph connectivity 93

INITIALISE(G)

1 Double up each edge ofG
2 ET (G)← an Euler tour ofG
3 for each nodeu
4 do O(u)← the set of occurrences ofu in ET (G)
5 for each pairui, uj ∈ O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 LetH be a graph with a single node[1 . . 2m].

DELETE({u, v})
1 for each appearance{i, i + 1} of edge{u, v} in ET (G)
2 do EULER-TOUR-DELETE({i, i + 1}) � O(log n)

� Split h into two new nodesh1, h2

3 h← [a . . b] = h(i) � O(log |H|)
4 h1 ← INSERT-NODEH([a . . i]) � O(1)
5 h2 ← INSERT-NODEH([i + 1 . . b])

� Check for an edge betweenh1 andh2

6 if BOX-NOT-EMPTY((a, i + 1), (i, b)) � O(log n)
7 then INSERT-EDGEH(h1, h2) � O(1)

� Check for edges betweenN(h) andN(h1), N(h2)
8 for each neighbourh′ = [c . . d] of h in H
9 do if BOX-NOT-EMPTY((a, c), (i, d)) � O(log n)

10 then INSERT-EDGEH(h1, h
′) � O(1)

11 if BOX-NOT-EMPTY((i + 1, c), (b, d))
12 then INSERT-EDGEH(h2, h

′)
13 DELETE-NODEH(h) � O(∆(H))

CONNECTED(u, v)

� Returns true iffu, v are connected inG
1 return CONNECTEDH(h(u), h(v)) � O(|H|2)

CONNECTED

� Returns true iffG is connected
1 return CONNECTEDH � O(|H|2)

Figure 4.18 : The decremental connectivity algorithm

94 Chapter 4. Towards Compact Routing

k-EDGE-WITNESS(u, v, {x1, y1}, . . . , {xk, yk})
1 G′ ← a sparsek-connectivity certificate ofG
2 INITIALISE(G′)
3 LetH contain a single node[1 . . 2m]
4 for eachi ∈ {1, . . . , k}
5 do DELETE({xi, yi})
6 return CONNECTED(u, v)

Figure 4.19 : The algorithm for k-edge witness

Complexity

Let DELETE[k] denote the worst-case time taken by DELETE for any sequence ofk edges.

Assume thatk edges have been deleted fromG. Then the graphH has at most2k + 1 nodes,

since each edge ofG appears twice in the Euler tour ofG. Also, it takes timeO(log n) to

splice out an interval of the Euler tour, and each range tree query takes timeO(log n). If

we use the adjacency list representation ofH, then the times for each line are as shown in

the code above. The loop at line 6 of DELETE is repeatedO(∆(H)) = O(k) times and so

DELETE[k] = O(k log n). Therefore the procedurek-EDGE-WITNESS takes worst-case time

O(k2 log n).

Alternatively, using the fully-dynamic connectivity algorithm of Eppstein et al. makes lines

4,5,8,9 take timeO(
√
|H|) and line 11 takes timeO(∆(H)

√
|H|), so DELETE[k] = O(k3/2 +

k log n), but CONNECTED(u, v) and CONNECTEDnow takeO(log k) time. This might be more

useful if the algorithm was being used for decremental connectivity. However, for solvingk-

edge witness, using the adjacency representation ofH gives the best time bound.

The space requirement is dominated by the cost of storing thepoints representing the node

occurrences in the range tree. Since each nodev ∈ V (G) appearsdG(v) times in the tour, there

aredG(v)2 points in the range tree corresponding tov. Using the range tree of Chazelle [Cha88]

gives a data structure usingO(
∑

v∈G dG(v)2) = O(n∆(G)2) bits of space.

For k-edge witness we are only interested in cuts of size at mostk, and so we can reduce

the space requirement by using sparsek-connectivity certificates. The modified algorithm is the

same except that we replaceG with its sparsek-connectivity certificateG′ in INITIALISE . The

correctness follows from the connectivity properties of the connectivity certificate. The space

4.8. Decremental graph connectivity 95

complexity is reduced to that needed to store the node occurrences in the range tree for the Euler

tour of the certificate, i.e.O(
∑

v∈V dG′(v)2) = O(n2k) bits in the worst case that we have a

complete bipartite graph on2k nodes. The query time is unchanged, as it only depended on the

set of edges being deleted.

Note that this idea can be applied to any decremental connectivity algorithm when we are

only interested in cuts of small value. Since there are algorithms [Tho00] that use spaceO(m),

this would transform them to use spaceO(kn) for solvingk-edge witness.

4.8.3 An more space-efficient algorithm for tree-like graph s

In this section we reduce the space requirement of the previous algorithm but increase the

query time for general graphs. For graphs having a spanning tree with small maximum degree,

however, we shall show how to maintain a small query time.

Let T be a spanning tree ofG having degree∆(T). We give a decremental connec-

tivity algorithm that uses spaceO(n2 log n/ log log n) and handles thekth deletion in time

O(∆(T)2 log n + k log n). It answers connectivity queries in timeO(k2) and therefore gives an

O(k∆(T)2 log n+k2 log n)-time algorithm fork-edge witness, which isO(k2 log n) for Hamil-

tonian graphs, graphs of bounded independence number,1/O(1)-tough graphs and almost all

r-regular graphs (for fixedr ≥ 3). As before we can use a different algorithm to maintain con-

nectivity on the auxiliary graph, and this givesO(∆(T)2 log n + k3/2 log n) time for deletions

but withO(log k) query time.

The algorithm is more similar to that of Henzinger and King [HK99] than the one of the

previous section, in that we use a spanning forest rather than the Euler tour of the entire graph.

The main difference is that instead ofmaintaininga spanning forest ofG, we do not bother to

replace tree edges when they are deleted. Instead we keep track of the fragmented parts of the

forest as tree edges are deleted, and use this to answer connectivity queries efficiently.

Initialisation

The algorithm works as follows. Consider an undirected connected graphG = (V,E) and

a spanning treeT = (V, F) of G. We construct the Euler tourET (T) of T (note that in the

previous section we used the Euler tour ofG), and maintain an undirected graphH whose nodes

represent intervals on the Euler tour ofT . As before, we build a range tree with a point for each

96 Chapter 4. Towards Compact Routing

pair of occurrences of the same nodeu, i.e. the setO(u)×O(u). Therefore there are at most

∑

v∈V

degT (v)2 ≤
(
∑

v∈V

degT (v)

)2

≤ (2n− 2)2

points since in any treeT we have
∑

v∈T degT (v) = (n− 1).

We must also handle the nontree edges ofG. Assume that there arem′ such nontree edges.

We do this by adding to the range tree for each nontree edge{u, v} ∈ G, a point(ui, vj) for

each pair of occurrences inO(u) × O(v). Since each nodev appears in the Euler tour ofT

degT (v) times, the number of nontree edge points is

∑

{u,v}∈E\F
degT (u)degT (v) ≤

∑

{u,v}∈E

degT (u)degT (v) =

(
∑

v∈V

degT (v)

)2

≤ 4n2

for any spanning treeT . If the number of nontree edges is small (e.g.G is tree-like) then it

makes sense to bound this bymin (m′∆(T)2, 4n2) (by subtracting the sum containing the tree

edges). Combining the space requirements for tree and nontree edges, the algorithm uses at

mostmin (8n2, (m′ + n)∆(T)2) points in total.

Deleting an edge

Assume that we represent the auxiliary graphH with its adjacency list (so that edge operations

takeO(1) time). Deleting a tree edge is handled as before: we delete the two appearances of

the edge from the Euler tour ofT , each of which splits some node ofH into two nodes. We

then test for edges adjacent to the new nodes ofH using emptiness queries on the range tree.

This takes total timeO(k log n) afterk edges have been deleted (since the graphH will contain

at mostO(k) nodes).

Deleting a nontree edge{u, v} has no effect on the Euler tour ofT , but now we must delete

all the points(ui, vj) ∈ O(u)×O(v) from the range tree, corresponding to the edge{u, v} and

the occurrences ofu andv in T . After deleting each point(ui, vj) we do a range query to check

that an edge still exists inH between the nodes whose intervals containui, vj. If this check

fails then we delete the corresponding edge fromH. In total, this requiresO(∆(T)2) emptiness

queries in the worst-case.

4.8. Decremental graph connectivity 97

Answering connectivity queries

Connectivity queries are answered exactly as before: to answer CONNECTED(u, v), we find

h(u) andh(v) and check whetherh(u) can reachh(v) in H. As before, the correctness of this

follows from Lemma 4.8.2 and that the subgraphsHu are cliques inH.

Complexity

Mortensen [Mor03] has given a dynamic range tree data structure that handles emptiness queries

and deletions in worst-case timeO(log r), and uses spaceO(r log r/ log log r) to storer points.

If we use this algorithm then we obtain a decremental connectivity algorithm that handles the

kth deletion in worst-case timeO(∆(T)2 log n + k log n) and uses spaceO(r log r/ log log r),

wherer = min(8n2, (m′ + n)∆(T)2).

It is clear that our algorithm relies on constructing a spanning tree of the graph having small

maximum degree. In fact, it actually requires a spanning tree such that if{u, v} is a nontree

edge ofG, then the productdegT (u)degT (v) should be small. There are several results known

about graphs with spanning trees of small degree. Let∆∗(G, T) be the smallest integerd such

thatG has a spanning tree of maximum degreed. Determining∆∗(G, T) exactly is NP-hard,

since∆∗(G, T) = 2 iff G has a Hamiltonian path, which is NP-complete [GJ90]. On the

other hand, Furer and Raghavachari [FR94] give a polynomial-time approximation algorithm

that outputs a spanning treeT with degree at most∆∗(G, T) + 1. A theorem of Dirac [Dir52]

says that if each node ofG has degree at leastn/2, thenG contains a Hamiltonian cycle, and

therefore a spanning tree of degree 2. It is known that almostall r-regular graphs (forr ≥ 3)

have a Hamiltonian cycle.

An alternative characterisation of∆∗(G, T) is in terms of thetoughnessof the input graph.

A graphG = (V,E) is t-toughif the number of connected components ofG\S is at most|S|/t
for every separatorS ⊆ V . In 1989, Win proved the following theorem.

Theorem 4.8.3 ([Win89]) Let t be a positive integer. Every1/t-tough graphG has a spanning

tree of degreet + 2, i.e. ∆∗(G, T) = O(t).

Combining the above theorem with the algorithm of this section gives the following result.

Theorem 4.8.4 Let G be1/t-tough. Then we can solve decremental connectivity onG, han-

dling thekth deletion in timeO(t2 log n + k log n) and answering connectivity queries in time

98 Chapter 4. Towards Compact Routing

O(k2). The algorithm uses spaceO(n2 log n/ log log n) bits. Furthermore, only polynomial

preprocessing time is required.

The above theorem immediately implies that we can also solvek-edge witness in worst-case

timeO(kt2 log n + k2 log n) on1/t-tough graphs.

Remarks. If the number of edges inG \ T is zero (i.e.G is a tree) then we can ignore the

analysis in the case of the nontree edges and so thekth deletion takes timeO(k log n). Similarly,

if the number of nontree edges is small (for example,G is ‘tree-like’), it may be possible to do

better. For example, a good randomized bound may be possibleby considering the probability

of deleting a nontree edge at each step. We leave it as an open problem to obtain such bounds.

4.8. Decremental graph connectivity 99

INITIALISE

1 T ← a minimum degree spanning tree ofG
2 ET (T)← the Euler tour ofT
3 for each nodeu ∈ T
4 do O(u)← the set of occurrences ofu in ET (T)
5 for each pair of occurrencesui, uj ∈ O(u)×O(u)
6 do RANGE-TREE-INSERT(ui, uj)
7 for each nontree edge{u, v} ∈ G
8 do for each pair of occurrencesui, vj ∈ O(u)×O(v)
9 do RANGE-TREE-INSERT(ui, vj)

10 H ← a graph with a single node representing the interval[1 . . n].

DELETE({u, v})
� Assumev is the parent ofu

1 if {u, v} is a tree edge
2 then for each appearance{i, i + 1} of edge{u, v} in ET (G)
3 do EULER-TOUR-DELETE({i, i + 1}) � O(log n)

� Split h into two new nodesh1, h2

4 h← [a . . b] = h(i) � O(log |H|)
5 h1 ← INSERT-NODEH([a . . i]) � O(1)
6 h2 ← INSERT-NODEH([i + 1 . . b])

� Check for an edge betweenh1 andh2

7 if BOX-NOT-EMPTY((a, i + 1), (i, b)) � O(log n)
8 then INSERT-EDGEH(h1, h2) � O(1)

� Check for edges betweenN(h) andN(h1), N(h2)
9 for each neighbourh′ = [c . . d] of h in H

10 do if BOX-NOT-EMPTY((a, c), (i, d)) � O(log n)
11 then INSERT-EDGEH(h1, h

′) � O(1)
12 if BOX-NOT-EMPTY((i + 1, c), (b, d))
13 then INSERT-EDGEH(h2, h

′)
14 DELETE-NODEH(h) � O(∆(H))
15 else � {u, v} is not a tree edge
16 do for each pair of occurrencesui, vj ∈ O(u)×O(v)
17 do RANGE-TREE-DELETE(ui, vj)

� Check for an edge betweenh(ui) andh(vj)
18 h1 ← [a . . b] = h(ui) � O(log |H|)
19 h2 ← [c . . d] = h(vj)
20 if BOX-EMPTY((a, c), (b, d)) � O(log n)
21 then DELETE-EDGEH(h1, h2) � O(1)

Figure 4.20 : The decremental connectivity algorithm for graphs having a spanning tree with
low degree

CHAPTER 5

Handling Intermediate Nodes

The previous chapter considered the problem of routing froma sourceu to a destinationv,

using the lowest-cost path tou. However, the routing process relies on intermediate nodes

forwarding packets towards the destination, possibly along paths that are of high cost to them.

If we assume that the nodes are autonomous, competing organisations (such as the autonomous

systems on the Internet), then these intermediate nodes maysimply drop these packets. This

type of behaviour is can be seen in the BGP Internet routing algorithm – nodes may choose to

only advertise routes that are of low cost to them, so nodes can only discover routes where every

subpath is also of low cost to its source. This problem does not arise in shortest-path routing,

since every subpath of a shortest path is also a shortest subpath, and therefore the intermediate

nodes will always route on shortest subpaths.

In this chapter, we extend the routing model of the previous chapter to take into account the

costs incurred by intermediate nodes, when we use forbidden-set policies. We shall call a path

Puv a good path if all of it subpathsPwv have zero cost, i.e.cw(Pwv) = 0. We shall also assume

thatk is an upper bound on the size of a forbidden set, i.e.k ≤ maxv |S(u)|. Our main results

are the following.

• Taking into account intermediate nodes is hard. Consider anyrouting scheme that can

decide if there exists a good pathbeforesending the packet. We show that such a scheme

must assign labels to nodes (not just routing tables) of sizeΩ(
√

n + k log n/k) bits. This

100

5.1. An Ω(
√

n) lower bound 101

lower bound holds even for trees, and stands in contrast to theO(k log n) bound shown in

the previous chapter for distance labels in trees. Since thelabels are placed in the packet

header, this makes routing on ‘good’ paths infeasible.

• We show that the lower bound is almost tight by giving a schemethat can decide if there

is a good path in trees. Our scheme uses labels of sizeΩ̃(
√

kn) bits and makes routing

decisions in timeO(log kn). We also show how to extend the scheme to compute a 2-

approximation to the sum of costs along the path usingÕ(
√

kn) bits per label.

• We show that it is possible to avoid the lower bound by not checking if there is a good

path before sending the packet, and instead letting the packet return if it cannot be routed

on a good path. In this case, we show a simple routing scheme that works in general

graphs, and uses̃O(k)-bit labels. The price is that the packet headers may become large,

and a packet may travel the diameter of the graph before beingreturned.

• Finally, we show how to construct centralized algorithms for the problem, with various

time-space tradeoffs.

Recall that each node assigns a non-negative cost to every other nodecu(v) = 1 iff v ∈ S(u)

and0 otherwise. Define thecost tou of a pathPuv ascu(Puv) =
∑

w∈Puv
cu(w), and the full

cost (or simply cost) ofPuv as

c(Puv) =
∑

w∈Puv

cw(Pwv) (5.1)

wherePwv is the subpath ofPuv from w to v. A good path is then a path with zero cost, and

a ‘forbidden-set-avoiding’ (fs-avoiding) path is a path with cost zero to the source node. If

there exists a good path fromu to v then we say thatu can reachv, and we call the problem of

deciding if there is a good pathfs-reachabilityfor short.

5.1 An Ω(
√

n) lower bound

Section 4.6.1 showed that trees enjoyO(log n)-bit separator labels. Let us now consider the

problem of deciding if there is a good path fromu to v. The most obvious idea might be for

L(u) to store the separator labels for the forbidden sets of each of its ancestorsw, and then to

use these to check that none of them is auv-separator. Unfortunately this scheme would require

102 Chapter 5. Handling Intermediate Nodes

√
n

u1 u2 · · · u√
n

√
n

w

Figure 5.1 : The
√

n lower bound of Theorem 5.1.1

Ω(n) bit labels in the case of a line. We now show that labels of sizeΩ(
√

n) bits are required to

decide if the path is good in a tree.

Theorem 5.1.1 Any labeling scheme for fs-reachability onn-node trees with forbidden sets of

sizek must assign to some node a label of size at least
√

n + Ω(k log n/k) bits.

Proof. Consider the tree as in Figure 5.1 with a setU of
√

n leavesu1, ..., u√
n each linked to

the root nodew by node-disjoint paths of length
√

n. The forbidden sets are either empty or

contain a single element from the setU of leaves. Now,ui can reachuj (for i 6= j) iff there is

no node on the pathui to w whose forbidden set containsuj. By assigning forbidden sets in

this way to the nodes on the paths, the nodes on each path fromui to w can collectively select

one of
∑√

n
j=0

(√
n

j

)
= 2

√
n subsets ofU , and for each distinct choice, a distinct labeling of the

setU ∪ {ui} = U is required.

Since the paths from the{ui} to the children ofw are node-disjoint, the labelings required

are independent for each path (since the forbidden sets chosen on node-disjoint paths will not

interfere with the output of the decoder) and so we can apply the above argument independently

to each path – for each of the2
√

n distinct choices of nodes on the path fromu1 to w, there are

2
√

n distinct choices of nodes on the path fromu2 to w (and each of these requires a distinct

labeling) and so on. Hence there are at least2
√

n2
√

n . . . 2
√

n
︸ ︷︷ ︸√

n

= 2n distinct labelings of the

nodes ofU . As |U | = √n, it follows that at least one node inU must be assigned a label of size
1√
n

log 2n =
√

n bits.

5.2. A Õ(
√

kn) upper bound 103

This bound holds fork = 1 and we have been unable to extend it to depend onk. However,

we can combine it with the lower bound of Theorem 4.5.3 to obtain an Ω(
√

n + k log n/k)

bound, i.e. whenk is approximately greater than
√

n the lower bound grows linearly with

k.

This lower bound rules out the possibility of extending the separator label scheme of the

previous chapter with only a small (polylogarithmic) increase in size. For the tree in Figure 5.1,

it is quite easy to achieve a matching upper bound: for each nodeu ∈ U , the labelL(u) stores

(usingO(
√

n) bits) for every other nodev ∈ U , whetheru has a good path tov. Unfortunately,

this strategy is doomed to fail for the complete binary tree,whereu would end up storing

reachability separately forΩ(n) leaves.

5.2 A Õ(
√

kn) upper bound

In this section we show an almost optimal upper bound on the label size for trees. Define

fT (u, v) = 1 iff there is a good path fromu to v in T . First we look at two simple cases from

which we derive the scheme for general trees.

Line scheme.On the line, labels of size3⌈log n⌉ bits suffice: number the nodes from left to

right, then store inL(v) the position ofv and the positions of the two closest nodes left(v) and

right(v) that cannot reachv, from each side ofv. GivenL(u) andL(v), the decoder declares

thatu can reachv iff u lies between left(v) and right(v). Notice that the label size is independent

of k, the size of the forbidden sets.

Tree scheme.Next, consider a complete binary tree onn nodes – each of then/2 leaves

may be independently unreachable fromu so listing these regions as for the line will useΩ(n)

bits. However,O(kh log n) bit labels suffice for a tree of heighth: the label foru stores, for

every ancestorw of u, 〈f(u,w), f(w, u), LSEP (S(w))〉, whereLSEP (S(w)) are the separator

labels forS(w) in the tree. GivenL(u) andL(v), the decoder finds the least common ancestor

w of u andv and checks thatf(u,w) = 1, f(w, v) = 1 and that none of the forbidden sets on

the pathu to w areuv-separators in the tree. This scheme is clearly inefficient for a long path.

The above discussion shows that, while lines and complete trees have efficient schemes,

each fails on the other case. We now show how to tradeoff between the two schemes to obtain

a scheme with labels of size at mostÕ(
√

kn) bits. We first need some preliminary definitions.

A separatorof a rooted treeT is a nodew whose removal partitions the tree into connected

components, each with at mostn/2 nodes. In 1869, Jordan proved that such a node always

104 Chapter 5. Handling Intermediate Nodes

b

c

d

a

e

f g

h

i

c

f

d h

a b e g i

Figure 5.2 : An example of a separator tree.

exists and can be obtained in the following way. Pick an arbitrary nodeu from the tree. Ifv

partitions the tree into components of size at mostn/2 then we are done. Otherwise, there exists

a component with more thann/2 nodes – letu be the node adjacent tov in that component,

changev to u and repeat the process. Since there are a finite number of nodes in the tree, and

each node is visited at most once, this process terminates inlinear time and finds a separatorw.

The separators can be used to build aseparator treeT ′ for T as follows. First, find a

separatorw of T and make it the root ofT ′. Then, recursively construct the separator trees of

the components ofT \ {w} and make the roots of these trees the children ofw in T ′. It is clear

that the separator tree has depthO(log n) and can be constructed in timeO(n log n) since we

can find the separator nodes in time linear in the size of the subtrees. An example of a separator

tree is illustrated in Figure 5.2. We also need the notion of apainting. Apaintingχ of a tree

T partitions the nodes ofT into disjoint subsetsShallow(χ) andDeep(χ). An α-painting is a

painting with the following properties:

1. The shallow nodes induce a connected subtree ofT with at mostn/α leaves;

2. For every nodev ∈ T , there are at mostα deep nodes on the path fromv to the root.

The following ‘painting lemma’ is key to the labeling schemeand shows how we can tradeoff

the space required between the deep and shallow nodes.

5.2. A Õ(
√

kn) upper bound 105

Lemma 5.2.1 For anyn-node treeT and any integer1 ≤ α ≤ n, there exists anα-painting of

T , computable in linear time.

Proof. Assume that the tree is rooted; if not then choose a root node arbitrarily. We claim that

the following procedure is suitable: for all subtrees ofT having depth exactlyα, paint all their

nodes deep1. All remaining nodes (above these subtrees) ofT are painted shallow.

Condition (1) of the definition of a painting implies that all the shallow nodes must be above

all the deep nodes. Now we just have to look for the frontier between the shallow nodes (above)

and the deep nodes (below). Consider all the nodes whose subtrees have depth exactlyα. Each

such subtree has at leastα nodes in it, so there may be at mostn/α such subtrees in the tree. If

we paint all these subtrees deep and everything above them shallow, then (1) is clearly satisfied

and the subtree induced by the shallow nodes contains at mostn/α leaves.

It is easy to see how to do the painting in timeO(n): do a depth-first search from the root

of the tree, keeping track of the height of nodes on the current path. On the way back up, if the

height of a node is at mostα, then paint it deep, otherwise paint it shallow2. This takes time

O(|V |+ |E|) = O(n).

For some setX ⊆ V of nodes, we defineX∗ ⊆ X as theancestor-free subsetof X. X∗

is the unique maximal subset ofX where no distinct pair of nodes inX∗ are ancestors of each

other. We can define it asX∗ = {x ∈ X|∄y ∈ X : y 6= x andy is an ancestor ofx}. For

example, ifX is a set of leaves thenX∗ = X, and if X is a path thenX∗ is the node ofX

closest to the root.

In the remainder, we shall use the following notation:T [w] is the treeT rerooted atw,

idT (w) is the identifier of nodew in a depth-first search of a rooted treeT , andAT (X) is the

set of ancestor labels for a setX ⊆ V in a treeT .

The labeling scheme

We now describe the labeling scheme for trees. The idea is to first compute the separator tree

for T . Then for every ancestorw of u in the separator tree, we rerootT at w and do the

following to T [w]: for all the deep ancestors ofu, we apply the strategy for the binary tree (i.e.

L(u) contains the separator labels for their forbidden sets); for the remaining shallow nodes, we

apply the strategy for the line to each path of shallow nodes from the root to a shallow leaf.

1The depth of a subtree is the length of its longest path from the root to a leaf.
2The height of a node is the minimum distance from it to a leaf.

106 Chapter 5. Handling Intermediate Nodes

MARKER(T):
Let n = |V (T)| andk = maxv∈T |S(v)|.

1. If T contains a single nodew, setL(w)← (1, {}, {}, fT (w,w), fT (w,w), 0) and return.

2. Find and remove a separatorw of T , breakingT into subtrees{Ti} of size≤ |T |/2.

3. Recursively callM(Ti); let each nodev ∈ Ti be given the labelLi(v).

4. Letχ be a
√

n/k-painting ofT [w] i.e. paint the nodes ofT as if it were rooted atw.

5. For each nodev ∈ Ti do the following:

(a) LetDeep(v) = S(Deep(χ) ∩ Pvw) be the forbidden nodes of the deep nodes on the
path fromv to w.

(b) LetS = {u ∈ (Shallow(χ) \ Ti) | fT (u, v) = 0} be the shallow nodes that cannot
reachv and letShallow(v) = S∗ ⊆ S be its ancestor-free subset, using the ancestor
relation fromT [w].

(c) Construct the sublabelJ (v) for nodev as follows:

J (v)← (idT (v),AT [w](Deep(v)),AT [w](Shallow(v)), fT (v, w), fT (w, v), i)

(d) Append this tov’s label in the componentTi by doingL(v)← J (v) ◦ Li(v)

Figure 5.3 : The marker algorithm

The marker algorithm. The marker algorithm works as follows. Consider some treeT

rooted atw, a paintingχ of T , and a nodeu with w an ancestor in the separator treeT ′. The

deep nodes on the pathPuw are stored inL(u), and the ancestor-free subset of shallow nodes

beloww that cannot reachv (have no fs-avoiding path tov) is stored inL(v). This is done for

each ancestorw of u in the separator tree. The marker algorithm is given in Figure 5.3 and

uses a recursive procedure, initially called with the entire treeT . It is clear that the marking

is done in polynomial time. Note that each tree is rerooted atits separator before painting it.

The reason for this is that if we used the painting ofT rather thanT [w], then the shallow/deep

tradeoff given by the painting lemma would not carry throughto the size of the labels. This is

because the path fromu to v must be ‘split’ at the same node used as the root in the painting,

i.e. the separatorw.

The decoder algorithm. The decoder algorithm is given in Figure 5.4. GivenL(u), L(v),

5.2. A Õ(
√

kn) upper bound 107

DECODER(L(u), L(v)):
Assume thatL(u), L(v) are of the form

L(u) = J1(u) ◦ . . . ◦ Jp(u)

L(v) = J1(v) ◦ . . . ◦ Jq(v)

1. If q = 1 thenv is the separator ofT , so return the value off(u, v) ∈ J1(u). If p = 1 then
return the value off(u, v) ∈ J1(v). Forp, q > 1 let

J1(u) = (id(u), Deep(u), Shallow(u), f(u,w), f(w, u), i)

J1(v) = (id(v), Deep(v), Shallow(v), f(v, w), f(w, v), j)

2. If i 6= j thenu, v are in different subtrees andw is the least common ancestor ofu, v in
the separator tree. Do the following:

(a) Check thatu can reachw and thatw can reachv via forbidden-set avoiding paths
(by checkingf(u,w) ∧ f(w, v)) It remains to decide whether any of the forbidden
sets of nodes on the pathPuw appear on the pathPwv.

(b) UsingL(u), check that none of the forbidden nodes inDeep(u) are ancestors ofv
in T [w], by checking thatid(v) 6∈ [i, j] for all [i, j] ∈ Deep(u).

(c) UsingL(v), check that none of the unreachable nodes inShallow(v) are ancestors
of u in T [w], by checking thatid(u) 6∈ [i, j] for all [i, j] ∈ Shallow(v).

Return thatf(u, v) = 1 iff all the above are satisfied.

3. If i = j thenu, v are in the same subtree. In this case, discard the sublabelsJ1(u) and
J1(v) and invoke the decoder recursively on the labels

L′(u) = J2(u) ◦ . . . ◦ Jp(u)

L′(v) = J2(v) ◦ . . . ◦ Jq(v),

returning the value ofD(L′(u), L′(v)).

Figure 5.4 : The decoder algorithm

108 Chapter 5. Handling Intermediate Nodes

its first computes the least common ancestorw of u, v in the separator tree forT , and then checks

(1) u can reachw (usingL(u)), (2)w can reachv (usingL(v)) and (3)S(Puw)∩Pvw = ∅, where

S(Puw) is the union of forbidden sets of the nodes onPuw. The third check is conducted in two

parts. In the first part, the decoder uses the labelL(u) to examine the forbidden sets of deep

nodes onPuw. In the second part, it usesL(v) to examine the subtrees ofT [w] containing nodes

not having a good path tov.

5.2.1 Proof of correctness

Lemma 5.2.2 The labeling scheme〈M,D〉 is correct, i.e.D(L(u), L(v)) = fT (u, v).

Proof. For L(u), L(v), let w = LCA(u, v) and considerT [w]. We know thatu can reachv iff

(1) u can reachw, (2)w can reachv and (3) none of the forbidden sets of nodes on the pathPuw

appear on the pathPwv. Conditions (1) and (2) are handled by just looking atL(u) andL(v)

independently.

To see that the decoder correctly decides (3), note that every node on the pathPuw is either

painted deep or shallow. The forbidden sets of the deep nodeson this path are stored inL(u),

and only those that are in the same subtree ofT [w] are stored in the label. Hence if one of them

is an ancestor ofv, then it must be on the pathPwv. It remains to check that none of the shallow

nodes on the pathPuw have forbidden sets on the pathPwv.

Imagine that there is some shallow nodey on the pathPuw where an element ofS(y) is on

the pathPwv, so thatv is unreachable fromy. Some ancestor ofy in T [w] must be in the set

of unreachable shallow nodes stored inL(v). Finally, if no shallow node on the pathPuw has a

forbidden set that intersects the pathPwv, then no unreachable shallow node stored inL(v) is

an ancestor ofu.

5.2.2 Complexity

The efficiency of the labeling scheme relies on the observation that it is possible to paint the

nodes of the tree so that there are not too many deep nodes on each path (and henceL(u) does

not need to store too many forbidden sets), and so that the subtrees containing shallow nodes

that cannot reachu can be described with a small amount of space.

Our initial idea was to use the painting as described in the LCAlabeling scheme of [Pel00]:

a node is painted light if its subtree contains at most half the nodes of the subtree of its parent.

This guarantees that each node has at most one heavy child andthat every node has at most

5.2. A Õ(
√

kn) upper bound 109

O(log n) light ancestors. However, this is not what we need as we can construct instances

where the forest induced by the heavy nodes would haveΩ(n) leaves and therefore require lots

of space. The following lemma gives the main result of this section.

Theorem 5.2.3 The labeling computed byM(T) has labels of sizẽO(
√

kn) bits and the de-

coder algorithm answers queries in timeO(log kn) on this labeling.

Proof. Assume that the paintingχ used by the marker algorithm on each subtree is anα-

painting, for some integer1 ≤ α ≤ n. Lemma 5.2.1 implies that in a subtree withn nodes and

forbidden sets of size at mostk, the setShallow(v) will contain at mostn/α nodes and the set

Deep(v) will contain at mostkα nodes.

Since each ancestor label requires2 log n bits to store the interval of identifiers of its de-

scendants, the sublabelsJ (v) are each of size at most(kα + n/α)(2 log n) + 3 log n + 2 ≤
3(kα + n/α) log n bits (for large enoughn such thatkα + n/α ≥ 3). Since the separator tree

has depth at mostlog n, the recursion has≤ log n levels, so each label is composed of at most

this number of sublabels.

It follows that there is a scheme with labels of at most3(kα + n/α) log2 n bits for any

choice1 ≤ α ≤ n. Minimizing the quantitykα + n/α givesα =
√

n/k, and using this

choice ofα for each subtree of sizen and with forbidden sets of size at mostk (note that the

value ofα is recomputed for each subtree) gives a labeling scheme using labels of size at most

3(k
√

n/k + n/
√

n/k) log2 n = 6
√

kn log2 n bits.

The time complexity of the decoder is dominated by step (2), which is executed exactly

once per query. Step (2a) takes timeO(1). For steps (2b) and (2c), consider the following

related problem: there is a setS of intervals{[li, ri]} (whereli, ri ∈ {1, . . . , n}) and we want to

decide if some integerx ∈ [1, n] is contained in any of the intervals. This can be done in worst-

case timeO(log n) using aninterval tree, as described in [PS85]. The tree uses spaceO(|S|),
where|S| is the number of intervals stored. Using this method to storethe ancestor labels of

the forbidden sets, step (2b) takes timeO(log |Deep(v)|) = O(log kα) and step (2c) takes time

O(log |Shallow(v)|) = O(log n/α). The decoder may iterateh times before executing step (2),

whereh is the height of the separator tree. Since the separator treehas depthlog n, the decoder

takes total timeO(log n + log(kα) + log(n/α)) = O(log kn).

Remarks. Note that the constant factors involved are small— fork = 1 the lower bound is
√

n and the upper bound is6
√

n log2 n.

110 Chapter 5. Handling Intermediate Nodes

e

n

o p

q

r

h i

g

f

d

c

b

a

m

k

j l

Figure 5.5 : The tree used for the example and the first two levels of its recursive partitioning.

5.2.3 An example

Figure 5.5 shows a treeT that we will use to illustrate the labeling scheme. The same tree is

drawn in Figure 5.2.3 with the shallow nodes filled and the deep nodes unfilled. Each node

is drawn with its identifier from a depth-first search of the tree (note that the identifiers are

recomputed for each subtree in the recursion). The forbidden sets are indicated by the dashed

edges in the figure:

S(c) = {j, o}, S(d) = {f}, S(e) = {g}, S(f) = {p}, S(m) = {b}

We first rootT at its separatorw. To compute the sublabel for nodei we first find the union

of the forbidden sets of its deep ancestors. The forbidden set of the nodef containsp, whose

ancestor label inT is [16, 18]. Next we find the set of shallow nodes inT \ T1 that i cannot

be reached from (nodes in the treeT1 containingi are not considered as this part of the label is

only used for nodes in different subtrees). This is the set{a,m, n}, whose ancestor-free subset

is a. The ancestor label fora is [10, 18]. Finally, we check ifi can reach the root ofT and if

5.2. A Õ(
√

kn) upper bound 111

q1

i
2 3

14

5

c 3

2

T1 T2

10

16

17 q

98

i

1

4

6

7

15

12 13

11

5

7

1

2

3 4

8

6
c

i

18

1

2

3

4

6 7

8

9

q

5

1

2 3

L(c) = (3, {}, {[10, 18]}, 1, 1, 1) ◦ (6, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(i) = (9, {[16, 18]}, {[10, 18]}, 1, 0, 1) ◦ (4, {}, {[5, 8]}, 1, 1, 2) ◦
◦(3, {}, {}, 1, 1, 2) ◦ (1, {}, {}, 1, 1, 0)

L(q) = (17, {}, {}, 1, 1, 2) ◦ (8, {}, {}, 1, 1, 3) ◦ (1, {}, {}, 1, 1, 0)

Figure 5.6 : Illustrating the marker algorithm. Shallow nodes are filled and deep nodes are
unfilled, and a dashed edge (i, j) means that j ∈ S(i)

112 Chapter 5. Handling Intermediate Nodes

the root can reachi (which it cannot, due to the forbidden set ofe). This gives the sublabel

(9, {[16, 18]}, {10, 18}, 1, 0, 1).

The next sublabel fori is computed by repeating this process on the subtreeT1, as shown in

the figure. Note that at each level the subtrees are repaintedand the identifiers are recomputed,

hence a node has an identifier for each subtree. The final labels are shown in the figure. As an

example of the non-symmetry of the fs-reachability relation, it can be seen thatf(c, q) = 1 but

f(q, c) = 0.

5.3 A 2-approximate scheme

For general graphs, our aim is to efficiently route on good paths. Since the path is unique in a

tree, this reduces to deciding if the path is good or not. However, it may be acceptable to use

paths of low cost (recall that cost of a path isc(Puv) =
∑

w∈Puv
|S(w) ∩ Pwv|)). We have been

unable to construct an efficient labeling scheme to compute the exact cost of a path, but we can

give a 2-approximate scheme with a logarithmic increase in label size. Letk be the maximum

size of a forbidden set.

Theorem 5.3.1 There exists a 2-approximate labeling scheme for trees for the costc(Puv) using

labels of sizẽO(
√

kn) bits and answering queries in timeO(log kn).

Proof. We augment the labeling scheme of Section 5.2 with a technique for approximately

counting the number of forbidden elements intersected. First consider a line as in the top of

Figure 5.7, where a dashed directed edge(u, v) means thatv ∈ S(u). The key observation

is that fori ≤ j, the costc(Pij) equals the number of crossing edges going from left to right

that have both endpoints in[i, j], and for fixedi this number is monotone increasing withj.

Therefore the label for the root node in the figure stores the positions of the⌈lg kn⌉ = O(log kn)

intervals to the right of it, which have cost1, 2, 4, . . . , kn. It is easy to see that this indeed gives

a 2-approximation to the actual cost.

This extends naturally to a 2-approximate scheme for trees –we apply the scheme for the

line down every path of the tree. A region is now a subtree, identified by the root of the subtree,

i.e. its ancestor label. The tree at the bottom of Figure 5.7 illustrates this. We do this for the

subtree induced by the shallow nodes. There are at mostn nodes and hence at most⌈lg kn⌉
intervals on each path. By Lemma 5.2.1, the subtree induced bythe shallow nodes has at most

n/α leaves. Therefore, the marker algorithm can be modified so that each sublabelJ (u) stores

5.3. A 2-approximate scheme 113

root

r = 1r = 0 r = 2 r = 3 · · ·
r = lg kn

Figure 5.7 : Illustrating the 2-approximation of c(Pij). The cost of a path from the root to a node
j is the number of crossing edges with both endpoints on the path. For a node j in region r,
the algorithm returns 2r.

114 Chapter 5. Handling Intermediate Nodes

at most(n/α)O(log kn) intervals of shallow nodes, so this gives only a logarithmicincrease in

the label size.

The forbidden sets of the deep ancestors ofu can be handled in a similar way. Instead of

storing only the ancestor labels of forbidden sets of deep ancestors ofu, we store ancestor labels

denoting each of thelog kn intervals. We construct (for each ancestorw of u in the separator

tree) O(log kn) intervals (representing subtrees), where the identifier ofv is contained inr

intervals iff the path fromw to v intersects between2r and2r+1 elements of the forbidden sets

of u’s deep ancestors . In addition,L(u) can store thenumberof forbidden nodes intersected

on the paths to and fromw in place of the boolean valuef(u,w). This increases the label size

by a constant factor (since we already payO(log n) to store the separator labels).

For the time complexity, the intervals in the ancestor labels can be stored in an interval tree

[PS85] such that in worst-case timeO(k + lg n) we can list allk intervals that contain a given

integer. Since there are at mostO(log kn) intervals that contain an identifier (by construction

in both the shallow and deep cases), we can compute the numberof intervalsr containing an

identifier in timeO(log kn), hence a 2-approximation2r to the cost in each case. This is the

same time complexity as in the original decoder. Since we have a 2-approximation to the cost of

intersecting the forbidden sets of the deep ancestors ofu and the cost of intersecting the shallow

nodes ofT [w] (in addition to the exact cost of the pathsPuw andPwv), adding them together

gives a 2-approximation to the cost ofPuv.

5.4 Bounded-distance forbidden sets

One of the difficulties that the algorithm must handle is thatthe forbidden setS(u) may contain

nodes that are far away fromu, as large as the diameter ofG. In practical scenarios, we expect

that the forbidden set ofu will contain nodes that are ‘near’ tou, perhaps within its own cluster.

Another factor is the following: in graphs with good connectivity, it is likely that the minimum

size of auv-separator will increase with the distance fromd(u, v), and therefore the forbidden

sets will only interfere with routing to nodes far away, if the forbidden set contains a large

number of nodes.

Based on this observation, we consider a restricted policy where the setS(u) may only

contain nodes within some bounded distanceδ of u. As before, assume that the forbidden sets

are of size at mostk. Define theδ-fs-reachability problem to be fs-reachability except that for

every nodeu, every node ofS(u) lies within a distanceδ of u, i.e. d(u, S(u)) ≤ δ. We shall

5.4. Bounded-distance forbidden sets 115

give a lower bound on label size for the problem ofδ-fs-reachability.

Note that1-fs-reachability is no harder than routing with next-hop preferences (where the

cost cu(Puv) depends only on the next hop). In this case, we can make use of the fact that

the costc(Puv) is equal to the cost of the same path in the directed graphG′ where the edge

(u, v) has weightcu(v) (we assume thatcu(v) is finite). We can therefore make direct use of

the distance labeling schemes from e.g. Gavoille et al. [GPPR04]. Note that only the weights

are directed inG′, i.e. there is an edge(i, j) iff there is an edge(j, i). Hence reachability

is undirected and can be done withO(log n)-bit labels, but the distances are not symmetric.

Together with the distance labeling schemes of Gavoille et al. [GPPR04], this gives a next-hop

cost labeling scheme usingO(log2 n)-bit labels for trees. It can most likely be extended to other

classes of graphs supporting an efficient distance labelingscheme (with directed edge weights).

5.4.1 Lower bound for trees

We start by extending the lower bound of Theorem 5.1.1 toδ-fs-reachability. The idea is simple

– for smallδ we flatten the tree, creating a large number of short paths.

Lemma 5.4.1 Any δ-fs-reachability labeling scheme withδ ≤ 2
√

n must assign some node a

label of sizeΩ(δ log n/δ2) bits onn-node trees.

Proof. The argument is similar to the lower bound of Theorem 5.1.1. Consider the tree having

2n/δ node-disjoint paths each of lengthδ/2. Each path to the root can independently choose a

set of leaves of size at least
(
2n/δ
δ/2

)
and by a similar argument to Theorem 5.1.1 the label size is

bounded below by

1

2n/δ
log

(
2n/δ

δ/2

)2n/δ

≈ (δ/2) log(2n/δ − δ/2)− (δ/2) log(δ/2)

= (δ/2) log(4n/δ2 − 1)

and this holds forδ/2 ≤ 2n/δ, i.e. δ ≤ 2
√

n.

5.4.2 Lower bound for general graphs

When the forbidden setS(u) contains only neighbours ofu, we can prove anΩ(n) lower bound

on the label size for general graphs.

116 Chapter 5. Handling Intermediate Nodes

v1 // v2

v4 // v3

``BBBBBBBB

OO

⇒

v1

CC
CC

CC
CC

C (1, 2) S((1, 2)) = {v1}

v2

{{{{{{{{{

CC
CC

CC
CC

C (3, 1) S((3, 1)) = {v3}

v3

{{{{{{{{{

CC
CC

CC
CC

C (3, 2) S((3, 2)) = {v3}

v4 (4, 3) S((4, 3)) = {v4}
G H

Figure 5.8 : The reduction in Lemma 5.4.2

Lemma 5.4.2 Any1-fs-reachability labeling scheme fork = 1 must use labels of sizeΩ(
√

n)

bits.

Proof. The proof is by reduction from reachability on directed graphs. Given a directed graph

G on n nodesv1 . . . vn, construct the undirected bipartite graphH on node setsV1 andV2 as

follows. In V1 there aren nodesv1 . . . vn and the setV2 contains a node(i, j) for each edge

(vi, vj) of G. Now for each directed edge(vi, vj) of G, add the undirected edges(vi, (i, j)) and

(vj, (i, j)) to H. Finally assign the nodes inV2 the forbidden setsS((i, j)) = {vi} (the nodes in

V1 all have empty forbidden sets). Figure 5.4.2 illustrates this construction.

We claim thatvi can reachvj in G iff there exists a good path fromvi to vj in H. The “⇒”

direction is clear – if there is a pathP = vi1 , vi2 , . . . , vik with no repeated nodes inG, then

the pathP ′ = vi1 , (i1, i2), vi2 , . . . , (ik−1, ik), vik is a good path inH. For the other direction,

assume thatP ′ is a good path inH from vi1 to vik . We claim that the pathP corresponds to a

path inG. Each node inV2 has degree exactly two, and the forbidden sets ensure that inany

good path ofH containing. . . , vi, (i, j), vj, . . ., the edge(vi, vj) exists inG.

Given a 1-fs-reachability scheme forH usingr bits per label we can construct a directed

reachability labeling scheme forG usingr bits per label by settinglG(vi) = lH(vi). Since there

exist n-node directed graphs that require reachability labels of size Ω(n) bits [CHKZ02], the

construction gives a family ofO(n2)-node graphs requiringΩ(n) bits per label.

For the case where the size of the forbidden sets is unbounded, we can show anΩ(n) lower

bound, which is clearly optimal in the worst-case.

5.5. Compact routing on good paths 117

Lemma 5.4.3 Any1-fs-reachability labeling scheme must use labels of sizeΩ(n) bits when the

forbidden sets are unbounded in size.

Proof. We can prove the lemma by reduction from adjacency in directed bipartite graphs.

Given a bipartite graph((V1, V2), E) on node setsV1, V2 with edges directed fromV1 to V2,

we construct the same graph((V1, V2), E
′) but with undirected edges, and forv ∈ V1, S(v) =

V2 \N(v) (N(v) is the set of neighbours ofv). It is clear that there is a good path fromv1 ∈ V1

to v2 ∈ V2 iff (v1, v2) ∈ E. It follows (by a similar argument to [CHKZ02]) that there are2Ω(n2)

distinct labelings ofO(n) nodes, and so at least one node must be assigned a label of sizeΩ(n)

bits.

5.5 Compact routing on good paths

The lower bound of Theorem 5.1.1 implies that any scheme thatdecides if there exists a good

path betweenu, v by consulting onlyL(u), L(v) must use labels of sizeΩ(
√

n) bits. This is

much too large to place in the headers of packets. In this section we show that it is possible to re-

duce this space by using a compact routing scheme. We describe a scheme that usesO(k log n)

bits of storage at each node and uses labels of sizeO(log n) bits in each packet header. How-

ever, this comes at a price – a packet may travel overΩ(n) edges before the algorithm realises

that there does not exist a good path.

5.5.1 Overview of compact routing on trees

Our scheme makes use of any compact routing scheme for trees,so we begin by giving an

overview of compact routing on trees. The standard ‘interval routing’ technique due to Santoro

and Khatib [SK85] is as follows. We root the tree arbitrarilyand do a depth-first traversal,

labeling each node with its identifier in the depth-first traversal. This is known as the ancestor

label for the node. For each nodew, let fw be the descendant ofw with the largest identifier.

By the property of the ancestor labels, a nodev is a descendant ofw iff v ∈ [w, fw]. A packet

destined forv that arrives tow is routed as follows: ifw = v then the packet has reached its

destination. Ifv 6∈ [w, fw], the packet is sent to the parent ofw, using the parent pointer of

w. Otherwise, a search among the childrenw1, . . . , wd of w is performed and the packet is

forwarded to the last childwi whose identifier is smaller than or equal tov’s.

118 Chapter 5. Handling Intermediate Nodes

The packet headers are only of sizeO(log n) bits, but the routing table at a nodew is of

sizeO(deg(w) log n) bits, making this inefficient for large degree nodes. Furthermore, routing

decisions at these large degree nodes take timeO(deg(w)). This scheme has been improved; the

most space-efficient scheme for trees is due to Thorup and Zwick [TZ01b] (and independently

in [FG01]). Their scheme uses routing tables and labels of size (1 + o(1)) lg n bits, and each

routing decision takes constant time.

Interestingly, it is known that an address space larger thanlg n bits is needed for efficient

routing on trees – if the address space is{1, . . . , n} and the packet header only contains the

destination address then [EGP03] implies that no loop-freerouting strategy can guarantee a

local memory space better thanO(
√

n) bits on every family of graphs, including trees.

5.5.2 A scheme for routing on good paths

Our scheme is simple and makes use of any compact routing scheme for trees such as that of

Thorup and Zwick (TZ) [TZ01b] (or the scheme in [FG01]). The routing table for a nodeu

stores the separator labels foru and the nodes inS(u) in addition to the requirements of the TZ

routing scheme. To send a packet fromu to v, the labelL(v) that is placed in the packet header

by the TZ routing scheme is augmented with the separator label for v. Therefore the packets

have headers of sizeO(log n) + (1 + o(1)) lg n = O(log n) bits, and the routing tables are of

sizeO(k log n) bits.

Now consider a packet that originated atu and arrives atw, destined forv. Using the

separator labels,w checks whether the setS(w) is a wv-separator inT . If so, the packet is

returned tou (using the routing scheme in place). Otherwise it is forwarded to the next node

using the TZ routing scheme. Since each TZ routing decision takes constant time and deciding

if a set of sizek auv-separator takes timeO(k), each routing decision takes timeO(k).

The reason that this scheme breaks theΩ(
√

n) space lower bound is that reachability is

not decided locally atu; in the worst-case, the packet may traverseΩ(n) links before being

returned, and so the worst-case time complexity of this scheme can beΩ(n). In many cases,

such a delay is not acceptable and moreover,u cannot know that it cannot reachv until it tries

sending the packet. On the other hand, ifu is to be able to decide reachability with only local

information, then it must use spaceΩ(
√

n) and receive a label of sizeΩ(
√

n) from v.

Instead of returning the packet if there is no path of zero cost, we can consider the following

operation: route a packet fromu to v iff there is a pathPuv with c(Puv) ≤ r. Given the separator

5.6. Nondistributed data structures 119

Algorithm Space Time Space× Time
Table method O(n2) O(1) O(n2)

Theorem 5.2.3 Õ(
√

kn3/2) O(log kn) Õ(
√

kn3/2)

Theorem 5.6.1 Õ(n2/α + kn) O(kα + log n
α
) Õ(n2

α
log n

α
+ kn2 + αk2n)

(1 ≤ α ≤ n)

Figure 5.9 : Summarising the space-time tradeoffs for deciding whether there exists a good
path in forbidden-set routing.

labels foru, v, S, we can determine the size of the intersection|Puv∩S| by counting the number

of nodes ofS that are auv-separator. By using an extra field oflg r ≤ lg n bits into the packet

header, the nodes can keep track of the cost of the path so far and return the packet if the cost

exceedsr at any point. The routing table and header sizes are stillO(k log n) andO(log n) bits.

5.6 Nondistributed data structures

Any labeling scheme usings bits per label on some familyF of graphs can be converted into

a non-distributed data structure onF usingO(ns) bits of space and supporting queries with

the same time complexity as the decoder. Therefore, Theorem5.2.3 implies a non-distributed

data structure for fs-reachability using̃O(
√

kn3/2) bits space and having query time complexity

O(log kn).

There are of course many non-distributed data structures for fs-reachability. One could build

a table that lists for each pair of nodesu, v whether there is a good path fromu to v, usingO(n2)

space and havingO(1) time complexity (and of course this would work for general graphs).

For trees, we can achieve a tradeoff between query time and space. For1 ≤ α ≤ n the

scheme of Section 5.2.2 has labels of sizeŝ = Õ(n/α + kα) and timet = O(log kn), so the

label size is minimized by choosingα =
√

n/k. This gives a non-distributed data structure

that may use spacenŝ = Õ(
√

kn3/2) in the worst case. We now show how to construct data

structures using space betweenÕ(kn) andÕ(n2) but at the expense of increased query time.

Theorem 5.6.1 For every1 ≤ α ≤ n, there is a non-distributed data structure for forbidden-

set reachability onn-node trees using spacẽO(n2/α + kn) and answering queries in time

O(kα + log(n/α)).

120 Chapter 5. Handling Intermediate Nodes

Proof. We will show how with a small modification we can reduce the space required tõO(kn)

but at the expense of an increased query time. Instead of storing the set of deep ancestors (and

their forbidden sets) of each node usingÕ(knα) space as in the distributed labeling scheme of

Section 5.2, in a centralized data structure all this can be stored once using̃O(kn) space. This

gives a data structure having spaces = Õ(n2/α + kn) instead ofÕ(n2/α + knα). Note that

the strategy for shallow nodes is unchanged.

However, the search tree method used in Theorem 5.2.3 to store the ancestor label intervals

cannot be used, since it constructs a different binary search tree for every node. The best

alternative we can find is the following: by the painting lemma (Lemma 5.2.1), the deep nodes

induce a forest of height3 at mostα below the shallow subtree. Hence for any nodeu, its

deep ancestors can be found in timeα and the ancestor intervals for their forbidden sets can be

checked to see if they contain the destinationv in time O(|Deep(u)|) = O(kα). The shallow

nodes are handled as before (using a balanced binary search tree) in timeO(log(n/α)). This

gives total timeO(kα + log(n/α)).

Table 5.9 gives a summary of the space-time tradeoffs obtained in this section. Forα = n/k,

Theorem 5.6.1 gives a data structure with spaceÕ(kn) yet having query timeO(n + log k) =

O(n). These results show that, even on a simple family of graphs (trees), the problem still

allows for some non-trivial algorithms.

5.7 Dynamic labeling schemes

So far we have considered only static labeling schemes, where the network and the forbidden

sets are fixed in advance. These schemes rely on a centralizedmarker algorithm that is given an

entire description of the network and uses this to output theentire set of labels. Therefore while

the labels allow the problem to be solved using local information, the process of generating the

labels has been centralized. In a dynamic network where nodes may join or leave and policies

are updated, it is desirable to update the distributed representation offered by the labels in an

efficient and distributed fashion. A centralized marker algorithm clearly limits the applicability

of such labeling schemes in real dynamic networks.

Korman et al. [KPR02] describe a general method for converting a static labeling scheme

onn-node trees to a fully dynamic one with only alog n factor increase in the label size. Since

3The height of a forest is the maximum height of any tree in the forest

5.7. Dynamic labeling schemes 121

the new marker algorithm is now a distributed algorithm, itscommunication complexity (to

recompute the labels after a change) is an important property. Korman et al. show that if the

static scheme has adistributedmarker algorithm that computes the labels in the static setting

and sendsMC messages (of sizeO(log n)) then it can be converted into a distributed marker

algorithm for updating the labels in the dynamic setting with amortized message complexity

O((log n)MC).4
We shall show that (assuming we use the notion of shallow sets) we can do no better asymp-

totically than to recompute from scratch when there is a change. To transform our static scheme

into a dynamic scheme we need to convert the sequential marker algorithm into an efficient

distributed one. Let us consider a distributed marker algorithm having three distinct phases:

1. Painting. As in the proof of Lemma 5.2.1, nodes of depth at mostα are painted deep,

and the rest are painted shallow. This can be done efficientlyby a distributed depth-first

search of the treeT .

2. Deep nodes.For each nodev, the algorithm computes the part of the label that con-

tains the forbidden sets of the deep ancestors ofv. This can be done by propagating the

forbidden sets of the deep nodes down to each of their deep descendants. Since all de-

scendants of a deep node are also deep, each path is no longer thanα and there may be

O(n) deep leaves. Therefore, the total number of forbidden elements sent over edges is

O(nkα) = O(
√

kn3/2) (by settingα =
√

n/k).

3. Shallow nodes. The final step is to inform each nodev about its setShallow(v), i.e.

the shallow nodes that cannot reachv. However, this step appears to be costly – the

following lemma shows thatanydistributed algorithm that computes these sets must have

high communication complexity.

Lemma 5.7.1 Any distributed algorithm that terminates with every nodev knowingShallow(v)

must communicateΩ(n log n) bits overΩ(n) edges in ann-node tree, even fork = 1.

Proof. Assume that the parameter1 ≤ α ≤ n is given. Now construct the following tree, as in

Figure 5.7 – there is a rootr, a path of(n + α) nodesh1, . . . , hn+α hanging fromr andn nodes

v1, . . . , vn, each being a child ofr. Consider some permutationσ of {1, . . . , n} whereσ(i) is

4In fact, the value ofn depends on the size of the network at a particular time, but weassume for simplicity
that it never grows by more than a polynomial factor.

122 Chapter 5. Handling Intermediate Nodes

v1

h(n+α) · · · hn · · · h1 r

��������

>>
>>

>>
>>

>
...

vn

Figure 5.10 : The tree used in the proof of Lemma 5.7.1. The forbidden sets of nodes h1 . . . hn

choose a permutation of {v1 . . . vn}. The nodes h1 . . . hn are all painted shallow.

the ith element of the permutation. Fori = 1, . . . , n, setS(hi) = {vσ(i)} ashi’s forbidden set.

The set{S(h1) . . . S(hn)} is a permutation over the nodes{v1, . . . , vn}.
Now we show how to reduce from the two-party communication problem of deciding set-

disjointness. Partition the nodes between the two players Alice and Bob as follows: give Alice

the long path (and implicitlyσ) and Bob the nodesv1, . . . , vn andr. By construction, all the

nodesh1, . . . , hn will be painted shallow and thereforeShallow(vj) = {hi} iff σ(i) = j. There-

fore, given the sets{Shallow(vi)}, Bob can know the permutationσ.

Define the uniquerank encodingof a permutation by replacing each symbol in the permu-

tation by its rank among the remaining symbols. For example,the rank encoding of 341562

is 331221. The rank encoding of a permutation can be expressed as a binary string by re-

placing each symbol by its unique binary expansion. There are (n − i) possible values for

theith symbol in the rank encoding of a permutation of{1 . . . n} and so every binary string of
∑n−1

i=0 log i = lg(n!) bits corresponds to a unique rank encoding and hence a uniquepermutation

of {1, . . . , n}.
Now for the reduction – given setsP,Q ⊆ {1, . . . , n}, Alice receivesP and Bob receives

Q. Alice computes the unique permutationσ corresponding toP and uses this to construct the

forbidden sets in her side of the tree. Then they run the protocol to compute the shallow sets.

From this, Bob can determineσ and thus alsoP . He can then locally decide ifP,Q are disjoint.

Since the randomized communication complexity of disjointness on sets of sizer is Ω(r)

bits, at leastΩ(lg(n!)) = Ω(n log n) bits must cross the cut between Alice and Bob, which

consists of a single edge. We can replace this edge by a path ofn edges. It is known [Die97]

that asymptotically, these nodes can no better than to act asrelays, and so each must have

Ω(n log n) bits communicated across it.

5.8. Discussion 123

The lemma implies that fork = O(1) the following algorithm is asymptotically optimal for

computing the shallow sets: broadcast the entire tree (including the forbidden sets) to all nodes

using Õ(kn2) bits then let each node locally compute its label using the centralized marker

algorithm.

It is worth noting that this lower bound does not exclude the possibility of a labeling scheme

with bothO(
√

n)-bit labels and low communication complexity, but such a scheme would have

to avoid using the shallow sets as defined here.

5.8 Discussion

The most interesting open issue here is to investigate fs-reachability on other families of graphs

such as those of small treewidth (although we have been unable to show good bounds for these

families). Knowing the complexity of fs-reachability on more general graphs would be inter-

esting as reachability is a fundamental problem for any routing scheme.

We have been unable to prove a stronger lower bound for general graphs than in Section 5.1.

In fact, we conjecture that it does not get any harder than fortrees:

Conjecture 5.8.1 For any graph familyF , there is a labeling scheme for fs-reachability onF
(with k = O(1)) havingΘ̃(

√
n)-bit labels.

Roughly, the intuition behind the conjecture is that to obtain a good lower bound, one should

find a large setA of nodes where, for each distinct pair of nodesu, v ∈ A, there is a pathPuv

that contains a ‘large’ numberc of nodes disjoint from any other pathPwx where at least one

of w, x is notu, v. The tree construction in Section 5.1 has this property withc = Ω(
√

n) and

attempting to increase this forces the paths to be non-disjoint. However, it is not clear how to

efficiently encode the reachability information for a largenumber of paths between any pair of

nodes.

Classical reachability on undirected graphs has a scheme with lg n-bit labels: label each

node with the identity of its connected component. On the other hand, it is known that directed

reachability requires labels of total sizeΩ(m log n2/m) bits on somen-nodem-edge graph

[CHKZ02]. Forbidden-set reachability is at least as hard as undirected reachability: just set

all the forbidden sets to be the empty set. Below is a simple reduction showing that it is no

harder than directed reachability. Hence for forbidden sets of sizeO(1), the label size for fs-

reachability lies somewhere between undirected and directed reachability.

124 Chapter 5. Handling Intermediate Nodes

Lemma 5.8.2 Forbidden-set reachability on undirected graphs is no harder than directed-

graph reachability.

Proof. Given an undirected graphG on n nodesv1 . . . vn and a forbidden setS(v) for each

nodev, construct the bipartite graphH on 2n nodesx1 . . . xn andy1 . . . yn where there is an

edge(xi, yj) iff there is a good path fromvi to vj in G. It is easy to see that inH, xi can reachyj

iff they are neighbours, and so the adjacency relation inH represents the fs-reachability relation

in G.

CHAPTER 6

Approximating Forbidden-set Routing

In Chapter 4 we showed that there is anΩ(k log n/k) lower bound on the space requirements

(per node) for any forbidden-set routing scheme, wherek is an upper bound on the size of

a forbidden set (Theorem 4.5.3). For smallk, this means that good routing schemes may be

possible. However, we believe that for general graphs thereis a lower bound ofΩ(n) bits. To

avoid this bound, it is natural to think about ways of relaxing the problem, for example are

we happy with an approximate solution? The difficulty with such an idea is that the problem

of deciding if there exists a path of zero cost between two nodes is a decision problem not an

optimization problem, so there is no natural notion of approximation.

In this chapter we consider one such approach toapproximatingthe forbidden-set routing

problem. We partition the network into connected clusters and instead of choosing arbitrary

subsets of nodes, the forbidden sets must choose a subset of these clusters. This has the effect

of grouping nodes together and treating them as the same nodefor the purposes of forbidden-set

routing. We define the problem of obtaining a cluster graph that has good graph-theoretic prop-

erties, and motivate the problem of obtaining a cluster graph with bounded treewidth (deciding

if there is a cluster graph with treewidth at mostk may be an NP-complete problem, even though

deciding if a given graph has treewidth at mostk can be done in linear time). We show that if

we can construct a cluster graph having small treewidth, then we can apply our forbidden-set

routing schemes from Chapter 4 to it.

125

126 Chapter 6. Approximating Forbidden-set Routing

We begin, however, by considering an approach inspired by the work of Feigenbaum et al.

[FKMS05] – they considered a relaxed version of shortest-path routing where each link has a

number of objective values associated with it, for example delay, packet loss, bandwidth and

so on. All nodes agree on these values, in the same way that allnodes agree on the weights of

edges for shortest-path routing. Each node has an individual cost function, which is a convex

combination of the objective values assigned to edges (for example, one node may be interested

in paths minimizing the sum of delays, while another may be interested in paths minimizing

another metric). They showed that a small number of routing trees (instead of a single routing

tree) is sufficient for all nodes to route on almost-optimal paths. Their scheme does not imme-

diately imply a space-efficient routing scheme, since each node would store a small number of

trees for each destination, giving super-linearω(n) routing table sizes.. We shall show how to

use their construction to build a space-efficient compact routing scheme with a small increase

in the approximation factor. We can then observe that this multiple objective cost problem can

be seen as a special case of clustering the network and assigning costs to clusters. Since we are

interested in forbidden-set routing, it is natural to ask ifwe can cluster the graph so as to obtain

efficient forbidden-set routing algorithms for it.

6.1 Compact routing with a small number of objective costs

In this section we consider a variation on the forbidden-setrouting model introduced by Feigen-

baum et al. [FKMS05]. They considered a restricted model where each nodew is assignedd

objectivecosts〈l1(w), . . . , ld(w)〉, which are assumed to be integers bounded by a polynomial,

i.e. less thannc for some constantc. Then the policy of a nodeu is a probability distribution

overd local variables0 ≤ λi(u) ≤ 1 for i = 1, . . . , d such that
∑d

i=1 λi(u) = 1. The policy

can be interpreted as defining the cost tou of routing throughw as a convex combination of the

objective costs assigned tow, i.e.

cu(w) =
d∑

i=1

λi(u)li(w).

The motivation for this cost model is that the costs may represent objective measurements such

as latency and packet loss, but nodes may assign different opinions to their relative importance.

They showed that for the case ofd = 2, a small number of routing trees suffices to route on

6.1. Compact routing with a small number of objective costs 127

approximately-optimal paths. This is a promising result, since Feigenbaum et al. showed that

finding a single minimal-cost tree in the case of 2 metrics is APX-hard.

Theorem 6.1.1 ([FKMS05]) Assume that the costsl1(·), . . . , ld(·) are at mostnc. Fix some

destination nodev. Given anyǫ > 0, there is a set of routing treesT1, . . . , Tr with r =

O(1
ǫ
(log n + log 1

ǫ
)) such that the following holds – for each nodeu, there exists a treeTtu

such thatcu(Ttu) ≤ (1 + ǫ)cu(P
∗
uv), whereP ∗

uv is the path fromu to v minimizingcu(·) (i.e. of

minimum cost tou).

Proof. Let α = (1 + ǫ). Each treeTt in the collection is the shortest-path tree for a specific

convex combination of the two metricsl1(·), l2(·). We name the trees after the metrics they

optimize:

T∞ : l1(·), with ties broken by minimuml2(·).
T−∞ : l2(·), with ties broken by minimuml1(·).
Tt : lt(·) = αt

1+αt l1(·) + 1
1+αt l2(·) for t ∈ {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k} wherek =

⌈logα (2ǫ−1nc+1)⌉.
Thus, there are a total ofr = 2k + 3 = O(log n) trees. These trees can be constructed

with r shortest-path computations on node-weighted graphs (using e.g. Dijkstra’s algorithm)

and hence can be done in polynomial time. The proof goes on to show that the collection of

trees do indeed achieve the desired approximation factor.

They also showed that for generald > 2, approximatelyO(4d logd n) routing trees are

sufficient (depending on the parametersǫ and the sizenc of the costsli(·)). Using their result we

can construct a routing scheme by applying the theorem separately to each node as a destination:

construct a functiont(u, v) = argminidTi
(u, v) wheret(u, v) = k means that the treeTk

contains the lowest cost path fromu to v out of all the trees constructed. Each node also stores

the port number for the edge to its parent in each tree. Thenu can route tov by sending a

packet to its parent inTt(u,v)), writing t(u, v) in the packet header to indicate which tree the

packet should be sent on. The problem with using this as a routing scheme is that each node

stores a routing table of sizeO(n log r) bits to identify the tree used for each destination.

Before presenting the scheme, we need to deal with the fact that the above result is for

node-weighted graphs, but the compact shortest-path routing schemes we will use require edge-

weighted graphs. We therefore apply a simple transformation as follows. Given an undirected

node-weighted graphG = (V,E) on n nodes wherev has weightl(v), we compute the edge-

weighted dualG′ = (V ′, E ′) on w with 2n nodes as follows (the construction is shown in

128 Chapter 6. Approximating Forbidden-set Routing

Figure 6.1). The node setV ′ = V ∪ {v′|v ∈ V } contains the nodes ofV and a nodev′ for

every nodev of V . The edge setE ′ = E ∪ {{v, v′}|v ∈ V } contains the edges ofE and an

edge{v, v′} for every nodev of V . For an edge{u, v} whereu, v ∈ V , assign it the weight

l(u, v) = l(v, u) = l(u) + l(v). For an edge{v, v′}, assign it the weightl(v). It is easy to

see that2dG(u, v) = dG′(u′, v′) for u, v ∈ V (G), and that ifPu′v′ is a path fromu′ to v′ in G′

then the subpathPuv obtained by removing the first and last edges ofPu′v′ is a path inG. The

following simple lemma shows that the edge-weighted graph has the same lowest cost paths as

in the original graph, so we can apply any routing scheme toG by using the corresponding node

v ∈ G′.

Lemma 6.1.2 If Puv is the lowest-costuv-path (lcp) in the dual graphG′ thenPuv is also the

lcp in G.

Proof. Assume for the sake of contradiction thatPuv is the lcp inG′ and some other pathP ′
uv

is the lcp inG. Let cG(P) denote the cost inG of the pathP andcG(v) denote the weight of

a nodev (similarly, cG′({u, v}) denotes the cost of an edge{u, v} in the dualG′). Therefore,

cG(Puv) > cG(P ′
uv). Now consider the cost of the pathP ′

uv in G′. We will show thatcG′(Puv) >

cG′(P ′
uv), contradicting the assumption thatPuv is the lcp inG′. We know that for a pathPuv

from u to v, cG(Puv) = 1
2
(cG′(Puv) + cG(u) + cG(v)). It follows that

cG′(Puv) = 2cG(Puv)− cG(u)− cG(v)

> 2cG(P ′
uv)− cG(u)− cG(v)

= cG′(P ′
uv),

soPuv cannot be the lcp inG′.

We now show how to construct a routing scheme based on Theorem6.1.1 by combining

it with a compact approximate shortest-path routing schemeR such as Thorup-Zwick (TZ)

[TZ01b]. We also assume that we have access to distance labels giving the lengths of the

paths used by the routing scheme. Our modification is quite simple – letG = (V,E) be an

undirected unweighted graph, and denote byGt = (V,E) the node-weighted graph with node

weights given bylt(·). For eacht = 1, . . . , r we compute the edge-weighted dualG′
t of Gt and

then run the routing schemeR on G′
t. This gives for each node a sequence of labelsL(v) =

L1(v), . . . , Lr(v) and routing tablesRT (v) = RT1(v), . . . , RTr(v) whereLt(v), RTt(v) are

the label and routing table given tov in G′
t byR (we assume that the labelsLt(v) also contain

6.1. Compact routing with a small number of objective costs 129

d

l(c)

b

a

c

l(d)l(a)

l(b)

d

c′

b′

G′

b

a

a′ d′

c

l(b)

l(b) + l(c)
l(c)

l(c) + l(d)
l(a) + l(c)

l(a) + l(b)

l(a)
l(d)

G

Figure 6.1 : Constructing the edge-weighted dual G′ from the node-weighted graph G.

information for the distance labeling scheme).

Routing fromu to v in G is done as follows. Nodeu is given the labelsL(v), L(v′) for

the destinationv ∈ G and runs the distance decoder onLi(u
′) andLi(v

′) in G′ to compute

the approximate distanceŝdG′

i
(u′, v′) for i = 1, . . . , r. Let tu be the value ofi for which the

reported distancêdG′

i
(u′, v′) is smallest. Nodeu then uses the routing tableRTtu(u) and label

Ltu(v) ∈ L(v) to compute the port number of the outgoing edge for the next hop w on the

path inG. It uses the routing schemeR to construct the packetP to be sent tow and adds the

identifiertu and the labelLtu(v) to the header ofP .

When a packet containingLtu(v) and tu is received by an intermediate nodew, it uses

the routing tableRTtu(v) andLtu(v) to compute the port number for its next outgoing edge,

computes the next packet (keepingLtu(v) andtu in the header) and forwards it (we assume that

the routing schemeR is able to decide when the packet has reached its destination).

Lemma 6.1.3 If the routing schemeR routes on paths of stretchs using routing tables of size

RT and distance labels of sizeL, then the routing scheme described above uses routing tables

of sizer.RT , labels of sizer.L and routes fromu to v on a pathPuv wherecu(Puv) ≤ s(1 +

ǫ)cu(P
∗
uv), whereP ∗

uv is the path fromu to v minimizingcu(·).

Proof. The main observation is the following: for any destinationv, since each of the treesTi

is a shortest-path routing tree in the graphGi, any stretch-s shortest-path routing scheme forGi

will produce a pathPuv from u to v of length within a factors of dGi
(u, v). Since the path inTi

130 Chapter 6. Approximating Forbidden-set Routing

is within a factor(1 + ǫ) of optimal with respect to the costsci in G, it follows that the pathPuv

in Gi is also within a factors(1 + ǫ) of optimal with respect to the costsci in G.

The compact routing scheme TZ [TZ01b] has stretch 3, uses routing tables and distance

labels of sizeÕ(n1/2). This gives the following result.

Theorem 6.1.4 Assume thatd = 2. Given anyǫ > 0, there is a compact routing scheme that

routes packets fromu to v on a pathPuv satisfyingcu(Puv) ≤ 3(1+ ǫ)cu(P
∗
uv). The scheme uses

routing tables and labels of sizẽO(n1/2

ǫ
(log n + log 1

ǫ
)).

6.2 Approximate separator labels

We now show that the model described in the previous section leads to a natural notion of

approximation for constructing separator labels. If we setall the costsli(v) to be binary values

we can consider the clustersVi = {v | li(v) = 1}, and can require that they form a disjoint

partition ofG into connected components. If we also require that the nonzero λi all take the

same value, then we have a simple structure where each node chooses a set of clusters.

Define thequotient graphcorresponding to the partitionΠ = {V1, . . . , Vd} as the undirected

graphG|Π = (V ′, E ′) whereV ′ = {V1, . . . , Vd} (i.e. each cluster of the partition is contracted

into a single node) andE ′ = {{Vi, Vj} | ∃x ∈ Vi, y ∈ Vj where{x, y} ∈ E(G)} (i.e. if

there is an edge between two nodes in different clusters thenthere is an edge in the quotient

graph between the nodes representing the clusters). The set{Vi | λi 6= 0} then corresponds to

choosing a set of nodes in the quotient graph to avoid, which corresponds to a set of nodes in

G.

For forbidden-set routing (where the sets are arbitrary subsets of nodes), we would need to

haven objective costs per node (dimensions), so Theorem 6.1.1 would constructΩ((log n)n)

routing trees. However, it is clear thatn trees suffice to allow choosing the exact lowest-cost

path for every node, regardless of the policies. Therefore,it would be good if we could make use

of the simple structure described above to improve these bounds. We now show that if we can

construct quotient graphs with good properties then we can efficiently approximate forbidden-

set routing. It is an approximation in the sense that forbidden sets are now arbitrary subsets of

the set of clusters in the partition rather than arbitrary subsets of nodes, so nodes are grouped

together in the forbidden sets by the partition chosen.

We will apply the compact forbidden-set routing scheme developed in Chapter 4 directly on

6.2. Approximate separator labels 131

the quotient graph. Given any labelingL for the quotient graphG|Π, we construct a labeling

L′ for G by assigning to all the nodes in a clusterVi the labelL(Vi) for Vi in G|Π. Given a set

of labels for nodes inG, the decoder forL′ simply runs the decoder forL on the labels. If the

partition is chosen so thatG|Π has good properties (e.g. bounded cliquewidth) then the labeling

L′ will be as ifG has the same good properties but the price we pay is that the scheme treats all

nodes ofG in the same cluster as being the same node. Note that this is anapproximation since

if there is a fs-avoiding path in the quotient graph then there is also a fs-avoiding path in the

original graph (if the query set now contains all the nodes contained in the forbidden clusters).

Routing is done as follows onG - for each edge{X,Y } in the quotient graph, we store two

nodesx ∈ X, y ∈ Y where{x, y} ∈ G. Then we route on the quotient graph using the compact

forbidden-set routing scheme, and route in connected components between the corresponding

nodes inG using a separate shortest-path routing scheme (eg Thorup-Zwick). We now define

the problem of constructing a quotient graph with small cliquewidth since we have separator

labels withO(log n) bits on bounded cliquewidth graphs.

Problem CLIQUEWIDTH- k QUOTIENT GRAPH

Input: A connected graphG.

Output: A partitionΠ of V (G) into connected components,

such thatG|Π has cliquewidth at mostk.

Objective: Maximize the size of the quotient graph, i.e.|Π|

Remarks. Note that the parameterk is not part of the input. Also note that the problem

of asking for a quotient graph with minimum cliquewidth is trivial, since taking the partition

Π = {{V (G)}} always gives a solution with cliquewidth 1 (sinceG|Π is the graph having one

node). Ifk is part of the input then the problem is NP-complete, since Fellows et al. [FRRS06]

have recently shown that given a graphG and an integerk, deciding whether the cliquewidth of

G is at mostk is NP-complete, by asking whether|Π| = n. However, the recognition problem

(for fixedk, is the cliquewidth ofG at mostk?) is still open, and since our problem is closely-

related to (and at least as hard as) the recognition problem,we leave it as an intriguing open

problem.

We can also consider the similar problem TREEWIDTH-k QUOTIENT GRAPH. Since

there is a linear-time algorithm for deciding if the treewidth of a graph is at mostk [Bod93a],

this may be a more tractable problem (ifk is part of the input then it is NP-complete [ACP87]).

For the casek = 1, the problem is asking for the largest integers such that there is a partition

132 Chapter 6. Approximating Forbidden-set Routing

of the nodes ofG whose quotient graph is a tree ofs nodes. This can can be solved in linear

time by contracting all cycles ofG using the linear-time biconnected components algorithm of

Tarjan [TV84]. One idea for solving this in practice may be touse similar heuristics to those

for treewidth, such as the minimum-degree heuristic [Bod05], as shown below. This procedure

TREEWIDTH-k QUOTIENT GRAPH

1 G′ ← G
2 repeat
3 if treewidth(G′) ≤ k � O(n) time [Bod93a]
4 then return G′

5 else choose a nodev ∈ G of minimum degree
6 contractv with all its neighbours

Figure 6.2 : Illustrating the minimum-degree heuristic for TREEWIDTH-k QUOTIENT GRAPH

is guaranteed to terminate sinceG is connected and we eventually reach the singleton graph,

which has treewidth0. We leave it as an open problem to construct efficient solutions for larger

values ofk.

CHAPTER 7

Discussion

In this thesis, we have studied the problem of routing in large distributed networks where nodes

are free to define their own routing policies. In particular,we focused on the case where each

node is free to specify a set of nodes that it wishes to avoid – this gives rise to the forbidden-

set routing problem. Although we have succeeded in answering some basic questions about

the complexity of forbidden-set routing – some in the negative (such as can we efficiently use

routing trees), and some in the positive (for example, our forbidden-set routing algorithms for

small treewidth and bounded cliquewidth graphs), we feel that our work represents a small step

toward understanding how to deal with the additional complexity of policy-based routing. From

a practical point of view, we believe that developing efficient and reliable algorithms for policy

routing is important – as the number of nodes using policy routing increases, the intractability

and space problems associated with routing-tree based schemes such as BGP will only become

amplified. We propose the model of compact routing as the way forward for policy routing

algorithms, but at the moment very little is known about the problem, even for the simple case

of forbidden-set policies. From a theoretical point of view, the forbidden-set routing problem

has fundamental open questions related to graph theory and other areas that are likely to be of

independent interest (for example, how to construct an efficient distributed representation of

all the separators in a graph). In this final chapter we try to suggest interesting directions and

summarise some of the open questions arising from our work.

133

134 Chapter 7. Discussion

7.1 SPPs and routing trees

In Chapter 3 we presented some negative results about using routing trees for forbidden-set (and

more generally, policy-based) routing. We used this as an argument against the use of routing

trees. Although the NP-completeness results rule out even the simple case of forbidden-set

preferences, it may be that there is a class of policies that are tractable yet more expressive than

next-hop preferences. It would be very interesting to understand how the algebraic properties of

a routing algebra relate to the complexity of solving the SPPinstances that it generates – for ex-

ample, what makes deciding solvability of SPPs with two-hoppreferences NP-complete, while

those with next-hop preferences are always solvable? The discussion in Section 3.6 contains

more details about these open problems.

Another interesting problem (perhaps of independent interest) is to consider thek-SAT com-

munication complexity conjecture – Lemma 3.4.7 proves it for k = O(1) and only holds in the

deterministic case. It would be interesting to prove or disprove the conjecture for larger values

of k. We have only been able to prove a weaker randomized lower bound – whether we can do

better with randomization is open.

7.2 Compact routing schemes

Since this is the first time that the problem of forbidden-setrouting (and in general, compact

algorithms for policy routing) have been studied, there arenaturally many fundamental open

problems remaining. Here we list what we consider to be some of the most important problems

associated with the work in this chapter.

Open problem 1: Construct distance separator labels for other graph families.

One direction is to attempt to construct distance separatorlabels for cliquewidth graphs

using labels of size polynomial, or even linear, in the cliquewidthcw(G). Alternatively, it would

be interesting to prove a lower bound for the label size involving the cliquewidth. One difficulty

in extending the treewidth scheme to handle small cliquewidth graphs may be in constructing

a binary term tree of small height that represents the graph.For treewidthk graphs, we relied

on a result that enables us to convert any tree decompositionof width k into a balanced one

with heightO(log n) and widthO(k). For cliquewidth graphs, no such result is known; if we

want abalancedterm tree (having heightO(log n)), it is not known if we can avoid suffering

an exponential increase in the cliquewidth. In the case of treewidth, we made use of the fact

7.2. Compact routing schemes 135

that there is only a linear increase in treewidth. It is an open problem to reduce this cliquewidth

blowup to even a polynomial factor increase [CV03].

Open problem 2: Tighten the gap between the upper and lower bounds for the size of

distance separator labels for general graphs.

We showed anΩ(n) bits lower bound, but there is nothing better than the trivial O(n2)

bound for general graphs (store at each node a copy of the entire graph). Can this be improved

to O(n3/2) or O(n1+ǫ) bits, or is it optimal? One way of attacking this may be to try to prove

that treewidthk graphs have separator labels of sizeÕ(k) bits. If this were true, then sincen

is an upper bound of the treewidth of any graph withn nodes (construct a tree decomposition

having a single bag), ãO(n) upper bound for general graphs would follow. We believe thatthis

problem has deep connections with many other areas of graph theory.

Open problem 3: Construct a more efficient routing scheme by removing the dependency

on the degree ofG.

We showed how to construct forbidden-set routing schemes byusing distance separator

labels and a simple routing scheme using these distances. However, the simple routing scheme

involves storing the neighbours for each node, so we pay a factor O(∆(G)) in addition to the

size of the distance separator labels and the size of the forbidden sets. We believe that it is

possible to apply similar ideas to those of Cowen [Cow99] and Thorup and Zwick [TZ01b] by

using carefully-selected ‘landmarks’ in the graph to reduce the space requirements. This would

immediately improve many of our results in Chapter 4.

Open problem 4: Investigate randomization and approximation as a means of reducing the

complexity.

The motivation for approximate shortest-path routing is primarily due to theΩ(n) lower

bound in the case of exact shortest-path routing in general graphs. Since we also have a high

Ω(n) lower bound for the problem of deciding if a given set of nodesis a separator of two nodes,

we would like to investigate if we can circumvent this, but obviously at the cost of something

else. One interesting idea, pioneered by Karger [Kar94] in his work on network cuts, is to use

randomization. Is it possible to construct smaller separator labels that give a correct answer with

high probability? If, in addition we are interested in distance separator labels then it might be

possible to consider approximate distance separator labels – given labels foru, v, S, we would

like to compute an approximation to the distancedG\S(u, v). If we can achieve sublinear label

sizes in this case then that would be a good result.

Bibliography

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of find-

ing embeddings in a k-tree.SIAM J. Algebraic Discrete Methods, 8(2):277–284,

1987.

[ACPS93] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An

algebraic theory of graph reduction.J. ACM, 40(5):1134–1164, 1993.

[AGKR02] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common

ancestors: a survey and a new distributed algorithm. InSPAA ’02: Proceedings of

the fourteenth annual ACM symposium on Parallel algorithms and architectures,

pages 258–264, New York, NY, USA, 2002. ACM Press.

[Ami02] Eyal Amir. Approximating treewidth. Submitted forpublication, 2002.

[Bak94] Brenda S. Baker. Approximation algorithms for np-complete problems on planar

graphs.J. ACM, 41(1):153–180, 1994.

[Bod89] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. InProc. 14th

Workshop Graph-Theoretic Concepts in Computer Science WG’88, pages 1–10.

Springer-Verlag, Lecture Notes in Computer Science 344, 1989.

[Bod93a] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of

small treewidth. InSTOC ’93: Proceedings of the twenty-fifth annual ACM sympo-

sium on Theory of computing, pages 226–234, New York, NY, USA, 1993. ACM

Press.

[Bod93b] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–

22, 1993.

136

BIBLIOGRAPHY 137

[Bod05] Hans L. Bodlaender. Discovering treewidth. In Peter Vojtás, Ḿaria Bielikov́a,

Bernadette Charron-Bost, and Ondrej Sýkora, editors,SOFSEM, volume 3381 of

Lecture Notes in Computer Science, pages 1–16. Springer, 2005.

[Cha88] Bernard Chazelle. A functional approach to data structures and its use in multidi-

mensional searching.SIAM J. Comput., 17(3):427–462, 1988.

[CHKZ02] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and dis-

tance queries via 2-hop labels. InSODA ’02: Proceedings of the thirteenth annual

ACM-SIAM symposium on Discrete algorithms, pages 937–946, Philadelphia, PA,

USA, 2002. Society for Industrial and Applied Mathematics.

[CK02] Peter Clote and Evangelos Kranakis.Boolean Functions and Computation Models.

Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[Cou07] Bruno Courcelle.Thorie des graphes, chapter Dcompositions arborescentes. 2007.

In preparation.

[Cow99] Lenore J. Cowen. Compact routing with minimum stretch.In SODA ’99: Pro-

ceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pages

255–260, Philadelphia, PA, USA, 1999. Society for Industrial and Applied Mathe-

matics.

[CR05] Derek G. Corneil and Udi Rotics. On the relationship between clique-width and

treewidth.SIAM J. Comput., 34(4):825–847, 2005.

[CT07] Bruno Courcelle and Andrew Twigg. Compact forbidden-setrouting. InSTACS

’07: Proceedings of the 24th International Symposium on Theoretical Aspects of

Computer Science (to appear), Lecture Notes in Computer Science. Springer, 2007.

[CV03] Bruno Courcelle and R. Vanicat. Query efficient implementation of graphs of

bounded clique-width.Discrete Applied Mathematics, 131(1):129–150, 2003.

[Die97] Martin Dietzfelbinger. The linear-array problem in communication complexity re-

solved. InProceedings of the twenty-ninth annual ACM symposium on Theory of

computing, pages 373–382. ACM Press, 1997.

138 BIBLIOGRAPHY

[Dir52] G. A. Dirac. Some theorems on abstract graphs.Proceedings of the London Math-

ematical Society, 2:69–81, 1952.

[EGIN97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Spar-

sification — A technique for speeding up dynamic graph algorithms. J. ACM,

44(5):669–696, September 1997.

[EGP03] Tamar Eilam, Cyril Gavoille, and David Peleg. Compactrouting schemes with low

stretch factor.J. Algorithms, 46(2):97–114, 2003.

[Epp95] David Eppstein. Subgraph isomorphism in planar graphs and related problems. In

SODA ’95: Proceedings of the sixth annual ACM-SIAM symposiumon Discrete

algorithms, pages 632–640, Philadelphia, PA, USA, 1995. Society for Industrial

and Applied Mathematics.

[Epp00] David Eppstein. Diameter and treewidth in minor-closed graph families.Algorith-

mica, 27(3):275–291, 2000.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In ICALP ’01: Proceedings

of the 28th International Colloquium on Automata, Languagesand Programming,,

pages 757–772, London, UK, 2001. Springer-Verlag.

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic

second-order logic revisited.Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

[FHL05] Uriel Feige, MohammadTaghi Hajiaghayi, and James R.Lee. Improved approxi-

mation algorithms for minimum-weight vertex separators. In STOC ’05: Proceed-

ings of the thirty-seventh annual ACM symposium on Theory of computing, pages

563–572, New York, NY, USA, 2005. ACM Press.

[FJB05] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Implications of autonomy

for the expressiveness of policy routing. InSIGCOMM ’05: Proceedings of the

2005 conference on Applications, technologies, architectures, and protocols for

computer communications, pages 25–36, New York, NY, USA, 2005. ACM Press.

[FKMS05] Joan Feigenbaum, David Karger, Vahab Mirrokni, and Rahul Sami. Subjective-

cost policy routing. InLecture Notes in Computer Science, volume 3828, pages

174–183, 2005.

BIBLIOGRAPHY 139

[FR94] M. Furer and B. Raghavachari. Approximating the minimum-degree steiner tree to

within one of optimal.Journal of Algorithms, 17:409–423, 1994.

[Fre83] Greg N. Frederickson. Data structures for on-line updating of minimum spanning

trees. InSTOC ’83: Proceedings of the fifteenth annual ACM symposium onTheory

of computing, pages 252–257, New York, NY, USA, 1983. ACM Press.

[FRRS06] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, andStefan Szeider. Clique-

width minimization is np-hard. InSTOC 2006: Proceedings of the thirty-eighth

annual ACM symposium on Theory of computing, New York, NY, USA, 2006.

ACM Press.

[FSS04] Joan Feigenbaum, Rahul Sami, and Scott Shenker. Mechanism design for policy

routing. InPODC ’04: Proceedings of the twenty-third annual ACM symposium

on Principles of distributed computing, pages 11–20, New York, NY, USA, 2004.

ACM Press.

[GJ90] Michael R. Garey and David S. Johnson.Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[GP03] Cyril Gavoille and David Peleg. Compact and localized distributed data structures.

Distrib. Comput., 16(2-3):111–120, 2003.

[GPPR04] Cyril Gavoille, David Peleg, Stephane Perennes, andRan Raz. Distance labeling

in graphs.J. Algorithms, 53(1):85–112, 2004.

[GR00] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordina-

tion. SIGMETRICS Perform. Eval. Rev., 28(1):307–317, 2000.

[GSW02] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths

problem and interdomain routing.IEEE/ACM Trans. Netw., 10(2):232–243, 2002.

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-

terministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-

edge, and biconnectivity.J. ACM, 48(4):723–760, 2001.

140 BIBLIOGRAPHY

[HK99] Monika R. Henzinger and Valerie King. Randomized fullydynamic graph algo-

rithms with polylogarithmic time per operation.J. ACM, 46(4):502–516, 1999.

[HMT88] A Hajnal, W Maass, and G Turan. On the communication complexity of graph

properties. InProceedings of the twentieth annual ACM symposium on Theory of

computing, pages 186–191. ACM Press, 1988.

[HT97] Monika R. Henzinger and Mikkel Thorup. Sampling to provide or to bound: with

applications to fully dynamic graph algorithms. InProceedings of the workshop on

Randomized algorithms and computation, pages 369–379, New York, NY, USA,

1997. John Wiley & Sons, Inc.

[iO05] Sang il Oum. Approximating rank-width and clique-width quickly. In Dieter

Kratsch, editor,WG, volume 3787 ofLecture Notes in Computer Science, pages

49–58. Springer, 2005.

[JM96] Esther Jennings and Lenka Motyckova. Distributed algorithms for sparse k-

connectivity certificates. InPODC ’96: Proceedings of the fifteenth annual ACM

symposium on Principles of distributed computing, page 180, New York, NY, USA,

1996. ACM Press.

[Kar94] David R. Karger. Random sampling in cut, flow, and network design problems. In

STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory of

computing, pages 648–657, New York, NY, USA, 1994. ACM Press.

[kCGG06] Chi kin Chau, Richard Gibbens, and Timothy G.Griffin. Towards a unified theory

of policy-based routing. InProc. IEEE INFOCOM, April 2006.

[KFY04] D. Krioukov, K. Fall, and X. Yang. Compact routing on internet-like graphs. In

Proc. IEEE INFOCOM, 2004.

[KKP05] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. InPODC

’05: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium

on Principles of distributed computing, pages 9–18, New York, NY, USA, 2005.

ACM Press.

[KN97] Eyal Kushilevitz and Noam Nisan.Communication Complexity. Cambridge Uni-

versity Press, UK, 1997.

BIBLIOGRAPHY 141

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of

graphs.SIAM J. Discret. Math., 5(4):596–603, 1992.

[KPR02] Amos Korman, David Peleg, and Yoav Rodeh. Labeling schemes for dynamic tree

networks. InSTACS ’02: Proceedings of the 19th Annual Symposium on Theo-

retical Aspects of Computer Science, pages 76–87, London, UK, 2002. Springer-

Verlag.

[Mor03] Christian Worm Mortensen. Fully-dynamic two dimensional orthogonal range and

line segment intersection reporting in logarithmic time. In SODA ’03: Proceed-

ings of the fourteenth annual ACM-SIAM symposium on Discretealgorithms, pages

618–627, Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathe-

matics.

[MW77] John M. McQuillan and David C. Walden. The arpa network design decisions.

Computer Networks, 1:243–289, 1977.

[NH98] Hiroshi Nagamochi and Toru Hasunuma. An efficient nc algorithm for a sparse k-

edge-connectivity certificate. InISAAC ’98: Proceedings of the 9th International

Symposium on Algorithms and Computation, pages 447–456, London, UK, 1998.

Springer-Verlag.

[NI92] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding

a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica,

7(5&6):583–596, 1992.

[Pel99] David Peleg. Proximity-preserving labeling schemes and their applications. InWG

’99: Proceedings of the 25th International Workshop on Graph-Theoretic Concepts

in Computer Science, pages 30–41, London, UK, 1999. Springer-Verlag.

[Pel00] David Peleg. Informative labeling schemes for graphs. InMFCS ’00: Proceedings

of the 25th International Symposium on Mathematical Foundations of Computer

Science, pages 579–588, London, UK, 2000. Springer-Verlag.

[PS85] Franco P. Preparata and Michael I. Shamos.Computational geometry: an intro-

duction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

142 BIBLIOGRAPHY

[PU89] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing

tables.J. ACM, 36(3):510–530, 1989.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of

tree-width.J. Algorithms, 7(3):309–322, 1986.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks.

Comput. J., 28(1):5–8, 1985.

[Sob03] Joao Luis Sobrinho. Network routing with path vector protocols: theory and appli-

cations. InSIGCOMM ’03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications, pages

49–60. ACM Press, 2003.

[Tho00] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. InSTOC ’00:

Proceedings of the thirty-second annual ACM symposium on Theory of computing,

pages 343–350, New York, NY, USA, 2000. ACM Press.

[Thu95] Ramakrishna Thurimella. Sub-linear distributed algorithms for sparse certificates

and biconnected components. InPODC ’95: Proceedings of the fourteenth annual

ACM symposium on Principles of distributed computing, pages 28–37, New York,

NY, USA, 1995. ACM Press.

[TV84] Robert Endre Tarjan and Uzi Vishkin. Finding biconnected components and com-

puting tree functions in logarithmic parallel time (extended summary). InFOCS,

pages 12–20. IEEE, 1984.

[TZ01a] Mikkel Thorup and Uri Zwick. Approximate distance oracles. InSTOC ’01: Pro-

ceedings of the thirty-third annual ACM symposium on Theory of computing, pages

183–192, New York, NY, USA, 2001. ACM Press.

[TZ01b] Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA ’01: Proceed-

ings of the thirteenth annual ACM symposium on Parallel algorithms and architec-

tures, pages 1–10, New York, NY, USA, 2001. ACM Press.

[VGE96] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscil-

lations in inter-domain routing. Technical report, USC/ISI, 1996.

BIBLIOGRAPHY 143

[Wil86] Robin J Wilson.Introduction to graph theory. John Wiley & Sons, Inc., New York,

NY, USA, 1986.

[Win89] S. Win. On a connection between the existence of the k-trees and the toughness of

a graph.Graphs and Combinatorics, 7:201–205, 1989.

