
Randomized decentralized broadcasting algorithms
Laurent Massoulie∗, Andy Twigg∗, Christos Gkantsidis†, and Pablo Rodriguez‡
∗Thomson Research, Paris. laurent.massoulie@thomson.net, andrew.twigg@cl.cam.ac.uk

†Microsoft Research, Cambridge, UK. chrisgk@microsoft.com
‡Telefonica, Barcelona. pablorr@tid.es

Abstract— We consider the problem of broadcasting a live
stream of data in an unstructured network. Broadcasting has
been studied extensively for networks with capacity constraints
at the edges. We give the first completely distributed algorithm
that optimally solves the broadcast problem in edge-capacitated
networks, providing a new proof of Edmonds’ theorem. Mo-
tivated by the access capacity limitations in todays Internet,
we study the problem of efficient decentralized broadcasting in
node capacitated networks. We present the first completetly de-
centralized algorithm for solving the node-capacitated broadcast
problem, and show some of its optimality properties analytically
and through simulation. We study the delay that users must wait
in order to playback the stream with a small number of skipped
packets, and discuss the suitability of our algorithms for live
video streaming.

I. INTRODUCTION

We consider the problem of broadcasting a live stream of data,
such as a movie, to all nodes in an unstructured network. When
edges have capacities, this problem has been well-studied
since the 1970s – Edmonds, Lovasz and Gabow and others
have given centralized schemes based on packing spanning
trees [1]–[5].

The broadcast problem is at the core of every content dis-
tribution system. In particular, it is of great interest to current
live streaming distribution systems, such as CoolStreaming [6],
PPLive [7], SplitStream [8], and others. Those systems either
construct the overlay topology in such a way to easy packet
scheduling, and in doing so reduce the network efficiency by
not optimally using all the available resources, or use heuristic
algorithms for packet distribution with unknown performance
properties.

We present a completely distributed and suprisingly simple
algorithm for broadcasting in arbitrary networks, which does
not require coding yet provably achieves the optimal broadcast
rate. This is the first known result of this kind. Our analysis
is based on fluid models and Lyapunov functions applied to a
novel powerset representation of the network. As a corollary
we retrieve a famous theorem of Edmonds [1].

In the second part of the paper, we introduce a new model
for broadcasting a live stream of data in a peer-to-peer network
based on the node-capacitated broadcast problem – each node
has a specified upload capacity (we assume that download
capacity is infinite), modeling the user’s connection to the
network, and the user must choose how this capacity is
allocated among peers. This introduces an allocation problem

This work was done while all authors were at Microsoft Research, Cam-
bridge, UK.

in addition to the problem of scheduling packet transmissions.
We present a completely distributed algorithm for the node-
capacitated broadcast problem, and show that it achieves the
optimal rate in certain classes of network.

We study the startup delay for streaming live data, and
show analytical and experimental results that suggest that
our algorithms are well suited to this application – more
precisely, the startup delay decreases exponentially as we
increase the maximum number of skipped frames that we can
tolerate. We stress that our approach is theoretical because
we are interested in finding heuristics with provable good
performance. However, we believe that our results can be used
to construct practical systems for live streaming.

The rest of this paper is organized as follows. In Section II
we study the case of edge capacitated networks, we propose a
simple algorithm for forwarding packets, and prove that it is
optimal. In Section II we study the case of node capacitated
networks; we propose a heuristic for packet forwarding which
resembles the algorithm proposed for the edge-capacitated
networks; we analytically prove that this heuristic works well
in complete graphs and show experimentally that it works well
in other network topologies as well.

II. EDGE-CAPACITATED NETWORKS

We model the network as a directed graph G = (V,E) with
n nodes and m edges, and with capacities {cuv} assigned to
edges. For a partition (S, S̄) of nodes of G, we use C(S, S̄)
to denote the sum of edge capacities crossing the cut, i.e.
C(S, S̄) =

∑
(u,v)∈E(G):u∈S,v 6∈S cuv . For a network G, the

value of a minimum s, t-cut is denoted mincut(s, t) and is
equal to minS⊂V (G) C(S, S̄). The minimum s-cut is denoted
mincut(s) and is equal to mint∈V (G) mincut(s, t).

In the broadcast problem, there is a source s that wishes to
send the same data to all nodes in the network. For a network
G, we denote the optimal broadcast rate from a source s ∈
V (G) by λ∗(s) (G shall be obvious from the context). In 1969,
Edmonds gave a precise characterisation of λ∗(s) in terms of
the minimum s-cut.

Theorem 1 (Edmonds (1969)): For a directed graph G with
source s, the optimal broadcast rate is λ∗(s) = mincut(s).

A directed spanning tree rooted at s is called an s-
arborescence. Edmonds initially gave a constructive proof of
his theorem by showing that the optimal rate can be achieved
by packing edge-disjoint s-arborescences. The running time
of his algorithm was exponential in n and was later improved

to a small polynomial by Lovasz, Gabow and others. How-
ever, these algorithms are inherently centralized and so are
unsuitable for use in a peer-to-peer network.

A. Random useful packet forwarding
We now describe our completely distributed algorithm for
edge-capacitated broadcasting, which we call “random useful
packet forwarding.” For a node u, we use P (u) to denote the
set of packets that u has received. The algorithm is as follows:
for each edge (u, v), at rate cuv the edge (u, v) sends random
packets in P (u) \ P (v) from u to v.

We assume an injection model of packets at the source –
for a specified injection rate λ ≥ 0, the source receives new
packets at rate λ, injected in order 1, 2, 3, This models
the situation where not all the packets are initially available,
for example in a live video stream. Clearly, this model is
stronger than the model where the source is given all the
packets initially. We can prove the following result for static
networks, i.e. networks with no node arrivals or departures and
no connectivity changes.

Theorem 2: For every edge-capacitated network G and
source s, if the injection rate is λ < λ∗(s) then random useful
packet forwarding from s achieves broadcast rate λ.

Therefore, by injecting at a rate λ∗(s)− ε for some ε > 0,
we can broadcast at a rate arbitrarily close to the optimal rate.

In order to evaluate the performance of our algorithm, we
shall first examine the lifetime of a typical packet. Once
injected at the source, a packet p can be in a number of
different states: (a) It can be replicated at all nodes in the
system, hence successfully broadcasted. (b) It can be idle, that
is not actively transferred, and be replicated at nodes u in some
set S ⊂ V . The subset S cannot be arbitrary; it much contain a
spanning tree rooted at s. We shall denote by S the collection
of strict subsets of V that contain the source node s. (c) It can
be replicated at some nodes u ∈ S, for some subset S ∈ S, but
also actively transferred along some edges e ∈ F , for some
subset F ∈ E.

We shall describe the state of the system as follows: (a)
For all S ∈ S, XS denotes the number of idle packets,
that are replicated exactly at the nodes u ∈ S. (b) A =
{G1 = (W1, F1), . . . , Gm = (Wm, Fm)} is an unordered list
of subgraphs which describes the active packets. Wi denotes
the set of nodes at which the i-th active packet is currently
replicated; Fi is the set of edges along which the i-th active
packet is currently transferred.

We shall assume that at any given time, at most one packet
is transferred along a given edge, hence, the total number of
active packets is (at most) |E|. We shall further assume that the
same active packet cannot be received from multiple incoming
edges. We also enforce an activity condition which states that
if there is no transfer along some edge (u, v), then necessarily
there is no packet that could be transferred along this edge.

We now describe the transitions between the states of the
system. When a new packet arrives at the source, then the
number of idle packets at the source s increases by 1:

X{s} ← X{s} + 1

When an active packet, which can be described by G =
(W,F), finishes transmission along an edge e = (u, v), then
the following updates take place:

W ← W ∪ {v}
F ← F \ e

If F = ∅ as a result of the update, then the packet is now idle,
so

XW ← XW − 1

After the finish of a transmission along edge e = (u, v),
we need to ensure that a new transmission starts, if there is
a packet that can be transmitted from u to v; in other words,
we need to ensure the activity condition. For all S ∈ S such
that u ∈ S, v /∈ S the following state update will take place:

XS ← XS − 1
A ← A ∪ (S, (u, v))

with probability:
XS

X+u−v + Xα
+u−v

where X+u−v and Xα
+u−v is the number of idle and active

packets respectively that exist in u but not in v. Observe that
the state update above will take place if an idle packet is
chosen for transmission. In the case of an active packet chosen
for transmission the state update is as follows:

A ← A \ (W,F) ∪ (W,F ∪ (u, v))

with probability 1/
(
X+u−v + Xα

+u−v

)
. Observe that in the

state transitions described above each candidate packet for
transmission from u to v is chosen with the same probability.

The process described above by the states
(
(XS)S∈S , A

)
and the state transitions allows us to express the dynamics of
packet distribution and to analyze the performance of broad-
casting packets from a server to all nodes of a network. Using
this framework, we will prove in Section II-B that random
packet forwarding is optimal. For presentation clarity we shall
assume that the time intervals between fresh packet arrivals
at the source, and packet transfer times follow exponential
distributions. In particular, we shall assume that the mean
inter-packet arrival at the source is λ−1, and that the mean
packet transfer time along edge (u, v) is c−1

uv . Of particular
interest is to assume that the time intervals between fresh
packet arrivals at the source and the packet transfer times
along each edge are i.i.d. random variables, and, hence, the
model is Markovian. In that case, we would have to augment
the state space to keep track of the residual times until (a) the
arrival of the next fresh packet at the source, (b) the completion
of a transmission. In particular, we would be very interested
to study the case of deterministic distributions for the arrival
of packets at the source and the transmission along every
edge; the deterministic case can be though to better model
sources with a constant arrival of fresh packets and networks

with constant capacity at each link. We defer the general case
to future work, and prove optimality in the special case of
exponential distributions.

B. Random packet forwarding is optimal

We shall now prove Theorem 2. We will show that the Markov
process ((XS)S∈S , A) is ergodic under the condition:

λ < minS∈S
∑
u∈S

∑
v/∈S

cuv

This result will be established by using the so-called “fluid
limits” approach, introduced and popularized by [9] and [10].
Informally, the approach consists in first establishing that
trajectories of the original Markov process, after join rescaling
of both time and space, evolve according to some simpler
“fluid” dynamics, and then to prove that the trajectories of the
fluid dynamics converge to zero in finite time. Due to space
constraints we will outline the proof in this paper; a more
detailed version can be found in [11].

The main intuitive difficulty is that, although the algorithm
may waste bandwidth by unnecessarily replicating packets (as
a result of nodes only having knowledge of their neighbours’
collections of packets), the random nature of the protocol cre-
ates sufficient diversity that the fraction of wasted bandwidth
goes to zero in the rescaled fluit limits. Note that a naive
strategy of sending packets in FIFO order will clearly fail in
the case when there are three nodes (one source, two receivers)
connected in a triangle with unit-capacity edges – the optimal
rate is 2 but the FIFO strategy will never make use of the edge
connecting the receivers, giving a rate of 1.

Let us introduce the following definition.
Definition 1: The real-valued non-negative functions t →
yS(t), S ∈ S, are called fluid trajectories of the above Markov
process if they satisfy the following conditions.

For all S ∈ S, all u ∈ S, all v /∈ S, there exist non-negative
functions t→ φS,(uv)(t) such that

y{s}(t) = ys(0) + λt−
∑

v∈V \{s} φ{s},(sv)(t)
S 6= {s} : yS(t) = yS(0)+∑

u∈S

∑
v∈S\{u} φS\{v},(uv)(t)

−
∑

u∈S

∑
v/∈S φS,(uv)(t),

(1)
and that are non-decreasing, Lipschitz continuous with Lips-
chitz constants cuv . In addition, for all (u, v) ∈ E, it holds
that: ∑

S∈S:u∈S,v/∈S

φS,(uv) is cuv-Lipschitz.

Moreover at almost every point t, the function φS,(uv) is
differentiable, and the following holds:

y+u−v(t) > 0⇒ d

dt
φS,(uv)(t) = cuv

yS(t)
y+u−v(t)

, (2)

where we have used the notation

y+u−v(t) :=
∑

S′∈S:u∈S′,v /∈S′

yS′(t). (3)

3

The following result shows in what sense such fluid trajec-
tories describe the dynamics of the original Markov process
after spatial and temporal rescaling:

Theorem 3: Consider a sequence of initial conditions
(XN (0), AN (0)), N > 0, such that

lim
N→∞

1
N

XN
S (0) = xS(0), S ∈ S.

Introduce the rescaled process

Y N
S (t) :=

1
N

XN
S (Nt),

where XN
S (t) represents the state of the Markov process with

initial conditions (XN (0), AN (0)) at time t. Then for any
subsequence of indices N , there exists a further subsequence,
denoted N ′, such that, for some fluid trajectory (yS) as per
Definition 1, with initial conditions (xS(0)), the following
uniform convergence takes place:

lim
N ′→∞

sup
t∈[0,T]

|Y N ′

S (t)− yS(t)| = 0, S ∈ S, T ∈ R+. (4)

Proof: See [11].

The following theorem establishes that any fluid trajectories
as per Definition 1 satisfy a suitable stability property:

Theorem 4: Assume λ < minS∈S
∑

u∈S

∑
v/∈S cuv . Let

(yS)S∈S denote fluid trajectories as per Definition 1. For all
S ⊂ V , define:

y⊆S =
∑

S′∈S,S′⊆S

yS′ .

Then there exist positive parameters β1, . . . , β|V |−1, and ε > 0
such that the function

L({yS}S∈S) := sup
S⊂V

β|S|y⊆S

verifies:
L(y(t)) ≤ max (0, L(y(0))− εt) . (5)

Proof: See [11].

The proof of Theorem 2 will require to combine Theo-
rems 3, 4 and the following ergodicity criterion, which is a
direct consequence of Theorem 8.13, p.224 in Robert [12]:

Theorem 5: Let Z(t) be a Markov jump process on a
countable state space Z . Assume there exists a function L :
Z → R+ and constants M , ε, τ > 0 such that for all z ∈ Z:

L(z) > M ⇒ 1
L(z)

EzL (Z(L(z)τ)) ≤ 1− ε. (6)

If in addition the set {z : L(z) ≤ M} is finite, and
EzL(Z(1)) < +∞ for all z ∈ Z , then the process Z(t) is
ergodic.

The detailed proof of Theorem 2 can be found in [11].

Theorem 2 proves that random packet forwarding can
achieve optimal broadcast rate for static networks and under
the assumption of exponential arrivals of fresh packets at
the source and exponential packet transmission along each
edge. We conjecture that the main result can be generalized
to arbitrary distributions, and in particular with deterministic

distributions. Indeed, we have performed extensive simula-
tion studies of deterministic distributions and show that the
main conclusion of Theorem 2 applies. The case of dynamic
networks, with node arrivals and departures, and connectivity
changes, is an interesting open problem.

This result has several implications:
• It shows that we can achieve the optimal broadcast rate

using only local information in a distributed network;
• It gives a constructive proof of Edmonds’ theorem that

does not rely on packing edge-disjoint arborescences.

III. NODE-CAPACITATED NETWORKS

Traditionally, network flow problems assume capacities as-
signed to edges. This a natural model when the edge band-
widths are indeed the bottlenecks. However, in peer-to-peer
networks, the capacity bottlenecks are not at the edges (which
are often high capacity links) but are dictated by the users’
connections to the network, for example cable, dsl, etc. Often
the user has a specified total upload capacity and must choose
how to allocate this among its peers. We shall assume for
simplicity that the download capacity is infinite, but our
algorithms can be easily extended to handle both bounded
download and upload capacities.

Given a graph G with node capacities C(u), an edge capac-
ity assignment {cuv} is called feasible if

∑
v cuv ≤ C(u). By

Edmonds’ theorem, every feasible edge capacity assignment
has an associated λ∗ that can be achieved by packing edge-
disjoint arborescences, as shown in Figure 1. We can then
study the problem of constructing a feasible edge capacity
assignment that maximizes the broadcast rate λ∗.

There is no known explicit characterisation of λ∗ for the
node-capacitated case. A fairly weak upper bound is given by
the sum of upload capacities, divided by the total number of
receivers:

λ∗ ≤
∑

u C(u)
n− 1

(7)

The maxflow-mincut theorem is often defined with edge
capacities, but it is well-known that it can easily be defined
with node capacities using a simple transformation: given a
node-capacitated network G, replace each node u of G by two
nodes u− and u+ linked by an edge of capacity C(u). Point
all the incoming edges of u to u− and make all the outgoing
edges of u leave from u+ (all these edges have capacity ∞).
Call this new edge-capacitated graph G′. It is easy to see that
any feasible edge capacity assignment in G corresponds to
a feasible flow in G′. Therefore the value of the minimum
s, t-cut in the node-capacitated G is equal to the minimum
s−, t−-cut in the edge-capacitated G′. This solves the node-
capacitated case for the case of a single receiver (the unicast
problem).

Such a transformation does not work for the broadcast
problem. Consider the network in Figure 2 – the node-
capacitated network on the left can clearly only support a
broadcast rate of one, but the min-mincut of the network on
the right is two (and by Edmonds’ theorem has broadcast rate
two). The problem arises because the transformation ‘creates’

C(s) = 2

3

a−

a+

∞ ∞

2

s+

s−

b−

3

b+

C(b) = 3C(s) = 3

a b

s

Fig. 2. An example of when the simple node-capacity transformation used
in the unicast case fails in the broadcast case

capacity when there are multiple receivers sharing the same
flow paths.

A. LP formulation

We can formulate the maximum rate node-capacitated multi-
cast problem as a linear program, as shown below. For a source
s and receivers T1, . . . , Tk, we add directed edges (TiS) for
each receiver Ti, as in [13]. This makes the LP more concise.

maximize χ
subject to

χ ≤ fi(TiS) ∀i
fi(−→uv) ≤ c(−→uv) ∀i, ∀−→uv 6=

−−→
TiS∑

v(fi(−→uv)− fi(−→vu)) = 0 ∀i, ∀u∑
v c(−→uv) ≤ C(u) ∀u

c(−→uv), fi(−→uv), χ ≥ 0 ∀i, ∀−→uv

(8)

The LP has a number of variables polynomial in n, so the
problem is solvable in polynomial time. However, the linear
program is both very slow in practice (we have been unable to
solve it for more than 40 nodes) and is inherently centralized,
making it unsuited for use in a dynamically-changing peer-to-
peer network where nodes only have local information.

Subgradient methods offer a general method of solving
optimization problems in a distributed way. By working on the
dual of the LP in (8), we can write the following subgradient
formulation:

SUBGRADIENT-UPDATE(u)
1 Find the node k minimizing mincut(s, k) with {cuv}
2 Set cuv = cuv + δ(t),∀(uv) in the minimum s, k-cut
3 Normalize {cuv} so that

∑
v cuv = C(u) for all u

The algorithm is initialised by choosing any feasi-
ble edge capacity assignment {cuv}; we choose the bal-
anced assignment, where each node shares its capacity
equally among its neighbours. Each node u then runs
SUBGRADIENT-UPDATE(u) until the maximum rate achieved
(given by the min-mincut with the current edge capacity
assignments), with the parameter t denoting the iteration
number 1, 2, For the algorithm to converge, we require

c

s

a b

C(s) = 4

C(c) = 2

C(a) = 2 C(b) = 2

c

s

a b

c

s

a b

c

s

a b

Fig. 1. A node-capacitated network with λ∗ = 3, and a packing of edge-disjoint arborescences from an optimal edge capacity assignment

that the step function δ(t) be nonnegative (∀t, δ(t) ≥ 0),
converge to zero (limt→∞ δ(t) = 0) and its sum divergent
(
∑∞

t=1 δ(t) = ∞). The family of functions δ(t) = a
bt+c for

a, b, c > 0 satisfies these requirements.
The subgradient algorithm solves the problem of construct-

ing a feasible edge capacity assignment having maximum rate,
but does not tell us how to actually do the broadcasting. For
this, we can use the edge-capacitated graph corresponding to
the computed assignments as input to any edge-capacitated
broadcast algorithm. In particular, if we feed the assignment
into the random useful packet forwarding scheme for edge-
capacitated broadcasting at each iteration, we get the following
result.

Theorem 6: Let G be a network with node capacities C(u)
and optimal broadcast rate λ∗(G). For any injection rate λ <
λ∗(G), there is a distributed algorithm that converges to a
broadcast rate λ.

The subgradient method has several problems, in particular
the following:
• Although each node u has to maintain only the current

values of cuv for its neighbours v, the algorithm is not
completely distributed; each iteration requires us to solve
n mincut computations, one for each receiver. Although
there are distributed algorithms for solving these mincut
computations (such as the ε-relaxtion method of Tseng
and Bertsekas [14]), these make the algorithm costly both
in communication and time.

• Although the theory of subgradient optimization guar-
antees that with the correct choice of the function δ,
the algorithm will converge geometrically to the optimal
solution, there are no guidelines for how to choose δ.
In practice, we have observed that it can have a large
influence on the convergence time, and depends on graph
parameters such as connectivity.

B. Random useful packet forwarding

In this section we prove the suprising result that the random
useful packet forwarding idea of Section II can be extended
to the node-capacitated case. Each node u does the following
at rate c(u): choose a neighbor v, then send v a packet chosen
at random from P (u)\P (v). All we need is a way to pick the

neighbor v. We shall study two neighbor selection strategies:
random and most deprived neighbor. For the random neighbor
selection, each node u chooses at random a neighbor v having
|P (u) \ P (v)| > 0. For the most deprived neighbor strategy,
each node u chooses a neighbor maximizing |P (u)\P (v)| (if
there is more than one such neighbor, one is chosen them at
random). This algorithm is given below.

RANDOM-USEFUL-PACKET-FORWARDING(u)
1 At rate C(u)
2 v ← random neighbor maximizing |P (u) \ P (v)|
3 Send a random packet in P (u) \ P (v) to v

It might seem surprising that this algorithm (with the most
deprived neighbor strategy) should work well – Figure 3 shows
a network where intuitively it might fail. The intuitive reason
for this might be that the source will, in the long term, send
half its packets to a and half to b. Since node a has capacity
zero, it cannot forward any packets to b, and so node b receives
at rate five instead of the optimal rate of nine. Indeed, this is
what happens with the random neighbor selection strategy.

With the most deprived neighbor strategy, what happens is
the following. Since b gives packets to a, the source observes
that b becomes the more deprived node, so the source diverts
its capacity towards b. Unfortunately, b cannot give packets
to a at rate ten (the source capacity), so the source starts to
observe that a sometimes becomes its most deprived neighbor
and switches its capacity to a. Over the long term, this
switching process results in s giving a a rate of one and b
a rate of nine. Since b can give node a a rate of eight, in the
long term, a, b both receive at rate nine, which is optimal.

Similarly to Section II-A the system is described by a a
graph G = (V,E). However, the capacities are now associated
with nodes rather than with edges. We shall denote by cu the
capacity of node u, and assume that each node devotes its
capacity to one of its “most deprived neighbors.”. Using the
same notation as in Section II-A, this reads:

Z+u−v = X+u−v + Xa
+u−v.

It then elects one neighbor v for which the corresponding
quantity Z+u−v is maximal. Ties can be broken either at

λ∗ = 9

s

a b

C(b) = 8C(a) = 0

C(s) = 10

Fig. 3. An example of when the random forwarding most-deprived neighbor
algorithm might intuitively fail, but does not. Intuitively, the zero-capacity
node ‘sucks’ half the source capacity but contributes nothing.

random, or in a systematic manner. Once the target neighbor
v is chosen, then one of the Z+u−v packets held by u and
useful to v is chosen, and forwarded from u to v, at rate cu.

Packet selection We now describe how packets are elected
for transmission once a node’s capacity becomes available.
For non-source nodes u, who have chosen to transmit to some
most deprived neighbor v, then the packet to be transmitted
is selected at random among all the possible Z+u−v possible
choices.

For the source node s, having chosen to transmit to some
most deprived neighbor v, the following strategy is used: if
the source has a packet that it has not sent to anyone before
(a fresh packet), that is if X{s} > 0, then one such fresh
packet is forwarded to node v; if no such fresh packets are
available, then the packet to be forwarded is selected uniformly
at random from the Z+s−v possible choices.

As in the edge capacitated case, the state space consists in
the collection of variables XS , for all S ∈ S, and the collection
of active packet states A = ((W1, F1), . . . , (Wm, Fm)). The
constraints on these active packet states are different though:
we now assume that each node forwards a packet to only one
of its neighbors at a given time. Thus for each node u, there is
at most one edge (u, w) appearing in the sets Fi, i = 1, . . . ,m.
Otherwise the same constraints apply: for a given active packet
(W,F), and each edge (u, v) ∈ F , necessarily, u ∈ W and
v /∈ W ; also, there is no other edge (u′, v) pointing towards
v in F .

We shall assume that packet transmissions are not pre-
empted, even if a neighbor of some node u becomes more
deprived than the neighbor v to which node u is currently
transmitting.

As in the edge-capacitated case, in the present work we
focus on the case where completion of a packet transmission
by node u is an Exponential random variable with mean 1/cu,
and where fresh packets arrive at the source node s at the
instants of a Poisson process with rate λ.

Next, we shall see that the random useful packet forwarding
performs well in complete graphs (Section III-C) and other
topologies (Section IV-A)

C. Proof of optimality for complete graphs

We can prove that the random forwarding algorithm with the
most deprived neighbor selection strategy achieves the optimal
broadcast rate in complete networks.

We first define the candidate fluid trajectories for the system
under consideration:
Definition 2: The real-valued, non-negative functions (yS)S∈S
are called fluid trajectories of the node-capacitated system if
the following properties hold.

For all S ∈ S, u ∈ S, v /∈ S such that (u, v) ∈ E, there
exist non-decreasing, Lipschitz-continuous functions φS,(uv)

with Lipschitz constant cu, such that Equations (1) hold.
Furthermore, using notation

y+u−v :=
∑

S∈S:u∈S,v/∈S

yS ,

for all S ∈ S, u ∈ S, the functions {φS,(uv)}v/∈S,(uv)∈E are
differentiable at almost every t, and if

∑
v:(u,v)∈E y+u−v(t) >

0, their derivatives satisfy:

d

dt
φS,(uv)(t) = 0 if y+u−v(t) < max

v′:(u,v′)∈E
(y+u−v′(t)) , (9)∑

v:(uv)∈E

∑
S:u∈S,v/∈S

d

dt
φS,(uv)(t) = cu. (10)

If u 6= s, that is for a non-source node, one also has, for all v
such that (uv) ∈ E and assuming the condition∑

S:u∈S,v/∈S

d

dt
φS,(uv)(t) > 0

holds, the following equation:

∀S/u ∈ S, v /∈ S :
d

dt
φS,(uv)(t) =

yS(t)∑
S′:u∈S′,v /∈S′ yS′(t)

·
∑

S′:u∈S′,v /∈S′

d

dt
φS′,(uv)(t)

For the source node s, one has the following:

y{s} > 0⇒
∑
v 6=s

d

dt
φ{s},(sv)(t) = cs. (11)

In the case where y{s} = 0, one then has for all v such that
(sv) ∈ E, assuming the condition∑

S∈S:S 6={s},v /∈S

d

dt
φS,(sv)(t) > 0

holds, the following:

∀S ∈ S/S 6= {s}, v /∈ S :
d

dt
φS,(sv)(t) =

yS(t)∑
S′∈S:S′ 6={s},v /∈S′ yS′(t)

·
∑

S′∈S:S′ 6={s},v /∈S′

d

dt
φS′,(sv)(t)

3

We now establish the following
Theorem 7: Consider a sequence of initial conditions

(XN (0), AN (0)), N > 0, such that the limit

lim
N→∞

1
N

XN (0) = y(0) ∈ RS
+

exists, with y(0) 6= 0. Then for any subsequence, there exists
a further subsequence, that we denote by N ′, and a fluid
trajectory with initial condition y(0), such that for all T > 0,
all S ∈ S ,

lim
N ′→∞

sup
t∈[0,T]

∣∣∣∣ 1
N ′X

N ′

S (Nt)− yS(t)
∣∣∣∣ = 0. (12)

Proof: See [11].
The main result we shall establish is in the case of the

complete graph, that is all edges (u, v), u 6= v, are present in
E. We then have the following

Theorem 8: Assume that the graph G = (V,E) is complete,
and that the injection rate λ verifies:

λ < min
(

cs,

∑
u∈V cu

K − 1

)
, (13)

where K = |V |. Then the Markov process keeping track of the
system state under “random useful to most deprived neighbor”
scheduling strategy is ergodic.
The proof of Theorem 8 parallels exactly that of Theorem 2,
relying on a combination of Theorem 5 with Theorem 7 (tak-
ing the role played by Theorem 3 in the proof of Theorem 2)
and of Theorem 9 below (taking the role played by Theorem 4
in the proof of Theorem 2).

Theorem 9: For any y = (yS)S∈S ∈ RS
+, define the

workload function w(y) as:

w(y) =
∑
S∈S

yS (K − |S|) , (14)

where K = |V |. Under the assumption (13), when the graph
G is complete, any fluid trajectory y as per Definition 2 is
such that, for some ε > 0,

w(y(t)) ≤ max(0, w(y(0))− εt). (15)
Proof: See [11].

It is open to determine whether the scheme is optimal for
general networks.

IV. LIVE VIDEO STREAMING

A motivating application for our work is the streaming of
live video. Assume that we have a network that can support
a broadcast rate λ < λ∗, and that our algorithm can indeed
broadcast at rate λ. We assume there is some coding process
that is generating packets at a fixed rate λ, and we want
to broadcast these packets. At time zero, the source begins
broadcasting packets. At time D, node u will start playing the
stream at rate λ. Each node must playback the packets in order
1, 2, 3, . . ., and any packets that are not present when they are
needed for playback are said to be skipped. We are interested
in the relationship between number of skipped packets and the
playback delay required.

expected time k

s

v

Fig. 4. A simple model of delay for the random packet forwarding scheme

Assume that the stream shall be played back until time T .
Consider some node u. Since we can broadcast to u at rate
λ, we shall approximate the network as follows. Let k be the
expected time for a packet to travel from the source to u (k
is bounded by the previous assumption). Construct a network
with a source s connected to a single node v, as in Figure 4.
Initially, s has k packets 1, . . . , k and v has no packets. At
rate λ, s gives random useful packets to u.

Lemma 1: In the simple model, for an expected number of
skipped packets α, we require delay D ≥ log T

α + O(k).
Proof: For a packet i, we have

Pr(i /∈ P (A) at time t) =
{

(1− 1/k)t for i ≤ k
(1− 1/k)t−(i−k) for i > k

(16)
After delay D, the node v starts playing its packets in order.
We can then write

Pr(i not received by time i+D) ≤
{

(1− 1/k)D i ≤ k
(1− 1/k)D+k i > k

(17)
Let Y be the number of skipped packets when playing to time
T after waiting delay D. Then

Y ∼ Binom
(
(1− 1/k)D, k

)
+ Binom

(
(1− 1/k)D+k, T

)
.

The expected number of skipped packets is then

E[Y] = k(1− 1/k)D + T (1− 1/k)D+k,

so for E[Y] ≤ α, taking logs of both sides gives

D ≥
log Tk

α + k log(1− 1/k)
2 log k

k−1

.

Setting α = pT for some fraction p gives a simple corollary
– the expected fraction of skipped packets decreases exponen-
tially with increasing playback delay. If this simple model is
indeed a good model then random useful packet forwarding
should be well-suited to streaming movies and other data
where the source is not initially given all the packets. We now
present some experimental results that support this claim.

Fig. 5. Delay vs. packet loss fraction for the clustered topology of Figure 6.
Choosing neighbours at random is clearly a bad strategy, as for some nodes
the delay goes to infinity. For the most-deprived neighbour strategy, it can be
seen that the delay falls exponentially with increasing tolerable packet loss
fraction and the delays of all nodes are closely clustered together – a desirable
property for a live video streaming application.

A. Simulation results

Since we have been unable to prove that results for the
random-forwarding-to-most-deprived strategy in the case of
general networks, we simulated it on various topologies in an
attempt to gain insight into its performance. The simulations
also allowed us to study the tradeoff between startup (or play-
back) delay and tolerable packet loss, both crucial parameters
for a live video streaming application.

1) Topologies with clusters: A basic but interesting exam-
ple is the case where the network contains two well-connected
groups of nodes (such as cliques or expanders), which are
connected together by only a few edges. Such a graph is shown
in Figure 6. We simulated a network with two groups A,B;
each group is a clique containing one hundred nodes, each
with an upload capacity of one (the source is in group A).
The optimal broadcast rate is one (construct a Hamiltonian
cycle in the network), yet the random neighbor strategy gives
a rate of one to nodes in group A, and a rate of approximately
1/100 to nodes in group B . This is because it cannot realize
that the nodes having edges between the groups must divert
their capacity completely to their neighbors in the other group.
With the most deprived neighbor strategy, all nodes receive at
the optimal rate of one. This happens because the nodes in
group B will remain more deprived than those in group A
unless they are given packets from the nodes on the boundary,
and this forces them to be selected for transmission by their
neighbors in group A.

2) Heterogeneous capacities: In the previous examples we
have assumed that all nodes have the same capacity. However,
in many applications of practical interest is common to have
few nodes with large capacities and many slower nodes. For
example, the table in Figure 7 shows the distribution of
node upload capacities in a Gnutella network, as observed by
Bharambe et al. [15].

We constructed a random graph with node capacities fol-
lowing the distributions given in [15], and plot in Figure 8 the
performance of the most-deprived random packet forwarding

Fig. 6. Another example of when the random forwarding most-deprived
neighbor algorithm might intuitively fail, but does not. Each group of nodes
is well-connected, e.g. a clique or an expander. The algorithm must fully
utilize the links crossing the two groups in order to achieve a good broadcast
rate.

Upload capacity (Kb/s) Fraction of nodes
128 0.2
384 0.4

1000 0.25
5000 0.15

Fig. 7. The distribution of node upload capacities used for the simulation.
(Source: [15].)

algorithm on this network. For each node, we plot the delay
that each node must wait to play back the entire stream at
the injection rate, as a function of the tolerable fraction of
packet loss. As predicted by the simple model in Section IV,
the startup (or playback) delay decreases exponentially as the
tolerable fraction of skipped packets increases.

3) Grid network: We then ran simulations on a grid net-
work, containing 1600 nodes (arranged in a 40x40 grid).
The source is placed at the center of the grid and all nodes
have equal upload capacity. Although the algorithm achieves
the optimal broadcast rate (by using a Hamiltonian path,
for example), we are interested in the delay required for
playback. With a Hamiltonian path, the delay would be high
for nodes at the end of the path. Figure 9 shows how for a
fixed fraction (0.02) of skipped packets, the delay increases
with position in the grid. As expected, the delay increases
with distance from the source. We then added shortcut edges
randomly (independently with probability 0.01 for each edge),
and studied the delay for the same fraction of skipped packets.
Figure 10 shows that this completely changes the picture; the
delay is now almost equal for every node in the network, only
the random fluctations from shortcuts placement are visible.
Even though the shortcut edges do not increase the optimal
broadcast rate, they allow us to reduce the startup delay. The
simulations here shows that the random forwarding algorithm
can take advantage of these shortcut edges.

Fig. 8. Delay vs. tolerable packet loss fraction for random graph with
gnutella-like distribution of node capacities. The delay decreases exponentially
with increasing fraction of skipped packets. For example, for packet loss
fraction 0.01, a startup delay of about 300 is required, in order to playback
until time 3000.

Fig. 9. Simulation on a grid network without shortcuts. The source is at the
center, and the delay increases with distance from the source.

Fig. 10. Simulation on a grid network with shortcut edges, added randomly
with Pr=0.01. The source is at the center, and the delay is almost equal over
all the nodes. This shows that random forwarding algorithm takes advantage
of these shortcut edges.

V. REMARKS

A major problem with current peer-to-peer systems that use
some distributed algorithm to broadcast a stream of data is the
following: when the system starts running slowly, how do we
know whether it is due to the algorithm making bad use of the
available network resources, or that there is a problem in the
network (but the algorithm is making full use of the available
resources)?

We have presented the first proof that a simple local-
control algorithm can route packets at a broadcast rate λ,
whenever a rate of λ + ε is feasible, for some ε > 0, and
without resorting to network coding. The strength of this
result is that it should inform inform and validate the design
of peer-to-peer broadcast and live streaming protocols, by
basing their design on a provably good foundation with known
performance guarantees.

For other applications such as multicasting and handling
multiple commodities, the situation is much more complex.
Our proof techniques relied upon knowing a tight maxflow-
mincut theorem for the broadcast problem (established by
Edmonds in 1969). For multicasting, it is known that without
network coding, there is no such tight result. For the multi-
commodity case, it may be possible but there is no known
exact maxflow-mincut theorem from which to start.

REFERENCES

[1] J. Edmonds, “Edge-disjoint branchings,” in Combinatorial Algorithms,
R. Rustin, Ed., pp. 21–31. Algorithmics Press, 1972.

[2] Laszlo Lovasz, “On two minimax theorems in graph,” Journal of
Combinatorial Thoery, vol. 21, pp. 96–103, 1976.

[3] Po Tong and E.L. Lawler, “A faster algorithm for finding edge-disjoint
branchings,” Information Processing Letters, vol. 17, pp. 73–76, 1983.

[4] H.N. Gabow, “A matroid approach to finding edge connectivity and
packing arborescences,” Journal of Computer and System Sciences, vol.
50, no. 2, pp. 259–273, 1995.

[5] Harold Gabow and K.S. Manu, “Packing algorithms for arborescences
(and spanning trees) in capacitated graphs,” Mathematical Programming,
vol. 82, pp. 83–109, 1998.

[6] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media streaming,” in
IEEE Infocom. 2005, IEEE Press.

[7] “Pplive,” http://www.pplive.com/.
[8] “Splitstream: High-bandwidth content distribution,” http:

//research.microsoft.com/˜antr/SplitStream/
default.htm, Aug 2003.

[9] H.Q. Ye, J.H. Ou, and X.M. Yuan, “Stability of data networks: Stationary
and bursty models,” Operations Research, vol. 53, no. 1, pp. 107–125,
2005.

[10] J.G. Dai, “On positive harris recurrence of multiclass queueing networks:
a unified approach via fluid limit models,” Ann. of Applied Probability,
vol. 5, pp. 49–77, 1995.

[11] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Provably
optimal decentralized broadcast algorithms,” Tech. Rep. MSR-TR-2006-
105, Microsoft Research, Jul 2006.

[12] P. Robert, Stochastic Networks and Queues, Springer, 2003.
[13] Zongpeng Li, Baochun Li, Dan Jiang, and Lap Chi Lau, “On achieving

optimal throughput with network coding,” in Proc. Infocom, 2005.
[14] Paul Tseng and Dimitri P. Bertsekas, “A epsilon-relaxation method

for generalized separable convex cost network flow problems,” in
Proceedings of the 5th International IPCO Conference on Integer
Programming and Combinatorial Optimization, London, UK, 1996, pp.
85–93, Springer-Verlag.

[15] Ashwin Bharambe, Cormac Herley, and Venkata Padmanabhan, “An-
alyzing and improving bittorrent performance,” Tech. Rep. MSR-TR-
2005-03, Microsoft Research, feb 2005.

http://www.pplive.com/
http://research.microsoft.com/~antr/SplitStream/default.htm
http://research.microsoft.com/~antr/SplitStream/default.htm
http://research.microsoft.com/~antr/SplitStream/default.htm

	Introduction
	Edge-capacitated networks
	Random useful packet forwarding
	Random packet forwarding is optimal

	Node-capacitated networks
	LP formulation
	Random useful packet forwarding
	Proof of optimality for complete graphs

	Live video streaming
	Simulation results
	Topologies with clusters
	Heterogeneous capacities
	Grid network

	Remarks
	References

