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Abstract. We study labelling schemes for X-constrained path prob-
lems. Given a graph (V, E) and X ⊆ V , a path is X-constrained if all
intermediate vertices avoid X. We study the problem of assigning la-
bels J(x) to vertices so that given {J(x) : x ∈ X} for any X ⊆ V , we
can route on the shortest X-constrained path between x, y ∈ X. This
problem is motivated by Internet routing, where the presence of routing
policies means that shortest-path routing is not appropriate. For graphs
of tree width k, we give a routing scheme using routing tables of size
O(k2 log2 n). We introduce m-clique width, generalizing clique width, to
show that graphs of m-clique width k also have a routing scheme using
size O(k2 log2 n) tables.
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1 Introduction

Given a graph G = (V, E) where each vertex u ∈ V has a set S(u) ⊆ V , a
compact forbidden-set routing scheme is a compact routing scheme where all
routes from u are (approximately) shortest paths in the (possibly disconnected)
graph G \ S(u). The problem is motivated by Internet routing, where nodes
(routers) can independently set routing policies that assign costs to paths, thus
making the shortest path not necessarily the most desirable. Shortest-path rout-
ing is well-understood, for example Thorup and Zwick [1] have given a compact
routing scheme using Õ(

√
n) size tables, which is almost optimal for stretch-3

paths. On the other hand, very little is known about the complexity of forbidden-
set routing. The only known algorithms for policy routing (such as BGP) use
Bellman-Ford iteration to construct so-called stable routing trees – for each des-
tination, a tree is rooted at that destination and packets are forwarded along it.
Varadhan et al.[2] showed that the policies may conflict, forcing the algorithm to
not converge. For general policies, Griffin et al.[3] showed that deciding if it will
converge is NP-complete, and Feigenbaum and Karger et al.[4] showed that NP-
completeness still holds for forbidden-set policies. This motivates the problem of
designing efficient routing schemes that do not suffer from non-convergence, for
simple classes of policy such as forbidden-set.
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2 Preliminaries

Let G = (V, E) be an undirected graph and X ⊆ V a set of vertices (the
extension to directed graphs is straightforward), and F be a set of edges. An
(X, F )-constrained path is a path in G that does not use the edges of F and
with no intermediate vertex in X (or simply X-constrained if F is empty). We
denote by G[Z] the subgraph of G induced by a set of vertices Z. We denote by
G+[Z] the graph consisting of G[Z] and weighted edges where an edge between
x and y has weight d iff d is the length of a shortest path in G between x and y
of length at least 2 with no intermediate vertex in Z. Between two vertices, one
may have one edge without value and another one with value at least 2.

If we know the graph G+[Z], if X ⊆ Z and every edge of F has its two ends
in Z, we can get the length of a shortest (X, F )-constrained path in G between
any x, y ∈ Z. The graph G+[Z] captures the separator structure of G since there
is no edge between x, y in G+[X ∪ {x, y}] iff X is a separator of x, y in G, thus
the problem can be seen as constructing a distributed encoding of the separators
of a graph. In all cases we say that we consider a constrained path problem.

Our objective is to label each vertex x of G by a label J(x), as short as possible,
in such a way that G+[Z] can be constructed from {J(x) : x ∈ Z}. If we can
determine the lengths of shortest (X, F )-constrained paths from {J(x) : x ∈ Z},
where X ⊆ Z and every edge of F has its two ends in Z, then we call J(x) an
(X, F )-constrained distance labelling.

The graph problem ‘is there an X-constrained path from x to y?’ is monadic
second-order definable, so the result of Courcelle and Vanicat [5] implies that
graphs of bounded clique width have a labelling with labels of O(log n) bits.
However, the constant factor is a tower of exponentials in cwd(G) and is imprac-
tical.

Our main result is a labelling scheme with labels of size O(k2 log2(n)) where k
is a bound on the m-clique width (mcwd) of the graph, a generalization of clique
width that we will introduce. Since graphs with tree width (twd) k have mcwd
at most k + 3, and graphs with clique width (cwd) k have mcwd at most k, the
results follow for the case of tree width and clique width. Table 1 in [6] shows
that the networks of some important major internet providers are of small tree
width, between 10 and 20 and hence our constraint of dealing with graphs of
small tree width or clique width is somehow realistic.

The labeling works as follows: given vertices between which we want to de-
termine shortest paths and a set Z ⊆ V , we construct from {J(x) : x ∈ Z} the
weighted graph G+[Z]. Then we can answer queries about 4-tuples (x, y, X, F )
such that X ∪ {x, y} ⊆ Z and every edge of F has its two ends in Z by using
only G+[Z] : in particular the length of a shortest (X, F )-constrained path. The
idea is not to repeat for each query the construction of G+[Y ] for some set Y .

Our notation follows Courcelle and Vanicat [5]. For a finite set C of constants,
a finite set F of binary function symbols, we let T (F, C) be the set of finite well-
formed terms over these two sets (terms will be discussed as labelled trees). The
size |t| of a term t is the number of occurrences of symbols from C ∪ F . Its
height ht(t) is 1 for a constant and 1 + max{ht(t1), ht(t2)} for t = f(t1, t2).
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Let a be a real number. A term t is said to be a-balanced if ht(t) ≤ a log |t|
(all logarithms are to base 2). Let t in T (Fk, Ck) and G = val(t), the graph
obtained by evaluating t. For a node u in t, val(t/u) is the subgraph represented
by evaluating the subterm rooted at u.

3 The Case of Tree Width

Before presenting our main result on m-clique width graphs, we describe a la-
belling scheme for graphs of tree width k. A graph having tree width k can be
expressed as the nondisjoint union of graphs of size k + 1, arranged as nodes
in a tree such that the set of tree nodes containing some graph vertex forms a
connected subtree of the tree (often called a tree decomposition). We shall work
with a different, algebraic representation of graphs.

3.1 Balanced Tree Width Expressions

Every graph of tree width k can be represented by an algebraic expression (term).
A j-source graph is a graph with at most j distinguished vertices called sources,
each tagged with a unique label from {1, . . . , j}. Courcelle [7][8] shows that a
graph has tree width k iff it is isomorphic to val(t) for some term t whose leaves
are (k + 1)-source graphs and where every non-leaf node is labelled with one of
the following operations, as illustrated in Figure 1.

– Parallel composition: The (k + 1)-source graph (G // H) is obtained from
the disjoint union of (k + 1)-source graphs G and H where sources having
the same label are fused together into a single vertex.

– Erasure: For a ∈ {1, . . . , k + 1}, the unary operation fga(G) erases the label
a and the corresponding source in G is no longer a source vertex.

As in Courcelle and Vanicat[5], we combine a parallel composition and a
sequence of erasure operations to obtain a single binary operation, e.g. // fga,b

.
The term tree can be constructed given a tree decomposition of the graph –
Corollary 2.1.1 of Courcelle [7] shows that given a tree decomposition of width k
of a graph, it is possible to construct in linear time a term tree using at most k+1
source labels. The nodes of the term tree are the bags of the tree decomposition;
hence the height and degree are unchanged.

The following result of Bodlaender shows how to obtain a balanced tree width
expression with a small increase in tree width.

Lemma 1 (Bodlaender [9]). Given a tree decomposition of width k and a
graph G with n vertices, one can compute a binary tree decomposition of G of
height at most 2 log5/4(2n) and width at most 3k + 2 in time O(n).

3.2 Compact Forbidden-Set Routing for Small Tree Width

Assume we have an a-balanced term tree t for some constant a with val(t) = G,
assume wlog assume that all sources are eventually erased in t. The vertices of
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Fig. 1. The parallel composition and erasure operations for constructing graphs of tree
width k

G are then in bijection with the erasure operations, so we shall use the same
identifier u to refer to both a vertex in G and its unique corresponding erasure
operation in t. We now describe a labelling J(u) to compute the length of shortest
X-constrained paths.

For a set Y ⊆ {1, . . . , k + 1} of source labels and a (k + 1)-source graph G,
we denote by G \Y the induced subgraph of G obtained by removing the source
vertices of G whose label is in Y . Every node u in t has a state Q(u) associated
with it, which for now assume to be the collection of graphs {val(t/u) \ Y : Y ⊆
{1, . . . , k + 1}}. As in Courcelle and Vanicat[5], the label J(u) stores a string
describing the access path from the root to the node in t representing u (rather
than a leaf of t), and the state for every node adjacent to its access path (we
assume that every vertex u is adjacent to its own access path). In addition, the
label contains the source label of the node u in val(t/u). If u has the source label
su then the string is of the form

J(u) = (su, f1, i1, Q(s3−i1(u1)), . . . fh, ih, Q(s3−ih
(uh))

where h is the height of t, f1 . . . fh are the operations on the path, i1 . . . ih ∈ {1, 2}
indicate whether to take the left or right branch and s1(u) (respectively s2(u))
denote the left (respectively right) child of u in t. The states

Q(s3−i1(u1))Q(s3−i1 (u2)) . . . Q(s3−i1(uh))

are the states of nodes adjacent to the access path for u. Since each set of at
most O(k) erasure operations can be identified with O(k) bits and the term
tree has height O(log n), the access path can be described using O(k log n) bits
(excluding the space to store the states).

We now describe how to use the labelling to find the length of the shortest
X-constrained path between u, v. Assume that u, v �∈ X . For a vertex x ∈ G,
we let Path(x) be the path from the corresponding vertex x of t to the root.
For a node u of t, let X(u) be the subset of X whose corresponding erasure
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Construct-Source-Distance-Graph(G)
Input: a j-source graph G
Output: the source distance graph H on j vertices

1 Set w(u, v) = w(v, u) = 1 if {u, v} ∈ E(G)
and ∞ otherwise

2 while (G contains a non-source node)
3 do Let u be any non-source node in G
4 for each pair of neighbours x, y of u
5 do w(x, y) = w(y, x)

= min{w(x, u) + w(u, y), w(x, y)}
6 Remove u from G
7 Set w(v, u) = w(u, v) = ∞ for all v
8 return H = G

s2

s1 s3

s4
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4

11

4

2
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Fig. 2. Constructing source distance graphs by contracting paths of non-source nodes

operations are all ancestors of u in t (i.e. the subset of X represented by sources
in val(t/u)).

We construct the graph Rep(t)[X ] by adding the subgraphs val(t/w)\X(w) for
each node w ∈ t adjacent to an access path Path(x) for x ∈ X∪{u, v} (the states
on the access path will be reconstructed from these adjacent states). To each
vertex y ∈ Rep(t)[X ], associate two pieces of information: a unique identifier I(y)
for the corresponding erasure node in t and the source label sy of y in val(t/y).
Then add edges of length zero corresponding to parallel compositions between
nodes x, y ∈ Rep(t)[X ] where I(x) = I(y) and sx = sy. The length of the
shortest X-constrained path between u, v in G equals the length of the shortest
path in Rep(t)[X ] between two vertices x, y where x is a source corresponding
to node u in G and y is a source corresponding to v in G.

Now we consider how to efficiently represent the state Q(u). At first it might
seem that one needs to store all 2O(k) graphs, one for every set of deleted sources.
From val(t/u) we construct a compressed graph H called the source distance
graph with the property that for any set Y of sources and sources x, y, the
distance between x, y in val(t/u) \ Y equals their distance in H \ Y . The graph
is constructed by contracting paths of non-source vertices in val(t/u), as in
Figure 2. Since the edge weights in the source distance graph are in the range
[1, n], it can be represented using O(k2 log n) bits. This gives labels J(x) of size
O(k2 log2 n) bits.

The correctness of the labelling scheme relies on the fact that the connectivity
of sources in G // H is completely determined by their connectivity in G and H :
sources u, v are connected in G // H iff there is a source labelled r in both G, H
and paths u − r in G and r − v in H . For routing, we can augment the labelling
to compute the next hop on the shortest X-constrained path by associating with
each edge (x, y) in the source distance graph Q(u) the next hop (possibly a non-
source vertex) on the shortest non-source path represented by the contracted
edges from x to y. We can then use this information to construct a compact
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routing scheme that routes on shortest X-constrained paths with routing tables
of size asymptotically equal to the X-constrained distance labels.

Theorem 1. Graphs of tree width k have X-constrained distance labels of size
O(k2 log2 n) bits, where n is the number of vertices.

4 The Case of m-Clique Width

We now extend the results of the previous section to clique width graphs. Note
that the concept of tree width (twd) is weaker than clique width (cwd) : any
graph with tree width k has clique width at most 3.2k−1 [10] but cliques have
cwd 2 and unbounded twd. We begin by introducing some tools: balanced terms,
the new notion of m-clique width and the main construction. Due to space
restrictions, we outline our results and defer some details to a full version.

4.1 Balanced m-Clique Width Expressions

Let L be a finite set of vertex labels. A multilabelled graph is a triple G =
(VG, EG, δG) consisting of a graph (VG, EG) and a mapping δG associating with
each x in VG the set of its labels, a subset of L. A vertex may have zero, one or
several labels.

The following constants will be used: for A ⊆ L we let A be a constant
denoting the graph G with a single vertex u and δG(u) = A. We write A(u) if
we need to specify the vertex u. The following binary operations will be used:
for R ⊆ L × L, relabellings g, h : L −→ P(L) (P(L) is the powerset of L) and
for multilabelled graphs G and H we define K = G ⊗R,g,h H iff G and H are
disjoint (otherwise we replace H by a disjoint copy) where

VK = VG ∪ VH

EK = EG ∪ EH ∪ {{v, w} : v ∈ VG, w ∈ VH , R ∩ (δG(v) × δH(w)) �= ∅}
δK(x) = (g ◦ δG)(x) = {a : a ∈ g(b), b ∈ δG(x)} if x ∈ VG

δK(x) = (h ◦ δH)(x) if x ∈ VH

As in the operations by Wanke [11] we add edges between two disjoint graphs,
that are the 2 arguments of (many) binary operations. This is a difference with
clique width [12] using a single binary operation.

Notation and definitions. We let FL be the set of all binary operations ⊗R,g,h

and CL be the set of constants {A : A ⊆ L}. Every term t in T (FL, CL) denotes
a multilabelled graph val(t) with labels in L, and every multilabelled graph G is
the value of such a term for large enough L. We let mcwd(G) be the minimum
cardinality of such a set L and call this number the m-clique width of G. We
now compare mcwd with cwd and twd [5,12].
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Proposition 1. For every unlabelled undirected graph G,

mcwd(G) ≤ twd(G) + 3
mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1

It follows that the same sets of graphs have bounded clique width and bounded
m-clique width. Our motivation for introducing m-clique width is that we can
prove the following result:

Proposition 2. There exists a constant a such that, every graph of m-clique
width k is the value an a-balanced term in T (FL, CL) for some set L of cardinality
at most 2k.

The proof is deferred to the full version. The above result is very useful since no
such result is known for obtaining balanced clique width expressions.

4.2 Adjacency Labelling for m-Clique Width Graphs

For a vertex x ∈ G, let Path(x) be the path (um = x, um−1, ..., u0) from the
corresponding node x of t to the root (=u0). For a term t, let m = ht(t) be
its height. We now describe how to construct an adjacency labelling I(x). Let
I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0) where Lm = A if
A ∈ C[k] is the constant at leaf x in t; Li is the set of labels of the vertex x
in the graph val(t/ui) for i = 0, ..., m. For i = 0, ..., m − 1, we define ei = 1 if
ui+1 is the left son of ui and Di is the set of labels {j′} such that (j, j′) ∈ R for
some j in Li+1 where ⊗R,g,h occurs at node ui. Similarly, ei = 2 if ui+1 is the
right son of ui and Di is the set of labels {j′} such that (j′, j) ∈ R for some j
in Li+1 where ⊗R,g,h occurs at node ui. Each label I(x) has size O(km) and is
computable from t in time O(k2ht(t)), hence at most O(nk2ht(t)) to compute
the entire labelling.

Fact 2. From the sequences I(x) and I(y) for two distinct vertices x and y, one
can determine whether they are linked in G by an edge.

Proof. From the integers em−1, ..., e0, e
′
m′−1, ..., e

′
0 in the sequences

I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0)
I(y) = (L′

m′ , e′m′−1, D
′
m′−1, L

′
m′−1, ..., e

′
0, D

′
0, L

′
0)

one can determine the position i in Path(x) and Path(y) of the least common
ancestor ui of x and y. Wlog we assume x below (or equal to) the left son of
ui. Then x and y are adjacent in G iff Di ∩ L′

i+1 �= ∅. This is equivalent to
D′

i ∩ Li+1 �= ∅. Since the computations of Fact 2 take time O(ht(t)) for each
pair x, y, we have the following.

Fact 3. From {I(x) : x ∈ X} for a set X ⊆ V , one can determine G[X ] in time
O(|X |2ht(t)) (k is fixed).
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We have thus an implicit representation in the sense of Kannan et al.[13] for
graphs of mcwd at most k, using labels of size O(k log n). �

4.3 Enriching the Adjacency Labelling

We now show how to enrich I(x) to achieve the following.

Proposition 3. Fix k. For t in T (Fk, Ck) with G(V, E) = val(t) one can build
a labelling J such that from {J(x) : x ∈ X} for any X ⊆ V , one can determine
G+[X ] in polynomial time in |X | and ht(t).

We shall now show how to do this with labels of size O(k2 log2(n)) where k is
the m-clique width of G. The basic idea is as follows. From {I(x) : x ∈ X} for
any X ⊆ V , one can reconstruct G[X ]. For G+[X ] we need paths going out of
X , or at least their lengths. If u is a node of a path Path(x) for some x in X ,
and w is a son of u not on any path Path(y) for y in X , then we compute the
lengths of at most k2 shortest paths running through the subgraph of G induced
on the leaves of t below w, and we insert this matrix of integers at the position
corresponding to u in the label J(x).

We shall work with a graph representation of terms in T (Fk, Ck). With a term
t in T (Fk, Ck), we associate a graph Rep(t) having directed and undirected
edges. The vertices of Rep(t) are the leaves of t and the pairs (u, i) for u a node
of t and i ∈ [k] that labels some vertex x in val(t/u). The undirected edges are
(u1, i) − (u2, j) whenever u1, u2 are respectively the left and right sons of some
u labelled by ⊗R,g,h and (i, j) ∈ R. The directed edges are of 3 types :

1. u −→ (u, i) for u a leaf labelled by A and i ∈ A.
2. (u1, i) −→ (u, j) whenever u1 is the left son of u, u is labelled by ⊗R,g,h

and j ∈ g(i).
3. (u2, i) −→ (u, j) whenever u2 is the left son of u, u is labelled by ⊗R,g,h

and j ∈ h(i).

As an example, the left half of Figure 3 shows a term t (thick edges) and the
graph Rep(t) (fine edges). We use −→∗ to denote a directed path; ←−∗ denotes
the reversal of a directed path.

Fact 4. For a vertex u of G below or equal to a node w of t, u has label i in
val(t/w) iff u −→∗ (w, i) in Rep(t).

Fact 5. For distinct vertices u, v of G : u − v in G iff we have a mixed (di-
rected/undirected) path u −→∗ (w, i) − (w′, j) ←−∗ v in Rep(t) for some
w, w′, i, j.

We call such a path an elementary path of Rep(t). A walk is a path where
vertices may be visited several times. A good walk in Rep(t) is a walk that is a
concatenation of elementary paths. Its length is the number of undirected edges
it contains (the number of elementary paths).



Compact Forbidden-Set Routing 45

Fig. 3. A term t and the graph Rep(t), and the graph Rep(t)[{x, y}] with some valued
edges from Rep(t)+[X]

Fact 6. There is a walk x − z1 − ... − zp − y in G iff there is in Rep(t) a good
walk

W = x −→∗ − ←−∗ z1 −→∗ − ←−∗ ... −→∗ − ←−∗ zp −→∗ − ←−∗ y

For a nonleaf vertex u, a u-walk in Rep(t) is a walk that is formed of consecutive
steps of a good walk W and is of the form

(u, i) ←−∗ z −→∗ − −→∗ · · · −→∗ (u, j)

where all vertices except the end vertices (u, i), (u, j) are of the forms u, or w or
(w, l) for w strictly below u in t. Its length is defined as the number of undirected
edges.

We let Min(u, i, j) be the smallest length of a u-walk from (u, i) to (u, j), or
∞ if no such u-walk exists. Clearly Min(u, i, i) = 0 ((u, i) is a vertex of Rep(t),
so Fact 4 applies). We let MIN(u) be the S × S matrix of all such integers
Min(u, i, j), where S is the set of labels p such that (u, p) is a vertex of Rep(t).
It can be stored in space O(k2 log n) since n bounds the lengths of shortest
u-walks in Rep(t).

Fact 7. If in a good walk we replace a u-walk from (u, i) to (u, j) by another
one also from (u, i) to (u, j) we still have a good walk.

We are now ready to define J(x) for x a vertex of G. We recall that Path(x) is
the path (um = x, um−1, ..., u0) in t from a leaf x to the root u0, and

I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0).

We let then

J(x)=(Lm, em−1, Dm−1, Lm−1, Mm−1, fm−1, em−2, Dm−2, ..., e0, D0, L0, M0, f0)
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where fi is the binary function symbol (some ⊗R,g,h) occurring at node ui,
Mi = MIN(RightSon(ui)) if ei = 1 and Mi = MIN(LeftSon(ui)) if ei = 2 for
each i = 0, ..., m − 1.

Fact 8. J(x) has size O(k2ht(t) log(n)).

Proof (Proof of Proposition 3). From the set {J(x) : x ∈ X}, one can construct
the graph G[X ] by Fact 3. We let Rep(t)[X ] be the subgraph of Rep(t) induced
by its vertices that are either elements of X (hence leaves of t), or of the form
(w, i) if w is a son of a node u on a path Path(x) for some x in X .

Because a sequence J(x) contains the function symbols fi and the index sets
S of the matrices Mi, we can determine from it the edges of Rep(t), not only
between vertices of the form (u, i) for nodes u in Path(x) but also between these
vertices and those of the form (w, i) for w that are sons of such nodes u but are
not necessarily in Path(x).

It remains to determine the lengths of shortest good walks in Rep(t) in order
to get the valued edges of G+[X ]. We let Rep(t)+[X ] be the graph Rep(t)[X ]
augmented with the following integer valued undirected edges: (u, i) − (u, j)
valued by Min(u, i, j) whenever this integer (possibly 0) is not ∞.

Example: For the term t in the left half of Figure 3 and X = {x, y}, the right
half of the Figure shows the graph Rep(t)[X ] augmented with two valued edges
(u, i) − (u, j) for 2 of the 3 nodes u which are not on the paths Path(x) and
Path(y) but are sons of nodes on these paths. These 3 nodes yield 5 vertices in
the graph Rep(t)[X ]. Each of these vertices has a loop with value 0 (these loops
are not shown). We show the two non-loop edges labelled by 0 and 1.

The shortest good walks in Rep(t) that define the valued edges of G+[X ]
are concatenations of edges of Rep(t)[X ] (which we have from the J(x)’s) and
w-walks of minimal lengths for nodes w that are not on the paths Path(x) but
are sons of nodes on these paths. We need not actually know these w-walks
exactly; we only need the minimal length of one of each type. This information
is available from the matrices MIN(w) which we have in the J(x)’s. We can
thus build the valued graph Rep(t)+[X ], and the desired values are lengths of
shortest paths in the graph Rep(t)+[X ] under the alternating edge constraints
in Fact 5.

This proves Proposition 3. �

Combining Propositions 2 and 3 gives the following.

Theorem 9. For a graph G of m-clique width at most k on n vertices, one can
assign to vertices labels J(x) of size O(k2 log2 n) such that from {J(x) : x ∈ X}
for any set X ⊆ V , one can determine the graph G+[X ] in time O(|X |3 log n).
The graph G must be given along with an mcwd expression of width at most k.

The problem of determining for a given graph its m-clique width and the corre-
sponding expression is likely to be NP-hard because the corresponding one for
clique width is NP-complete [14]. A cubic algorithm that constructs non-optimal
clique width expressions given by Oum [15] may be used.
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4.4 Compact Forbidden-Set Routing for Small mcwd

We now describe how to use the labelling J to build a compact routing scheme.
Recall that the construction of J is based on matrices that give for each node u
of a term t the length of a shortest u-walk in Rep(t) from (u, i) to (u, j). Storing
the sequence of vertices of the corresponding path in G uses space at most space
n log n instead of log n for each entry (assuming there are n vertices numbered
from 1 to n, so that a path of length p uses space p logn). The corresponding
labelling J ′(x) uses for each x space O(k2n log2 n).

We assume that X ∪ {x, y} ⊆ Z and every edge of F has its two endpoints
in Z. For a compact routing scheme, it suffices to be able to construct the path
in a distributed manner, by finding the next hop at each node. Here is such a
construction, that for such a set Z ⊆ V gives the length of a shortest (X, F )-
constrained path from x to y together with z, the first one not in Z on the
considered shortest path. For this, we need only store, in addition to the length
of a shortest u-walk in Rep(t) from (u, i) to (u, j) (in the matrix MIN(u)) its
first and last vertices. This uses space 3 logn instead of log n for each entry. The
corresponding labelling J ′′(x) uses for each x space O(k2 log2 n). This gives the
following compact forbidden-set routing scheme.

Theorem 10. Let each node have a forbidden set of size at most r. Then graphs
of m-clique width at most k have a compact forbidden-set routing scheme using
routing tables of size O(rk2 log2 n) bits and packet headers of size O(rk2log2n)
bits.

Proof. Given an mcwd decomposition of G = (V, E) of width at most k and a
set S(u) ⊆ V stored at each node u with |S(u)| ≤ r, the routing table at u is the
label J ′′ as above. To send a packet from u to v on an S(u)-constrained path, u
writes into the packet header the label J ′′(v) for the destination and the labels
{J ′′(x) : x ∈ S(u)}. Then u forwards the packet to a neighbour w that minimizes
the minimizes the distance from w to v, obtained as described above. Since the
distances computed are exact distances, the packet always progresses towards
the destination and will never loop. Note that if the paths are only approximately
shortest, there may be loops – in this case, w adds its label J ′′(w) to the packet
header, setting S′(u) = S(u)∪{w} and we ask for the shortest S′(u)-constrained
path from w to v. The price we pay here is that the packet headers grow with
the length of the path.

In this case however, we may need to compute graphs G+[Z] for larger and
larger sets Z. �

5 Open Problems

A major problem is to get good bounds on planar graphs. Using the O(
√

n) re-
cursive separator structure gives Õ(n) bits per label, but we believe it is possible
to do much better. We would also like to solve other constrained path problems
using G+[X ], using the separator structure that we encode.
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