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Abstract—We consider the problem of broadcasting informa-
tion from a source node to all nodes in a wireless network, using
a local-control algorithm. For simplicity, we assume some oracle
that provides the scheduling decisions required for interference.
Under this assumption, we can show that a local control algo-
rithm exists that achieves a stable system whenever the injection
rate at the source is feasible for the network. We show results for
the case of a single antenna and for multiple antennas operating
independently.

I. INTRODUCTION

Broadcasting poses an important challenge in military wire-
less networks, primarily due to the dynamic nature of the
network. Moreover, efficient use of resources is extremely
important in military networks as they are often severely
energy constrained. Thus designing decentralized broadcasting
algorithms that can minimize resource usage or, conversely
maximize capacity given resource constraints is an important
problem. In this paper we present and analyze a decentralized
broadcast algorithm for a wireless network that achieves the
broadcast capacity of the network. We prove its optimality by
extending results in [6] developed for broadcast in a wireline
network.

The broadcast algorithm is simple. Nodes exchange infor-
mation with their neighbors regarding the identities of all
data packets that they have received. Then, when granted
access to the channel, a node randomly choose packets that
are required by at least one of its neighbors. Last, the proof
that this algorithm achives the broadcast capacity of the
network, i.e., the maximum possible sending rate that can be
supported by any algorithm, relies on studying the fluid limit
of the algorithm and proving that the fluid model is stable by
choosing an appropriate Lyapunov function.

The paper is organised as follows. In Section 2 we describe
some of the related work in wireless broadcasting. In Section
3 we describe our setting, based on the so-called ‘scheduling-
free model’ and single omni-directional antennas, and in-
troduce the deterministic fluid approximations. In Section 4
we prove the main stability result. In Section 5 we consider
extensions of the model to different antenna configurations.

II. RELATED WORK

The problem of performing multicast and broadcast in a
wireless network has received increasing attention over the last

several years. Closest to our work is that of Keshavarz-Haddad
et al. [9], which considered the problem of broadcasting in a
wireless network. They proved asymptotically tight bounds for
the broadcast rate using a construction of minimum connected
dominating sets (MCDS) that, although can be constructed in
a distributed fashion, are not easy to maintain.

Less related are works that study the multicast and/or broad-
cast capacities of random spatial networks. Zheng studied the
broadcast capacity of static wireless networks [19], where the
nodes are distributed according to a 2-dimensional Poisson
process sharing a Gaussian wireless channel whose capacity
is given by the Shannon Signal to Interference Ratio (SINR).
Jacquet and Rodolaski, [7], and Shakkottai and Srikant, [14]
studied the multicast capacity of a dense wireless network as
the number of nodes grows.

Last, considerable work on the development of specific
algorithms for broadcast and multicast in wireless networks,
[17], [13], [11], [16], [8]. However, these algorithms are
heuristic in nature and make no claims about maximizing the
broadcast capacity of the network.

III. SCHEDULING-FREE MODEL

We represent a wireless network by a directed, edge-
capacitated hypergraph G = (N,E, {cv}v∈V ). Here (u, V ) ∈
E means that when u ∈ N transmits and no other nodes
transmit, the set V ⊂ N receives the transmission at capacity
cu. We assume that each node has a single omni-directional
antenna. Thus every node u has exactly one outgoing hyper-
edge. Thus V in the hyperedge (u, V ) is the neighbour set
of u and we will refer to it as N(u). Last, we will let (u, v)
denote an edge between u and v iff v ∈ N(u).

We now consider the following broadcast problem. A source
node s wants to send an infinite stream of data to all other
nodes. Due to the local broadcast nature of wireless networks,
a data transfer means replicating a given packet from some
node u to all of its neighbours in G. In particular, different
packets cannot be sent to two nodes v, v′ with v, v′ ∈ V along
edge (u, V ) concurrently. The injection rate at the source is
denoted by λ, and is the rate at which the source gets new
packets.

Each node can be in one of two states: on or off. In the on
state, it can transmit data. A node v can receive data from a



neighbour u iff u is on and no other neighbour of v is on.
Let B(t) = (B1(t), . . . , Bn(t)) be the configuration of the
network where Bu(t) =1 iff node u is on at the t-th time
step. Given a configuration, we say that an edge (u, v) ∈ E
is active iff u is on and v can receive data from u. We call
a configuration interference-free iff all edges (u, v) ∈ E are
active whenever u is on. This notion of interference between
nodes complicates the scheduling decisions involved in the
model. To simplify things, we first consider the following
‘scheduling-free’ model: we model B(t) as a continuous-time
Markov chain with the following properties: (1) at every time
t, the configuration specified by B(t) is interference-free and
B is ergodic. We assume that such a chain is given by some
scheduler that is not under our control. Thus, we must now
only contend with the constraint that the same packet must be
transmitted over all edges (u, v) for each u.

Given the transition rates of B(t), we shall consider the
steady state time π(u) that u is active. Since B is ergodic
the quantities π(u) exist. We define the ‘effective’ capacity
c′u = π(u)cu of a node operating under this schedule. In
what follows, we shall deal with capacities cu, and leave the
substitution of cu by the effective capacity c′u to the reader
whenever these quantities exist. We do not claim right now
that these capacities are indeed the actual capacities, but it
will become clear in the construction of the fluid limits that
these are a suitable approximation in the fluid scaling.

Following the development of [6], let XS count the number
of packets replicated exactly at nodes of S ⊆ V . In addition,
let A = {G1 = (W1,W1), . . . , Gm = (Wm, Fm)} is a set of
subgraphs that describe the active packets: Wi is the set of
nodes at which the i-th active packet is currently replicated;
Fi ⊆ Wi is the subset of nodes actively transmitting the i-th
active packet to its neighbors.

A. Description of state space

We shall assume that at any given time, at most one packet
is transferred along a given hyperedge. Thus, the total number
of active packets is at most |E|. We shall further assume that
the following constraints are met: for an active packet with
description (W,F ), for each u ∈ F , then u ∈W , N(u)∩W 6=
N(u) (there is at least one neighbour of u not in W ), and there
is no other v ∈W such that N(u) ∩N(v) 6= ∅.

We use the notation

X+u =
∑

S∈S:u∈S,N(u)∩S 6=∅

XS

to count the number of packets replicated at u but not in at
least one of its neighbours. In addition, we use the notation

Xa
+u =∑

(W,F )∈A

1u∈W 1N(u)\W 6=∅1∪u′∈W\F N(u′)∩(N(u)\W ) 6=∅

to denote the number of active packets that could possibly
be forwarded by u to one or more of its neighbors given the
above constraints.

We enforce the following activity condition at all times: for
any node u in the on state (Bu(t) = 1), there is active packet
being transferred from u or else X+u = 0 and Xa

+u = 0.
The system evolution is determined by the following tran-

sition mechanism.

B. Packet transmission algorithm

The algorithm is modelled by a markov chain having several
types of transition.

a) Primary transitions: The first type of primary transi-
tion is due to a fresh packet arrival at the source. After such
a transition, the state variable X{s} is updated to X{s} + 1.

The second type of primary transition is due to completion
of transfer of an active packet along some hyperedge. Let
this packet be represented by (W,F ), and let u ∈ F be the
node completing the transfer to its neighbours. If u is the only
member of F then the packet is removed from the collection of
active packets and the number of idle packets at S = W ∪{v}
is increased by 1. If F \ {u} is not empty then W is updated
to W ∪N(u), and F is updated to F \ {u}.

It should be remembered that, since we are operating in
the scheduling-free scenario, the packet is delivered to all
neighbours N(u) rather than some strict subset. The case
where there is interaction between the set of ‘on’ nodes and
the set of nodes that receive a given transmission from u is
an open problem.

We wish to enforce the following activity condition on
nodes which are on: for every node u, it is either transmitting
a packet to its neighbors or in an off state.

b) Secondary transitions: These occur subsequently to
primary transitions, to ensure that the activity condition is met.
If, after a primary transition, there is a node u for which the
activity condition is not met, this means that u is on and has
X+u + Xa

+u > 0 packets, one of which can be transferred
from u to one or more of its neighbors. In this case, one of
these packets will be selected uniformly at random, and start
being transmitted to its neighbors.

More precisely, for each S ∈ S such that u ∈ S, N(u)∩S 6=
∅, with probability

XS

X+u + Xa
+u

,

the following state updates are made:

XS ← XS − 1,
A← A ∪ (S, (u, N(u))).

For each active packet (W,F ) such that u ∈ W , with
probability 1/(X+u + Xa

+u), the active set A is updated as
follows:

A← A \ (W,F ) ∪ (W,F ∪ (u, N(u))).

Note that all these transition probabilities sum to 1, as required.
This secondary transition mechanism corresponds to what

we shall call the “random useful” packet forwarding strategy:
when a new useful packet transfer along from u can start,
the packet that is actually transferred is selected uniformly at
random from the total collection of packets present at u and



not at some neighbour v ∈ N(u), and not currently transferred
towards any neighbour.

c) Scheduling transitions.: These occur whenever a node
transits either from an on state to an off state, or an off state
to an on state.

Consider the first case. Suppose that Bu changes from 1
to 0. We shall assume that the transmission is interrupted,
and must be resent when the node is active again. Therefore,
if there exists a (W,F ) ∈ A such that u ∈ F , then this
transmission is stopped and we update

(W,F )→ (W,F \ {u})

(and if F is now empty, this packet is removed from the active
set and we update the count of idle packets at W by XW →
XW +1). On the other hand, if Bu changes from zero to one,
i.e., u is allowed to transmit, then it executes the action as it
would for a secondary transition.

We shall consider the Markovian case of transmission times:
the interpacket arrival times at the source are exponentially dis-
tributed with mean λ−1, and packet transfer times for (u, V )
are exponential with mean c−1

u . The memoryless property of
the Poisson distribution will be important when considering
the transmission interruptions arising from the scheduling
transitions.

IV. SCHEDULING-FREE CASE: MAIN RESULT

In this section, we shall prove our main result. Theorem 1
says that, under a restriction on the injection rate of packets
at the source, the Markov process of the previous section
describes a stable system. Theorem 2 says that, under the
scheduling-free assumption, this restriction is necessary, hence
our result is optimal.

Our main result is the following:
Theorem 1: The Markov process ((XS)S∈S , A) corre-

sponding to random useful packet forwarding in the
scheduling-free case with a single omni-directional antenna
is ergodic under the condition

λ < min
S∈S

∑
u∈S,N(u)∩S 6=∅

cu. (1)

The theorem implies that the ‘backlogs’ at any node con-
verge in probability, and so we say that the system is stable
under the above restriction on λ. We will now show that this
restriction is necessary, i.e. that the system is stable whenever
the injection rate is strictly feasible, i.e. it is possible to
broadcast at a rate of λ + ε for any ε > 0. Thus, using
our scheme we can broadcast at a rate arbitrarily close to
the network capacity (remembering of course that we are
operating in the scheduling-free scenario).

In the wired case we have independent edge transmissions,
and the maximum broadcast rate is characterized in terms of
packings of spanning arborescences. Edmonds [3] has shown
that the maximum size of such a packing equals the min-
mincut, denoted by

µ = min
S∈S

∑
u∈S,v/∈S

cuv.

In our model, each node has to transmit the same packet
over all its outgoing links. This corresponds to a packing of
spanning arborescences where for every arborescence T in the
packing, every internal node u of T has degree in T equal to
its degree in G, i.e. degT (u) = degG(u). We call such an
arborescence a restricted arborescence.

In light of this interpretation, Theorem 1 says that
there exists a packing of restricted arborescences of size
minS∈S

∑
u∈S,N(u)∩S 6=∅ cu, i.e. λ is at least this value. To

see this, take λ arbitrarily close to minS∈S
∑

u∈S,N(u)∩S 6=∅ cu

and note that each packet travels on exactly one restricted
arborescence and consider the packing induced by the station-
ary distribution of arborescences chosen by the broadcasting
scheme. The following argument shows that this bound is tight.

Theorem 2: For every edge-disjoint packing of restricted
arborescences with value λ, we have

λ ≤ min
S⊂V

∑
u∈S,N(u)∩S 6=∅

cu.

Proof: For a contradiction, assume that λ >∑
u∈S,N(u)∩S 6=∅ cu for some set S. Then there necessarily

exists some (possibly parallel) edges in some tree that do not
exist in G, since each vertex u can contribute at most value
cu to the value of the packing. This is because either all its
child edges are in a given tree, or none of them are.)

Together, this shows that any broadcasting scheme having
the fluid limit defined in the next section is stable under
injection rate λ, whenever rate λ + ε is feasible for ε > 0,
i.e. there exists a packing of restricted trees of value (λ + ε).
A packing of restricted trees of value x corresponds to a
distribution scheme having rate x under the ”local broadcast”
model.

It is interesting to ask how large can the gap be between the
rates under local broadcast (say λ) and independent edge trans-
missions (say µ)? It is easy to see that µ/λ ≤ maxv degG(v),
and this is tight in the worst-case: consider a source connected
to n nodes, which form a clique Kn where all capacities are
unit. We can achieve a packing of n unrestricted trees, but
any packing of restricted trees must have value at most 1 (for
otherwise, a cycle in some tree would result). Note that this
graph is a unit-disk graph, so trying to restrict oneself to such
more realistic wireless topologies doesn’t strengthen the result
in the worst case.

A. Fluid limits

Definition 1: The real-valued non-negative functions t →
yS(t), S ∈ S, are called fluid trajectories of the above Markov
process if they satisfy the following conditions.

For all S ∈ S, all u ∈ S, all V ⊆ S ∩ N(u), there exist
non-negative functions t→ φS,(u,V )(t) such that

y{s}(t) = ys(0) + λt−
∑

V⊆N(u)

φ{s},(s,V )(t)

yS(t) = yS(0) +
∑
u∈S

∑
V⊆N(u)∩S

φS\V,(u,V )(t) (2)



−
∑
u∈S

∑
V⊆N(u)

φS,(u,V )(t),

S 6= {s} (3)

and that are non-decreasing cu-Lipschitz continuous, differen-
tiable almost-everywhere.

For yS , the additive terms count the total amount of fluid
flowing into S due to transmissions from u ∈ S along some
hyperedges containing neighbours not currently in S.

Since each node has a single omni-directional antenna, we
can write the following expression:

y+u(t) > 0⇒ d

dt
φS,(u,N(u)∩S)(t) = cu

yS(t)
y+u(t)

, (4)

where we have used the notation

y+u(t) :=
∑

S:u∈S,N(u)∩S 6=∅

yS . (5)

Also, define
d

dt
φS,(u,V ) = 0 for V 6= N(u) ∩ S. (6)

Together, these conditions enforce that fluid can flow only
from u ∈ S to all of its neighbours not in S, rather than
some selective subset of neighbours (as in the independent
edge transmission case).

We now argue that the fluid limits above do indeed describe
the Markov process after some suitable rescaling. The proof
is along the same lines as given in [6], except that we must
consider the completion of packet transfers along hyperedges,
which are treated just as simple edges, and we must consider
the effect of the scheduling transmissions. A full proof will
be given in the full version of the paper.

Proof outline. As in [6], given a sequence (zN )N of positive
reals and initial conditions (XN (0), AN (0))N such that the
limit limN→∞

1
zN

XN (0) = x(0) exists, let us define the
rescaled Markov process

Y N
S (t)zNXN

S (zN t)

for all S ∈ S. We wish to show that for all T > 0, the process
Y N restricted to the interval [0, T ] converges in probability to
the fluid trajectories defined above.

To this end, consider the total number of packets present
in S, given by X̃S = XS +

∑
(W,F )∈A 1W=A and similarly

define the rescaled quantity

Ỹ N
S (t)zN X̃N

S (zN t) = Y N
S (t) + 11zN

∑
W∈AN

1W=S .

We now consider the process counting the number of
packets sent over a given hyperedge (u, N(u)). This is an
interrupted Poisson process (IPP), a special case of the 2-state
Markov-modulated Poisson process where one of the states
has zero intensity. Assume a unit-rate Poisson process Pu

modulated by a stationary continuous time Markov process
B(t) with jump times for each node u independent and
exponentially-distributed intervals of mean ‘on’ length 1

πu
and

‘off’ length 1 − 1
πu

where πu is the stationary probability of

u in B(t). Katsinis et al. [5] show that this modulated process
has mean intensity πu and Alwakeel [1] shows that in the
limit it behaves as a scaled Poisson process with intensity πu

(intuitively, the memoryless property guarantees that on a jump
from on to off, the expected time until the next arrival of Pu is
the same when Pu is restarted following the next jump off to
on). Roughly, since packet transmissions are interrupted and
must be restarted (rather than continuing on the next jump),
and since a transmission begins immediately after the on to
off jump, the count of the number of arrivals of the process
Pu in the on period will, in expectation, count the number of
completed transmissions during this interval.

Following [6] and scaling Pu in time we can write

ΦN
S,(u,N(u))(t) = Pu

πucu

∫ t

t

∑
(W,F )∈AN (s)1W=S1(u∈F

ds


to approximate the total number of completions of transfers of
packets previously replicated at S, along hyperedge (u, N(u)).
The remainder follows [6], noting that we approximate the
IPP by a rescaled Poisson process and thus the probability of
a large deviation (1 + δ) remains exponentially small in δ.

The functions φS,(u,N(u) are handled in a similar way: it
is not difficult to see that they are cu-Lipschitz, and indeed
the probability that a packet selected for transmission along
(u, N(u)) is an idle packet replicated at S is, in the limit,
yS(t)/y+u(t) + O(h). This ensures the claimed derivatives of
the functions. It remains to understand how the scheduling
transitions affect things. Since packet transfer times are expo-
nential and memoryless, and the schedule S(t) is ergodic, we
have that the ‘on’ periods for u are exponential with mean
1/π(u).

B. Fluid dynamics: stability

We now establish stability of the fluid trajectories under the
condition on the injection rate mentioned earlier. Define the
linear Lyapunov function

L(y(t)) = sup
S⊂V

β|S|y⊆S .

We want to show that there exist positive constants
β1, . . . , βn−1 so that L is continuous and strictly decreasing.
As in [6], the ergodicity of the process will follow by applying
a version of Foster’s theorem, which we shall omit here for
clarity (the reader can refer to the proof in [6] for technical
details).

We would like to have, for S∗ achieving the supremum, the
following property, for any fixed α > 0 : for u ∈ S∗, N(u) ∩
S∗ 6= ∅, then for all S′ 6⊆ S∗ with u ∈ S′, N(u) ∩ S

′ 6= ∅,
we have yS′ ≤ αy+u. Then we would have the following



evaluation:
d

dt
y⊆S∗

=
∑

S⊆S∗

d

dt
yS

= λ−
∑

u∈S∗,N(u)∩S∗ 6=∅

∑
S′⊆S∗,u∈S′

∑
V⊆N(u)∩S∗

d

dt
φS′,(u,V )

Using (3-5), this is equal to

λ−
∑

u∈S∗,N(u)∩S∗ 6=∅

∑
S′⊆S∗,u∈S′

d

dt
φS′,(u,N(u)∩S∗)

= λ−
∑

u∈S∗,N(u)∩S∗ 6=∅

cu

1−
∑

S′ 6⊆S∗,u∈S′

N(u)∩S′ 6=∅

y′S/y+u


≤ λ−

∑
u∈S∗,N(u)∩S∗ 6=∅

cu + n2nα max
u

cu

where we used the following equality, for any vertex u and
set of vertices S with N(u) ∩ S 6= ∅:∑

S′⊆S,u∈S′

N(u)∩S 6=∅

yS′/y+u +
∑

S′ 6⊆S,u∈S′

N(u)∩S′ 6=∅

yS′/y+u = 1.

Proposition 1: For any fixed α > 0, there exists constants
β1, . . . , βn−1 such that S∗ = arg supS⊂V β|S|y⊆S satisfies the
property described above.
Proof. We want to show that for all S ⊂ V, u ∈ S, N(u)∩S 6=
∅,

y+u < ε|S|y⊆S ⇒ β|S|−1y⊆(S−u) > β|S|y⊆S .

So assume ∃S ⊂ V with u ∈ S, N(u) ∩ S 6= ∅ with y+u <
ε|S|y⊆S . Then write

y⊆S ≤ y⊆(S−u) +
∑

S′:u∈S′,S′⊆S,N(u)∩S′ 6=∅

yS′

≤ y⊆(S−u) + y+u

< y⊆(S−u) + ε|S|y⊆S .

Hence y⊆S(1−ε|S|) < y⊆(S−u) and the claim will be satisfied
if (1− εi)βi−1 ≥ βi for i = 2, . . . , n− 1.

Now assume we have an S ⊂ V with u ∈ S, N(u)∩S 6= ∅
and ε|S|y⊆| ≤ y+u. We want to show that if ∃S′ 6⊆ S with u ∈
S′, N(u) ∩ S′ 6= ∅ and yS′ > αy+u, then β|S∪S′|y⊆(S∪S′) >
β|S|y⊆S . To show this, write

β|S∪S′|y⊆(S∪S′) ≥ β|S∪S′| (yS′ + y⊆S)
> y⊆S(αε|S| + 1).

The claim will be satisfied if β|S∪S′|(1+αε|S|) ≥ β|S|, which
is satisfied by βn−1(1 + αεi) ≥ βi for i = 1 . . . n− 2.

Hence we need to find βi’s that satisfy these two inequal-
ities, and these are exactly the same inequalities considered
in Massoulié et al. [6]. Using their choice of εi and βi will
establish the proposition.

V. DIFFERENT ANTENNA MODELS

Our results can extend to other antenna models. In particu-
lar, we have the following

A. Multiple omnidirectional antennas

Assume that each node u has k antennas, each with capacity
cu. It is not difficult to see that this is equivalent to the single
antenna case with capacities scaled by a factor of k.

B. Fixed directional antennas

In this case, we allow transmission to selected subsets of
neighbours. For example, in a planar embedding of the net-
work (say), we would have some θ and draw a cone of width
θ and fixed radius, that defines the set of neighbours reachable
by a given antenna pointing in the central direction of the cone.
Since we do not consider graphs necessarily embeddable into
surfaces of bounded genus, we shall simply specify for each
node u a collection of hyperedges E(u) = (u, {Vi}) that u
may selectively transmit to. If it has k independent antennas,
it may select at most k of these edges (they may overlap).

We shall assume (for technical reasons explained below)
that antennas are fixed wrt a particular hyperedge. In reality,
this means that transmission is fixed between u and a collec-
tion of different neighbours (so the antenna may physically
move but transmission is always to the same set of receivers).
Hence we have a collection of k possibly overlapping hy-
peredges (u, V1(u)), . . . , (u, Vk(u)). When u is clear from
the context, we shall simply write Vi instead of Vi(u). We
shall allow different antennas to have different capacities (for
example, because of radius of transmission, different noise and
signal characteristics, etc.). This is specified by assigning the
hyperedge capacities cu,Vi . Furthermore, we assume that all
antennas at u can operate independently.

For a node u and V ⊆ N(u) define

y+u−V =
∑

S:u∈S,V ∩S 6=∅

yS

and for antenna i,

y+u−Vi(t) > 0⇒ d

dt
φS,(u,Vi∩S)(t) = cu,Vi

yS

y+u−Vi

.

Also define
d

dt
φS,(u,V )(t) = 0 for V 6∈ {V1, . . . , Vk}.

To characterize the maximum rate in terms of arborescence
packings, consider the collection of restricted arborescences
where in each tree T , each node u is either a leaf or appears
with child set the union of some Vi(u)’s. As usual, we require
that every pair of nodes (u, v) appears in the graph with
cardinality at most k|{i : v ∈ Vi(u)}|.

We consider the following natural extension of the ran-
dom forwarding scheme: each antenna (u, Vi) transmits at
maximum capacity a packet chosen at random from the set
of packets at u but not at some node in Vi. The notion of
“scheduling-free” remains the same as before. We can prove
the following result (the proof will appear in a full version).



Theorem 3: The process described above is stable (under
the scheduling-free assumption) whenever the injection rate
satisfies

λ < min
S∈S

∑
u∈S

∑
i:Vi(u)∩S 6=∅

cu,Vi . (7)

VI. SUMMARY

We considered the problem of broadcasting a stream of
data in a wireless network, using local decisions only at each
node. We proved that, under some fairly restrictive scheduling
assumptions, a rate-optimal protocol exists based on the ideas
of Massoulié et al. [6]. A natural next step would be to try to
remove the so-called scheduling-free assumption; this appears
to be a difficult open problem because of the interaction
it would introduce between scheduling decisions and packet
transmissions that only reach a strict subset of neighbours.
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