1

Rate-optimal schemes for Peer-to-Peer
live streaming

Laurent Massoulié and Andy Twigg
Thomson, Corporate Research

Abstract

In this paper we consider the problem of sending data in ige from information
sources to sets of receivers, using peer-to-peer comniiorisaWe consider several models
of communication resources, and for each model we identifigmes that achieve successful
diffusion of information at optimal rates.

For edge-capacitated networks, we show optimality of theaed “random-useful”
packet forwarding algorithm. As a byproduct, we obtain agigroof of a famous theorem
of Edmonds, characterising the broadcast capacity of actaped graph.

For node-capacitated networks, assuming a complete comatiom graph, we show
optimality of the so-called “most-deprived” neighbour esglon scheme combined with
random useful packet selection. We then show that optiynéitpreserved when each
peer can exchange data with a limited number of neighboungnwneighbourhoods are
dynamically adapted according to a particular scheme.

Finally, we consider the case of multiple information sas,ceach creating distinct
information to be disseminated to a specific set of receitarthis context, we prove opti-
mality of the so-called “bundled most-deprived neighbamrdom useful packet” selection.

I. INTRODUCTION

There are nowadays many operational peer-to-peer sysigopeinglive streamingi.e.
real-time dissemination of audio-video data injected abarce towards a set of receivers
(e.g. PPLive, TVants, Sopcast, and CoolStreaming, to nafeg/a The detailed algorithms
implemented in those systems are in general not publicljedbla, a notable exception being
CoolStreaming (see e.g.[14]).

However, some degree of reverse engineering is possibledad it is commonly believed
that the above-mentioned systems implement schemes oblibeving kind. Data generated
at the source is partitioned intwindowsof contiguous data packets. Each peer then aims to
download all packets from a window, before it starts dowding packets from the subsequent
window. To download the packets from a given window, a pegiéments schemes similar
to those used in BitTorrent [2] for downloading a file.

The schemes used for determining packet exchanges resmit dr combination of peer
selection strategy (who to send to) and packet selectiatesty (what to send). For instance
in BitTorrent, peers serve preferentially those from whbeytreceived more data in the recent

The results in Sections 2-4 of this paper were announced JinE@arly versions of their proofs appeared in
Technical Report [8]. The results in Section 5 appear her¢hi® first time.



past (this is the so-called Tit-for-Tat mechanism, disedss detail in [6]). The decision of
what to send is made by the receiver, who selects the rarekepaarity being evaluated
locally across neighbour peers.

The aim of the present paper is to introduce mathematicabfs@ihd give proofs that simple
strategies, similar to those just described, are capabdelukving real-time dissemination of
content to receivers at optimal rates. By optimal rate, wammghat dissemination at larger
rates is infeasible with the available communication reses.

The organisation of the paper is as follows. In Section I, weoduce the model of
edge-capacitated networks. In this context, the optimfaigion, or broadcast rate, has been
characterised by Edmonds [5] as the minimum over receiMaitseominimum of the capacity
of cuts between the data source and the corresponding ee¢eliso known as the min-min-cut
capacity). Our main result, Theorem 1, states that undeloraruseful packet forwarding, the
system is ergodic provided the data injection rate is $tricelow the min-min-cut capacity.
The theorem of Edmonds [5] is retrieved as a corollary of @sult.

The proof of Theorem 1 is given in Section Ill.

In Section IV, we introduce the model of node-capacitatddoeks, and the most-deprived
neighbour selection strategy. Assuming a complete comeatioh graph (i.e., everyone can
send to anyone), we prove that the system is ergodic undemtist-deprived neighbour
random-useful packet selection rules, when the injectade is strictly below the maximal
sustainable injection rate.

In Section V, we relax the assumption of a complete commtinicagraph. We show
that rate optimality is preserved for communication grapiith small neighbourhoods that
are continuously adapted over time. We then extend thetsestlSection IV to the case
of multiple information sources, each creating distindbimation to be disseminated to a
specific set of receivers. In this context, we prove optityalf the so-called bundled most-
deprived neighbour random useful packet selection.

Conclusions are drawn in Section VI.

Preliminary versions of the proofs in Sections II-IV apmehpreviously in the technical
report [8], while the corresponding results have been anced in [7]. Both the results and
the proofs in Section V appear here for the first time.

Il. EDGE CAPACITATED NETWORKS
A. System model

A directed, edge-capacitated graph= (V, E) is given. A distinguished source node
wants to send data to all other nodes, i.e. broadcast infmmaver the graph’. Data
transfers consist of packet replication from some nade a nodev such that(u,v) € E.
The injection rateat the source is denoted by and is by definition the rate at which the
source gets new packets.

The scheduling strategy we consider in this section is thewong. When any node: has
some packets that one of its neighboursas not received yet, or is not currently receiving,
and when there is no current transmission from nede nodev, thenwu picks uniformly at
random one of the packets that it could usefully send,tand sends it t@. Such a transfer
proceeds at speeq,,, wherec,, is the capacity of link'uv) € E.



Once injected at the source, a packetan be in a number of different states. It can be
replicated at all nodes in the system, hence successfullgdoast. Alternatively, it can be
idle, that is not actively transferred, and replicated at nodés some setS C V. In this
paper the symbot is used to denote strict subsets; the symbae$ used to denote non strict
subsets. The subsets over which packets can be replicated arbitrary: it must contain a
spanning tree rooted af and hence in particular it must containWe shall denote by the
collection of strict subsets df’ that contain the source node

Alternatively, it can be replicated at some nodes S, for some subse$ € S, but also
actively transferred along some edges F', for some subsef’ C F.

We shall adopt the following description of the system stéde all S € S, Xg denotes
the number of idle packets, that are replicated exactly atnihdesu € S. In addition, an
unordered list of subgraphd = {G1 = (W1, F1),...,Gn = (W, Fi)} IS maintained,
describing the “active packetsT¥; is the set of nodes at which theth active packet is
currently replicated;F; is the set of edges along which théh active packet is currently
transferred.

We shall assume that at any given time, at most one packeansfarred along a given
edge. Thus, the total number of active packets is at rfiéstWe shall further assume that
the following constraints are met: for an active packet wdtscription(W, F'), for each
(u,v) € F, thenu € W, v ¢ W, and there is no other edgec F' that points towards.

The physical meaning of this assumption is the following. paxcket is sent towards a
node that already has it, and no packet is sent simultanefrosh several nodes to the same
destination node.

One practical implementation that ensures this propertysists in letting each receiver
node inform its neighbour nodes of which packets it has nogived yet, and omitting from
this list those packets currently being transferred.

Introduce the notation:

KXy = Z Xs.
SeS:ueSvgS
This counts the number of idle packets that are present & mahd absent at node

LetalsoX¢, _, denote the number of active packets that could possibly tveafoled along

edge(u, v), given the above constraints. That is to say, let
lerufv = Z 1u€WlU§ZW1Vu’€V,(u’,v)¢F'
(W,F)eA

The following activity condition will be enforced at all times: for any edde, v), either

there is an active packet that is actively transferred alesge(u, v), or:

Xiy—p=0and X¢ =0.

+u—v

In words, if there is no ongoing transfer along some eflge), then necessarily no packet
present in the system could be transferred along this edge.

We now describe the transitions that the system state cagrierpe under the proposed
random useful scheduling strategy.

Primary transitions: The first type of primary transitions is due to a fresh packeva
at the source. After such a transition, the state varidhlg is updated taXy,, + 1.



The second type of primary transitions is due to completibtramsfer of an active packet
along some edge. Let this packet be represente@iy'), and lete = (u,v) € F' be the
edge along which replication has just completed.

Then two cases may occur. ¢f= (u,v) was the only edge iF, then the packet under
consideration, characterised by, F'), is removed from the collection of active packets, and
the number of idle packets replicated.$it= W U {v} is increased by 1. If insteadl' \ {e}
is not empty, thenW, F) is replaced by(W U {v}, F' \ {e}) in the list of active packets.
Secondary transitions: These happen subsequently to primary transitions, to erthat the
activity condition is met. If, after a primary transitiohere is an edgéu, v) for which the
activity condition is not met, this means that this edge isaatively used, while the number
of packetsX ., ,+X¢,_,, which could potentially be transferred along that edge sitpe.

In this case, one of thesE,,_, + X{,_, packets will be selected uniformly at random, and
start being replicated along edge, v).
More precisely, for eacly € S such thatu € S, v ¢ S, with probability

Xs
X-HL—U + Xglrufv ’
the following state updates are made:
Xg— Xg—1,
A— AU (S, (u,v)).
For each active packdlV, F') such thatu € W, v ¢ W, and for allu’ € V, (v/,v) ¢ F,
then with probabilityl /(X ., + X¢,_,), the active setd is updated as follows:

A A\ (W,F)U (W, F U (u,0)).

Note that all these transition probabilities sum to 1, asuireql. Moreover, these capture
the uniform selection of useful packets that could be sesigakdge(u,v) that we assume
throughout.

A Markovian special case: A general version of the model would assume that the time
intervals between fresh packet arrivals at the sourceiaterandom variables, and that packet
transfer times along a given edge are also i.i.d. randonabkes. Under these assumptions,
the model we just described is a Markov process, provided wggnant the state space to
keep track of the residual times till (i) arrival of the nerégh packet, and (ii) completion of
transmission along a given edge. Of particular intereshésdase where these i.i.d. random
variables are in fact deterministic.

The general i.i.d. case is beyond the scope of the preseiit Wothis article, we focus on
the special case where the i.i.d. random variables invohredExponential random variables,
where the mean inter-packet arrival at the source egvals and the mean packet transfer
time along edgeu,v) is c,,.. In this particular case, the evolution of the state vadabl
described above is Markovian, without the adjunction ofdthesl time variables. In the sequel
we focus on this particular setup.



B. Edge capacities: main result
We shall denote by\*(G) the min-min-cut of graplG with source node. That is,

A (G) =min  min Z Z Cow- 1)
u€V SCV:seS,u¢sS veS wis
The main result in the present context is the following
Theorem 1:The Markov procesg(Xs)ses, 4) corresponding to random useful packet
forwarding is ergodic under the condition

A< MH(G). )

The proof of this result will be given in Section Il . It reeon the so-called “fluid limits”
approach, introduced and popularised by [10] and [4]. imfdly, the approach consists in
first establishing that trajectories of the original Markmocess, after joint rescaling of both
time and space, evolve according to some simpler, “fluid”agits, and then to prove that
trajectories of the fluid dynamics converge to zero in finiteet

We define the “spanning tree packing number('z) of graphG with distinguished source
nodes as the solution of the following optimization problem:

Maximize Z \r (3)
Ter

over Ar >0, TeT (4)

subject to > A <ay, (ij) € BE(G), 5)
TeT:(i,5)€T

where7 denotes the collection of spanning trees(ifrooted ats.

A direct consequence of Theorem 1 is the following

Corollary 1: (Edmonds, 1972 [5]) For any oriented grapgh with edge capacities;;,
(ij) € E(G), and source node, the spanning tree packing numbefG) is equal to the
min-min-cut number\*(G).

Proof: To anyi € V(G) and any collection of non-negative numbers satisfying inequal-
ities (5), one can associate a flow fronto ¢ with total capacityd .+ Az. Thus, necessarily
m(G) is at most the maximum flow betweenandi, for any i € V(G). The celebrated
max-flow min-cut theorem states that this maximum flow calasiwith the minimum cut
capacity betweer and:. This establishes that(G) is at most\*(G).

We now establish the converse inequality using Theorem L.cLe 0 be arbitrary, and
consider the injection ratéd = \*(G) — e. Theorem 1 guarantees that the Markov process
keeping track of the number of packets in any possible ssaggiodic. As a consequence, there
exists an equilibrium distribution for the time it takes aket to be successfully broadcast, and
a steady state distribution for the spanning tree along hvhipacket is effectively broadcast.

Let ¢ be the discrete probability distribution over the collentiZ7 characterising the
tree along which a packet is broadcast in equilibrium. Lebdl denote the cumulative
distribution function of the time to broadcast a packet imildgrium, conditionally on the
fact that it is broadcast along trée for all T € 7.



Letd > 0 and M > 0 be some fixed positive numbers. Letbe some time index, that we
shall let increase to infinity. LeNy(7) denote the number of packets that have been injected
at the source during, 7], and which have been successfully broadcast alongZirbg time
(1 + 0)7. Clearly, providedM < 67, Np(r) is larger than the numbeN’.(7) of packets
injected at the source during, 7|, that have been successfully broadcast with a broadcast
time no larger than/.

By the ergodic theorem, the following holds:

1
lim ~ N7 (1) = X q(T)Fr(M), almost surely
T—00 T
In turn, this implies that:
1
liminf —Np(7) > A\g(T)Fr(M).

T—00 T
Let V;;((1 +6)7) denote the number of packet transmissions along édgeduring [0, (1 +

d)7]. Again by the ergodic theorem, and the fact that the time foaeket transmission along
edge(ij) is exponentially distributed with meatyc;;, it holds that

1
ligsgp m]\@-j((l +6)7) < ¢y, almost surely.
On the other hand, for any edg&j) € F, the process dynamics are such that necessarily:

Vr>0, Y Np(r) < Ny((1+06)r), almost surely
T:(ij)eT
Dividing this last inequality byr, and lettingr tend to infinity, the two previous inequalities
entail that
Y M) Fr(M) < (1+0)cy, (if) € B(G).
T:(ij)eT

Let successively tend to infinity andd tend to zero to obtain:

Z A(T) < cij, (i) € E(G).
T:(ij)eT
Thus, the numbers := \q¢(T') satisfy the constraints (5). Since they sum\{ahis ensures
that \ < n(G). Since this is true for any positive = \*(G) — A, the desired inequality
N (G) < w(G) follows.

Ill. PROOF OFTHEOREM 1

The proof consists of three main parts. We first charactdhiee“fluid trajectories” that
are valid limits of the process trajectories after jointcasg of both time and space. We
then establish that, under the stability conditioprc \*(G), these must converge to zero in
finite time. We finally deduce the ergodicity result by apptyia suitable version of Foster's
criterion.



A. Fluid dynamics: characterization and convergence

Let us introduce the following definition.
Definition 1: The real-valued non-negative functions— ys(t), S € S, are called fluid
trajectories of the above Markov process if they satisfyftiewing conditions.

ForallS € S, allue S, allv¢S, there exist non-negative functions— ¢g .. (t) such

that
Y{s} (t) = ys(o) + At — ZvEV\{s} ¢{s},(sv) (t)
S 7é {8} : yS(t) = yS(O) + ZuGS ZUES\{U} ¢S\{v},(u1}) (t) (6)
- ZuGS Zv%S ¢S,(uv) (t)a
and that are non-decreasing, Lipschitz continuous wittsd¢hitz constants,,. In addition,
for all (u,v) € E, it holds that:

Z b3, (uv) 1S cup-Lipschitz.
SeSwueS,vgs
Moreover at almost every poirtt the functiongg (.. is differentiable, and the following
holds:
ys(t)

— 7
Ypu—v(t) 7 (7)

d
Ytu—v(t) > 0= E%,(uu) (t) = cuw
where we have used the notation

Ytu—v(t) := > yslt). (8
S'eSwueS’ v S’
9
The following notation will be used in the sequel. For apmye RS, S(y) denotes the
set of all fluid trajectories of the system with initial cotidn y. Thus it is a subset of
C([0,+00),RY), that is the space of continuougs -valued functions orf0, +o0). Note that
at this stage, neither existence nor uniqueness of fluiddiajies has been established.
The following result shows in what sense such fluid trajéesodescribe the dynamics of
the original Markov process after spatial and temporal alysg. It implies as a corollary
that the setS(y) is nonempty, for anyy € ]Rﬁ. However no claim of uniqueness of fluid
trajectories is made.
Theorem 2:Consider a sequence of initial conditiop ™ (0), AV (0)), N > 0, such that
for a sequence of positive numbgrsy ) y~o, limy . 2y = +00, and the limit

1
lim —XN(0) = z(0
= (0) = z(0)

exists inR<. Introduce the rescaled process
1
YV () .= —XY(2nt), Se€S,
ZN

where X% (t) represents theStcoordinate of the) state of the Markov process with initial
conditions(X ™ (0), AV (0)) at timet. Then for allT > 0, all e > 0, the following convergence
takes place:

lim P inf  sup [[YN(@#) = F@#)|| >¢€] =0. 9
Am <f€5(ac(0))t€[0%}” (t) f()l\_> 9)



In words, the restriction of the rescaled proc&s$ to any compact intervgb, 7] converges
in probability to the setS(x(0)) of fluid trajectories with initial conditionz(0), where
convergence of processes is for the uniform norm.

Proof: It will be more convenient to work with the state variablﬁg, which count the
total number of packets, active or idle, present at nadesS. That is:

XS =Xg + Z 1yw—s.
(W,F)eA

We shall thus consider the rescaled processes

V(@) = LXY (let)
=Y () + 52 Dwean lw=s.

Since they differ fromyd’ by at most|E|/zy, the processes agree in the lint — oco.

Let P,,, (u,v) € E, be independent unit rate Poisson processes. The PoissoespP,,
will be used to determine the instants at which packet tessélong edgéu, v) complete.
Introduce the notation:

(pS (uv)( - / Z 1W:S,(u,U)EFdS

YEAN (s—)

This process keeps track of the number of completlons of gtatcknsfers along edde, v),
for packets that were previously present at nodeSset
We thus have the following, for alb € S, S # {s}:

XEW =XFO0)+ > @ et = Y B (ent).
ueS,veS\{u} ueSvgS

We use another unit rate Poisson procgggo count fresh arrivals at the source, and write:

X0 (1) = X[50) + Po(At) = Y Ny (o (280).
v#£s
We now show that for any (deterministic) subsequence of tiggnal sequence, there exists
a further (deterministic) subsequentg@V) for which the foIIowing property holds.
Almost surely, the sequence of rescaled processes - S((uz))(zf(N) ) is tight (for
the topology of uniform convergence), and any coIIectlorfmectlonSQSS (w) that are accu-
mulation points of this sequence define a fluid trajectory exstipe previous definition.

1 1
sup | — @S () (znt) — / Z Lyy—s,(up)erds| < sup Z—Puv(th) — t' .
te[0,1] | N (W.F)CAM (25— t€[0,c00T] | 2N

(10)
The following lemma, which is a classical result on the maadirdeviation of a Poisson
process from its mean is now needed:



Lemma 1:Let = be a unit rate Poisson process. Then for7alk- 0, N > 0, and alle > 0,
it holds that

P(supo<i<r|2(Nt) — Nt| > eNT) < e VT 4 o= NTh(=), (11)

where
h(A) := (1 + X)log(1+ X)) — A (12)

is the Cramér transform of a unit mean, centered Poissonomndariable. In the above
formula, it is understood thdt(—\) = +oo if A > 1.
Define the subsequengéN ), together with a sequeneéN) as follows:

f(N) =inf{k > f(N —1): 2, > N},
e(N) =N-14
Define the evend as

F(N)
Zf(lN) gy (Zr)t)

—Cuv fg Z(V[@F)GAHN)(ZHN)sf) 1W:S,(u,v)€Fds‘ > ﬁ(N)} :
It is readily seen, using the above Lemma and the inequdli®y, that the following holds:

Z P(Ay) < 4o0.

N>0

Thus, by Borel-Cantelli's lemma, with probability 1 only itiely many events4dy occur. In
the sequel, to lighten notation we wrif€ instead of f (V).

To establish the claimed convergence of the rescaled mes%sbs v) (Nt) to Lipschitz-
continuous, non-decreasing functiopg ., along subsequences, |t is therefore sufficient to
establish that such convergence holds for the functions:

t— cuv/ Z 1W:S,(u,U)EFd5- (13)

(W,F)EAN (Ns—)

AN = Uses uesgs {SuPte[O,T]

To this end, we use the following lemma, taken from Ye et &B];[1

Lemma 2:(Lemma 6.3, Ye et al. [13]) Suppose that a sequence of fumfip: [0,7] — R
has the following properties:

(i) {fx(0)}r>0 is bounded;

(i) there is a constand/ > 0, and a sequence of positive numbess with o, — 0 as
k — oo, such that

fult) — fu(s)] < M(t — )+ o, k>0, s,te0,T].

Then the sequence admits a subsequence that convergesmiyitm [0, 7] to a Lipschitz
continuous functionf : [0,7] — R with Lipschitz constanf\/.

Clearly the conditions of the Lemma are met for the functid®, with as a Lipschitz constant
M = ¢y,. Moreover, any limiting function must be non-decreasingesithe functions (13)
are all non-decreasing.
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Note now that fort < ¢,

t/
/ Lw—s,(up)erds < cu(t' —t).
t

Ses: uESngS (WF)eAN (Ns—)

This readily implies that for any givefw,v) € E, the limiting functions¢g (., summed
over S € S such thatu € S andv ¢ S are ¢, -Lipschitz.

It now remains to establish the last property in the definitid fluid trajectories, that is:
at almost every, the functiongg (.. (t) is differentiable, and provided,, () > 0, then:

d ys(t)
1. uv t = cuvi.
a5 )®) Yiu—v(t)

By Rademacher’'s theorem, a Lipschitz-continuous funct®owlifferentiable almost every-
where. Let thug be a point wherebg (., () is differentiable. Consider first the case where
ys(t) > 0. Fix someh > 0. We want to evaluate the following quantity:

1 t+h
Ecuv / Z ]-W:S,(u,v)GFdS'
t (W, F)EAN(Ns—)

Note that on the intervat € [¢t,t+h], N1 XY (N7) equalsys(t) +0(h) +en, whereey — 0
as N — oo, by convergence of the rescaled trajectories, and by Lifgscbntinuity of the
limiting trajectories.

Thus, after each completion of a transfer along edge) during the interva|Nt¢, N (t+h)],
the probability that the next packet selected for transimisalong edgéw, v) is a previously
idle packet, replicated at nodesc S is asymptotic toys(t)/y+w—v(t) + 0(h). Furthermore,
once such a transfer is started, the probability that thé&eiamnder consideration is elected
for transmission along another edge converges to zer as oo, since there are close to
Nyg(t) other idle packets that could alternatively have been ssdefor such a transmission.
Together these arguments ensure that

1 t+h us(t
M Cu / > Lw=s,(up)erds = Cuv _usld) )(t) + O(h)-
t (W,F)EAN (Ns—) Yt+u—v

However, the left-hand side of this expression also reads

1
7 (P5,(uv) (t +h) = bs,un (1)),

and thus the derivative afg (., at? must equak,, 2 T (U)() as announced.

Finally, consider the case whegg(t) = 0, and choose a particularat which all S” with
ue S v¢ S are such thabg (.. (t) are differentiable. We know that almost everywhere,
the sum of these derivatives can not exceggd because it is a Lipschitz constant for the
sum of these functions. However, the sum of the derivativesHoseS’ such thatys: (t) > 0

equalsc,,, therefore the derivatives for thosesuch thatys(¢) = 0 must equal zero. =



11

B. Fluid dynamics: stability

In the present section, we establish that any fluid trajextaas per Definition 1 satisfy a
suitable stability property:

Theorem 3:Assume that Condition (2) holds. Léjs)scs denote fluid trajectories as per
Definition 1. For all.S c V, define:

yes = Y. s
5€8,5'CS
Then there exist positive parametéts . .., 5y_1, ande > 0 such that the function

L({ys}ses) := sup Bisjycs
scv

verifies:
L(y(t)) < max (0, L(y(0)) —et). (14)

Denote by K the total number of nodes, that I§ = |V/|. The proof will rely on the
following lemma:
Lemma 3:Let o > 0 be fixed. For givery, A > 0, define:

€x—1 = 0;
€1 = 6A(1 + A)—Y i=1...,K—2,
Br-1=1 (15)

K— .
BK_FH]-:I%,M (1%) i=2...,K—1.

Then A andé can be chosen so that the following properties hold for @y secs € ]Rﬁ,
(ys)ses #0. ForallScV,allue S,v¢S:

Yru—v < €|SIYCS = Bis|—1Ycs\fu} > Bis|ycs- (16)

Moreover for allS C V' such that, for allu € S, all v ¢ S, yyu—v > €/51ycs, assuming there

existu € S andv ¢ S such that for some&’ Z S: w € S, v ¢ S’ andyg > ayyy—v, then
it holds that:

Bisus/|ycsus’ > Bis|ycs- (7)

Proof: (of Lemma 3) Let us first establish sufficient conditions oa garameters;, 5;
for the conclusions of the Lemma to hold. Consider the firgurement (16), and let thus
S be such that for some € S andv ¢ S, one has

Y+u—v < €5YCS-
Write now:
ycs = Ycs\{u} T ZS’GS:uGS’,S’QS Ys
< Yes\{u} T Y+u—v
< Ycs\{fu} T €S|YCS-
It thus follows that
Ycs\fuy > (1= €9))ycs.
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Thus the desired conclusion (16) will follow provided:
Bic1(l—€) =08, i=2,....,K—1. (18)

Clearly, this condition will be satisfied with the particulghoice of coefficients; as in (15),
provided thee; lie in the interval(0, 1), which will be ensured by taking > 0 sufficiently
small.

Let us now turn to Condition (17). Let thus C V' be such that for al. € S andv ¢ S,
€151ycs < Y+u—v- ASSume moreover the existencewfc S, v ¢ S, andS’ ¢ S such that
uwe S, ve¢ S, and satisfying in addition:

Ysr > QYty—y-
Then necessarily, one has:
ysr > Q€|gycs.
The left-hand side of Condition (17) then verifies:
Bisus|ycsus: = Bisus| (Ys' +ycs)
> Bisus|(1 + aeig))ycs-
Therefore, (17) will hold provided

Bisus| (1 + aeis)) > Bis)-

For sufficiently smallé > 0, the coefficients; as in (15) will be strictly less than 1, and
hence the coefficients; as in (15) will be decreasing with Thus, the above condition will
be satisfied provided:

Br-1(l+ae)>p, i=1,...,K—2. (19)

Fori = K — 2, this condition readd + aex_o > 1/(1 — ex—1). Recalling from (15) that
ex—1 = 9, the right-hand side reads+ § + o(¢), while the left-hand side reads+ adA.
Thus, this particular condition is met providety > 1, and§ > 0 is small enough.

Let us now consider € {1,..., K — 3}. Note that the right-hand side of (19) is equivalent
to, for small§ > 0:

B =Iljmin (1_1@)
=1+ ZJK:_HI_I €j + 0(9)
=140+ 3052 6401+ A2 4 0(6)
=140+ 0AY P (1 + A)Y +0(5)
— 146 +5AAT T o6)
=1+06(1+ A)E271 4 0(0).

On the other hand, the left-hand side of (19) equalsadA(1 + A)X—2-J, Thus, provided
aA > 1, andé > 0 is small enough, the announced properties hold. |
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Proof: (of Theorem 3) Consider the particular paramefgrs; as in Lemma 3. Clearly,
for a vectory € Rﬁ that is non-zero, any sét* C V' achieving the maximum imaxscv (jsjycs
is such thatycg- > 0. Moreover, for allu € S*, v ¢ S*, one must have:

Yiu—v = €15+ |YCs* > 0,

for otherwise optimality of the se¥* would be contradicted by Condition (16). In addition,
for all w € S*, v ¢ S*, and all.S” £ S* such thatu € S’, v ¢ S’, necessarilys < ayiy—o,
for otherwise optimality ofS* would be contradicted by (17).

One thus has the following evaluation:

d _ d
TYCST = Dlscse @S J
=A- ZuGS*,u¢S* >_SCs+ues P, (w)

=A- ZuGS*,U¢S* Cuv |1 = ZS’QS*,uES’,v§ZS’ yfs_]

S A= D ues s Cuv T Doyest vgs+ Cuv Qosig e ues vgs @

<)\ — ZueS*,UQS* Cup + Max.cp co|E|2K a.
In the above, we have used the expression (7) for the desvafi the functionsps ., and
the bound ofa on the ratioys//y.—, previously established.

Furthermore, the conditions (18) and (19) used in the prédfeonma 3 can be shown to

imply the following. For a set such that3sjycs > (1 —r)8s-|ycs-, wherer > 0 is some
small positive constant, necessarily for ale S, v ¢ S,

1_€|S\
Y+u—v >(1- 1—r Yycs.-

In addition, foru € S, v ¢ S andS’ Z S such thatu € S’, v ¢ S’, then one has:

1 + 046‘3| 1
Ys: < <17—7“ -1 ﬁy—i—u—v = (a4 O(7)) Y+u—o-
—Tr

Thus, for suchS, one has the similar evaluation

d K

JUCs S A= > cw +maxce| B2 a (1+0(r). (20)
u€eS,v¢S

Note that the choice of > 0 in Lemma 3 was arbitrary. For definiteness, set

1 mingcy ZueS,v¢S Cup — A
o= =

2 |E12K maxccp ce

This is positive, under the stability condition (2). Themwrfr the above evaluation (20), it
follows that necessarily, almost everywhere the Lipschantinuous function(y(¢)) must
satisfy:

d
W) = —€ly@zo,
where
1 .
=3 lmp > w2
ueSvg¢S

The result of Theorem 3 follows. [ |
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C. Proof of Theorem 1

The proof of Theorem 1 will require to combine Theorems 2, @ thre following ergodicity
criterion, which is a direct consequence of Theorem 8.1224in Robert [9]:

Theorem 4:Let Z(t) be a Markov jump process on a countable state spacéssume
there exists a functiolh : Z — R, and constantd/, ¢, 7 > 0 such that for allz € Z:
1
L(z)
If in addition the set{z : L(z) < M} is finite, andE,L(Z(1)) < +oco for all z € Z, then
the process/(t) is ergodic.

L(z) > M = E.L(Z(L(z)1)) <1—e. (21)

Let us show how this result applies in the present contexe Me haveZ (t) = (X (t), A(t)),
and our candidate Lyapunov function takes as argumenKto®mponent only, and reads

L(Z) = sup Bs Xcs-
C

Let us setr = 1, wheree is as in Theorem 3, and establish that (21) holds by contradic
tion. Assuming it fails, there must exist a sequence ofahitionditionsZ" (0) such that
L(ZM(0)) — oo, and such that
1
lim ———BL (ZV(L(ZN 1—e 22
NEHOO L(ZN(0)) ( (L( (0))7—)) > € (22)
However, by Theorem 1, any accumulation point of the segeienc
1
L(ZN(0))
must be equal tg/(7) for some fluid trajectory issued from an initial conditio(0) such

that L(y(0)) = 1. Furthermore, this family of random vectors is uniformlyeigrable: indeed,
writing

XN(L(ZY(0))7)

L Nz o < X5 O) 1 .
L(ZN(O))XS (L(Z7(0)7) < 55, XX (0) + LZN(0)) EZE;EP@(L(Z (0))ceT),

where theP, are the Poisson processes previously introduced, unifategiability can be
readily checked. Since the functidn grows not faster than linearly, the family of random
variables

1
L(ZN(0))
is also uniformly integrable. Since the functidnis continuous, accumulation points of this
sequence must be of the fori(y(7)), for some fluid trajectoryy issued from an initial
conditiony(0) such thaty(0) = 1. By Theorem 3, all such accumulation points are less than,
or equal tol — e. This together with uniform integrability ensures that

L (XM(L(Z™(0))7))

1
limsup ————
Neona L(ZN(0))

which contradicts (22). The proof is concluded by verifyitng other assumptions of Theo-
rem 4, i.e. thaf{z : L(z) < M} is finite for sufficiently largeM . This holds trivially, because

EL (ZN(L(ZN(0)7)) <1 —¢,
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for any X-component the number of potentidkcomponents is bounded (say b¥| times
the number of subgraphs 6f).

Finally, one must check th&.L(Z (1)) < +oc for all z; this is easily verified, once more
by boundingXg(1) by its initial value plus increments of Poisson processes.

IV. NODE-CAPACITATED NETWORKS
A. Model and Algorithm

Neighbour selection: Here, the system is also described by a a g@ph (V, E). However,
the capacities are now associated with nodes rather thdmedies. We shall denote lay
the capacity of node;,, and assume that each node devotes its capacity to one ohdst*“
deprived neighbours”. By this, the following is meant. Faclk of its neighbours, nodeu
evaluates the numbér, ,_, of packets that it could usefully forward to node Using the
same notation as before, this reads:

Z—l—u—v = X+U—U + X—T—u—y‘

It then elects one neighbourfor which the corresponding quantit(, ,_, is maximal. Ties
can be broken either at random, or in a systematic mannere @rmectarget neighbour is
chosen, then one of th&,,_, packets held by, and useful tov is chosen, and forwarded
from u to v, at ratec,.

Packet selection: We now describe how packets are elected for transmissioa amode’s
capacity becomes available. For non-source nadesho have chosen to transmit to some
most deprived neighbour, then the packet to be transmitted is selected at random @iadbn
the possibleZ,_, possible choices.

For the source node, having chosen to transmit to some most deprived neighbptire
following strategy is used: if the source has a packet thagg not sent to anyone before
(a fresh packet), that is ifX,; > 0, then one such fresh packet is forwarded to nodé
no such fresh packet is available, then the packet to be fdetiais selected uniformly at
random from theZ_ ,_, possible choices.

As in the edge capacitated case, the state space consikes @oltection of variableXg,
for all S € S, and the collection of active packet statds= (W1, F1),...,(Wpn, Fin)).
The constraints on these active packet states are diffémengh: we now assume that each
node forwards a packet to only one of its neighbours at a givea. Thus for each node,
there is at most one edde, w) appearing in the sets;, i = 1,...,m. Otherwise the same
constraints apply: for a given active packét, F'), and each edgéu,v) € F, necessarily,
u € W andv ¢ W; also, there is no other edge’, v) pointing towards in F.

We shall assume that packet transmissions are not preengvied if a neighbour of some
nodeu becomes more deprived than the neighboto which nodeu is currently transmitting.

As in the edge-capacitated case, we assume Exponentialtybdied inter-event timers.
Specifically, the time for transmission of a packet from samoele u is exponentially dis-
tributed with meanl/c,, and fresh packets arrive at the source ned# the instants of a
Poisson process with rate
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B. Fluid limits

We first define the candidate fluid trajectories for the systewier consideration:
Definition 2: The real-valued, non-negative functiofiss)scs are called fluid trajectories of
the node-capacitated system if the following propertielsl.ho

Forall S €S, ue S, vé¢ S such that(u,v) € E, there exist non-decreasing, Lipschitz-
continuous functiongg .,y With Lipschitz constant,,, such that Equations (6) hold. Fur-
thermore, using notation

Yru—v = Z Ys,

SeS:ueSvgsS
forall S € S, u € S, the functions{¢g () fvgs,ww)cr are differentiable at almost evety
and if 32, vyer Y+u—ov(t) > 0, their derivatives satisfy:

d .
%QSS,(MJ) (t) =0if yru—o(t) < v’:(IEzEJL’))(EE (Yyu—wv (1)), (23)

d
> D st =cu (24)
vi(uv)EE SueSwgS

If w # s, that is for a non-source node, one also has, forvadluch that(uv) € FE and
assuming the condition

d
Z EQSS,(MJ) (t) >0

S:ueS,vgS

holds, the following equation:

d ys(t) d
VS/u € S,v & S, — s () (t) = — b5 (uv) (t): (25)
/ ¢ S, s (un) () S sesrozs Vs (D) S/:ug;ws/ 707, (t)

For the source node, one has the following:

d
Uiy > 0= Y 2 dsh (o0 (t) = o (26)
v#£S

In the case whergy,, = 0, one then has for att such that(sv) € F, assuming the condition

d
Z %QSS,(SU) (t) >0

SeS:S#{s},v¢S
holds, the following:

d ys(t) d
VS € S/S 7& {8}7U ¢ S: _¢S,(sv)(t) = Z _¢S/,(sv)(t)'
dt 2isres:storegs Y1) ges 67T ups
(27)

O

We now establish the following
Theorem 5:The statement of Theorem 2 holds true with ™ (¢), AV (t)) denoting the
state of the process corresponding to the node-capacigitdm, and withS(x) denoting
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the set of fluid trajectories defined in Definition 2. That isscaled trajectories converge in
probability to the set of fluid trajectories.
Proof: Introduce the functions

t
q)g(uv)(t) =P, Cu/ Z 1w —s,(uwverds |
O (w,F)eAN (s-)

where P, are independent, unit rate Poisson processes. The exsténtinctionsgg ;.
that are non-increasing and Lipschitz continuous with &lpig constant,,, and such that
for functionsyg given by (6), the claimed convergence in probability holdsestablished
exactly as in the proof of Theorem 2, and hence the detailgdnaent is omitted.

It only remains to establish properties (23-27) of the ddnes %gb&(w) (t). Fix thus
h > 0, and consider the quantity

1 /1 1
(3o (V4 1) - oY (40)). @8)
Assume that the node is such that the limiting processég) satisfy
> Yruw(t) > 0. (29)
v'#u

Then, providedy, ,—(t) < max, -, y+u—v(t), Dy Lipschitz continuity of the limiting trajec-
tories, the same inequality holds throughout the inteftal+ h]. Thus, by convergence of
the rescaled trajectories to the fluid limits, for large eglov, neighbourv is never selected
for transmission by node over the whole interva|Nt¢, N(¢ + h)]. It then follows that the
term (28) converges to 0 &8 — oo. This establishes (23).
Note next that, when (29) holds, for large enoughone has the following equality:

S (V1) - FON (VD)) = (PN B) = RN,
v£u,SESuES,vES
This is because node’'s capacity is always used when there are packets that noc&n
usefully transmit. This identity guarantees that

. 1 /1 1

N—oo
v#u,SESuES,vES

from which (24) follows.
Assume now that for non-source nodenodewv is such that

d
— t .
Z dt¢S,(uv)( ) >0

S:ueS,vgS

Then for all S such thatu € S, v ¢ S, of all the instants during the interv@N¢, N (¢ + h)]
at which nodeu chooses to send a packet to nadea fractionyg(t)/y4u—o(t) + 0(h) +
0(1/N) of these choices is towards an idle packet previously rag@it at all nodes irf.



18

Furthermore, once transfer of such previously idle padkassstarted, such a packet is elected
for transmission by some other node with probability /N). This thus shows that
im0 & [cbg oy NV (E 4 1)) = Y ) (Nt)} - (yf{jf?(t) v O(h)) ‘ool

X Z [¢S’,(uv) (t + h) - ¢S’,(uv) (t)] :
S"ueS wg S’

Dividing by h and lettingh tend to zero establishes (25).

Equation (26) follows by similar arguments, relying on tleetf that the source node
forwards fresh packets, whenever there are some availagleation (27) is also established
by similar arguments, now relying on the fact that the sourteen sending non-fresh packets,
selects such packets uniformly at random. [ |

C. Stability for the complete graph

The main result we shall establish is in the case of the camgeaph, that is all edges
(u,v), u # v, are present irZ. We then have the following

Theorem 6:Assume that the grapy = (V, E) is complete, and that the injection rate
verifies:

A < min <cs, %) , (30)
where K = |V|. Then the Markov process keeping track of the system staderumandom
useful to most deprived neighbour” scheduling strategyrgo@ic.

The proof of Theorem 6 parallels exactly that of Theorem lIyjimg on a combination of
Theorem 4 with Theorem 5 (taking the role played by Theorem thé proof of Theorem 1)
and of Theorem 7 below (taking the role played by Theorem Jhégroof of Theorem 1).
We shall not reproduce the whole argument, but shall instedd detail the proof of the
following result on stability of fluid trajectories:

Theorem 7:For anyy = (ys)ses € RY, define theworkload function w(y) as:

wly) = ys (K —19]), (31)
ses
whereK = |V|. Under the assumption (30), when the gr@pls complete, any fluid trajectory
y as per Definition 2 is such that, for some> 0,

w(y(t)) < max(0,w(y(0)) — €t). (32)
Proof: To establish (32), it suffices to show that, for all fluid t&@y y, at a pointt
wherey(t) is differentiable andy(t) # 0, one has

Lawfy() < —

This is true because the functien— w(y(t)) is Lipschitz-continuous, which follows from
Lipschitz continuity of the individual functions — yg(t).
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We distinguish two cases. First, consider the case whetefat all w € V, one has

Z y+u7v(t) > 0. (33)
vFEU

Write then, using (6):

Fwy®) =Cges(K — 1S Fus(t)
= )‘(K - 1) - ZSES ZuES,z&ZS %QSS,(’U,U) (t)
= )‘(K - 1) - Zuev Zv:(uv)GE‘ ZS:uGS,v({S %QSS,(’U,U) (t)
= MK —1) = > cv Cu
where the last equality follows from (24), which is applitain view of Assumption (33).
Thus in the present case, under Assumption (30), the timeadiee (d/dt)w(y(t)) decreases
at a constant speed as desired.
Consider now the case where for a non-empty$etall « € S* are such that

Z y-l—u—v(t) =0.

vFEU

Equivalently, for allS € S such thatu € S, one hagjs(t) = 0. It readily follows that for any
nodewu € V, the set of most deprived neighbours consists preciselpage nodes € S*.

Distinguish now according to whethgr,, (t) = 0 or not. In the first case wheig, (t) = 0,
necessarily there must exigt € S, T' # {s} for which yr(¢t) > 0, by the assumption that
y(t) # 0. Note now that, by non-negativity of the function- y,,(¢), one must necessarily
have:

d
Ey{s}(t) =0, (34)
and by the same argument, for &llsuch thatS N .S* # (), one also has
d
Zvs(t) =0. (35)

On the other hand, it follows from Equation (23) that the-ldind side of (34) also reads

d
A— Z %Qb{s},(sv) (t)

vES*
It thus follows from (24) that

d
Z Z %Qbs,(sv) (t) =cs—A>0.
SES,S#{s} veS™
Using (34-35), write then
Fw() = Yses.seqsysns—oE — 18] fys(t)

— Y sesstis)sns =0 (K = 1) X ucsves 398, wo)(t)

=Y ses:sns =K = [SD) X pes- Zbs (s0)(t)
—(cs — A).

A
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In the above, we have used the fact that the most deprivedsreréethose irt*, and hence
by (23), for all S such thatSNS* =0, all u € S, v € S\ {u}, necessarily

d
2195\ 10}, ) (1) = 0,

for the capacity of node is fully targeted towards nodes i*.
The last case to consider is when, (¢) > 0. Then in view of (26),

d
Ey{s}(t) =A—cs.

This entails that

Zw(y(t) =—(K—=1)(cs =)+ > sesis4{s},5ns-=0 (K — 1S1) drus(t)
= —(K = 1)(cs = A) = Xges.s4(sp.5n5 0K = 15) Zuesves- D5, (u) (t)
< —(cs = N)(K —1).

Thus, it follows that (32) holds, with = min(c; — A, >~ ey cu — (K — 1)), [ |

V. LIMITED NEIGHBOURHOODS AND MULTIPLE COMMODITIES

We now extend the results of the previous section to limiteijimbourhoods and multiple
commodities.

A. Limited neighbourhoods

Given a setV of nodesu with associated capacities,, we assume that each node has
at any given time a finite set of neighbouké(u), that it can send to. We adapt the most
deprived neighbour selection rule to this context, by reqggithat each node sends to the
most deprived node from its limited neighbourhoodV (u).

In addition, we assume that for anye V' \ {u}, nodeu contacts node at the instants of
some Poisson procest,, with intensity o,,,,. It then updates its neighbourhood as follows.
It first addswv to it, and then removes a least deprived peer from the ragutet (breaking
ties at random). Thus, the neighbourhood is eventually fireatjibut remains of constant size,
sayd,.

In this context, we have the following:

Theorem 8:Consider the most deprived random useful selection meshawith adaptive
neighbourhoods as previously defined. Assume that the szgmaltess,,,, and the neighbour-
hood sizesl, are positive. Then the resulting Markov process is ergodubeu the condition
(30) on the injection rate.

Proof: The result follows from the fact that the Markov process kegprack of the
states of packets, as well as the composition of the dynagghbourhoods, admits exactly
the same fluid limits as the process with full neighbourhoodssidered in the previous
section. Ergodicity then follows exactly as in the proof dfebrem 6.

We shall only show that candidate fluid trajectories mussgaf23); we omit the detailed
arguments for the other equations (24-27), since thesastdnsvery similar adaptations of
their proofs for the complete graph scenario.
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For fixedh > 0, consider the quantity

% (%@zsv (o) (N (E+ 1)) = %‘I’Jsv,(uv) (N t)> : (36)

)

Assume that node is such that the limiting processég) satisfy

> Yiuew(y) > 0.

v'#u
Then, providedy,—,(t) < max, ., y+u—v (t), by Lipschitz continuity of the limiting tra-
jectories, the same inequality holds throughout the istityt + h]. Let w be some arbitrary
node that achieves the maximum gn.,_. () overv’. Let nowe € (0,h) be some fixed,
arbitrary number. Then necessarily, there exists a sulesegu(still denoted byV) under
which the sampling proces$,,, is such that

Suw(N(t +€)) — Suw(Nt) >0

for large enoughN. For large enoughV, no transfer fromu to v can take place during
[N(t+¢€), N(t+h)]. Indeed, as previously explainedis strictly less deprived tham over this
interval; however, since has been considered for inclusion in the neighbourhoaddiring
[Nt,N(t + €)], either it has been added, or an even more deprived node wasntrin the
neighbourhood at timé& (¢ +¢). Thus, throughout the remaining interJal (¢t +¢), N (t+ h)],
nodewu always has a neighbour that is more deprived thaand never sends tothroughout
this interval. Thus the quantity (36) is asymptotically aoger than,e. Sincee was arbitrary,
then it must converge to zero. This establishes (23). |

Remark 1: The mechanism we have considered for sampling new candidatgbours
consisted in node: contacting any node at the instants of a Poisson procesg,. The
ergodicity result does not depend on the correspondingoratelt is not hard to see that the
ergodicity result does not depend either on the statistietdils of the sampling mechanism.

For instance, it would still hold under the following neighly sampling mechanism.
Assume a connected, undirected graph = (V, Es) is given, and further assume that each
nodew € V can communicate directly, at all times, with the nodesuch that(u,v) € Eg.
GraphGg is used only for sampling purposes, and this in the followimanner. At the instants
of a Poisson proces$,, nodeu picks uniformly at random one node —say in the set\/ (u),
and then picks uniformly at random a neighbouwafccording to the neighbourhood structure
of the sampling graplt:s, say nodew. This is the node that is considered for inclusion in
the neighbourhoodV'(u).

B. Multiple commodities

We now assume that there are multiple commodities, each aviledicated source node.
We letZ C V denote the collection of such source nodes. For each soodeine 7, we
let V; C V denote the set of receivers of the corresponding commadiiyding the source
nodeji.

Ordinary nodes can be receivers of several commodities.edervwe do not allow source
nodes to be receivers of any commaodities, except the ongsatieesources of. Formally, this
reads

Vi,jeZL, i#j=>i¢Vj.
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We shall also make use of the notatiéfv) to represent the set of source nodebat v is
a receiver of, i.ev € V;. By convention, for source nodeéss 7, we let(i) = {i}.

In this setup, we denote by; the packet creation rate at source nedadc, the capacity
of any nodeu € V. We still assume exponentially distributed random vagaldbr the inter-
times between both packet creations at any source node,aukgtptransmissions from any
node.

In the sequel, we shall assume that nodes are only willingelayrcontent that they are
themselves interested in. This constraint can be thoughs ghodeling a form of selfishness
of users, who will not participate in the delivery of datayh#go not need. This can be
related to the so-called Tit-for-tat mechanism implementeBitTorrent, with two important
distinctions. Our constraint is imposed at the level of cardities, while BitTorrent's Tit-
for-tat is used to determine which node to send to, in a grdugsers interested in the same
content. Also, we do not put constraints on reciprocatian, uisers are not prevented from
sending data to others who do not provide them service imnmetu

Under these assumptions, the natural necessary condibiorthe injection rates\; of
commodities; € 7 for feasibility of broadcast are the following:

A < Ci, 1€X. (37)
S(Vil-hxn< > ew JCT (38)
ieJ u€U;e s V;

Indeed, the first inequality (37) states that each source houlist have a capacity larger than
the rate)\; at which it receives fresh data. Inequality (38) states tbakach set of sources
J, the total capacity required to forward the correspondiogimodities to their receivers is
no larger than the total capacity of users that can take patsir transmissions.

Let us now describe the scheduling policy we shall considethe present setup. To
determine who to send to, any nodeevaluates the overall deprivation of potential receivers
v as the total number of packets that it can send,tand thatv has neither received, nor is
currently receiving. This evaluation is done over all condities that both nodes are receivers
of, i.e. over packets generated by all sourtesI(u) N I(v).

Node u then sends to its most deprived neighbour, where deprivagioneasured as just
decribed. Ties between equally deprived nodes are brokiéoronty at random. The decision
of which packet to send is done as follows.ufis a source node, it sends a fresh packet
if it has any. In any other event, nodechooses which packet to send uniformly at random
among the set of “useful packets”, i.e. packets originafiogh sources € I(u) N I(v). We
refer to these rules as the “bundled most deprived - randafulistrategy, where bundling
is over commodities.

In this context, we have the following

Theorem 9:Assume that conditions (37—38) hold, with strict inequedit Assume further
a complete communication graph, i.e. selection of the meptided neighbour is made from
the whole collection of nodek. Then the Markov process describing the state of the system
is ergodic.



23

Remark 2: The proof will again rely on fluid limit techniques. In fache fluid limits will
be the same if we assume as in the previous subsection dyneasidcted neighbourhoods
instead of a complete communication graph. Thus, the alim@ém remains true under the
relaxed assumption on the neighbourhoods.

We now provide the main lines of the proof. We omit the part tten readily be filled
in from the previous proofs, and only describe the fluid tijaes in the present setup, the
Lyapunov function and the proof that it decreases alongetlflesd trajectories.

C. Fluid Trajectories

In the multicommodity setup, we &’ denote the collection of subsets 6f that include
nodei, andy’(t) denote the quantity of packets generated by soijraed currently replicated
at nodesu € S, at timet. The cumulative number of packets originated from souyaehich
node v started to forward to node while they were replicated at nodes in setover the
time interval [0, #] is denoted by . (¢).

We now describe the fluid trajectories of the multicommodiygtem.

Definition 3: The real-valued, non-negative functio@ﬁsf)igﬁesi are called fluid trajectories
of the multi-commmodities node-capacitated system if tioing properties hold.

Foralli € Z, S € 8, u € S, v ¢ S such that(u,v) € V;, there exist non-decreasing,
Lipschitz-continuous function$>g7(uv) with Lipschitz constant,, such that Equations (6)
hold. Furthermore, using notation

y+u7v Ea Z Ys,
SeS:ueSvgsS

forallicZ, S e S, ue S, the functions{¢g7(uv)}vem\s are differentiable at almost every
t,and ity "5 7 > ey Yhu—y(t) > 0, their derivatives satisfy:

JEI(u)NI(v) Jjel(uw)NI(v")

d 7
22 2 %wt=a (40
1€Z veV SweSwegS
If w ¢ Z, that is for a non-source node, one also has, for all’, and assuming the condition
d 7
>y 2195, () > 0
1€ S:ueS,vgS
holds, for alli € I(u) N I(v) and allS € S* such thatu € S, v ¢ S, the following equation:
d ys(t) d
EQSS,(uU)(t) = > > T 5 ) ()" (41)

ZJ'EI(“)"U(U) yiu*v(t) Jjel(u)NI(v) S’€STueS’ wgS’
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For a source nodéc Z, one has the following:
7 d 7
veVi\{i}

In the case Whergii} =0, one then has for alb € V; \ {i}, assuming the condition

d i
Z aﬁf’s,(w) (t)>0
Sesi:S£{i} ¢S
holds, for all.S € S* such thatS # {i} andv ¢ S the following:

d YL (t) d
795, () = Z- >, gfwm® @9
dt () ZS/ESi:S/#{i},UQS/ Ysr (t) S'eSS £ {i}ve S’ dt ()

O

D. Lyapunov Stability
The Lyapunov function we consider is the natural workloadcfion w(t) = >, .7 w'(t),

where ‘ ‘
w'(t) = > (Vi = [S])ys(1).
Sesi

Let us evaluate the time derivativﬁw"(t) at a pointt where the workload function® is
differentiable. To this end, we lef(i) denote the set of nodes ¥ that are fully deprived
of commoditys, i.e.

Ji)={ueVi: > v, () =0}

veVi\{u}
We also introduce the notations

fS,(uv) = %qbs,(uv) (t)

=D D T

SeS ueS veV;\S

and

The latter quantityci, can be interpreted as the rate at which nadéorwards data from

commodityi. We assume for now that’(t) > 0. The case where/(t) = 0 is easily dealt

with: the derivative of the function must then be zero, sittee function is non-negative.
We then have the following

Lwi(t) = Yges(Vil = 1S Zyst)
= (|Vz| - 1))‘2' - Eyevi\{i} f«%z’},(iv)

+ X sesusainsna@—o(Vil = 181) | Xuesves\(u) Fo\ 1o}, un)

- ZuES,UEVi\S fé’,(uv)

We further distinguish several cases.
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Case 1: J(i) = (). Then the above sums telescope, and one obtains after rewtiobs:

d ) 7
Zw'(t) = (Vi = DA = D e, (44)
ueV;
Case 2: J(i) # 0. Note that for any node € V;, all terms f, (uv) APPET with a coefficient
—(IVil =[S Ysnscy=0 + (IVi = |S] = 1)1(sugu})ns(n)=0, Which is non-positive, and at most
—1 whenSn J(i) = 0. Hence, using (39), we obtain
Fw' ) < (Vi = DA |
- ESGSi,SmJ(i):@ ngvi\s ffgv(w) [(|Vz| —151) - 1U¢J(’i)(|‘/;| — |51 = 1)]
= D veVi\J (i) wti Co-
Note now that, because of Condition (39‘)@ (i) €an only be positive whem € J(7).
Therefore we obtain that

d I 1
Zw'(t) < ([Vil = DA - g‘?)f{i},@v)(lva—l) (45)

- > S Fhw Vil = 18D (46)

S€eS,S#{i},SNJ (i)=0 ve J (i)
- > (47)
veVi\J(1),v#1
Also, by Condition (40), necessarily
X 2 fsw=c
5€8,5NJ (i)=0 ve J (3)
Now, distinguish further acording to Whethg?i}(t) = 0 or not. In the first case, necessarily
the right-hand side in (45), being the derivatig%@"{z‘}(t), must equal zero, while the term
(46) must necessarily equal— ;. In the case Whergii}(t) > 0, in view of (42), necessarily
the derivative%wi(t) is no larger than-(c; — \;)(|V;| — 1).
It therefore holds that, wheid(i) # (), necessarily

iM@g—@—&y- Yoo (48)
veVi\J (i),v#i
Let us denote by’ the set of those sourcese Z for which J(i) # () andw®(t) > 0, and by

7" the set of those sourcése Z for which J (i) = 0.
Combined together, (44) and (48) yield

DieT %wi(t) < = Derlai—N)
+ 2iezn Vil = DA = Xueu, ez, Cu
+ ZUEUiEzNVi ZiEI(u) CzluEJ(’i)u
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where we have used (40). We now argue that for any nodfet is a receiver of a commodity
i € 7" and belongs to/(i') for another commodity’, then necessarily:, = 0. This follows
indeed from (41). It therefore follows that

Yier g0 (t) < = Yiep(ei— ) (49)
+ ZZGI”(H/;‘ - 1)AZ - Zueuiez”‘/i Cu.

Thus the workload functioy",_, w'(t) verifies
w(t) < max(0,w(0) — et)

where

e=minqmini € e = AJ, min |} ew= (Vi = 1)\
= ;é uEUie.]V;; icJ

is strictly positive under the assumptions of Theorem 9.
Ergodicity then follows exactly by the same arguments asénproofs of Theorems 1 and
6.

VI. CONCLUSION

We have identified distributed scheduling strategies feg Btreaming, and proven a rate
optimality property for several network capacity models.

Many open problems remain, concerning the performanceseabie using simple, “un-
structured” peer-to-peer mechanisms such as those coedigethis paper. In particular, we
do not provide any guarantees on the delays with which padieztch receivers. Very few
results are available on the delay performance of suchlnistdd schemes (notable exceptions
being [11], [1]), and it would be interesting to obtain su@sults for the schemes we just
presented.

Another issue of interest concerns the performance of sabkmses in the presence of
“relay nodes”. There, the use or not of network coding withmhiatically affect the theoretical
rate at which data can be streamed. But in any case, with twouttnetwork coding, it is
an open question whether simple “epidemic” schemes of thd Wie discussed can achieve
optimal diffusion rates.
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