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Abstract

In this paper we consider the problem of sending data in real time from information
sources to sets of receivers, using peer-to-peer communications. We consider several models
of communication resources, and for each model we identify schemes that achieve successful
diffusion of information at optimal rates.

For edge-capacitated networks, we show optimality of the so-called “random-useful”
packet forwarding algorithm. As a byproduct, we obtain a novel proof of a famous theorem
of Edmonds, characterising the broadcast capacity of a capacitated graph.

For node-capacitated networks, assuming a complete communication graph, we show
optimality of the so-called “most-deprived” neighbour selection scheme combined with
random useful packet selection. We then show that optimality is preserved when each
peer can exchange data with a limited number of neighbours, when neighbourhoods are
dynamically adapted according to a particular scheme.

Finally, we consider the case of multiple information sources, each creating distinct
information to be disseminated to a specific set of receivers. In this context, we prove opti-
mality of the so-called “bundled most-deprived neighbour random useful packet” selection.

I. INTRODUCTION

There are nowadays many operational peer-to-peer systems supportinglive streaming, i.e.
real-time dissemination of audio-video data injected at a source towards a set of receivers
(e.g. PPLive, TVants, Sopcast, and CoolStreaming, to name afew). The detailed algorithms
implemented in those systems are in general not publicly available, a notable exception being
CoolStreaming (see e.g.[14]).

However, some degree of reverse engineering is possible [12], and it is commonly believed
that the above-mentioned systems implement schemes of the following kind. Data generated
at the source is partitioned intowindowsof contiguous data packets. Each peer then aims to
download all packets from a window, before it starts downloading packets from the subsequent
window. To download the packets from a given window, a peer implements schemes similar
to those used in BitTorrent [2] for downloading a file.

The schemes used for determining packet exchanges result from a combination of peer
selection strategy (who to send to) and packet selection strategy (what to send). For instance
in BitTorrent, peers serve preferentially those from whom they received more data in the recent

The results in Sections 2-4 of this paper were announced in [7]. Early versions of their proofs appeared in
Technical Report [8]. The results in Section 5 appear here for the first time.
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past (this is the so-called Tit-for-Tat mechanism, discussed in detail in [6]). The decision of
what to send is made by the receiver, who selects the rarest packet, rarity being evaluated
locally across neighbour peers.

The aim of the present paper is to introduce mathematical models and give proofs that simple
strategies, similar to those just described, are capable ofachieving real-time dissemination of
content to receivers at optimal rates. By optimal rate, we mean that dissemination at larger
rates is infeasible with the available communication resources.

The organisation of the paper is as follows. In Section II, weintroduce the model of
edge-capacitated networks. In this context, the optimal diffusion, or broadcast rate, has been
characterised by Edmonds [5] as the minimum over receivers of the minimum of the capacity
of cuts between the data source and the corresponding receiver (also known as the min-min-cut
capacity). Our main result, Theorem 1, states that under random-useful packet forwarding, the
system is ergodic provided the data injection rate is strictly below the min-min-cut capacity.
The theorem of Edmonds [5] is retrieved as a corollary of our result.

The proof of Theorem 1 is given in Section III.
In Section IV, we introduce the model of node-capacitated networks, and the most-deprived

neighbour selection strategy. Assuming a complete communication graph (i.e., everyone can
send to anyone), we prove that the system is ergodic under themost-deprived neighbour
random-useful packet selection rules, when the injection rate is strictly below the maximal
sustainable injection rate.

In Section V, we relax the assumption of a complete communication graph. We show
that rate optimality is preserved for communication graphswith small neighbourhoods that
are continuously adapted over time. We then extend the results of Section IV to the case
of multiple information sources, each creating distinct information to be disseminated to a
specific set of receivers. In this context, we prove optimality of the so-called bundled most-
deprived neighbour random useful packet selection.

Conclusions are drawn in Section VI.
Preliminary versions of the proofs in Sections II–IV appeared previously in the technical

report [8], while the corresponding results have been announced in [7]. Both the results and
the proofs in Section V appear here for the first time.

II. EDGE CAPACITATED NETWORKS

A. System model

A directed, edge-capacitated graphG = (V,E) is given. A distinguished source nodes
wants to send data to all other nodes, i.e. broadcast information over the graphG. Data
transfers consist of packet replication from some nodeu to a nodev such that(u, v) ∈ E.
The injection rateat the source is denoted byλ, and is by definition the rate at which the
source gets new packets.

The scheduling strategy we consider in this section is the following. When any nodeu has
some packets that one of its neighboursv has not received yet, or is not currently receiving,
and when there is no current transmission from nodeu to nodev, thenu picks uniformly at
random one of the packets that it could usefully send tov, and sends it tov. Such a transfer
proceeds at speedcuv , wherecuv is the capacity of link(uv) ∈ E.
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Once injected at the source, a packetp can be in a number of different states. It can be
replicated at all nodes in the system, hence successfully broadcast. Alternatively, it can be
idle, that is not actively transferred, and replicated at nodesu in some setS ⊂ V . In this
paper the symbol⊂ is used to denote strict subsets; the symbol⊆ is used to denote non strict
subsets. The subsets over which packets can be replicated isnot arbitrary: it must contain a
spanning tree rooted ats, and hence in particular it must contains. We shall denote byS the
collection of strict subsets ofV that contain the source nodes.

Alternatively, it can be replicated at some nodesu ∈ S, for some subsetS ∈ S, but also
actively transferred along some edgese ∈ F , for some subsetF ⊆ E.

We shall adopt the following description of the system state: for all S ∈ S, XS denotes
the number of idle packets, that are replicated exactly at the nodesu ∈ S. In addition, an
unordered list of subgraphsA = {G1 = (W1, F1), . . . , Gm = (Wm, Fm)} is maintained,
describing the “active packets”:Wi is the set of nodes at which thei-th active packet is
currently replicated;Fi is the set of edges along which thei-th active packet is currently
transferred.

We shall assume that at any given time, at most one packet is transferred along a given
edge. Thus, the total number of active packets is at most|E|. We shall further assume that
the following constraints are met: for an active packet withdescription(W,F ), for each
(u, v) ∈ F , thenu ∈W , v /∈W , and there is no other edgee ∈ F that points towardsv.

The physical meaning of this assumption is the following. Nopacket is sent towards a
node that already has it, and no packet is sent simultaneously from several nodes to the same
destination node.

One practical implementation that ensures this property consists in letting each receiver
node inform its neighbour nodes of which packets it has not received yet, and omitting from
this list those packets currently being transferred.

Introduce the notation:
X+u−v =

∑

S∈S:u∈S,v/∈S

XS .

This counts the number of idle packets that are present at node u and absent at nodev.
Let alsoXa

+u−v denote the number of active packets that could possibly be forwarded along
edge(u, v), given the above constraints. That is to say, let

Xa
+u−v =

∑

(W,F )∈A

1u∈W 1v/∈W1∀u′∈V,(u′,v)/∈F .

The following activity condition will be enforced at all times: for any edge(u, v), either
there is an active packet that is actively transferred alongedge(u, v), or:

X+u−v = 0 andXa
+u−v = 0.

In words, if there is no ongoing transfer along some edge(u, v), then necessarily no packet
present in the system could be transferred along this edge.

We now describe the transitions that the system state can experience under the proposed
random useful scheduling strategy.

Primary transitions: The first type of primary transitions is due to a fresh packet arrival
at the source. After such a transition, the state variableX{s} is updated toX{s} + 1.
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The second type of primary transitions is due to completion of transfer of an active packet
along some edge. Let this packet be represented by(W,F ), and lete = (u, v) ∈ F be the
edge along which replication has just completed.

Then two cases may occur. Ife = (u, v) was the only edge inF , then the packet under
consideration, characterised by(W,F ), is removed from the collection of active packets, and
the number of idle packets replicated atS = W ∪ {v} is increased by 1. If insteadF \ {e}
is not empty, then(W,F ) is replaced by(W ∪ {v}, F \ {e}) in the list of active packets.
Secondary transitions: These happen subsequently to primary transitions, to ensure that the
activity condition is met. If, after a primary transition, there is an edge(u, v) for which the
activity condition is not met, this means that this edge is not actively used, while the number
of packetsX+u−v +Xa

+u−v which could potentially be transferred along that edge is positive.
In this case, one of theseX+u−v +Xa

+u−v packets will be selected uniformly at random, and
start being replicated along edge(u, v).

More precisely, for eachS ∈ S such thatu ∈ S, v /∈ S, with probability

XS

X+u−v + Xa
+u−v

,

the following state updates are made:

XS ← XS − 1,
A← A ∪ (S, (u, v)).

For each active packet(W,F ) such thatu ∈ W , v /∈ W , and for allu′ ∈ V , (u′, v) /∈ F ,
then with probability1/(X+u−v + Xa

+u−v), the active setA is updated as follows:

A← A \ (W,F ) ∪ (W,F ∪ (u, v)).

Note that all these transition probabilities sum to 1, as required. Moreover, these capture
the uniform selection of useful packets that could be sent along edge(u, v) that we assume
throughout.

A Markovian special case: A general version of the model would assume that the time
intervals between fresh packet arrivals at the source are i.i.d. random variables, and that packet
transfer times along a given edge are also i.i.d. random variables. Under these assumptions,
the model we just described is a Markov process, provided we augment the state space to
keep track of the residual times till (i) arrival of the next fresh packet, and (ii) completion of
transmission along a given edge. Of particular interest is the case where these i.i.d. random
variables are in fact deterministic.

The general i.i.d. case is beyond the scope of the present work. In this article, we focus on
the special case where the i.i.d. random variables involvedare Exponential random variables,
where the mean inter-packet arrival at the source equalsλ−1, and the mean packet transfer
time along edge(u, v) is c−1

uv . In this particular case, the evolution of the state variables
described above is Markovian, without the adjunction of residual time variables. In the sequel
we focus on this particular setup.
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B. Edge capacities: main result

We shall denote byλ∗(G) the min-min-cut of graphG with source nodes. That is,

λ∗(G) = min
u∈V

min
S⊂V :s∈S,u/∈S

∑

v∈S

∑

w/∈S

cvw. (1)

The main result in the present context is the following
Theorem 1:The Markov process((XS)S∈S , A) corresponding to random useful packet

forwarding is ergodic under the condition

λ < λ∗(G). (2)

The proof of this result will be given in Section III . It relies on the so-called “fluid limits”
approach, introduced and popularised by [10] and [4]. Informally, the approach consists in
first establishing that trajectories of the original Markovprocess, after joint rescaling of both
time and space, evolve according to some simpler, “fluid” dynamics, and then to prove that
trajectories of the fluid dynamics converge to zero in finite time.

We define the “spanning tree packing number”,π(G) of graphG with distinguished source
nodes as the solution of the following optimization problem:

Maximize
∑

T∈T

λT (3)

over λT ≥ 0, T ∈ T (4)

subject to
∑

T∈T :(i,j)∈T

λT ≤ cij , (ij) ∈ E(G), (5)

whereT denotes the collection of spanning trees ofG, rooted ats.
A direct consequence of Theorem 1 is the following
Corollary 1: (Edmonds, 1972 [5]) For any oriented graphG with edge capacitiescij ,

(ij) ∈ E(G), and source nodes, the spanning tree packing numberπ(G) is equal to the
min-min-cut number,λ∗(G).

Proof: To anyi ∈ V (G) and any collection of non-negative numbersλT satisfying inequal-
ities (5), one can associate a flow froms to i with total capacity

∑

T∈T λT . Thus, necessarily
π(G) is at most the maximum flow betweens and i, for any i ∈ V (G). The celebrated
max-flow min-cut theorem states that this maximum flow coincides with the minimum cut
capacity betweens and i. This establishes thatπ(G) is at mostλ∗(G).

We now establish the converse inequality using Theorem 1. Let ε > 0 be arbitrary, and
consider the injection rateλ = λ∗(G) − ε. Theorem 1 guarantees that the Markov process
keeping track of the number of packets in any possible state is ergodic. As a consequence, there
exists an equilibrium distribution for the time it takes a packet to be successfully broadcast, and
a steady state distribution for the spanning tree along which a packet is effectively broadcast.

Let q be the discrete probability distribution over the collection T characterising the
tree along which a packet is broadcast in equilibrium. Let also FT denote the cumulative
distribution function of the time to broadcast a packet in equilibrium, conditionally on the
fact that it is broadcast along treeT , for all T ∈ T .
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Let δ > 0 andM > 0 be some fixed positive numbers. Letτ be some time index, that we
shall let increase to infinity. LetNT (τ) denote the number of packets that have been injected
at the source during[0, τ ], and which have been successfully broadcast along treeT by time
(1 + δ)τ . Clearly, providedM ≤ δτ , NT (τ) is larger than the numberN ′

T (τ) of packets
injected at the source during[0, τ ], that have been successfully broadcast with a broadcast
time no larger thanM .

By the ergodic theorem, the following holds:

lim
τ→∞

1

τ
N ′

T (τ) = λ q(T )FT (M), almost surely.

In turn, this implies that:

lim inf
τ→∞

1

τ
NT (τ) ≥ λq(T )FT (M).

Let Nij((1 + δ)τ) denote the number of packet transmissions along edge(ij) during [0, (1 +
δ)τ ]. Again by the ergodic theorem, and the fact that the time for apacket transmission along
edge(ij) is exponentially distributed with mean1/cij , it holds that

lim sup
τ→∞

1

(1 + δ)τ
Nij((1 + δ)τ) ≤ cij , almost surely.

On the other hand, for any edge(ij) ∈ E, the process dynamics are such that necessarily:

∀τ ≥ 0,
∑

T :(ij)∈T

NT (τ) ≤ Nij((1 + δ)τ), almost surely.

Dividing this last inequality byτ , and lettingτ tend to infinity, the two previous inequalities
entail that

∑

T :(ij)∈T

λq(T )FT (M) ≤ (1 + δ)cij , (ij) ∈ E(G).

Let successivelyM tend to infinity andδ tend to zero to obtain:
∑

T :(ij)∈T

λq(T ) ≤ cij , (ij) ∈ E(G).

Thus, the numbersλT := λq(T ) satisfy the constraints (5). Since they sum toλ, this ensures
that λ ≤ π(G). Since this is true for any positiveε = λ∗(G) − λ, the desired inequality
λ∗(G) ≤ π(G) follows.

III. PROOF OFTHEOREM 1

The proof consists of three main parts. We first characterizethe “fluid trajectories” that
are valid limits of the process trajectories after joint rescaling of both time and space. We
then establish that, under the stability conditionλ < λ∗(G), these must converge to zero in
finite time. We finally deduce the ergodicity result by applying a suitable version of Foster’s
criterion.
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A. Fluid dynamics: characterization and convergence

Let us introduce the following definition.
Definition 1: The real-valued non-negative functionst → yS(t), S ∈ S, are called fluid
trajectories of the above Markov process if they satisfy thefollowing conditions.

For all S ∈ S, all u ∈ S, all v /∈ S, there exist non-negative functionst→ φS,(uv)(t) such
that

y{s}(t) = ys(0) + λt−
∑

v∈V \{s} φ{s},(sv)(t)

S 6= {s} : yS(t) = yS(0) +
∑

u∈S

∑

v∈S\{u} φS\{v},(uv)(t)

−
∑

u∈S

∑

v/∈S φS,(uv)(t),

(6)

and that are non-decreasing, Lipschitz continuous with Lipschitz constantscuv. In addition,
for all (u, v) ∈ E, it holds that:

∑

S∈S:u∈S,v/∈S

φS,(uv) is cuv-Lipschitz.

Moreover at almost every pointt, the functionφS,(uv) is differentiable, and the following
holds:

y+u−v(t) > 0⇒
d

dt
φS,(uv)(t) = cuv

yS(t)

y+u−v(t)
, (7)

where we have used the notation

y+u−v(t) :=
∑

S′∈S:u∈S′,v /∈S′

yS′(t). (8)

♦

The following notation will be used in the sequel. For anyy ∈ R
S
+, S(y) denotes the

set of all fluid trajectories of the system with initial condition y. Thus it is a subset of
C([0,+∞), RS

+), that is the space of continuous,R
S
+-valued functions on[0,+∞). Note that

at this stage, neither existence nor uniqueness of fluid trajectories has been established.
The following result shows in what sense such fluid trajectories describe the dynamics of

the original Markov process after spatial and temporal rescaling. It implies as a corollary
that the setS(y) is nonempty, for anyy ∈ R

S
+. However no claim of uniqueness of fluid

trajectories is made.
Theorem 2:Consider a sequence of initial conditions(XN (0), AN (0)), N > 0, such that

for a sequence of positive numbers(zN )N>0, limN→∞ zN = +∞, and the limit

lim
N→∞

1

zN
XN (0) = x(0)

exists inR
S
+. Introduce the rescaled process

Y N
S (t) :=

1

zN
XN

S (zN t), S ∈ S,

whereXN
S (t) represents the (S-coordinate of the) state of the Markov process with initial

conditions(XN (0), AN (0)) at timet. Then for allT > 0, all ε > 0, the following convergence
takes place:

lim
N→∞

P

(

inf
f∈S(x(0))

sup
t∈[0,T ]

||Y N (t)− f(t)|| ≥ ε

)

= 0. (9)
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In words, the restriction of the rescaled processY N to any compact interval[0, T ] converges
in probability to the setS(x(0)) of fluid trajectories with initial conditionx(0), where
convergence of processes is for the uniform norm.

Proof: It will be more convenient to work with the state variablesX̃S , which count the
total number of packets, active or idle, present at nodesu ∈ S. That is:

X̃S = XS +
∑

(W,F )∈A

1W=S.

We shall thus consider the rescaled processes

Ỹ N
S (t) := 1

zN
X̃N

S (zN t)

= Y N
S (t) + 1

zN

∑

W∈AN 1W=S .

Since they differ fromY N
S by at most|E|/zN , the processes agree in the limitN →∞.

Let Puv, (u, v) ∈ E, be independent unit rate Poisson processes. The Poisson processPuv

will be used to determine the instants at which packet transfers along edge(u, v) complete.
Introduce the notation:

ΦN
S,(uv)(t) = Puv



cuv

∫ t

0

∑

(W,F )∈AN (s−)

1W=S,(u,v)∈F ds



 .

This process keeps track of the number of completions of packet transfers along edge(u, v),
for packets that were previously present at node setS.

We thus have the following, for allS ∈ S, S 6= {s}:

X̃N
S (t) = X̃N

S (0) +
∑

u∈S,v∈S\{u}

ΦN
S\{v},(uv)(zN t)−

∑

u∈S,v/∈S

ΦN
S,(uv)(zN t).

We use another unit rate Poisson processP0 to count fresh arrivals at the source, and write:

X̃N
{s}(t) = X̃N

{s}(0) + P0(λt)−
∑

v 6=s

ΦN
{s},(sv)(zN t).

We now show that for any (deterministic) subsequence of the original sequence, there exists
a further (deterministic) subsequencef(N) for which the following property holds.

Almost surely, the sequence of rescaled processest → 1
zf(N)

Φ
f(N)
S,(uv)(zf(N)t) is tight (for

the topology of uniform convergence), and any collection offunctionsφS,(uv) that are accu-
mulation points of this sequence define a fluid trajectory as per the previous definition.

sup
t∈[0,T ]

∣

∣

∣

∣

∣

∣

1

zN
ΦN

S,(uv)(zN t)− cuv

∫ t

0

∑

(W,F )∈AN (zN s−)

1W=S,(u,v)∈F ds

∣

∣

∣

∣

∣

∣

≤ sup
t∈[0,cuvT ]

∣

∣

∣

∣

1

zN
Puv(zN t)− t

∣

∣

∣

∣

.

(10)
The following lemma, which is a classical result on the maximal deviation of a Poisson
process from its mean is now needed:
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Lemma 1:Let Ξ be a unit rate Poisson process. Then for allT > 0, N > 0, and allε > 0,
it holds that

P(sup0≤t≤T |Ξ(Nt)−Nt| ≥ εNT ) ≤ e−NTh(ε) + e−NTh(−ε), (11)

where
h(λ) := (1 + λ) log(1 + λ)− λ (12)

is the Cramér transform of a unit mean, centered Poisson random variable. In the above
formula, it is understood thath(−λ) = +∞ if λ > 1.
Define the subsequencef(N), together with a sequenceε(N) as follows:

{

f(N) = inf{k > f(N − 1) : zk ≥ N},
ε(N) = N−1/4.

Define the eventAN as

AN = ∪S∈S,u∈S,v/∈S

{

supt∈[0,T ]

∣

∣

∣

1
zf(N)

Φ
f(N)
S,(uv)

(zf(N)t)

−cuv

∫ t
0

∑

(W,F )∈Af(N)(zf(N)s−) 1W=S,(u,v)∈F ds
∣

∣

∣
≥ ε(N)

}

·

It is readily seen, using the above Lemma and the inequality (10), that the following holds:
∑

N>0

P(AN ) < +∞.

Thus, by Borel-Cantelli’s lemma, with probability 1 only finitely many eventsAN occur. In
the sequel, to lighten notation we writeN instead off(N).

To establish the claimed convergence of the rescaled processes 1
N ΦN

S,(uv)(Nt) to Lipschitz-
continuous, non-decreasing functionsφS,(uv) along subsequences, it is therefore sufficient to
establish that such convergence holds for the functions:

t→ cuv

∫ t

0

∑

(W,F )∈AN (Ns−)

1W=S,(u,v)∈F ds. (13)

To this end, we use the following lemma, taken from Ye et al. [13]:
Lemma 2: (Lemma 6.3, Ye et al. [13]) Suppose that a sequence of functionsfk : [0, T ]→ R

has the following properties:
(i) {fk(0)}k≥0 is bounded;
(ii) there is a constantM > 0, and a sequence of positive numbersσk, with σk → 0 as

k →∞, such that

|fk(t)− fk(s)| ≤M(t− s) + σk, k ≥ 0, s, t ∈ [0, T ].

Then the sequence admits a subsequence that converges uniformly on [0, T ] to a Lipschitz
continuous functionf : [0, T ]→ R with Lipschitz constantM .
Clearly the conditions of the Lemma are met for the functions(13), with as a Lipschitz constant
M = cuv . Moreover, any limiting function must be non-decreasing since the functions (13)
are all non-decreasing.
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Note now that fort < t′,

∑

S∈S:u∈S,v/∈S

cuv

∫ t′

t

∑

(W,F )∈AN (Ns−)

1W=S,(u,v)∈F ds ≤ cuv(t
′ − t).

This readily implies that for any given(u, v) ∈ E, the limiting functionsφS,(uv) summed
over S ∈ S such thatu ∈ S andv /∈ S are cuv-Lipschitz.

It now remains to establish the last property in the definition of fluid trajectories, that is:
at almost everyt, the functionφS,(uv)(t) is differentiable, and providedy+u−v(t) > 0, then:

d

dt
φS,(uv)(t) = cuv

yS(t)

y+u−v(t)
·

By Rademacher’s theorem, a Lipschitz-continuous functionis differentiable almost every-
where. Let thust be a point whereφS,(uv)(t) is differentiable. Consider first the case where
yS(t) > 0. Fix someh > 0. We want to evaluate the following quantity:

1

h
cuv

∫ t+h

t

∑

(W,F )∈AN (Ns−)

1W=S,(u,v)∈F ds.

Note that on the intervalτ ∈ [t, t+h], N−1XN
S (Nτ) equalsyS(t)+0(h)+εN , whereεN → 0

as N → ∞, by convergence of the rescaled trajectories, and by Lipschitz continuity of the
limiting trajectories.

Thus, after each completion of a transfer along edge(u, v) during the interval[Nt,N(t+h)],
the probability that the next packet selected for transmission along edge(u, v) is a previously
idle packet, replicated at nodesw ∈ S is asymptotic toyS(t)/y+u−v(t) + 0(h). Furthermore,
once such a transfer is started, the probability that the packet under consideration is elected
for transmission along another edge converges to zero asN → ∞, since there are close to
NyS(t) other idle packets that could alternatively have been selected for such a transmission.
Together these arguments ensure that

lim
N→∞

1

h
cuv

∫ t+h

t

∑

(W,F )∈AN (Ns−)

1W=S,(u,v)∈F ds = cuv
yS(t)

y+u−v(t)
+ O(h)·

However, the left-hand side of this expression also reads

1

h

(

φS,(uv)(t + h)− φS,(uv)(t)
)

,

and thus the derivative ofφS,(uv) at t must equalcuv
yS(t)

y+u−v(t) as announced.
Finally, consider the case whereyS(t) = 0, and choose a particulart at which allS′ with

u ∈ S′, v /∈ S′ are such thatφS′,(uv)(t) are differentiable. We know that almost everywhere,
the sum of these derivatives can not exceedcuv, because it is a Lipschitz constant for the
sum of these functions. However, the sum of the derivatives for thoseS′ such thatyS′(t) > 0
equalscuv, therefore the derivatives for thoseS such thatyS(t) = 0 must equal zero.
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B. Fluid dynamics: stability

In the present section, we establish that any fluid trajectories as per Definition 1 satisfy a
suitable stability property:

Theorem 3:Assume that Condition (2) holds. Let(yS)S∈S denote fluid trajectories as per
Definition 1. For allS ⊂ V , define:

y⊆S =
∑

S′∈S,S′⊆S

yS′ .

Then there exist positive parametersβ1, . . . , β|V |−1, andε > 0 such that the function

L({yS}S∈S) := sup
S⊂V

β|S|y⊆S

verifies:
L(y(t)) ≤ max (0, L(y(0)) − εt) . (14)

Denote byK the total number of nodes, that isK = |V |. The proof will rely on the
following lemma:

Lemma 3:Let α > 0 be fixed. For givenδ,A > 0, define:

εK−1 = δ;
εK−1−i = δA(1 + A)i−1, i = 1 . . . ,K − 2,
βK−1 = 1;

βK−i =
∏K−1

j=K−i+1

(

1
1−εj

)

, i = 2, . . . ,K − 1.

(15)

Then A and δ can be chosen so that the following properties hold for any(yS)S∈S ∈ R
S
+,

(yS)S∈S 6= 0. For all S ⊂ V , all u ∈ S, v /∈ S:

y+u−v < ε|S|y⊆S ⇒ β|S|−1y⊆S\{u} > β|S|y⊆S. (16)

Moreover for allS ⊂ V such that, for allu ∈ S, all v /∈ S, y+u−v ≥ ε|S|y⊆S, assuming there
exist u ∈ S andv /∈ S such that for someS′ 6⊆ S: u ∈ S′, v /∈ S′ andyS′ > αy+u−v, then
it holds that:

β|S∪S′|y⊆S∪S′ > β|S|y⊆S. (17)

Proof: (of Lemma 3) Let us first establish sufficient conditions on the parametersεi, βi

for the conclusions of the Lemma to hold. Consider the first requirement (16), and let thus
S be such that for someu ∈ S andv /∈ S, one has

y+u−v < ε|S|y⊆S.

Write now:
y⊆S = y⊆S\{u} +

∑

S′∈S:u∈S′,S′⊆S yS′

≤ y⊆S\{u} + y+u−v

< y⊆S\{u} + ε|S|y⊆S.

It thus follows that
y⊆S\{u} > (1− ε|S|)y⊆S .
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Thus the desired conclusion (16) will follow provided:

βi−1(1− εi) ≥ βi, i = 2, . . . ,K − 1. (18)

Clearly, this condition will be satisfied with the particular choice of coefficientsβi as in (15),
provided theεi lie in the interval(0, 1), which will be ensured by takingδ > 0 sufficiently
small.

Let us now turn to Condition (17). Let thusS ⊂ V be such that for allu ∈ S andv /∈ S,
ε|S|y⊆S ≤ y+u−v. Assume moreover the existence ofu ∈ S, v /∈ S, andS′ 6⊆ S such that
u ∈ S′, v /∈ S′, and satisfying in addition:

yS′ > αy+u−v.

Then necessarily, one has:
yS′ > αε|S|y⊆S.

The left-hand side of Condition (17) then verifies:

β|S∪S′|y⊆S∪S′ ≥ β|S∪S′| (yS′ + y⊆S)
> β|S∪S′|(1 + αε|S|)y⊆S.

Therefore, (17) will hold provided

β|S∪S′|(1 + αε|S|) ≥ β|S|.

For sufficiently smallδ > 0, the coefficientsεi as in (15) will be strictly less than 1, and
hence the coefficientsβi as in (15) will be decreasing withi. Thus, the above condition will
be satisfied provided:

βK−1(1 + αεi) ≥ βi, i = 1, . . . ,K − 2. (19)

For i = K − 2, this condition reads1 + αεK−2 ≥ 1/(1 − εK−1). Recalling from (15) that
εK−1 = δ, the right-hand side reads1 + δ + o(δ), while the left-hand side reads1 + αδA.
Thus, this particular condition is met providedAα > 1, andδ > 0 is small enough.

Let us now consideri ∈ {1, . . . ,K−3}. Note that the right-hand side of (19) is equivalent
to, for smallδ > 0:

βi =
∏K−1

j=i+1

(

1
1−εj

)

= 1 +
∑K−1

j=i+1 εj + o(δ)

= 1 + δ +
∑K−2

j=i+1 δA(1 + A)K−2−j + o(δ)

= 1 + δ + δA
∑K−3−i

j=0 (1 + A)j + o(δ)

= 1 + δ + δA (1+A)K−3−i+1−1
A + o(δ)

= 1 + δ(1 + A)K−2−i + o(δ).

On the other hand, the left-hand side of (19) equals1 + αδA(1 + A)K−2−j. Thus, provided
αA > 1, andδ > 0 is small enough, the announced properties hold.
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Proof: (of Theorem 3) Consider the particular parametersβi, εi as in Lemma 3. Clearly,
for a vectory ∈ R

S
+ that is non-zero, any setS∗ ⊂ V achieving the maximum inmaxS⊂V β|S|y⊆S

is such thaty⊆S∗ > 0. Moreover, for allu ∈ S∗, v /∈ S∗, one must have:

y+u−v ≥ ε|S∗|y⊆S∗ > 0,

for otherwise optimality of the setS∗ would be contradicted by Condition (16). In addition,
for all u ∈ S∗, v /∈ S∗, and allS′ 6⊆ S∗ such thatu ∈ S′, v /∈ S′, necessarilyyS′ ≤ αy+u−v,
for otherwise optimality ofS∗ would be contradicted by (17).

One thus has the following evaluation:
d
dty⊆S∗ =

∑

S⊆S∗
d
dtyS

= λ−
∑

u∈S∗,v /∈S∗

∑

S⊆S∗,u∈S
d
dtφS,(uv)

= λ−
∑

u∈S∗,v /∈S∗ cuv

[

1−
∑

S′ 6⊆S∗,u∈S′,v /∈S′
yS′

y+u−v

]

≤ λ−
∑

u∈S∗,v /∈S∗ cuv +
∑

u∈S∗,v /∈S∗ cuv
∑

S′ 6⊆S∗,u∈S′,v /∈S′ α

≤ λ−
∑

u∈S∗,v /∈S∗ cuv + maxe∈E ce|E|2
Kα.

In the above, we have used the expression (7) for the derivative of the functionsφS,e, and
the bound ofα on the ratioyS′/y+u−v previously established.

Furthermore, the conditions (18) and (19) used in the proof of Lemma 3 can be shown to
imply the following. For a setS such thatβ|S|y⊆S ≥ (1− r)β|S∗|y⊆S∗, wherer > 0 is some
small positive constant, necessarily for allu ∈ S, v /∈ S,

y+u−v ≥

(

1−
1− ε|S|

1− r

)

y⊆S.

In addition, foru ∈ S, v /∈ S andS′ 6⊆ S such thatu ∈ S′, v /∈ S′, then one has:

yS′ ≤

(

1 + αε|S|

1− r
− 1

)

1

1− 1−ε|S|

1−r

y+u−v = (α + O(r)) y+u−v.

Thus, for suchS, one has the similar evaluation
d

dt
y⊆S ≤ λ−

∑

u∈S,v/∈S

cuv + max
e∈E

ce|E|2
Kα (1 + O(r)) . (20)

Note that the choice ofα > 0 in Lemma 3 was arbitrary. For definiteness, set

α =
1

2

minS⊂V
∑

u∈S,v/∈S cuv − λ

|E|2K maxe∈E ce

This is positive, under the stability condition (2). Then from the above evaluation (20), it
follows that necessarily, almost everywhere the Lipschitzcontinuous functionL(y(t)) must
satisfy:

d

dt
L(y(t)) ≤ −ε1y(t)6=0,

where

ε :=
1

2



min
S⊂V

∑

u∈S,v/∈S

cuv − λ



 .

The result of Theorem 3 follows.
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C. Proof of Theorem 1

The proof of Theorem 1 will require to combine Theorems 2, 3 and the following ergodicity
criterion, which is a direct consequence of Theorem 8.13, p.224 in Robert [9]:

Theorem 4:Let Z(t) be a Markov jump process on a countable state spaceZ. Assume
there exists a functionL : Z → R+ and constantsM , ε, τ > 0 such that for allz ∈ Z:

L(z) > M ⇒
1

L(z)
EzL (Z(L(z)τ)) ≤ 1− ε. (21)

If in addition the set{z : L(z) ≤ M} is finite, andEzL(Z(1)) < +∞ for all z ∈ Z, then
the processZ(t) is ergodic.

Let us show how this result applies in the present context. Here we haveZ(t) = (X(t), A(t)),
and our candidate Lyapunov function takes as argument theX-component only, and reads

L(Z) = sup
S⊂V

β|S|X⊆S .

Let us setτ = 1, whereε is as in Theorem 3, and establish that (21) holds by contradic-
tion. Assuming it fails, there must exist a sequence of initial conditionsZN (0) such that
L(ZN (0))→∞, and such that

lim
N→∞

1

L(ZN (0))
EL

(

ZN(L(ZN (0))τ)
)

> 1− ε. (22)

However, by Theorem 1, any accumulation point of the sequence

1

L(ZN (0))
XN (L(ZN (0))τ)

must be equal toy(τ) for some fluid trajectoryy issued from an initial conditiony(0) such
thatL(y(0)) = 1. Furthermore, this family of random vectors is uniformly integrable: indeed,
writing

1

L(ZN (0))
XN

S (L(ZN (0))τ) ≤
XN

S (0)

β|S|X
N
S (0)

+
1

L(ZN (0))

∑

e∈E

Pe(L(ZN (0))ceτ),

where thePe are the Poisson processes previously introduced, uniform integrability can be
readily checked. Since the functionL grows not faster than linearly, the family of random
variables

1

L(ZN (0))
L
(

XN (L(ZN (0))τ)
)

is also uniformly integrable. Since the functionL is continuous, accumulation points of this
sequence must be of the formL(y(τ)), for some fluid trajectoryy issued from an initial
conditiony(0) such thaty(0) = 1. By Theorem 3, all such accumulation points are less than,
or equal to1− ε. This together with uniform integrability ensures that

lim sup
N→∞

1

L(ZN (0))
EL

(

ZN(L(ZN (0))τ)
)

≤ 1− ε,

which contradicts (22). The proof is concluded by verifyingthe other assumptions of Theo-
rem 4, i.e. that{z : L(z) ≤M} is finite for sufficiently largeM . This holds trivially, because
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for any X-component the number of potentialA-components is bounded (say by|E| times
the number of subgraphs ofG).

Finally, one must check thatEzL(Z(1)) < +∞ for all z; this is easily verified, once more
by boundingXS(1) by its initial value plus increments of Poisson processes.

IV. N ODE-CAPACITATED NETWORKS

A. Model and Algorithm

Neighbour selection: Here, the system is also described by a a graphG = (V,E). However,
the capacities are now associated with nodes rather than with edges. We shall denote bycu

the capacity of nodeu, and assume that each node devotes its capacity to one of its “most
deprived neighbours”. By this, the following is meant. For each of its neighboursv, nodeu
evaluates the numberZ+u−v of packets that it could usefully forward to nodev. Using the
same notation as before, this reads:

Z+u−v = X+u−v + Xa
+u−v.

It then elects one neighbourv for which the corresponding quantityZ+u−v is maximal. Ties
can be broken either at random, or in a systematic manner. Once the target neighbourv is
chosen, then one of theZ+u−v packets held byu and useful tov is chosen, and forwarded
from u to v, at ratecu.

Packet selection: We now describe how packets are elected for transmission once a node’s
capacity becomes available. For non-source nodesu, who have chosen to transmit to some
most deprived neighbourv, then the packet to be transmitted is selected at random among all
the possibleZ+u−v possible choices.

For the source nodes, having chosen to transmit to some most deprived neighbourv, the
following strategy is used: if the source has a packet that ithas not sent to anyone before
(a fresh packet), that is ifX{s} > 0, then one such fresh packet is forwarded to nodev; if
no such fresh packet is available, then the packet to be forwarded is selected uniformly at
random from theZ+s−v possible choices.

As in the edge capacitated case, the state space consists in the collection of variablesXS ,
for all S ∈ S, and the collection of active packet statesA = ((W1, F1), . . . , (Wm, Fm)).
The constraints on these active packet states are differentthough: we now assume that each
node forwards a packet to only one of its neighbours at a giventime. Thus for each nodeu,
there is at most one edge(u,w) appearing in the setsFi, i = 1, . . . ,m. Otherwise the same
constraints apply: for a given active packet(W,F ), and each edge(u, v) ∈ F , necessarily,
u ∈W andv /∈W ; also, there is no other edge(u′, v) pointing towardsv in F .

We shall assume that packet transmissions are not preempted, even if a neighbour of some
nodeu becomes more deprived than the neighbourv to which nodeu is currently transmitting.

As in the edge-capacitated case, we assume Exponentially distributed inter-event timers.
Specifically, the time for transmission of a packet from somenodeu is exponentially dis-
tributed with mean1/cu, and fresh packets arrive at the source nodes at the instants of a
Poisson process with rateλ.
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B. Fluid limits

We first define the candidate fluid trajectories for the systemunder consideration:
Definition 2: The real-valued, non-negative functions(yS)S∈S are called fluid trajectories of
the node-capacitated system if the following properties hold.

For all S ∈ S, u ∈ S, v /∈ S such that(u, v) ∈ E, there exist non-decreasing, Lipschitz-
continuous functionsφS,(uv) with Lipschitz constantcu, such that Equations (6) hold. Fur-
thermore, using notation

y+u−v :=
∑

S∈S:u∈S,v/∈S

yS,

for all S ∈ S, u ∈ S, the functions{φS,(uv)}v/∈S,(uv)∈E are differentiable at almost everyt,
and if

∑

v:(u,v)∈E y+u−v(t) > 0, their derivatives satisfy:

d

dt
φS,(uv)(t) = 0 if y+u−v(t) < max

v′:(u,v′)∈E
(y+u−v′(t)) , (23)

∑

v:(uv)∈E

∑

S:u∈S,v/∈S

d

dt
φS,(uv)(t) = cu. (24)

If u 6= s, that is for a non-source node, one also has, for allv such that(uv) ∈ E and
assuming the condition

∑

S:u∈S,v/∈S

d

dt
φS,(uv)(t) > 0

holds, the following equation:

∀S/u ∈ S, v /∈ S,
d

dt
φS,(uv)(t) =

yS(t)
∑

S′:u∈S′,v /∈S′ yS′(t)

∑

S′:u∈S′,v /∈S′

d

dt
φS′,(uv)(t)· (25)

For the source nodes, one has the following:

y{s} > 0⇒
∑

v 6=s

d

dt
φ{s},(sv)(t) = cs. (26)

In the case wherey{s} = 0, one then has for allv such that(sv) ∈ E, assuming the condition

∑

S∈S:S 6={s},v /∈S

d

dt
φS,(sv)(t) > 0

holds, the following:

∀S ∈ S/S 6= {s}, v /∈ S :
d

dt
φS,(sv)(t) =

yS(t)
∑

S′∈S:S′ 6={s},v /∈S′ yS′(t)

∑

S′∈S:S′ 6={s},v /∈S′

d

dt
φS′,(sv)(t)·

(27)
♦

We now establish the following
Theorem 5:The statement of Theorem 2 holds true with(XN (t), AN (t)) denoting the

state of the process corresponding to the node-capacitatedsystem, and withS(x) denoting
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the set of fluid trajectories defined in Definition 2. That is, rescaled trajectories converge in
probability to the set of fluid trajectories.

Proof: Introduce the functions

ΦN
S,(uv)(t) := Pu



cu

∫ t

0

∑

(W,F )∈AN (s−)

1W=S,(u,v)∈F ds



 ,

wherePu are independent, unit rate Poisson processes. The existence of functionsφS,(uv)

that are non-increasing and Lipschitz continuous with Lipschitz constantcu, and such that
for functionsyS given by (6), the claimed convergence in probability holds,is established
exactly as in the proof of Theorem 2, and hence the detailed argument is omitted.

It only remains to establish properties (23–27) of the derivatives d
dtφS,(uv)(t). Fix thus

h > 0, and consider the quantity

1

h

(

1

N
ΦN

S,(uv)(N(t + h)) −
1

N
ΦN

S,(uv)(Nt)

)

. (28)

Assume that the nodeu is such that the limiting processes(y) satisfy
∑

v′ 6=u

y+u−v′(t) > 0. (29)

Then, providedy+u−v(t) < maxv′ 6=v y+u−v(t), by Lipschitz continuity of the limiting trajec-
tories, the same inequality holds throughout the interval[t, t + h]. Thus, by convergence of
the rescaled trajectories to the fluid limits, for large enough N , neighbourv is never selected
for transmission by nodeu over the whole interval[Nt,N(t + h)]. It then follows that the
term (28) converges to 0 asN →∞. This establishes (23).

Note next that, when (29) holds, for large enoughN one has the following equality:
∑

v 6=u,S∈S:u∈S,v/∈S

1

h

(

1

N
ΦN

S,(uv)(N(t + h)) −
1

N
ΦN

S,(uv)(Nt)

)

=
1

N
(Pu(N(t + h))− Pu(Nt)) .

This is because nodeu’s capacity is always used when there are packets that nodeu can
usefully transmit. This identity guarantees that

lim
N→∞

∑

v 6=u,S∈S:u∈S,v/∈S

1

h

(

1

N
ΦN

S,(uv)(N(t + h))−
1

N
ΦN

S,(uv)(Nt)

)

= cu,

from which (24) follows.
Assume now that for non-source nodeu, nodev is such that

∑

S:u∈S,v/∈S

d

dt
φS,(uv)(t) > 0.

Then for allS such thatu ∈ S, v /∈ S, of all the instants during the interval[Nt,N(t + h)]
at which nodeu chooses to send a packet to nodev, a fractionyS(t)/y+u−v(t) + 0(h) +
0(1/N) of these choices is towards an idle packet previously replicated at all nodes inS.
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Furthermore, once transfer of such previously idle packetshas started, such a packet is elected
for transmission by some other node with probability0(1/N). This thus shows that

limN→∞
1
N

[

ΦN
S,(uv)(N(t + h))− ΦN

S,(uv)(Nt)
]

=
(

yS(t)
y+u−v(t) + 0(h)

)

× · · ·

×
∑

S′:u∈S′,v /∈S′

[

φS′,(uv)(t + h)− φS′,(uv)(t)
]

.

Dividing by h and lettingh tend to zero establishes (25).
Equation (26) follows by similar arguments, relying on the fact that the source nodes

forwards fresh packets, whenever there are some available.Equation (27) is also established
by similar arguments, now relying on the fact that the source, when sending non-fresh packets,
selects such packets uniformly at random.

C. Stability for the complete graph

The main result we shall establish is in the case of the complete graph, that is all edges
(u, v), u 6= v, are present inE. We then have the following

Theorem 6:Assume that the graphG = (V,E) is complete, and that the injection rateλ
verifies:

λ < min

(

cs,

∑

u∈V cu

K − 1

)

, (30)

whereK = |V |. Then the Markov process keeping track of the system state under “random
useful to most deprived neighbour” scheduling strategy is ergodic.

The proof of Theorem 6 parallels exactly that of Theorem 1, relying on a combination of
Theorem 4 with Theorem 5 (taking the role played by Theorem 2 in the proof of Theorem 1)
and of Theorem 7 below (taking the role played by Theorem 3 in the proof of Theorem 1).
We shall not reproduce the whole argument, but shall insteadonly detail the proof of the
following result on stability of fluid trajectories:

Theorem 7:For anyy = (yS)S∈S ∈ R
S
+, define theworkload function w(y) as:

w(y) =
∑

S∈S

yS (K − |S|) , (31)

whereK = |V |. Under the assumption (30), when the graphG is complete, any fluid trajectory
y as per Definition 2 is such that, for someε > 0,

w(y(t)) ≤ max(0, w(y(0)) − εt). (32)
Proof: To establish (32), it suffices to show that, for all fluid trajectory y, at a pointt

wherey(t) is differentiable andy(t) 6= 0, one has

d

dt
w(y(t)) ≤ −ε.

This is true because the functiont → w(y(t)) is Lipschitz-continuous, which follows from
Lipschitz continuity of the individual functionst→ yS(t).
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We distinguish two cases. First, consider the case where att, for all u ∈ V , one has
∑

v 6=u

y+u−v(t) > 0. (33)

Write then, using (6):
d
dtw(y(t)) =

∑

S∈S(K − |S|) d
dtyS(t)

= λ(K − 1)−
∑

S∈S

∑

u∈S,v/∈S
d
dtφS,(uv)(t)

= λ(K − 1)−
∑

u∈V

∑

v:(uv)∈E

∑

S:u∈S,v/∈S
d
dtφS,(uv)(t)

= λ(K − 1)−
∑

u∈V cu,

where the last equality follows from (24), which is applicable in view of Assumption (33).
Thus in the present case, under Assumption (30), the time derivative (d/dt)w(y(t)) decreases
at a constant speed as desired.

Consider now the case where for a non-empty setS∗, all u ∈ S∗ are such that
∑

v 6=u

y+u−v(t) = 0.

Equivalently, for allS ∈ S such thatu ∈ S, one hasyS(t) = 0. It readily follows that for any
nodeu ∈ V , the set of most deprived neighbours consists precisely of those nodesv ∈ S∗.

Distinguish now according to whethery{s}(t) = 0 or not. In the first case wherey{s}(t) = 0,
necessarily there must existT ∈ S, T 6= {s} for which yT (t) > 0, by the assumption that
y(t) 6= 0. Note now that, by non-negativity of the functiont→ y{s}(t), one must necessarily
have:

d

dt
y{s}(t) = 0, (34)

and by the same argument, for allS such thatS ∩ S∗ 6= ∅, one also has

d

dt
yS(t) = 0. (35)

On the other hand, it follows from Equation (23) that the left-hand side of (34) also reads

λ−
∑

v∈S∗

d

dt
φ{s},(sv)(t)·

It thus follows from (24) that
∑

S∈S,S 6={s}

∑

v∈S∗

d

dt
φS,(sv)(t) = cs − λ > 0.

Using (34–35), write then

d
dtw(y(t)) =

∑

S∈S:S 6={s},S∩S∗=∅(K − |S|)
d
dtyS(t)

= −
∑

S∈S:S 6={s},S∩S∗=∅(K − |S|)
∑

u∈S,v∈S∗
d
dtφS,(uv)(t)

≤ −
∑

S∈S:S∩S∗=∅(K − |S|)
∑

v∈S∗
d
dtφS,(sv)(t)

= −(cs − λ).
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In the above, we have used the fact that the most deprived nodes are those inS∗, and hence
by (23), for allS such thatS ∩ S∗ = ∅, all u ∈ S, v ∈ S \ {u}, necessarily

d

dt
φS\{v},(uv)(t) = 0,

for the capacity of nodeu is fully targeted towards nodes inS∗.
The last case to consider is wheny{s}(t) > 0. Then in view of (26),

d

dt
y{s}(t) = λ− cs.

This entails that
d
dtw(y(t)) = −(K − 1)(cs − λ) +

∑

S∈S:S 6={s},S∩S∗=∅(K − |S|)
d
dtyS(t)

= −(K − 1)(cs − λ)−
∑

S∈S:S 6={s},S∩S∗=∅(K − |S|)
∑

u∈S,v∈S∗
d
dtφS,(uv)(t)

≤ −(cs − λ)(K − 1).

Thus, it follows that (32) holds, withε = min(cs − λ,
∑

u∈V cu − (K − 1)λ).

V. L IMITED NEIGHBOURHOODS AND MULTIPLE COMMODITIES

We now extend the results of the previous section to limited neighbourhoods and multiple
commodities.

A. Limited neighbourhoods

Given a setV of nodesu with associated capacitiescu, we assume that each node has
at any given time a finite set of neighboursN (u), that it can send to. We adapt the most
deprived neighbour selection rule to this context, by requiring that each nodeu sends to the
most deprived nodev from its limited neighbourhoodN (u).

In addition, we assume that for anyv ∈ V \ {u}, nodeu contacts nodev at the instants of
some Poisson processSuv with intensity σuv. It then updates its neighbourhood as follows.
It first addsv to it, and then removes a least deprived peer from the resulting set (breaking
ties at random). Thus, the neighbourhood is eventually modified, but remains of constant size,
saydu.

In this context, we have the following:
Theorem 8:Consider the most deprived random useful selection mechanism with adaptive

neighbourhoods as previously defined. Assume that the sampling ratessuv and the neighbour-
hood sizesdu are positive. Then the resulting Markov process is ergodic under the condition
(30) on the injection rateλ.

Proof: The result follows from the fact that the Markov process keeping track of the
states of packets, as well as the composition of the dynamic neighbourhoods, admits exactly
the same fluid limits as the process with full neighbourhoodsconsidered in the previous
section. Ergodicity then follows exactly as in the proof of Theorem 6.

We shall only show that candidate fluid trajectories must satisfy (23); we omit the detailed
arguments for the other equations (24-27), since these consist in very similar adaptations of
their proofs for the complete graph scenario.
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For fixedh > 0, consider the quantity

1

h

(

1

N
ΦN

S,(uv)(N(t + h)) −
1

N
ΦN

S,(uv)(Nt)

)

. (36)

Assume that nodeu is such that the limiting processes(y) satisfy
∑

v′ 6=u

y+u−v′(y) > 0.

Then, providedy+u−v(t) < maxv′ 6=u y+u−v′(t), by Lipschitz continuity of the limiting tra-
jectories, the same inequality holds throughout the interval [t, t+h]. Let w be some arbitrary
node that achieves the maximum iny+u−v′(t) over v′. Let now ε ∈ (0, h) be some fixed,
arbitrary number. Then necessarily, there exists a subsequence (still denoted byN ) under
which the sampling processSuw is such that

Suw(N(t + ε))− Suw(Nt) > 0

for large enoughN . For large enoughN , no transfer fromu to v can take place during
[N(t+ε), N(t+h)]. Indeed, as previously explained,v is strictly less deprived thanw over this
interval; however, sincew has been considered for inclusion in the neighbourhood ofu during
[Nt,N(t + ε)], either it has been added, or an even more deprived node was present in the
neighbourhood at timeN(t+ε). Thus, throughout the remaining interval[N(t+ε), N(t+h)],
nodeu always has a neighbour that is more deprived thanv, and never sends tov throughout
this interval. Thus the quantity (36) is asymptotically no larger thancuε. Sinceε was arbitrary,
then it must converge to zero. This establishes (23).

Remark 1:The mechanism we have considered for sampling new candidateneighbours
consisted in nodeu contacting any nodev at the instants of a Poisson processSuv. The
ergodicity result does not depend on the corresponding rateσuv. It is not hard to see that the
ergodicity result does not depend either on the statisticaldetails of the sampling mechanism.

For instance, it would still hold under the following neighbour sampling mechanism.
Assume a connected, undirected graphGS = (V,ES) is given, and further assume that each
nodeu ∈ V can communicate directly, at all times, with the nodesv such that(u, v) ∈ ES .
GraphGS is used only for sampling purposes, and this in the followingmanner. At the instants
of a Poisson processSu, nodeu picks uniformly at random one node –sayv– in the setN (u),
and then picks uniformly at random a neighbour ofv according to the neighbourhood structure
of the sampling graphGS , say nodew. This is the node that is considered for inclusion in
the neighbourhoodN (u).

B. Multiple commodities

We now assume that there are multiple commodities, each witha dedicated source node.
We let I ⊂ V denote the collection of such source nodes. For each source node i ∈ I, we
let Vi ⊂ V denote the set of receivers of the corresponding commodity,including the source
nodei.

Ordinary nodes can be receivers of several commodities. However, we do not allow source
nodes to be receivers of any commodities, except the ones they are sources of. Formally, this
reads

∀i, j ∈ I, i 6= j ⇒ i /∈ Vj .
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We shall also make use of the notationI(v) to represent the set of source nodesi that v is
a receiver of, i.e.v ∈ Vi. By convention, for source nodesi ∈ I, we let I(i) = {i}.

In this setup, we denote byλi the packet creation rate at source nodei andcu the capacity
of any nodeu ∈ V . We still assume exponentially distributed random variables for the inter-
times between both packet creations at any source node, and packet transmissions from any
node.

In the sequel, we shall assume that nodes are only willing to relay content that they are
themselves interested in. This constraint can be thought ofas modeling a form of selfishness
of users, who will not participate in the delivery of data they do not need. This can be
related to the so-called Tit-for-tat mechanism implemented in BitTorrent, with two important
distinctions. Our constraint is imposed at the level of commodities, while BitTorrent’s Tit-
for-tat is used to determine which node to send to, in a group of users interested in the same
content. Also, we do not put constraints on reciprocation, i.e. users are not prevented from
sending data to others who do not provide them service in return.

Under these assumptions, the natural necessary conditionson the injection ratesλi of
commoditiesi ∈ I for feasibility of broadcast are the following:

λi ≤ ci, i ∈ I. (37)

∑

i∈J

(|Vi| − 1)λi ≤
∑

u∈∪i∈JVi

cu, J ⊆ I. (38)

Indeed, the first inequality (37) states that each source node i must have a capacity larger than
the rateλi at which it receives fresh data. Inequality (38) states thatfor each set of sources
J , the total capacity required to forward the corresponding commodities to their receivers is
no larger than the total capacity of users that can take part in their transmissions.

Let us now describe the scheduling policy we shall consider in the present setup. To
determine who to send to, any nodeu evaluates the overall deprivation of potential receivers
v as the total number of packets that it can send tov, and thatv has neither received, nor is
currently receiving. This evaluation is done over all commodities that both nodes are receivers
of, i.e. over packets generated by all sourcesi ∈ I(u) ∩ I(v).

Nodeu then sends to its most deprived neighbour, where deprivation is measured as just
decribed. Ties between equally deprived nodes are broken uniformly at random. The decision
of which packet to send is done as follows. Ifu is a source node, it sends a fresh packet
if it has any. In any other event, nodeu chooses which packet to send uniformly at random
among the set of “useful packets”, i.e. packets originatingfrom sourcesi ∈ I(u) ∩ I(v). We
refer to these rules as the “bundled most deprived - random useful” strategy, where bundling
is over commodities.

In this context, we have the following
Theorem 9:Assume that conditions (37–38) hold, with strict inequalities. Assume further

a complete communication graph, i.e. selection of the most deprived neighbour is made from
the whole collection of nodesV . Then the Markov process describing the state of the system
is ergodic.
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Remark 2:The proof will again rely on fluid limit techniques. In fact, the fluid limits will
be the same if we assume as in the previous subsection dynamic, restricted neighbourhoods
instead of a complete communication graph. Thus, the above theorem remains true under the
relaxed assumption on the neighbourhoods.

We now provide the main lines of the proof. We omit the parts that can readily be filled
in from the previous proofs, and only describe the fluid trajectories in the present setup, the
Lyapunov function and the proof that it decreases along these fluid trajectories.

C. Fluid Trajectories

In the multicommodity setup, we letSi denote the collection of subsets ofVi that include
nodei, andyi

S(t) denote the quantity of packets generated by sourcei, and currently replicated
at nodesu ∈ S, at timet. The cumulative number of packets originated from sourcei, which
nodeu started to forward to nodev while they were replicated at nodes in setS over the
time interval[0, t] is denoted byφi

S,(uv)(t).
We now describe the fluid trajectories of the multicommoditysystem.

Definition 3:The real-valued, non-negative functions(yi
S)i∈I,S∈Si are called fluid trajectories

of the multi-commmodities node-capacitated system if the following properties hold.
For all i ∈ I, S ∈ Si, u ∈ S, v /∈ S such that(u, v) ∈ Vi, there exist non-decreasing,

Lipschitz-continuous functionsφi
S,(uv) with Lipschitz constantcu, such that Equations (6)

hold. Furthermore, using notation

yi
+u−v :=

∑

S∈S:u∈S,v/∈S

yi
S,

for all i ∈ I, S ∈ Si, u ∈ S, the functions{φi
S,(uv)}v∈Vi\S are differentiable at almost every

t, and if
∑

j∈I

∑

v∈V yj
+u−v(t) > 0, their derivatives satisfy:

d

dt
φi

S,(uv)(t) = 0 if
∑

j∈I(u)∩I(v)

yj
+u−v(t) < max

v′∈V





∑

j∈I(u)∩I(v′)

yj
+u−v′(t)



 , (39)

∑

i∈I

∑

v∈V

∑

S:u∈S,v/∈S

d

dt
φi

S,(uv)(t) = cu. (40)

If u /∈ I, that is for a non-source node, one also has, for allv ∈ V , and assuming the condition
∑

i∈I

∑

S:u∈S,v/∈S

d

dt
φi

S,(uv)(t) > 0

holds, for alli ∈ I(u)∩ I(v) and allS ∈ Si such thatu ∈ S, v /∈ S, the following equation:

d

dt
φi

S,(uv)(t) =
yi

S(t)
∑

j∈I(u)∩I(v) yj
+u−v(t)

∑

j∈I(u)∩I(v)

∑

S′∈Sj:u∈S′,v /∈S′

d

dt
φj

S′,(uv)(t)· (41)
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For a source nodei ∈ I, one has the following:

yi
{i} > 0⇒

∑

v∈Vi\{i}

d

dt
φi
{i},(iv)(t) = ci. (42)

In the case whereyi
{i} = 0, one then has for allv ∈ Vi \ {i}, assuming the condition

∑

S∈Si:S 6={i},v /∈S

d

dt
φi

S,(iv)(t) > 0

holds, for allS ∈ Si such thatS 6= {i} andv /∈ S the following:

d

dt
φi

S,(iv)(t) =
yi

S(t)
∑

S′∈Si:S′ 6={i},v /∈S′ yi
S′(t)

∑

S′∈Si:S′ 6={i},v /∈S′

d

dt
φi

S′,(iv)(t)· (43)

♦

D. Lyapunov Stability

The Lyapunov function we consider is the natural workload function w(t) =
∑

i∈I wi(t),
where

wi(t) =
∑

S∈Si

(|Vi| − |S|)y
i
S(t).

Let us evaluate the time derivativeddtw
i(t) at a pointt where the workload functionwi is

differentiable. To this end, we letJ(i) denote the set of nodes inVi that are fully deprived
of commodityi, i.e.

J(i) = {u ∈ Vi :
∑

v∈Vi\{u}

yi
+u−v(t) = 0}.

We also introduce the notations

f i
S,(uv) =

d

dt
φi

S,(uv)(t)

and
ci
u :=

∑

S∈Si:u∈S

∑

v∈Vi\S

f i
S,(uv).

The latter quantityci
u can be interpreted as the rate at which nodeu forwards data from

commodityi. We assume for now thatwi(t) > 0. The case wherewi(t) = 0 is easily dealt
with: the derivative of the function must then be zero, sincethe function is non-negative.

We then have the following
d
dtw

i(t) =
∑

S∈Si(|Vi| − |S|)
d
dty

i
S(t)

= (|Vi| − 1)λi −
∑

v∈Vi\{i}
f i
{i},(iv)

+
∑

S∈Si:S 6={i},S∩J(i)=∅(|Vi| − |S|)
[

∑

u∈S,v∈S\{u} f i
S\{v},(uv)

−
∑

u∈S,v∈Vi\S
f i

S,(uv)

]

We further distinguish several cases.
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Case 1: J(i) = ∅. Then the above sums telescope, and one obtains after recombinations:

d

dt
wi(t) = (|Vi| − 1)λi −

∑

u∈Vi

ci
u. (44)

Case 2: J(i) 6= ∅. Note that for any nodeu ∈ Vi, all termsf i
S,(uv) appear with a coefficient

−(|Vi| − |S|)1S∩J(i)=∅ + (|Vi − |S| − 1)1(S∪{v})∩J(I)=∅, which is non-positive, and at most
−1 whenS ∩ J(i) = ∅. Hence, using (39), we obtain

d
dtw

i(t) ≤ (|Vi| − 1)λi

−
∑

S∈Si,S∩J(i)=∅

∑

v∈Vi\S
f i

S,(iv)

[

(|Vi| − |S|)− 1v/∈J(i)(|Vi| − |S| − 1)
]

−
∑

v∈Vi\J(i),v 6=i ci
v.

Note now that, because of Condition (39),f i
S,(iv) can only be positive whenv ∈ J(i).

Therefore we obtain that
d

dt
wi(t) ≤ (|Vi| − 1)λi −

∑

v∈J(i)

f i
{i},(iv)(|Vi| − 1) (45)

−
∑

S∈Si,S 6={i},S∩J(i)=∅

∑

v∈J(i)

f i
S,(iv)(|Vi| − |S|) (46)

−
∑

v∈Vi\J(i),v 6=i

ci
v. (47)

Also, by Condition (40), necessarily
∑

S∈Si,S∩J(i)=∅

∑

v∈J(i)

f i
S,(iv) = ci.

Now, distinguish further acording to whetheryi
{i}(t) = 0 or not. In the first case, necessarily

the right-hand side in (45), being the derivatived
dty

i{i}(t), must equal zero, while the term
(46) must necessarily equalci−λi. In the case whereyi

{i}(t) > 0, in view of (42), necessarily

the derivative d
dtw

i(t) is no larger than−(ci − λi)(|Vi| − 1).
It therefore holds that, whenJ(i) 6= ∅, necessarily

d

dt
wi(t) ≤ −(ci − λi)−

∑

v∈Vi\J(i),v 6=i

ci
v . (48)

Let us denote byI ′ the set of those sourcesi ∈ I for which J(i) 6= ∅ andwi(t) > 0, and by
I ′′ the set of those sourcesi ∈ I for which J(i) = ∅.

Combined together, (44) and (48) yield
∑

i∈I
d
dtw

i(t) ≤ −
∑

i∈I′(ci − λi)
+
∑

i∈I′′(|Vi| − 1)λi −
∑

u∈∪i∈I′′Vi
cu

+
∑

u∈∪i∈I′′Vi

∑

i∈I(u) ci
u1u∈J(i),
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where we have used (40). We now argue that for any nodeu, if it is a receiver of a commodity
i ∈ I ′′ and belongs toJ(i′) for another commodityi′, then necessarily,ci′

u = 0. This follows
indeed from (41). It therefore follows that

∑

i∈I
d
dtw

i(t) ≤ −
∑

i∈I′(ci − λi)
+
∑

i∈I′′(|Vi| − 1)λi −
∑

u∈∪i∈I′′Vi
cu.

(49)

Thus the workload function
∑

i∈I wi(t) verifies

w(t) ≤ max(0, w(0) − εt)

where

ε = min







min i ∈ I [ci − λi] , min
J⊆I,J 6=∅





∑

u∈∪i∈JVi

cu −
∑

i∈J

(|Vi| − 1)λi











is strictly positive under the assumptions of Theorem 9.
Ergodicity then follows exactly by the same arguments as in the proofs of Theorems 1 and

6.

VI. CONCLUSION

We have identified distributed scheduling strategies for live streaming, and proven a rate
optimality property for several network capacity models.

Many open problems remain, concerning the performance achievable using simple, “un-
structured” peer-to-peer mechanisms such as those considered in this paper. In particular, we
do not provide any guarantees on the delays with which packets reach receivers. Very few
results are available on the delay performance of such distributed schemes (notable exceptions
being [11], [1]), and it would be interesting to obtain such results for the schemes we just
presented.

Another issue of interest concerns the performance of such schemes in the presence of
“relay nodes”. There, the use or not of network coding will dramatically affect the theoretical
rate at which data can be streamed. But in any case, with or without network coding, it is
an open question whether simple “epidemic” schemes of the kind we discussed can achieve
optimal diffusion rates.
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