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Abstract

We consider the problem of determining in a planar graph G whether two vertices
x and y are linked by a path that avoids a set X of vertices and a set F of edges.
We attach labels to vertices in such a way that this fact can be determined from
the labels of x and y, the vertices in X and the ends of the edges of F . For a planar
graph with n vertices, we construct labels of size O(log n). The problem is motivated
by the need to quickly compute alternative routes in networks under node or edge
failures.
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1 Introduction1

We are interested in constructing labeling schemes to answer ‘extended con-2

nectivity queries’ on a graph G. An extended connectivity query takes a pair3

of vertices u, v and a set of vertices X, and answers whether u, v are con-4

nected in G. We want to do this by precomputing the graph, and assigning5

a short label to every vertex. Then, given only the information in the labels6

for u, v,X, we want to answer the extended connectivity query. This problem7
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is motivated by the need to make repeated and fast connectivity queries on1

networks that may suffer failures, or in emergency planning situations, where2

there is no time to recompute data structures when the network changes.3

We will show how to compute labels of size O(log n) bits, so that we can4

answer extended connectivity queries efficiently on general planar graphs. This5

paper extends the result of Courcelle et al. [6], which showed how to solve the6

problem on 3-connected planar graphs. Extending the result to general planar7

graphs requires some extra machinery and techniques.8

A labeling scheme for a property P (x1, ..., xk) of vertices x1, ..., xk of a graph9

G belonging to a class C consists of two algorithms: a labeling algorithm A10

and a query algorithm B. Algorithm A takes as input a graph G in C and11

computes a label LG(x) for each vertex x of G. This label encodes, among12

other information, the name or the index of x, hence determines it in a unique13

way. Algorithm B takes a k-tuple t of bit sequences as input and reports,14

either that t is not (LG(x1), ..., LG(xk)) for any graph G in C and any ver-15

tices x1, ..., xk of such a graph, or determines the validity of P (x1, ..., xk) in16

some graph G belonging to C, for vertices x1, ..., xk of this graph such that17

t = (LG(x1), ..., LG(xk)). This algorithm has no other knowledge about G18

than the tuple t, and that G ∈ C. The scheme (A,B) must be correct in19

the sense that P (x1, ..., xk) must equal the output of B when given the labels20

LG(x1), ..., LG(xk). Clearly, with sufficiently large labels we can encode the en-21

tire graph. So the aim is get short labels, ideally of size (measured in number22

of bits) polylogarithmic in n.23

Answering connectivity queries is a fundamental problem in communication24

networks. In this case, given the labels LG(u), LG(v), one should be able to25

determine quickly whether u, v are in the same connected component of G.26

Clearly (for undirected graphs) this is easy– each label can store with O(log n)27

bits the number of the maximal connected component containing that vertex.28

Our motivation in this article is to consider so-called extended connectivity29

queries of the following form. The extended connectivity query Conn(u, v,X)30

asks whether u, v are connected in the graph G \ X, where X is a set of31

‘forbidden’ vertices (the extension to consider forbidden edges will be easy).32

The motivation for this is to allow connectivity queries even when the network33

undergoes failures, and without recomputation of the labels. The set X is given34

to the query algorithm B as the set of its labels, and the set F by the labels of35

the endpoints of its edges, and given these labels, the query algorithm should36

be able to decide if a path exists from u to v in G, avoiding edges in F and37

vertices in X.38

We now give more technical details before stating the main result and describ-39

ing the proof method.40
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Notation. Most of the terminology is as in the book by Diestel [8]. We make1

precise some notations. All graphs are finite and loop-free. A graph is simple2

if it has no two edges with same ends, and same direction if the graph is3

directed. We denote by V (G) (resp. E(G)) the vertex set (resp. the edge set)4

of a graph G, and by n its number of vertices.5

For m ∈ N, we let [m] denote the set {1, 2, ...,m}; we let [0] = ∅. We denote6

by G[U ] the induced subgraph of G with vertex set U ⊆ V (G) and we let7

G\U = G[V (G)−U ]. We denote by G\v the induced sub-graph G\{v}. G[F ]8

is the sub-graph of G spanned by F ⊆ E(G) hence E(G[F ]) = F and V (G[F ])9

is the set of ends of the edges in F . For Y ⊆ E(G) we let G − Y be the10

subgraph of G with V (G − Y ) = V (G) and E(G − Y ) = E(G) − Y . Hence11

G[F ] ⊆ G[V (G[F ])] and G[E(G)− Y ] ⊆ G− Y ; the inclusions may be strict.12

The notation x− y (resp. x→ y) indicates an undirected edge between x and13

y (resp. a directed edge from x to y). We denote by E(x) the set of edges14

incident with x.15

A directed tree is a tree with edges in any direction. A rooted tree is a directed16

tree with a unique node of indegree 0, called its root, from which every node17

is reachable by a (unique) directed path. A directed (resp. rooted) forest is a18

disjoint union of directed (resp. rooted) trees. Since we will discuss simulta-19

neously graphs and trees representing their structure, it will be convenient to20

call nodes the vertices of trees.21

A partial order ≤F on the nodes of a rooted forest F is defined as follows:22

x ≤F y if and only if every path from a root to x goes through y. Hence the23

roots are the maximal elements.24

A vertex v of G is separating if G′\v has at least two connected components25

where G′ is the connected component of v. A connected graph is biconnected26

if it has no separating vertex. A maximal biconnected subgraph (maximal for27

subgraph inclusion) is a biconnected component of the considered graph. We28

denote by Bcc(G) the set of biconnected components of G. Two vertices u and29

v are separated by X ⊆ V (G) if they are in different connected components30

of G\X.31

Let E be a set. A circular sequence over E is a non-empty sequence s =32

(e1, . . . , en) of pairwise distinct elements of E. The term “circular” refers to33

equality: we define (e1, . . . , en) and (ei, . . . , en, e1, . . . , ei−1) as equal circular34

sequences. If s1 = (e1, . . . , ep) and s2 = (f1, . . . , fq) are sequences of pairwise35

distinct elements of E, we will denote by s1 • s2 the concatenation of s1 and36

s2 and by s1 ◦ s2 the circular sequence, one representation of which is s1 • s2 =37

(e1, . . . , ep, f1, . . . , fq).38

If G is a graph, u, v ∈ V (G), X ⊆ (V (G)− {u, v}) and F ⊆ E(G), we let39
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Conn(u, v,X, F ) mean:1

Conn(u, v,X, F ) ⇐⇒ there exists a path between u and v that avoids2

X and F , i.e, a path in the graph (G− F )\X.3

We call this an extended connectivity query (implicitly in the subgraph of G4

defined by excluding X and F ). We write it Conn(u, v,X) if F = ∅. We call5

(X,F ) the data of the query; its size is defined as |X|+ |F |.6

Let P (x1, . . . , xm, X1, . . . , Xm) be a graph property that depends on vertices7

x1, . . . , xm and sets of vertices X1, . . . , Xq. For a mapping f : N→ N, an f(n)-8

labeling supporting P on a class C of n-vertex graphs is a pair of algorithms9

(A,B) such that:10

(1) For all G ∈ C, A constructs a labeling J : V (G)→ {0, 1}∗ that is injective11

and is such that |J(x)| ≤ f(n) for each x ∈ V (G).12

(2) B checks whetherG satisfies P (a1, . . . , ap, U1, . . . , Uq) by using J(a1), . . . , J(ap)13

and J(U1), . . . , J(Uq) where J(U) = {J(x) | x ∈ U}.14

We now state our main theorem.15

Theorem 1.1 (Main Theorem) For every simple undirected planar graph16

with n vertices, we can construct in time O(n · log(n)) an O(log(n))-labeling17

supporting extended connectivity queries. Queries are answered in time O(m2)18

where m = |X|+ |F |.19

We now sketch the main ideas of the proof. For a plane graph G, we let G+
20

be the plane graph obtained by the addition of one new vertex in the middle21

of each face and of edges between this vertex and those vertices of G incident22

with that face.23

If G is biconnected, the graph G+ is simple and can be embedded in the plane24

with integer coordinates and edges represented by straight-line segments by25

using Schnyder’s algorithm [15]; we fix such an embedding.26

For X ⊆ V (G), we define its barrier Bar(X) as a set of edges of G+ such27

that u and v in V (G) − X are separated by X in G if and only if they are28

separated in R2 by Bar(X) (Section 2).29

If, from labels attached to the vertices of X we can deduce the set of straight-30

line segments forming Bar(X), and if we also know the coordinates of u and v,31

we can test whether u and v are separated in R2 by Bar(X) in time O(p·log(p))32

where p is the number of segments forming Bar(X). We show that p ≤ 3 · |X|33

(Section 4).34

To form the label L(x) for each vertex x of G, we attach its coordinates in35

4



the fixed embedding and those of a bounded number of neighbor vertices of G1

and of vertices of G+ representing faces of G. This can be done because every2

planar graph is the union of three edge disjoint forests (Section 3). However,3

this proof only works for 3-connected graphs G, or rather for graphs such that4

every two vertices are incident with a bounded number of faces.5

We use an additional treatment, first for biconnected graphs decomposed into6

3-connected components (Section 6), and then for connected graphs decom-7

posed into biconnected components, which gives the main theorem (Section8

7). These decompositions are expressed as trees. By using a labeling scheme9

due to Courcelle and Vanicat [4], we can recognize certain cases where u and10

v are separated by exactly one or two vertices of the given set X. If those11

separation criteria do not apply, then we are reduced to connectivity queries12

in 3-connected components, and the geometric method described aboev can13

be applied.14

The proofs are done for the particular case where F = ∅, i.e., where only15

vertices are forbidden. However, by subdividing each edge by a single vertex16

the problem with forbidden edges reduces to the case of only forbidden vertices.17

This reduction is done at the end of Section 7.18

The main theorem extends to queries Conn(u, v,X, F,H) where H is a set of19

edges inserted between vertices in V (G) − X (we do not require that ((G −20

F )\X) + H is planar, only that G is planar). The query Conn(u, v,X, F,H)21

means22

Conn(u, v,X, F,H) ⇐⇒ there exists a path between u and v in the graph23

((G− F )\X) +H defined as (G− F )\X augmented with edges defined by24

H.25

The labeling defined by Theorem 1.1 supports these queries, but the answers26

take time O(|H|2 · log(m)) with help of a data structure built for fixed (X,F )27

in expected time O(m · log(m)) where m = |X|+ |F |.28

The following is a second extension and is left as an open question.29

Open Question 1 Can we label the vertices of a planar graph with labels of30

size O(log(n)) and for (X,F,H) and u ∈ V (G) − X in order to decide the31

number of connected components of G′ = ((G − F )\X) + H and the number32

of vertices of the connected component of G′ that contains u ? The answer33

should be obtained in polynomial-time in |X|+ |F |+ |H|.34
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2 Plane Graphs1

We review definitions and basic facts about plane graphs. Our main references2

are the books by Diestel [8] and by Mohar and Thomassen [12].3

Definition 2.1 (Embeddings in the Plane) A planar embedding (or from4

now, embedding) of a graph G = 〈V,E 〉 is a pair of mappings E = (p, s) such5

that the mapping p : V → R2 associates with a vertex u ∈ V the point p(u)6

representing it in the plane, the mapping s : E → P(R2) associates with every7

edge e linking u and v a closed curve segment with ends p(u) and p(v), such8

that for e and f 6= e in E, we have x ∈ s(e)∩ s(f) if and only if x = p(u) and9

u is incident with e and with f . We call it a straight-line embedding if each10

s(e) is a straight-line segment.11

A plane graph is the equivalence class of a planar embedding of a planar12

graph with respect to homeomorphism. We will write a plane graph as a triple13

〈V,E, F 〉 where F is the set of faces.14

The notion of a plane graph is thus combinatorial. It consists of a graph15

G = 〈V,E 〉 and for each u ∈ V of the circular sequence E0(u) of edges16

incident with u, for the anti-clockwise orientation of the plane , and a corner17

belonging to the external face (we call (e′, u, e) a corner at u if e′ follows e18

in E0(u); each corner belongs to a face; the notion of a corner is relative to19

a plane graph). We only consider embeddings of graphs in the plane, not in20

the sphere; for this reason we distinguish the external face with help of some21

corner. Notice that several plane graphs may have the same underlying planar22

graph G even if G is 3-connected. See [12] for more details about embeddings23

of graphs in the plane.24

Let C be a cycle in a plane graph G and E = (p, s) be an embedding of G.25

Let u be a vertex of G not belonging to C. We say that u is inside C if p(u)26

is in the bounded component of R2 − E(C), where E(C) denotes the union of27

the curve segments s(e) for the edges e in C. This property does not depend28

on E . It will be used for plane graphs, independently of embeddings. We say29

that two vertices u and v are separated by C if exactly one of them is inside C.30

This means that for every embedding E of G, vertices u and v are in different31

connected components of R2 − E(C).32

Definition 2.2 (Augmented Graph) Let G = 〈V,E, F 〉 be a connected33

plane graph. We associate with it a connected planar graph G+ called its aug-34

mented graph. The graph G+ is 〈V ∪ F,E ∪ E ′ 〉 where E ′ is a set of edges35

linking each face f to its incident vertices. More precisely we have in E ′ an36

edge u − f for each corner (e, u, e′) of a face f . We may have several edges37

between u and f because a face f may have several corners at vertex u if u is38

a separating vertex. A face of G is called a face-vertex of G+.39
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For a simple planar graph G with n vertices, the maximum number of faces1

m is obtained when G is triangulated and m = 2n− 4. Hence G+ has at most2

3n− 4 vertices. Every embedding E of G can be extended into an embedding3

E+ of G+ in the obvious way: one defines p(f) as any point in the open subset4

of R2 corresponding to face f and one draws lines between this point and the5

vertices adjacent to the vertex f of G+. This is best explained by an example.6

Example 2.3 Figure 1 shows a plane graph G with vertices t, x, w, u, y, z, v7

represented by black dots and continuous edges. It also shows the graph G+. Its8

face-vertices are small circles. The one marked A represents the external face.9

There are three parallel edges between A and x, because x is the separating10

vertex of three biconnected components.11

w x

z
u

A

b

y

e

d

c

f

a

t

v

Fig. 1. An augmented graph G+

In general several non-homeomorphic embeddings E+ can be associated with12

E because the edges incident with the external face of G can be drawn in13

different ways, even if G is 3-connected. Hence G+ is a planar graph (and14

not a plane graph) associated with a plane graph G. The following lemma is15

straightforward to establish.16

Lemma 2.4 If G is a plane connected graph then the planar graph G+ is17

triangulated. It is simple if and only if G is 2-connected.18

Definition 2.5 (The Barrier of a Set of Vertices) As in Definition 2.2,19

we let G+ = 〈V ∪ F,E ∪E ′ 〉 be associated with a plane graph 〈V,E, F 〉. For20

X ⊆ V we define the barrier of X as follows:21

Bar(X) is the set of edges of G+ that link a face f ∈ F and a vertex x ∈ X22

and such that there is in G+ another edge linking f and some y ∈ X ,23

possibly equal to x.24

If a face f has several corners at a vertex x ∈ X, then all edges of G+ between25

f and x are in Bar(X). This can happen if and only if x is a separating vertex.26
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A vertex of X may not be the end of any edge of Bar(X). See Example 2.7.1

If E+ = (p, s) is a planar embedding of G+ we define Bar(X, E+) as the union2

of the segments s(e) for e ∈ Bar(X). Hence Bar(X, E+) is a closed compact3

subset of R2. We say that x, y ∈ R2 are separated by Bar(X, E+) if they are4

in different connected components of R2 −Bar(X, E+).5

Proposition 2.6 Let G be a connected plane graph and E+ be a planar em-6

bedding of G+. For every X ⊆ V (G) and u, v ∈ V (G)−X the vertices u and7

v are separated by X if and only if the corresponding points of the plane are8

separated by Bar(X, E+).9

We first give examples.10

Example 2.7 We use the graph G of Figure 1. Then Bar({x}) = {a, b, c}.11

It separates u and w from y and z and, from t and v. The barrier Bar({y})12

is empty. We have Bar({u, x}) = {a, b, c, d, e, f}.13

Example 2.8 Figure 2 shows the augmented graph H+ of a graph H. It is14

simple since H is biconnected. So we can draw it with straight-lines. The bar-15

rier of {x, y} consists of 6 (thick) dotted edges and separates u from v and16

w.17

v

y

w

u

x

Fig. 2. An augmented graph H+

Proof of Proposition 2.6. The “Only if direction”. Assume u and v con-18

nected by a path in G\X. They are connected by this path in G+ and this19

path has no vertex in any edge of Bar(X). Hence u and v are in the same20

connected component of R2 −Bar(X, E+).21

The “If direction”. Let us assume that u and v are not connected in G\X.22

Since Y ⊆ X implies Bar(Y ) ⊆ Bar(X), it is enough to prove the result for a23

minimal separator X of u and v. Let X be so. The set E(G) can be partitioned24

into E(G) = Eu ∪ Ev such that:25

(1) u ∈ V (G[Eu]), v ∈ V (G[Ev]) and V (G[Eu]) ∩ V (G[Ev]) = X;26

(2) G[Eu] and G[Ev] are connected;27
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(3) The circular sequence of edges incident with each x ∈ X can be written

E◦(x) = E1(x) ◦ E2(x)

where E1(x) is a sequence enumerating the set of edges Eu ∩ E(x) and1

E2(x) is similar for the set Ev ∩ E(x).2

Let us split x; that is we add a new vertex x′ linked to x by a new edge
denoted by ex and we link to x′, as opposed to x, the edges of E2(x). We make
G into a plane graph G′ with vertex set V (G)∪{x′ | x ∈ X} and with circular
sequences E ′0(w) for each w ∈ V (G′) such that:{

E ′◦(x) = E1(x) ◦ (ex),

E ′◦(x′) = E2(x) ◦ (ex)
for every x ∈ X,

and

E ′◦(x) = E◦(x) if x ∈ V (G)−X.
It is clear that G′ is a plane graph, and that E(X) := {ex | x ∈ X} is a minimal3

edge-cut of G′. Hence E(X) is a cycle in the dual plane graph G′∗ (see Diestel4

[8, Proposition 4.6.1]) that separates u and v. (Notice that if X = {x1} then5

this cycle consists of two parallel edges.)6

This cycle can be written as a circular sequence of edges (ex1 , . . . , exp) for some7

enumeration x1, . . . , xp of X. Let f1, . . . , fp be the faces of G′ such that in G′∗8

we have edge ei = {fi, fi+1} for 1 ≤ i < p and ep = {fp, f1}.9

We denote by f1, . . . , fp the faces of G, resulting respectively from f1, . . . , fp10

by the contraction of edges ex for all x ∈ X. It is clear that fi is adjacent in11

G+ to xi and xi+1 for i = 1, . . . , p− 1 and that fp is adjacent to xp and x1.12

In any embedding E+ of G+ the cycle formed by the circular sequence of13

vertices (x1, f1, x2, f2, x3, . . . , xp, fp) separates u and v. 214

Example 2.9 A plane graph G is shown on Figure 3. Its vertices u and v are15

separated by X = {x, y, z}. Figure 4 shows the result of splitting x, y, z (edges16

ex, ey and ez are dotted) together with the edges of the cycle E(X) in the dual17

graph G′∗. The contraction of the dotted edges gives the desired cycle in G+
18

(see Figure 5).19

3 Representation of Properties and Functions by Unary Functions20

This section introduces the general notion of representation of an n-ary prop-21

erty and of an n-ary partial function by a fixed number of unary functions.22
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u
v

z

y

x

Fig. 3. A plane graph G; X = {x, y, z}

u

y

x′

v

y′

z′

x

z

Fig. 4. The plane graph G′ and the cycle E(X) in its dual

y

u

z

v

x

Fig. 5. The plane graph obtained by contracting the edges ex, x ∈ X

This notion is then used for plane graphs.1

Definition 3.1 (Representation by Unary Functions) If F is a finite2

set of unary function symbols and X is a finite set of variables, we denote by3

B(F ,X ) the set of quantifier-free formulas that are Boolean combinations of4

atomic formulas of the forms x = y, x = f(y), f(x) = g(y) for x, y ∈ X and5

f, g ∈ F . (We may have f = g.) We do not allow formulas like x = f(g(y)),6

hence B(F ,X ) is not the set of all quantifier-free formulas over F and X .7

Let V be a set and f̄ : V → V be a total function for each f ∈ F . We
denote by F the family (f̄)f∈F and we let X = {x1, . . . , xm}. Every formula
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ϕ ∈ B(F ,X ) defines an m-ary relation Rϕ ⊆ V m by:

Rϕ = {(a1, . . . , am) ∈ V m | ϕ(a1, . . . , am) is true}.

We say that Rϕ is represented by the functions of F and the formula ϕ.1

We say that an m-ary multivalued function, i.e., a function g : V m → P(V ),2

is represented by the functions of F and a formula ϕ if the (m+1)-ary relation3

y ∈ g(x1, . . . , xm) is represented by F and ϕ, where ϕ is a disjunction of for-4

mulas of the form ψ∧(y = f(xi)) or ψ∧(y = xi) with ψ ∈ B(F , {x1, . . . , xm}).5

If an m-ary multivalued function is represented by F and ϕ where F is a6

finite set of functions, then ϕ ∈ B(F , {x1, . . . , xm, y}). Thus |g(x1, . . . , xm)| ≤7

m ·(|F|+1) for all x1, . . . , xm ∈ V . Definition 3.1 also covers the case of partial8

functions g for which |g(x1, . . . , xm)| ≤ 1.9

We will use properties and functions, associated with graphs of specific classes10

(e.g. planar graphs) that are representable as defined above, for m and ψ fixed.11

We will also use the simultaneous representation of finitely many relations12

P,Q, . . . and partial functions g, h, . . . on a set V by a same set F of unary13

functions and by formulas ϕP , ϕQ, . . . , ϕg, ϕh, . . ..14

These definitions will be used as follows. For a class C of graphs (or of plane15

graphs)G, we will consider relations P,Q, . . .,and functions g, h, . . . onX(G) =16

V (G) (or on X(G) = V (G) ∪ F (G)), like adjacency, incidence to a same17

face etc. We say that P,Q, . . . , g, h, . . . are representable by k functions in the18

graphs of C if there exist formulas ϕP , ϕQ, . . . , ϕg, ϕh, . . . of appropriate forms19

such that for every G ∈ C, there exists a k-tuple F of unary total functions20

on X(G) that represent P,Q, . . . , g, h, . . . in G by means, respectively of the21

formulas ϕP , ϕQ, . . . , ϕg, ϕh.22

Convention 3.2 In all the constructions to be done below we will use partial23

functions f̄ : X(G) → X(G) such that f̄(x) 6= x for every x. We make them24

total by letting f̄(x) = x instead of “f̄(x) is undefined”.25

This convention is useful to avoid the difficulty of defining the semantics of26

formulas with undefined terms. It makes no more complicated the explicit27

writing of formulas, as we will see in the next lemma. From now on we will28

say that a property can be represented by k partial functions (implicitly, such29

that f̄(x) 6= x).30

Lemma 3.3 The adjacency in planar graphs is representable by 3 partial func-31

tions from vertices to vertices. The adjacency and edge directions in directed32

planar graphs are representable by 6 partial functions from vertices to vertices.33
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Proof. We need only consider simple graphs (because we can replace a set of1

parallel edges by a single edge without changing adjacency).2

Let G be a simple planar graph. Its edge set E(G) can be partitioned into
three sets E1, E2 and E3 such that G[Ei] is a forest for each i, that we can
assume to be rooted (we orient G in an appropriate way). For x, y ∈ V (G), we
let gi(x) = y if and only if y is the father of x in G[Ei]. It is a partial function
that we extend into a total one by Convention 3.2. Then x and y are adjacent
if and only if:

x 6= y ∧
 ∨

16i63

x = gi(y) ∨ y = gi(x)

 .
The condition x 6= y guarantees that if x = gi(y) then gi(y) 6= y hence that x3

is the father of y in G[Ei] because gi(y) is well-defined for the original partial4

function gi.5

For representing edge directions, we replace each function gi by two functions
g+
i and g−i defined as follows:

g+
i (x) = y if and only if gi(x) = y and there is an edge from x to y.

g−i (x) = y if and only if gi(x) = y and there is an edge from y to x.

Notice that we have g+
i (x) = g−i (x) = y if there is a pair of directed opposite6

edges between x and y. Convention 3.2 is applicable to these functions. 27

Because of Convention 3.2, formulas should be written with conditions of the8

form gi(x) 6= x conjuncted with each atomic formula containing the term gi(x).9

However we will omit such conditions for the purpose of readability. In the10

formula of Lemma 3.3 the clause x 6= y replaces the condition gi(x) 6= x.11

Remark 3.4 Lemma 3.3 extends easily to graphs of arboricity at most k, i.e.,12

that are the union of k edge disjoint forests as follows. With k functions (resp.13

2k functions) we represent adjacency (resp. adjacency and edge directions).14

For every pair of distinct vertices (x, y) in a plane graph, we let Faces(x, y)15

denote the set of faces with which x and y are incident. We say that a plane16

graph is m-face-bounded if |Faces(x, y)| ≤ m for every x, y ∈ V (G), x 6= y. In17

particular, a biconnected graph obtained from a simple 3-connected graph by18

edge subdivision, i.e., by the replacement of some edges by paths (such graphs19

have unique embeddings in the sphere) is 2-face-bounded. In such a graph, two20

vertices are incident with two distinct faces if and only if they are adjacent or21

linked by a path with all intermediate vertices of degree two.22
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For a plane graph G, we let for x, y ∈ V (G), x 6= y

sf(x, y)⇐⇒ |Faces(x, y)| ≥ 1

which means that x and y are incident with a same face. This is the case of
adjacent vertices. We let for m ≥ 1:

m-face(x, y)⇐⇒ |Faces(x, y)| 6 m

An m-tuple of face selection functions is an m-tuple (Selecti)i∈[m] of partial
functions: V (G)× V (G)→ F (G) such that for all x, y ∈ V (G):

Selecti(x, y) 6= Selectj(x, y) for i 6= j,

Selecti(x, y) ∈ Faces(x, y) for all i,

Faces(x, y) = {Select1(x, y), . . . , Selectm(x, y)} if |Faces(x, y)| ≤ m.

Note that we do not require Selecti(x, y) = Selecti(y, x) for all i.1

For adjacent vertices x and y, we let left(x, y) be the face to the left of the2

edge x−y (traversed from x to y). Clearly, left(y, x) is the face to the right of3

x− y and it can be equal to left(x, y) if x− y is an isthmus (or bridge edge).4

We call left the left-face function.5

Proposition 3.5 For every simple connected plane graph, we can represent6

the adjacency and the left-face function with 9 functions on V (G) ∪ F (G),7

the adjacency and the same-face property with 18 functions. For every m, we8

can define an m-tuple of face selection functions and represent it by 18 + 3m9

functions including the 18 functions used for the same-face property.10

Proof. Let G = 〈V,E, F 〉 be a simple connected plane graph. Let g1, g2

and g3 be the three partial functions constructed by Lemma 3.3. They can
represent adjacency. We consider next the left-face function. We let gαi be the
six partial functions: V → F such that:

glefti (x) = left(x, gi(x)),

grighti (x) = left(gi(x), x)

for i = 1, 2, 3, and α = left, right (we let gαi (x) be undefined if gi(x) is). Hence
the function left is represented by

left(x, y) = f if and only if
∨
i∈[3]

(
y = gi(x) ∧ f = glefti (x)

)
∨ ∨

i∈[3]

(
x = gi(y) ∧ f = grighti (y)

)

13



This representation uses 9 functions.1

For the same-face property we will use the planar graph G+ = 〈V ∪F,E∪E ′ 〉.
Let g+

i for i = 1, 2, 3 be three partial functions V ∪ F → V ∪ F representing
the adjacency in G+ (by Lemma 3.3). The same-face property in G can be
expressed as follows for x, y ∈ V, x 6= y:∨

1≤i,j≤3

g+
i (x) = g+

j (y) ∈ F (1a)

∨ ∨
1≤i,j≤3

g+
i (x) ∈ F ∧ g+

j (g+
i (x)) = y (1b)

∨ ∨
1≤i,j≤3

g+
i (y) ∈ F ∧ g+

j (g+
i (y)) = x (1c)

∨ ∃f ∈ F
( ∨

1≤i,j≤3

g+
i (f) = x ∧ g+

j (f) = y
)
. (1d)

In order to handle the condition “g+
i (x) ∈ F” we use the partial function:

V → F defined by:

g′i(x) = if g+
i (x) ∈ F then g+

i (x) else undefined.

In order to handle the conditions “g+
i (x) ∈ F ∧ g+

j (g+
i (x)) = y” we will use

the partial functions: g′i,j : V → V such that:

g′i,j = if g+
i (x) ∈ F and g+

j (g+
i (x)) is defined then g+

j (g+
i (x))

else undefined.

It remains to eliminate the existential quantification ∃f ∈ F (· · · ) in formula
(1d). We define an auxiliary planar graph H, with V (H) = V (G) and an edge
x − y if and only if for some i, j ∈ [3] and f ∈ F we have g+

i (f) = x and
g+
j (f) = y. Such an edge can be drawn inside the face f in an embedding E of
G. This shows that H is planar because one adds to each face at most 3 edges.
Let h1, h2, h3 be the associated functions by Lemma 3.3. Condition (1d) can
thus be replaced by: ∨

1≤i≤3

hi(x) = y ∨ hi(y) = x.

Hence with the 18 functions gi, g
′
i, g
′
i,j, hi for i, j ∈ [3] we can represent the2

adjacency and the same face property.3

We now show how to define and represent an m-tuple of face selection func-4

tions. We will use cases (1a)-(1d) that characterize the same-face property.5

We first observe that they are mutually exclusive in the sense that each face6

of Faces(x, y) is specified by one and only one of them.7

It is convenient to fix a linear order on F (G). Let x, y ∈ V (G), x 6= y and8

f ∈ F (G). We say that f has (x, y)-type t if f ∈ Faces(x, y) and we have one9

14



of the following conditions:1

(a) f = g′i(x) = g′j(y) and t = (a, i, j).2

(b) f = g′i(x), y = g′i,j(x) and t = (b, i, j).3

(c) f = g′i(y), x = g′i,j(y) and t = (c, i, j).4

(d) f belongs to F (x, y) defined as the set of faces in Faces(x, y) that are not5

of the above forms (a), (b) or (c); we fix an enumeration {f1, . . . , fp, . . .}6

of the set F (x, y) inherited from the fixed enumeration of F (G), and we7

let the (x, y)-type of f be t = (d, j).8

Note that the (y, x)-type of f is (a, j, i) or (c, i, j) or (b, i, j) or (d, j) if its9

(x, y)-type is respectively (a, i, j), (b, i, j), (c, i, j) or (d, j). (We have F (x, y) =10

F (y, x).)11

We define as follows partial unary functions from V (G) → F (G), for i ∈ [3]
and j ≥ 1:

hi,j(x) = f if hi(x) is defined and f is the j-th element of F (x, hi(x)).

For every x, y ∈ V (G), x 6= y and j ≥ 1, there is at most one face f of
(x, y)-type (d, j) and it is characterized by the condition:

∨
1≤i≤3

((
f = hi,j(x) ∧ y = hi(x)

)
∨
(
f = hi,j(y) ∧ x = hi(y)

))
. (2)

Similarly, for each t ∈ {a, b, c}×[3]×[3] there is at most one face f of (x, y)-type
t and it is characterized by a similar condition. For an example, if t = (c, 1, 3)
the corresponding condition is:

f = g′1(y) ∧ x = g′1,3(y).

Let us order types lexicographically. We get thus for each pair (x, y) of distinct
vertices a linear order of the set Faces(x, y). We let Selecti(x, y) be the i-th
element of this set. It is clear that for each i ≤ m one can express f =
Selecti(x, y) by a disjunction of formulas of the form:

f = g(z) ∧ ψ (3)

where z ∈ {x, y}, Fm = {gi, g′i, g′i,j, hi, hi,` | i, j ∈ [3], ` ∈ [m]}, ψ ∈12

B(Fm, {x, y}) and g ∈ Fm. The set Fm consists of 18 + 3m functions. Hence13

we have specified an m-tuple of face-selection functions. 214

Remark 3.6 With 18 + 3(m + 1) functions one can represent the property15

that two vertices x and y are incident with at most m faces. For doing so we16

use the expression of f = Selectm+1(x, y) as a disjunction of formulas of the17

form of (3) (f = g(z) ∧ ψ for z ∈ {x, y}, g ∈ Fm+1, ψ ∈ B(Fm+1, {x, y}))18
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and of the form of (2) and, we take the conjunction of the negations of all1

such formulas.2

4 Tools from Computational Geometry3

In this section we discuss some tools from computational geometry that can4

help us to decide whether two vertices of a planar graph G are separated by5

a subset of V (G).6

If x, y ∈ R2, we denote by [x, y] ⊆ R2 the straight-line segment with ends x7

and y. Two segments [x, y] and [x′, y′] are non-crossing if they only intersect at8

endpoints, i.e. [x, y]∩ [x′, y′] ⊆ {x, y}∩{x′, y′}. A finite set Y of pairwise non-9

crossing straight-line segments is called a subdivision of the plane. The union10 ⋃
Y of the segments in Y is a closed subset of R2. We need an algorithm for11

the following problem:12

Input. A subdivision Y of the plane by segments with ends in N2 and u, v ∈13

N2 − ⋃Y .14

Output. Are u and v separated by
⋃
Y ? Equivalently are they in the same15

connected component of R2 − ⋃Y ?16

The problem is called the planar point location problem [1,16].17

Theorem 4.1 [1, Theorem 6.8] Let Y be a subdivision of the plane consisting18

of m segments. One can construct in expected time O(m · log(m)) a data19

structure of size O(m) from which one can test in time O(log(m)), in the20

worst case, whether two elements of N2 − ⋃Y are separated by
⋃
Y .21

5 The Labeling of 2-Connected Face-Bounded Plane Graphs22

In this section we prove the following particular case of the Main Theorem23

(Theorem 1.1) stated in the introduction. We denote by Cm the class of simple24

m-face bounded 2-connected planar graphs. In particular, a planar graph of25

degree at most d is d-face bounded.26

Theorem 5.1 Every n-vertex graph in Cm has an O(m · log(n))-labeling sup-27

porting connectivity queries in induced subgraphs defined by excluded vertices.28

Every subdivided 3-connected planar n-vertex graph has an O(log(n))-labeling29

supporting such queries. The labeling can be built in time O(n). The answers30

to queries can be obtained in time O(|X|2) where X is a set of at least two31

excluded vertices.32
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We will use the following proposition.1

Proposition 5.2 For every simple planar 2-connected n-vertex graph one can2

construct in time O(n) a corresponding plane graph G, the associated planar3

graph G+ and a straight-line embedding of G+ with positive integer coordinates4

in [3n− 6].5

Proof. The linear-time construction of G is a consequence of the well-known6

linear-time planarity testing algorithms (see [7]). The construction of G+ fol-7

lows then immediately. SinceG is assumed 2-connected, the graphG+ is simple8

and triangulated. It has at most 3n−4 vertices. The last assertion follows from9

Schnyder’s algorithm([15]) which defines a straight-line embedding of a simple10

planar graph H with coordinates in [|V (H)| − 2]. 211

We can now prove Theorem 5.1.12

Proof of Theorem 5.1. Let G be a plane graph in Cm with n vertices. Let13

E be a straight-line embedding constructed by Proposition 5.2. Let C(x) ∈ N2
14

be the pair of coordinates of x ∈ V (G)∪F (G). Clearly |C(x)| ≤ 2 · dlog(n)e+15

2 · log(3).16

By means of p = 18 + 3m partial functions: V (G+)→ V (G+) (cf. Proposition
3.5; they are extended into total ones by Convention 3.2 and still denoted
by f1, . . . , fp) we can specify the function Faces : V (G)2 → P(F (G)) that
associates with (x, y) ∈ V (G)2, x 6= y, the set of faces with which they are
both incident. Let us define for x ∈ V (G):

D(x) = (C(x), C(f1(x)), . . . , C(fp(x))) (4)

of size O(m · log(n)). For every set X ⊆ V (G) we can define from the family17

(D(x))x∈X the set of straight-line segments forming the embedding of Bar(X)18

in R2 in time O(|X|2). It consists of the union of the segments from E corre-19

sponding to the edges of G+ belonging to Bar(X). If G ∈ Cm and X ⊆ V (G)20

then |Bar(X)| ≤ m · (3 · |X| − 6).21

To see this, consider the sub-graph G′ = G+[Bar(X)]. It is a plane bipartite22

graph with vertex set X ′ ∪ F for some X ′ ⊆ X ⊆ V (G) and F ⊆ F (G). We23

recall that a vertex of X may not occur in Bar(X). Let H be the graph with24

vertex set X ′ and an edge between x and y whenever there is f ∈ F such that25

((x, f), f, (y, f)) is a corner of G′. It is clear that H is planar, that |E(H)| =26

|E(G′)| = |Bar(X)| and that there are no more than m parallel edges in H27

between two vertices. It follows that |E(H)| ≤ m·(3·|X ′|−6) ≤ m·(3·|X|−6).28
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The data structure for the planar point location can be built in expected time1

O(p log(p)) where p = |Bar(X)|. From Theorem 4.1 and Proposition 2.6 we2

can test in time O(log(p)) = O(log(|X|)) whether two vertices u, v given by3

D(u) and D(v) (actually C(u) and C(v) suffice) are connected in G\X. 24

In situations where |X| is bounded by a fixed constant, we get the answer in5

constant time. In the next section (the most technical one of the article) we6

extend this result to the class of all biconnected simple planar graphs.7

6 The Labeling of 2-Connected Planar Graphs8

In this section we prove the main theorem stated in the introduction for the9

class of 2-connected planar graphs. Technical tools borrowed from Courcelle10

and Vanicat [4] and Di Battista and Tamassia [7] are presented respectively in11

Sections 6.1 and 6.2. They make it possible to overcome the following difficulty:12

since two vertices x and y may be incident with an unbounded number of faces,13

we may have in Bar(X) an unbounded number of paths x− f − y, associated14

with all faces f incident with x and y. In order to build Bar(X, E+), we need15

the coordinates C(f) of all these faces but they cannot be encoded as lists16

(C(f1), . . . , C(fk)) of bounded length attached to vertices x and y.17

We overcome this by replacing each collection of paths x − f − y by only18

one of them, whenever there are at least 3 faces incident with x and y. This19

way, we obtain the reduced barrier RBar(X, E+) ⊆ Bar(X, E+). In certain20

cases it cannot witness that two vertices u and v are separated by X. This21

case is treated in a different way, using the decomposition of the graph into22

3-connected components. The decomposition yields a tree T and the fact that23

two vertices u and v are separated by {x, y} when x and y are attachment24

vertices of two different 3-connected components where lie u and v, can be25

checked in this tree by the technique of [4] without using the planar embedding26

of G.27

We first recall the necessary results from [4] and then present the decomposi-28

tion into 3-connected components with the help of bipolar orientations [9].29

6.1 Labeling Schemes for Monadic Second Order Queries on Labeled Trees30

Definition 6.1 (Monadic Second Order Queries on Labeled Trees) Let
A be a finite set of labels and T (A) be the set of finite directed or undirected
trees, each node and edge of which has one or more labels from A, or no label
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at all. A tree T in T (A) will be represented by the following logical structure:

S(T ) = 〈N, edg, (nlaba)a∈A, (elaba)a∈A 〉

where1

(1) N is the set of nodes (we specify it as N(T ) if useful),2

(2) edg is the binary edge relation (it is symmetric if T is undirected),3

(3) nlaba(u) holds if and only if the node u is labeled by a,4

(4) elaba(u, v) holds if and only if there is an edge from u to v labeled by a.5

We will use monadic second order formulas ϕ(x1, . . . , xm) with individual free6

variables x1, . . . , xm and written with the relation symbols edg, nlaba, elaba for7

a ∈ A. We denote by MS(A, {x1, . . . , xm}) the set of such formulas. They are8

first order formulas with variables ranging over sets. A formal definition can9

be found in [4].10

We only give an example significant for our purposes. The formula ϕ(u, v, w)
described below expresses in S(T ) that the unique path linking u and v goes
through w. First we define the formula ψ with free set variable X and individual
variables u, v:

u ∈ X ∧ v ∈ X ∧ ¬∃Y [u ∈ Y ∧ v /∈ Y ∧ ∀x, y(x ∈ Y ∧ x ∈ X ∧ y ∈ X ⇒ y ∈ Y )]

It is satisfied in S(T ) by X, u, v if and only if there is a path in T between u
and v all nodes of which are in X. Then formula ϕ(u, v, w) can be taken

∀X[ψ(X, u, v)⇒ w ∈ X]

For ϕ ∈ MS(A, {x1, . . . , xm}) and T ∈ T (A) we let Pϕ ⊆ N(T )m be defined11

as the set of m-tuples (u1, . . . , um) such that S(T ) |= ϕ(u1, . . . , um). We call12

Pϕ the query defined by ϕ. The objective is to label each node u of T by J(u)13

such that one can answer the query Pϕ, that is, one can determine whether14

Pϕ(u1, . . . , um) is true or not, from J(u1), . . . , J(um) only. We will say that15

this labeling supports Pϕ.16

Theorem 6.2 ([4]) Let A be a finite set of labels and let ϕ1, . . . , ϕp be for-17

mulas in MS(A, {x1, . . . , xm}). Let T ∈ T (A) be a tree with n nodes. One can18

construct in time O(n · log(n)) an O(log(n))-labeling supporting Pϕ1 , . . . , Pϕp.19

We conjecture that the construction of [4] can be done in time O(n).20
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Fig. 6. A bipolar plane graph (cf. Example 6.8)

6.2 Bipolar Plane Graphs1

Definition 6.3 (Bipolar Graphs and Bipolar Plane Graphs) A bipolar2

graph is a directed graph G without circuits having a unique vertex of in-3

degree 0, s(G) called its South pole, a unique vertex of out-degree 0, n(G)4

called its North pole such that every internal vertex, i.e., every vertex in5

VInt(G) := V (G)− {s(G), n(G)} is on a directed path from s(G) to n(G).6

A directed plane graph G is bipolar if, as a graph, it is bipolar, and has a7

planar embedding for which the two poles are incident with the external face.8

Bipolar graphs and bipolar orientations of undirected graphs are studied in9

[9]. A bipolar graph with adjacent poles is 2-connected. For every edge x− y10

of a biconnected planar graph, there is an orientation G of this graph making11

it a bipolar plane graph with s(G) = x, n(G) = y. Such an orientation can be12

computed in time O(n) (see [7]).13

Lemma 6.4 ([17]) For every planar embedding of a bipolar plane graph:14

(1) The incoming edges of each vertex x appear consecutively in the circular15

incidence sequence of x and so do the outgoing edges.16

(2) The border of each face f consists of two disjoint directed paths from a17

vertex s(f), called its South Pole, to a vertex n(f), called its North pole.18

If f is the external face, its two paths from s(f) to n(f) are called the left-19

border and the right-border of G. In the example of Figure 6, the left-border20

of G is the path (f1, f12) and its right-border is (f14, f15, f17).21
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The circular incidence sequence of x is written
−→
in(x)◦−→out(x) where

−→
in(x) (resp.1 −→

out(x)) is the sequence of incoming (resp. outgoing) edges of x. This expression2

is possible by Lemma 6.4. We denote
−→
out(s(G)) by −→s (G) and

−→
in(n(G)) by3 −→n (G).4

Definition 6.5 (Decomposition of Bipolar Plane Graphs) Let R be a5

simple bipolar plane graph with m edges denoted e1, . . . , em. Let H, G1, . . . , Gm6

be bipolar plane graphs. We write H = R(G1, . . . , Gm) if and only if the fol-7

lowing conditions (D1)-(D5) hold:8

(D1) V (R)∩ VInt(Gi) = ∅ and VInt(Gi)∩ VInt(Gj) = ∅ for all i, j ∈ [m], i 6= j.9

(D2) ei is an edge of R from s(Gi) to n(Gi) for each i ∈ [m]; hence, the vertices10

of R are the poles of the graphs Gi.11

(D3) V (H) = V (R) ∪ V (G1) ∪ · · · ∪ V (Gm).12

(D4) E(H) = E(G1)∪· · ·∪E(Gm) and an edge links the same vertices in H and13

in the graph Gi to which it belongs. (By condition (D1), E(Gi)∩E(Gj) =14

∅ for i 6= j).15

Informally we could say that H is obtained from R by the replacement of an16

edge ei by the graph Gi. Clearly, by these conditions, H is bipolar, s(H) =17

s(R) and n(H) = n(R). The next condition relates H,R,G1, . . . , Gm as plane18

graphs, and not only as graphs as do Conditions (D1)-(D4).19

(D5) We require the following:20

(a)
−−→
inH(x) =

−−→
inGi

(x) and
−−→
outH(x) =

−−−→
outGi

(x) if x ∈ VInt(Gi),21

(b)
−−→
inH(x) results from the replacement in

−→
inR(x) of an incoming edge e22

from Gi by the sequence −→n (Gi) and similarly,23

(c)
−−→
outH(x) is defined from

−−→
outR(x) and the sequences −→s (Gi), for all24

x ∈ V (R).25

These conditions mean that planar embeddings are preserved in the replace-
ment in R of ei by Gi. If H = R(G1, . . . , Gm) we say that H decomposes into
G1, . . . , Gm. We have:

VInt(R(G1, . . . , Gm)) = VInt(R) ∪ VInt(G1) ∪ · · · ∪ VInt(Gm).

The following particular decomposition will be useful. We writeH = G1// · · · //Gm26

if H = R(G1, . . . , Gm) and R consists of m ≥ 2 parallel edges from s(R) to27

n(R) such that −→n (R) = (e1, e2, . . . , em) and −→s (R) = (em, . . . , e2, e1). We call28

H the parallel-composition of G1, . . . , Gm (the operation // is associative but29

not commutative).30

Another particular case is also used in [7] and [2]. We write H = G1 •G2 •· · ·•31

Gm if H = R(G1, . . . , Gm) and R consists of a directed path (e1, . . . , em), m ≥32
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2 from s(R) to n(R). Then H is called the series-composition of G1, . . . , Gm.1

This operation is also associative and clearly not commutative.2

A bipolar plane graph H is called a //-graph if it is of the form G1// · · · //Gm3

for bipolar plane graphs G1, . . . , Gm,m ≥ 2. If it is not a //-graph it is called4

a //-atom.5

A factor of a bipolar plane graph G is a subgraph H of G that is bipolar and6

(1) contains all directed paths in G from s(H) to n(H),7

(2) contains all edges of G incident with a vertex of VInt(H).8

In such a case there exists a bipolar plane graph R such that G results from9

the replacement in R of some edge e by H. A factor that is a //-graph is called10

a //-factor.11

Proposition 6.6 (1) A //-graph is of the form G1// · · · //Gm for a unique12

sequence of //-atoms G1, . . . Gm.13

(2) A //-atom is an edge or is R(G1, . . . , Gm) where G1, . . . , Gm are //-14

factors or edges and R is a //-atom that is not an edge. The graph R and15

the sequence (G1, . . . , Gm) are unique up to a permutation of E(R).16

Corollary 6.7 Every bipolar plane graph has a unique decomposition in terms17

of the operation of parallel-composition and of substitutions R(· · · ) for //-18

atoms R that are simple and are not edges.19

We call this decomposition the decomposition of the considered plane graph20

and the corresponding ordered tree its decomposition tree. This definition is21

illustrated by the following example.22

Example 6.8 A bipolar plane graph G with V (G) = {s, n, a, b, c, d, k,m, p, q}
and E(G) = {f1, . . . , f17} is shown in Figure 6. The graph G can be expressed
by:

G = R1

(
f1, f2,

(
f3//R3(f4, f5)

)
,
(
f6//R4(f7, f8)

)
,
(
f9//R5(f10, f11)

)
, f12, f13

)
//R2

(
f14, f15,

(
f16//f17

))
where R1, . . . , R5 are shown on Figures 8 and 9. The corresponding tree is in23

Figure 7.24

In decomposition trees (like the one of Figure 7) leaves correspond to the edges25

of the decomposed graph and on each branch parallel composition operations26

alternate with substitutions in //-atoms R.27

A finer decomposition of bipolar plane graphs is defined in [7]: in this de-28

22



//

R1

f1

f3

f2 // // //

R3

f4 f5

f6 R4

f7

f9 R5

//f15f14

R2

f12 f13

f17f16

f8 f10 f11

Fig. 7. The decomposition tree of the graph of Figure 6
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Fig. 8. The graphs R1 and R2 (cf Figure 7 and Example 6.8)
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Fig. 9. The graphs R3, R4 and R5 (cf Figure 7 and Example 6.8)

composition each //-atom R is expressed in a unique way in terms of series-1

composition and edge-substitutions in //-atoms U such that U//e is 3-connected.2

The decomposition of [7] can be constructed in linear time. From it one can3

construct also in linear time the decomposition defined above.4
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6.3 Polar Pairs1

We need some more definitions to discuss the structure of decomposition trees.2

For a rooted tree T and a node w of T , we denote by m(w) the out-degree of3

w.4

Definition 6.9 (Parallel Nodes and Non-Parallel Nodes) We let G be5

a bipolar plane graph with decomposition tree T . For each node w of T , the6

subtree issued from w, denoted by T/w, defines a subgraph of G denoted by7

G(w). If w is labeled by //, then we call w a //-node of T , and G(w) is a8

//-factor of G. We denote s(G(w)) by s(w) and n(G(w)) by n(w).9

If w is a leaf then G(w) is an edge. The set E(G) is in bijection with the10

set of leaves of T (see Figures 6 and 7). A node w that is neither a leaf11

nor a //-node is called a non-//-node. In this case G(w) is a //-atom. If12

w is a //-node with sons w1, . . . , wm(w) in this order, then we have G(w) =13

G(w1)// · · · //G(wm(w)). The graph G(w) has internal vertices if and only if14

there is below w a non-//-node in the decomposition tree.15

Every non-//-node w represents the use of a substitution to the edges of a16

simple //-atom R. Hence w has sons w1, . . . , wm corresponding to the set17

E(R) enumerated as e1, . . . , em. The nodes w1, . . . , wm are leaves or //-nodes.18

For a //-node w of T , we let Fj(w) for j = 1, . . . ,m(w) − 1, be the face19

whose border cycle consists of the right border of G(wj) and the left border of20

G(wj+1). These faces are the internal faces of the graph P = e1// · · · //em(w)21

such that G1// · · · //Gm(w) = P (G1, . . . , Gm(w)).22

Lemma 6.10 Let R1, . . . , Rp be the //-atoms associated with the non-//-23

nodes of T enumerated as w1, . . . , wp. Then VInt(G) =
⋃

1≤i≤p VInt(Ri). The24

sets VInt(Ri) are all nonempty.25

Definition 6.11 (Polar Pairs) Let G be a bipolar plane graph with decom-26

position T . A polar pair is a pair of vertices of the form (s(w), n(w)) for27

some node w of T . It is //-polar if w is a //-node. We say that a polar pair28

(x, y) separates u and v if {u, v} ∩ {x, y} = ∅ and (x, y) = (s(w), n(w)) for29

some node w such that u ∈ VInt(G(w)) and v /∈ VInt(G(w)) or vice-versa by30

exchanging u and v.31

A polar pair (s(w), n(w)) is not //-polar in the following few cases: w is a32

leaf and the corresponding edge is simple (it has no parallel edge) or it is33

(s(G), n(G)) and G is a //-atom. It follows that if a polar pair separates u34

and v it is necessarily a //-polar pair.35
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It is clear that if u and v are separated by a polar pair (x, y) then, they are sepa-1

rated by the set {x, y}. In the example of Figure 6 the pairs (s, b), (a, c), (c, b), (c, n)2

are polar, the pairs (c, b), (a, c) are //-polar and the pairs (s, k), (d, n) are not3

polar.4

Lemma 6.12 If in a bipolar plane graph with adjacent poles two vertices are5

incident with 3 faces, they form a //-polar pair.6

Proof. Let G be a bipolar plane graph with decomposition tree T . Let x, y7

be two vertices incident with 3 faces f, g and h (and possibly others).8

Claim 6.13 The vertices x and y are on a same border of each face f, g, h.9

Proof of Claim 6.13. Assume that x and y are not on a same border of f .10

None of them is a pole of f .11

Case 1. f is the external face. Consider the cycle C := x− f − y − g − x of12

G+ and the cycle C ′ of G, whence also of G+, consisting of the border path13

of f going from s(f) = s(G) to n(f) = n(G) that goes through x and an14

edge between s(G) and n(G) which cannot be the other border of f since the15

other border must contain y. They have only x in common and they cross at16

x, that is, in the circular sequence of edges incident with x in G+, x− f and17

x − g are separated by edges of C ′. This contradicts the planarity of G+(see18

e.g. Courcelle [2]). Hence this case cannot happen.19

Case 2. f is not the external face. At least one of g and h, say g, is not the20

external face of G. We consider the cycle C as in Case 1 and the cycle C ′ of G21

consisting of the border path of f going from s(f) to n(f) that goes through22

x, a path from n(f) to n(G), the edge linking s(G) and n(G), and a path from23

s(G) to s(f). Since y cannot belong to C ′, this cycle crosses C at x. As in24

Case 1 we get an impossibility.25

Hence x and y are on a same border of each face f, g, h. 226

By this claim and without loss of generality we can assume that y
∗→ x in G27

Claim 6.14 At least one of f, g or h has (y, x) as pair of poles.28

Proof of Claim 6.14. In the plane graph G+ we have 3 paths y − f − x,29

y − g − x and y − h − x, and without loss of generality we have around30

x the circular order x − f, x − g, x − h. Because of planarity (see [2]) we31

have necessarily around y the circular order y − f, y − h, y − g. Without loss32
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of generality we can assume that g is inside the cycle C ′′ of G+ defined as1

x− f − y − h− x.2

We will prove that x = n(g). If this is not the case we let x′ be the vertex3

following x on the border of g that contains x. The right-border of f (resp.4

the left-border of h) contains x. Let z (resp. u) be the vertex that precedes x5

on this border. Figure 10 shows a part of G+ around x:

x′

x

f
z g u

h

Fig. 10.
6

We must have around x the following cyclic order of edges: z → x, u → x7

and x → x′ by Lemma 6.4 (1). We have g − x between z → x and u → x.8

But we also have x′ − g in G+. Hence we have in G+ two crossing cycles: the9

cyle x − g − x′ ← x and the cycle of G going through z, x, u and edges from10

the right-border of f and the left-border of h. We get a contradiction. Hence11

x = n(g) and similarly y = s(g). 212

For completing the proof, we consider the induced subgraph G[U ] where U13

consists of x, y and all vertices that lie inside the cycle x− f − y− g− x. It is14

a factor of G with poles s(g) and n(g). The subgraph G[U ′] with U ′ defined15

similarly from the cycle x− g− y− h− x is also a factor with the same poles.16

Hence G[U ∪ U ′] = G[U ]//G[U ′] and is a //-factor of G. Hence (y, x) is a17

//-polar pair of G. 218

We can now state the following.19

Lemma 6.15 Let G be a bipolar plane graph with adjacent poles and let m ≥20

3. Two vertices x and y are incident with exactly m faces if and only if they21

are the poles of G(w) for some //-node w such that:22

(1) either w is the root and w has m sons,23

(2) or w is not the root and it has m− 1 sons.24

Therefore we can prove the following key result.25
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Proposition 6.16 Every bipolar plane graph with adjacent poles has an O(log(n))-1

labeling supporting the query: “Is (x, y) a polar pair separating u and v ?” for2

all 4-tuples of vertices (x, y, u, v)3

The idea is to apply Theorem 6.2 to a tree that encodes enough information4

about G 5 . We define from the decomposition tree T a tree T ∗ some nodes of5

which are (or correspond bijectively to) the vertices of G. Letting w1, . . . , wp6

be the non-//-nodes of T with associated graphs R1, . . . , Rp respectively (cf.7

Lemma 6.10) we let a vertex x of G belonging to VInt(Ri) be a son of wi. (The8

poles of G are represented in a special way as sons of the root.) The major9

problem is to identify polar pairs. We will use auxiliary unary functions in10

addition to the information encoded in T ∗.11

Consider a polar pair (x, y) with {x, y} = {s(w), n(w)} 6= {s(G), n(G)}. There12

are two cases (up to exchanging x and y):13

Case 1. x, y ∈ VInt(Ri) and there is an edge x→ y or y → x in Ri. Since Ri is14

planar, we can use Lemma 3.3 and represent such edges (and their directions)15

by 6 unary functions (gi for i = 3, . . . , 8). Hence such an edge is represented16

“at x” or “at y”. More precisely if y ∈ {g4(x), g6(x), g8(x)} then there is an17

edge x → y represented “at x”; if y ∈ {g3(x), g5(x), g7(x)} there is an edge18

y → x also represented “at x”. At most 3 such edges are represented at each19

vertex x or y.20

An edge x → y of Ri is actually a place where a bipolar graph G(w) is21

substituted (cf. Proposition 6.6 (2)) so that x = s(w) and y = n(w). If this22

edge is represented by y = gi(x) for i ∈ {4, 6, 8} then we let w be a son of23

x in T ∗ with edge x → w labeled by i. if it is represented by x = gi(y) for24

some i ∈ {3, 5, 7}, we let w be a son of y and we label the edge y → w by i.25

It follows that for a node w, son of a node x representing a vertex of G, such26

that the edge x → w is labeled by i ∈ {3, 4, . . . , 8} we have that x and gi(x)27

are the poles of G(w). Furthermore x is the South pole if i is even and the28

North pole if i is odd.29

Case 2. x ∈ VInt(Ri), y is a pole of Ri. In this case we let g1(x) = y if y is30

a the South pole and g2(x) = y if y is the North pole. These values of g1 and31

g2 represent respectively edges from y = s(Ri) to x and x to y = n(Ri) of32

Ri, to which some G(w) is substituted. Similarly as in the previous case we33

5 If we add to the tree T , for an example to the tree on Figure 7, binary relations
encoding incidences, for example that edges f3 and f4 have same tail, then we get
a relational structure T ′ from which the considered graph can be obtained by a
monadic second order (MS) transduction. These ‘enriched’ trees T ′ are not images
of trees under any MS transduction because otherwise all planar 3-connected graphs
would have bounded clique-width, which is not the case. It follows that the results
of [4] are not applicable to such a relational structure T ′ (see [4] for definitions).
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Fig. 11. The tree T ∗ of the graph of Examples 6.8 and 6.17

let in T ∗ the node w be a son of x (with edge x → w labeled by 1 or 2). If1

x→ w is labeled by 1 or 2 then x is the North pole or the South pole of G(w)2

respectively.3

To conclude this informal presentation, we state that the tree T ∗ (to be defined4

formally below) belongs to T (A) whereA is the set of labels {P,N,V, 1, . . . , 8}.5

The nodes labeled V correspond bijectively to the vertices of G; those labeled6

by N are the non-//-nodes of T (the decomposition tree of the considered7

graph); those labeled by P are some of the //-nodes of T . The integers 1, . . . , 88

are edge labels used as explained above to encode, together with functions9

g1, . . . , g8, the edges of the graphs Ri and, consequently the polar pairs of G.10

Example 6.17 We use the graph of Example 6.8. The table below shows map-11

pings g1, . . . , g5. The mappings g6, g7, g8 are everywhere undefined. The graphs12

R1, . . . , R5 are shown on Figures 8 and 9.13

R1 R2 R3 R4 R5

a b c d k m p q

g1 s s s a a c

g2 n n n b c b

g3 a

g4 c k

g5 c

14

The tree T ∗ is shown in Figure 11. For each node labeled by V, we indicate15

between parentheses the corresponding vertex of G for helping to understand16

the construction.17
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We now give the precise definition of T ∗.1

Definition 6.18 (The Labeled Tree T ∗) The labeled tree T ∗ is defined from2

a bipolar plane graph with adjacent poles G by the following steps.3

Step 1. Construction of the decomposition tree T , by using Corollary 6.7. We4

let w1, . . . , wp be its non-//-nodes with associated graphs R1, . . . , Rp. Since G5

has adjacent poles, the root is a //-node.6

Step 2. Construction of unary partial functions g1, . . . , g8 : VInt(G)→ V (G)
such that for each x in VInt(Ri) (we recall that by Lemma 6.10, (VInt(Ri))1≤i≤p
is a partition of V (G)):

g1(x) = s(Ri) if s(Ri)→ x

g2(x) = n(Ri) if x→ n(Ri)

gj(x) = y if y → x, y ∈ VInt(Ri), j ∈ {3, 5, 7}
gj(x) = y if x→ y, y ∈ VInt(Ri), j ∈ {4, 6, 8}

Every edge of Ri is represented by one and only one of these conditions. This7

construction is possible by Lemma 3.3. We make g1, . . . , g8 total by means of8

Convention 3.2.9

Step 3. We construct T ∗ from T and the functions g1, . . . , g8 as follows.10

(T1) Its set of nodes is N(T ∗) = V (G) ∪ {u ∈ N(T ) | w ≤T u for some11

non-//-node w}.12

(T2) A node of T ∗ is labeled by V if it belongs to V (G), by P if it is a //-node13

of T and by N if it is a non-//-node.14

(T3) The edges of T ∗ are defined as follows:15

(T3.1) Edges u → w of T where u is a //-node and w is a non-//-node;16

they are unlabeled.17

(T3.2) If w = wi is a non-//-node corresponding to Ri, for 1 ≤ i ≤ p, and18

w → w′ is an edge of T corresponding (cf. Definition 6.9) to an edge19

x→ y of Ri, we may have the following two cases:20

(T3.2.a) either x = gj(y) for j odd, which implies that y ∈ VInt(Ri),21

x ∈ VInt(Ri) ∪ {s(Ri)}, and we define an unlabeled edge w → y22

and an edge y → w′ labeled by j if w′ ∈ N(T ∗);23

(T3.2.b) or y = gj(x) for j even, x ∈ VInt(Ri), y ∈ VInt(Ri) ∪ {n(Ri)}24

and we define an unlabeled edge w → x and an edge x → w′25

labeled by j if w′ ∈ N(T ∗).26

(T3.3) We also define two edges from the root to nodes s(G) and n(G) re-27

spectively labeled by 1 and 2.28

Remark 6.19 From the tree T ∗ and the associated functions g1, . . . , g8, one29

can “almost reconstruct” G, but not always exactly. For an example, if in the30
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graph G on Figure 6, one deletes the edge f17, the tree T ∗ and the functions1

gi do not change. The decomposition tree on Figure 7 is modified. For an-2

other example without parallel edges, let f1, . . . , f5 be edge graphs such that3

the expression E = (f1 • f2)//(f3 • f4)//f5 is well-defined. Then the trees4

T ∗ associated with E and (f1 • f2)//(f3 • f4) are the same. Apart from edges5

between the vertices of a polar pair, the graph G can be reconstructed from6

T ∗ and g1, . . . , g8. The edges which are not encoded by T ∗ play no role in the7

determination of the separation of vertices by polar pairs.8

Proof of proposition 6.16. Let G be a bipolar plane graph for which the9

decomposition tree T , the functions g1, . . . , g8 and the tree T ∗ ∈ T (A) of10

Definition 6.18 have been constructed.11

For every x, y, u, w ∈ N(T ∗) let P (u,w, x, y) mean:12

x, y, u are labeled by V (hence are vertices of G), w is labeled by N or P,13

u <T ∗ w, (x, y) = (s(w), n(w)).14

Claim 6.20 There exists a formula ψ in MS(A, {u, v, x, x1, . . . , x8, y, y1, . . . , y8, zs, zn})
such that for every u,w, x, y ∈ V (G) the property P (u,w, x, y) holds if and only
if:

S(T ∗) |= ψ
(
u,w, x, g1(x)/x1, . . . , g8(x)/x8, y,

g1(y)/y1, . . . , g8(y)/y8, s(G)/zs, n(G)/zn

)
.

The notation gi(x)/xi means that the term gi(x) is substituted to xi (and15

similarly for gi(y)/yi), and s(G)/zs means that zs is given the value s(G) (and16

similarly for n(G)/zn).17

Proof of Claim 6.20. The only difficulty is to express the condition (x, y) =18

(s(w), n(w)). We distinguish several cases.19

Case 1. w is the root or w is a son of the root which is labeled by P (hence w is20

labeled by N). In this case the condition (x, y) = (s(w), n(w)) = (s(G), n(G))21

where P (u,w, x, y) is expressed by the formula x = zs ∧ y = zn.22

Case 2. w is not the root and is labeled by P; hence it is not a son of the root
(by the way T ∗ is constructed). Its father w′ is labeled by V, hence is a vertex
of G and w′ is one of the two poles of G(w). Let j ∈ [8] be the label of the edge
w′ → w. Then the other pole of G(w) is gj(w

′). It follows that the condition
(x, y) = (s(w), n(w)) is equivalent to θ[g1(x)/x1, . . . , g8(x)/x8, g1(y)/y1, . . . , g8(y)/y8]
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where θ(w, x, x1, . . . , x8, y, y1, . . . , y8) expresses:“x is the father of w” ∧ ∨
j=2,4,6,8

y = xj

 ∨
“y is the father of w” ∧ ∨

j=1,3,5,7

x = yj

 .
Case 3. w is not the root, is labeled by N and its father w′′ is labeled by P1

and is not the root otherwise Case 1 applies. The father w′ of w′′ is labeled by2

V. We have (s(w), n(w)) = (s(w′′), n(w′′)) and w′ ∈ {s(w), n(w)} as in Case3

2. The construction is the same as in Case 2 with θ′ instead of θ, obtained by4

replacing “x is the father of w” by “x is the grand-father of w” and similarly5

for y.6

Then the desired formula ψ can be written as ψ1 ∨ ψ2 ∨ ψ3, where ψ1, ψ2 and7

ψ3 express Cases 1,2 and 3 respectively.8

ψ1 is
(

“w is the root”∨ “the father of w is the root labeled by P”∧ (x = zs ∧9

y = zn)
)

.10

ψ2 is
(

“w is not the root” ∧ “w is labeled by P” ∧ θ(w, x, x1, . . . , y8)
)

.11

ψ3 is
(

“w is not the root”∧“w is labeled by N”∧“the father of w is not the root”∧12

θ′(w, x, x1, . . . , y8)
)

.13

This finishes the proof of the claim. 214

We now complete the proof of Proposition 6.16. The condition Q(u, v, x, y)15

defined as “(x, y) is a polar pair separating u and v” can be expressed as16

follows from Definition 6.11:17

There exists w such that either P (u,w, x, y) holds and v is labeled by V18

and v ≮T w or P (v, w, x, y) holds and u is labeled by V and u ≮T w.19

It follows from Claim 6.20 that one can build a formula ϕ in
MS(A, {u, v, x, x1, . . . , x8, y, y1, . . . , y8, zs, zn}) such that Q(u, v, x, y) holds if
and only if

S(T ∗) |= ϕ
(
u, v, x, g1(x)/x1, . . . , g8(x)/x8, y, (5)

g1(y)/y1, . . . , g8(y)/y8, s(G)/zs, n(G)/zn

)
.

We now apply Theorem 6.2 to T ∗ and ϕ. This theorem gives an O(log(n))-
labeling L(w) of the nodes w of T ∗, hence in particular of the vertices of G.
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The desired labeling K(x) of the vertices of G is then defined as

K(x) = (L(x), L(g1(x)), . . . , L(g8(x)), L(s(G)), L(n(G))) .

We have |K(x)| = O(log(n)) and by Equivalence (5), we can determine if (x, y)1

is a polar pair separating u and v by using K(u), K(v), K(x) and K(y). 22

6.4 Reduced Barriers3

Let G be a bipolar plane graph with decomposition tree T . For every //-polar4

pair (x, y) we let Select(x, y) be some face incident with x and y. We can5

make this definition deterministic by letting Select(x, y) = F1(w) (cf. the end6

of Definition 6.9) where w is the //-node such that (x, y) = (s(w), n(w)), but7

any other face, say Fj(w) for any j with j ≤ m(w)− 1 would work.8

Definition 6.21 (Reduced Barriers for Bipolar Plane Graphs) Let G9

be a bipolar plane graph with adjacent poles and augmented graph G+. For10

x, y ∈ V (G), x 6= y we define RBar({x, y}) as the following set of edges of11

G+:12

(R1) if x and y are incident with at most 2 faces then RBar({x, y}) = Bar({x, y});13

(R2) otherwise by Lemma 6.12, x and y form a //-polar pair, say (x, y), and14

we let RBar({x, y}) consist of the two edges x − f and y − f where15

f = Select(x, y) .16

For X ⊆ V (G) we let RBar(X) :=
⋃{RBar({x, y}) | x, y ∈ X} and we call17

it the reduced barrier of X.18

If E+ is an embedding of G+, then RBar(X, E+) denotes the union of the19

segments representing the edges in RBar(X). The use of reduced barriers is20

based on the following proposition which extends Proposition 2.6.21

Proposition 6.22 Let G be a bipolar plane graph with adjacent poles and let22

E+ be an embedding of G+. Let X ⊆ V (G) and u, v ∈ V (G)−X. Then u and23

v are separated by X if and only if either:24

(a) u and v are separated by a polar pair belonging to X ×X or:25

(b) u and v are separated in the plane by RBar(X, E+).26

Proof. Let G,X, u, v be as in the statement. If (a) or (b) holds then u and27

v are separated by X (for the second case, we observe that RBar(X, E+) ⊆28

Bar(X, E+) and we use Proposition 2.6).29
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Let us conversely assume that u and v are separated by X, but (a) does not1

hold. By Proposition 2.6, they are separated in the plane by Bar(X, E+). As2

in the proof of Proposition 2.6 we need only prove the result for a minimal3

separator Y ⊆ X of u and v, because if u and v are separated by RBar(Y, E+)4

they are also by RBar(X, E+). Hence we assume that X = {x1, . . . , xm} is a5

minimal separator of u and v in G. We first assume that m ≥ 3. Then, Bar(X)6

has the structure shown on Figure 12 where, for each i ∈ [m], {fi,1, . . . , fi,pi
}7

is the set of faces incident with xi and xi+1 (letting xm+1 denote also x1).8

Then RBar(X) is obtained from Bar(X) by removing for each i such that9

pi ≥ 3 all vertices fi,j (and the incident edges) but one, so that RBar(X)10

contains a cycle going through x1, . . . , xm. If u, v are separated by Bar(X, E+)11

and not by RBar(X, E+) this means that one and only one of them is inside12

a cycle xi− fi,j −xi+1− fi,j+1−xi of Bar(X) such that fi,j or fi,j+1 (or both)13

has been removed. This implies that pi ≥ 3 hence that xi and xi+1 form a14

//-polar pair (by Lemma 6.12). Furthermore the set of vertices that are inside15

this cycle are the internal vertices of G(wj) where wj is the j-th son of the16

//-node w with poles xi and xi+1. Hence u and v are separated by a polar17

pair with components xi and xi+1 in X, hence (a) holds, but we assumed the18

contrary. Hence (b) must hold. This completes the proof for the case m ≥ 3.19

If m = 2 and p1 = p2 = 1 then Bar(X) = RBar(X) hence (b) holds. If20

p1 + p2 ≥ 3 then, by Lemma 6.12, x1 and x2 form a polar pair. As for the21

case m ≥ 3 we get that u and v are separated by RBar(X, E+) otherwise (a)22

holds.23

We cannot have m = 1 because the graph is assumed 2-connected. 224

Example 6.23 For clarity on Figure 13 we number faces from 1 to 8 but25

we do not show the edges of G+ incident with the face-vertices 1, . . . , 8. The26

set Bar({x, y}) contains the 4 paths x − i − y for i = 2, 6, 7, 8. Note that27

(x, y) is a //-polar pair. The reduced barrier RBar({x, y}) contains only one28

of them, say x − 2 − y. However for any two vertices u and v separated by29

{x, y}, Condition (R1) is applicable. The set RBar({x, y, c}) contains then30

x − 2 − y, x − 3 − c, x − 4 − c, c − 5 − y. This reduced barrier separates b31

and d. The edges x − 2 and 2 − y are useful for that: without them b and d32

are not separated. RBar({a, x}) = Bar({a, x}) = {x−2, 2−a} and the graph33

G\{a, x} is connected. Note that a and x do not form a polar pair.34

6.5 The Main Theorem for 2-Connected Planar Graphs35

After proving a last technical lemma, we will establish the following theorem.36
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Fig. 13. The graph of Example 6.23

Theorem 6.24 For every 2-connected planar graph we can construct an O(log(n))-1

labeling supporting extended connectivity queries with forbidden vertices X.2

The labels can be constructed in time O(n) and queries answered in time3

O(|X|2).4

We first state and prove a lemma, akin to that in Section 3.5

Lemma 6.25 In every bipolar plane graph G one can represent with 12 func-
tions on V (G) ∪ F (G) the property pp, defined as:

pp(x, y) ⇐⇒ (x, y) is a //-polar pair

and any fixed Select function as defined at the beginning of Section 6.4.6

Proof. The proof is a variant of that of Proposition 3.5. We let H be the
simple directed graph with V (H) = V (G) and an edge x → y if and only
if (x, y) is a //-polar pair. It is planar because these edges can be inserted
without crossings in a planar embedding of G. With 6 functions, one can
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represent adjacency and edge directions of a planar graph by Lemma 3.3.
Hence there exist functions g+

i , g
−
i : V (H)→ V (H) for i ∈ [3] such that:

g+
i (x) = y implies x→ y,

g−i (x) = y implies y → x.

Each edge is represented by a unique such clause. Hence with 6 partial func-1

tions, we can represent the property pp.2

We now define 6 partial functions hαi for i ∈ [3], α ∈ {+,−} as follows:

h+
i (x) = Select(x, g+

i (x)),

h−i (x) = Select(g−i (x), x).

By using also the 6 functions g+
i , g

−
i we can represent the Select function with3

12 functions. 24

We can now prove Theorem 6.24.5

Proof of Theorem 6.24. We are given a 2-connected planar graph with n6

vertices. In time O(n) we can make it into a bipolar plane graph with adjacent7

poles, we can construct its decomposition tree T , the functions g1, . . . , g8 and8

the labeling (K(x))x∈V (G) of Proposition 6.16, such that |K(x)| = O(log(n))9

relative to the tree T ∗ of Definition 6.18. We can also construct a straight-line10

embedding of the plane graph G+ with coordinates in [3n−6]2 by Proposition11

5.2. We let C(x) be the pair of coordinates of x ∈ V (G+). In order to be12

able to build RBar(X) from O(log(n)) we attach bounded information to the13

elements of X. We will use:14

• 21 functions for representing the property “x and y are incident with at15

most 2 faces” and for specifying these faces (Proposition 3.5)16

• 12 functions for representing the property pp(x, y) and defining Select(x, y)17

by Lemma 6.2518

Hence we will use 33 functions fi : V (G) → V (G) ∪ F (G), i ∈ [33]. We let
then

D(x) = (C(x), C(f1(x)), . . . , C(f33(x)), C(s(G)), C(n(G)))

for each x ∈ V (G), and J(x) = (K(x), D(x)). It is clear that |J(x)| =19

O(log(n)) (in particular |D(x)| ≤ 72(log(n) + log(3)) and we claim that J20

supports connectivity queries in subgraphs defined by excluded vertices. The21

checking procedure is the following for given u, v ∈ V (G) and X ⊆ V (G).22
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Step 1. By using the K-parts of the labels attached to u, v and to the ver-1

tices in X, one can test by trying every two vertices in X whether u and v are2

separated by a polar pair in X ×X. If this is the case one can report that u3

and v are separated by X and stop. Otherwise one performs Step 2.4

5

Step 2. By using the D-parts of the labels, one can determine, for every two6

vertices x, y in X the coordinates of the end vertices of the edges forming7

RBar({x, y}, E+), which are straight-line segments. One can test if u and v8

are separated by RBar(X, E+) (cf. Section 4) and by Proposition 6.22, this9

gives the final answer.10

The time taken to decompose G and to construct T ∗ is O(n). The time taken11

to build the labels D(x) is O(n). The time taken to build the labels K(x)12

is O(n · log(n)). This bound depends on the results of [4] and may perhaps13

be improved to O(n). Hence the labeling J(x) can be constructed in time14

O(n log(n)).15

The answers to Step 1 can be obtained in time O (|X|2). The answers to Step16

2 can be obtained in time O (|X| · log(|X|)). 217

7 Connectivity Queries on 2-Connected Components18

We prove the Main Theorem by using as in Section 6 some results of [4]19

applied to the classical decomposition of a graph into a tree of biconnected20

components.21

Let G be a connected graph. We denote by Bcc(G) the set of its biconnected22

components. We denote by B(G) the bipartite tree with set of nodes V (G) ∪23

W (G) where W (G) ∩ V (G) = ∅ and W (G) is in bijection with Bcc(G) by24

bcc : W (G) → Bcc(G), and with edges v − w whenever w ∈ W (G) and25

v ∈ V (bcc(w)). A vertex of G has degree at least 2 in B(G) if and only if it is26

separating in G.27

The biconnected components containing at least 2 vertices of X are therefore28

the ones we must deal with.29

Definition 7.1 (Problematic Biconnected Components) Let X ⊆ V (G)30

and u, v ∈ V (G)−X. We say that a biconnected component of G is problem-31

atic for (u, v,X) if it (or rather the node of W (G) representing it) is on the32

unique path p(u, v) in B(G) from u to v and contains at least 2 vertices of X.33

Let us assume that no vertex on p(u, v) belongs to X. Let C1, . . . , Cm be the34

sequence of problematic components enumerated in their order of occurrence35
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on p(u, v). Let x1, x2, . . . , xm−1 be vertices such that xi is between Ci and Ci+11

on p(u, v). Let x0 = u and xm = v. The following is clear from the definition:2

Fact 7.2 The vertices u and v are separated by X if and only if either:3

(a) the path p(u, v) goes through a vertex in X,4

(b) or (a) does not hold and for some i = 0, . . . ,m − 1, the vertices xi and5

xi+1 are separated by X ∩ V (Ci) in G.6

We will use Theorem 6.2 in order to build an O(log(n))-labeling with which7

one can check the conditions of Fact 7.2.8

We choose a vertex r of G to be the root of B(G) that belongs to a unique9

biconnected component. From this choice, B(G) is directed, rooted with par-10

tial order ≤B(G) and r is the greatest element (see Introduction). For each11

C ∈ Bcc(G) the set V (C) has a ≤B(G)-greatest element called the leader of12

C. Each vertex v belongs to a unique ≤B(G)-maximal biconnected component.13

We call it its mother if v 6= r. The root has no mother.14

Our next aim is to prove the following proposition, stated with the notation15

of Definition 7.1 and Fact 7.2.16

Proposition 7.3 Let G be a connected graph with n vertices. One can build17

an O(log(n))-labeling (M(x))x∈V (G) such that:18

(1) one can determine from the labels of any u, v ∈ V (G) and of the vertices19

in any set X ⊆ V (G) − {u, v} whether p(u, v) goes through X and, if it20

does not,21

(2) one can determine the sets X ∩ V (Ci) for i = 1, . . . ,m and vertices
x1, . . . , xm−1 that are leaders of some of the problematic components
C1, . . . , Cm and such that:

Conn(u, v,X)⇐⇒ ∧
0≤i≤m−1

Conn(xi, xi+1, X ∩ V (Ci+1)) (6)

Proof. The treeB(G) is handled as the logical structure 〈V (G)∪W (G),member, root 〉22

where member(v, w) holds if and only if v ∈ V (bcc(w)), and root(v) holds if23

and only if v is the root.24

Among the elements of V (G) ∪ W (G) the vertices of G are those, say x,25

satisfying ∃w.member(x,w). The order≤B(G) is definable by a monadic second26

order (MS) formula [4].27

For x ∈ V (G)∪W (G), x 6= r the unique smallest element y such that x <B(G) y
represents the mother of x if x ∈ V (G) and is denoted by mother(x); it is
the leader of bcc(x) if x ∈ W (G), and is denoted by leader(x). (The root is
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the leader of a unique biconnected component.) These two functions are thus
definable by MS formulas. We consider the following properties of the nodes
of B(G):

P1(u, v, x)⇐⇒ u, v, x are pairwise distinct vertices and x is on the path

p(u, v) linking u to v.

P ′2(u, v, w, x, y)⇐⇒ u, v, x, y are pairwise distinct vertices, w belongs to W (G)

and lies on the path p(u, v), and furthermore x, y ∈ V (bcc(w)).

P2(u, v, x, y)⇐⇒ P ′2(u, v, w, x, y) holds for some w.

We use Theorem 6.2 to construct an O(log(n))-labeling M0 for checking the
properties x ≤ y, member(x, y), P1 and P2. This labeling defines a label
M0(x) for each x ∈ V (G) ∪W (G). For x ∈ V (G) we define:

M(x) =
(
M0(x),M0(mother(x)), leader(mother(x))

)
. (7)

(If x is the root we mark the last two components as “undefined”).1

By using M0(u),M0(v), and M0(x) for each x ∈ X in turn, we can check if2

P1(u, v, x) holds for some x ∈ X, hence whether p(u, v) goes through some3

vertex in X. If this is the case we can report that u and v are separated by4

X. This test takes time O(|X|).5

Otherwise we consider the path p(u, v). It can be of 3 possible types depending6

on how its nodes are related under≤B(G) where C1, . . . , Cm are the problematic7

biconnected components relative to u, v and X; we denote <B(G) by <.8

Case 1. u < C1 < C2 < · · · < Cm < v or the same by changing < into >,9

Case 2. u < C1 < C2 < · · · < Cp−1 < Cp > Cp+1 · · · > Cm > v,10

Case 3. u < C1 < C2 < · · · < Cp < w > Cp+1 · · · > v where w is either a11

vertex or a biconnected component that is not problematic. In all cases we let12

x0 = u, xm = v.13

In the first case we let xi be the leader of Ci for i = 1, . . . ,m−1. In the variant14

of the first case where u > v, we let xi be the leader of Ci+1 for i = 1, . . . ,m−1.15

In the second case, we do the same for i = 1, . . . , p − 1 and we let xi be the16

leader of Ci+1 for i = p, . . . ,m − 1. In the third case we do as in the first for17

i = 1, . . . , p and we let xi be the leader of Ci+1 for i = p+ 1, . . . ,m− 1.18

By using M0(u),M0(v) and M0(x) for all x ∈ X, we can determine those pairs
of elements (x, y) in X2 such that P2(u, v, x, y) holds, hence such that x and
y belong to a problematic component bcc(w), determined as follows (we let r
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be the root of B(G)):

if y = r or if mother(x) ≤ mother(y) then w = mother(x),

if x = r or if mother(y) ≤ mother(x) then w = mother(y).

as one checks easily. (We may have mother(x) < mother(y) if y is the leader
of mother(x) and p(u, v) goes through mother(x) but not through y. We recall
that mother(r) is undefined.) Since the label M(x) contains M0(mother(x))
we can obtain the set:

P = {M0(w) | bcc(w) is a problematic component}.
Since M0 makes it possible to know from M0(w) and M0(w

′) if w < w′, one1

can order P as {M0(bcc
−1(C1)), . . . ,M0(bcc

−1(Cp))}, and one can determine2

which of the Cases 1,2 or 3 holds. Note that in Case 3, we cannot determine3

(and we need not) determine the “central element” w.4

Since each component Ci is problematic we know at least one x in X ∩ V (Ci)5

such that Ci = bcc(mother(x)). Since M(x) contains leader(mother(x)) for6

each x ∈ X we get the leaders of the problematic components, whence the7

desired list x1, . . . , xm−1 (we also have u = x0 and v = xm).8

If Ci = bcc(mother(x)) then X ∩V (Ci) is the set of elements y of X such that9

member(y,mother(x)). From M0(y) and M0(mother(x)) which are available10

fromM(y) andM(x) for all x, y ∈ X, we can determine whenmember(y,mother(x))11

does hold. Hence we have for each i, the indices of the vertices inX∩V (Ci). 212

This proposition shows that the connectivity query in a connected, non nec-13

essarily planar, graph reduces to connectivity queries in this graph that are14

of the form Conn(u, v, Y ) where Y is contained in a biconnected component.15

Hence, we can prove the following. We first need a definition.16

The third part of each label M(x) is the index of a vertex, and not as the oth-
ers, a label constructed by Theorem 6.2. Assume J : V (G)→ L is another in-
jective labeling where |J(x)| = O(f(n)) for some function f (f(n) ≥ plog(n)q).
We denote by M [J ] the new labeling N defined as follows:

N(x) =
(
J(x),M0(x),M0(mother(x)),M0(leader(mother(x))), J(leader(mother(x)))

)
We have clearly |N(x)| = O(log(n) + f(n)).17

Proposition 7.4 Assume we have an injective f(n)-labeling scheme J for18

the graphs G of a class C giving the right answers to queries Conn(u, v, Y )19

such that Y ⊆ V (C) for a biconnected component C of G. Then there exists an20

O(log(n)+f(n))-labeling scheme supporting connectivity queries Conn(u, v,X)21

for all sets X.22
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Proof. J is injective implies that f(n) ≥ dlog(n)e. We take the labeling M [J ]1

where M is defined in Proposition 7.3. Note that the labeling M gives the2

indices of the vertices x1, . . . , xm−1 and those in the sets X ∩V (Ci). However,3

only their J-labels together with J(u) and J(v) are needed to obtain the truth4

values of Conn(u, v,X) (by using Equivalence (6)). This is why we can use5

M [J ]. Since J is injective the equality tests made when using M are correct6

if they are made with M [J ]. 27

8 The General Case8

Before getting into technical details we give an overview of the proof. Extend-9

ing the proof of Section 5 to the general case of planar connected graphs G10

presents two difficulties.11

First the plane graph G+ may have multiple edges which forbids a straight-12

line embedding. This situation occurs only if G is not 2-connected. A second13

difficulty occurs for 2-connected graphs because there is no upper bound to14

the number of faces to which two vertices may be incident. This situation does15

not occur if G is a subdivision of a 3-connected graph.16

We overcome these difficulties as follows. First we replace G+ by a simple17

subgraph of itself with same adjacencies, obtained by removing parallel edges.18

We denote this graph by G−. The associated notion of barrier may “miss some19

cases of separation” because it is a subset of the original one associated with20

G+. In other words if u and v are separated by the barrier associated with21

X in G− they are also by the corresponding barrier in G+, but the converse22

does not always hold. To handle this case, we query the tree of biconnected23

components as explained in Section 7. The result of this query is either that24

u and v are separated (case (a) of Lemma 7.2) or a “call” to several queries of25

the form Conn(x, y, Y ) where Y is included in a biconnected component. In26

this case, the barrier relative to G− (in Definition 2.5 we replace G+ by G−)27

gives the correct result, because it is the same as the one relative to G+.28

The second difficulty concerns biconnected components and we use the method29

of Section 6. Because barriers may be unbounded, we replace them by reduced30

barriers to be constructed from sets Y as above. Reduced barriers can miss31

some cases of separation, but these cases will be detected by queries in the32

decomposition trees defined in Corollary 6.7. This is proved in Propositions33

6.16 and 6.22. In order to obtain the general proof, we will combine the con-34

structions of Sections 5, 6 and 7. In particular we will merge the trees T ∗(C)35

associated with biconnected components C of G and the tree B(G) into a36

single tree BT ∗(G) to which we will apply simultaneously Theorem 6.2 and37

Propositions 6.16 and 7.3. We first explain the global structure of the proof.38
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Step 1. Given a connected planar graph G, we construct a straight-line pla-1

nar embedding of the graph G− defined above. We obtain thus for each ver-2

tex x of G and each face-vertex x of G+ a pair of integer coordinates de-3

noted by C0(x). For each vertex x of G we let C(x) consist of C0(x) and of4

C0(f1(x)), . . . , C0(f24(x)) where f1, . . . , f24 are the functions of Proposition 3.55

for m = 2 and f1(x), . . . , f24(x) are vertices of G+ at distance at 1 or 2 of x.6

Step 2. We construct a tree BT ∗(G) (according to Definition 8.1) and, by7

using Theorem 6.2, a labeling R0 of this tree for checking 5 monadic second-8

order queries.9

Step 3. The label J(x) of a vertex x of G is then defined as(
C(x), R0(x), R0(mother(x)), R0(leader(mother(x))), C(leader(mother(x)))

)
where mother and leader are relative to the rooted tree B(G) of biconnected10

components of G.11

Connectivity Checking with labels J. Assume we are given J(u), J(v)12

and J(X) for u, v ∈ V (G) and X ⊆ V (G) − {u, v}. We now explain how to13

obtain the answer to the query Conn(u, v,X) in G.14

Step 1. By using R0(u), R0(v) and R0(X) we can query BT ∗(G) to check if15

some vertex of X is a separating vertex of G that separates u and v (this is16

possible because the tree B(G) is definable in BT ∗(G) by monadic second-17

order formulas). If this is the case, we can stop and return the answer that18

Conn(u, v,X) is false. Otherwise, we continue as follows.19

Step 2. We let C1, . . . , Cp be the problematic biconnected components for20

(u, v,X) and let x1, . . . , xm−1 be leaders of some of them as in Proposi-21

tion 7.3. We can determine from R0(u), R0(v), R0(X) the following objects:22

R0(x1), . . . , R0(xm−1) and R0(bcc
−1(C1), . . . , R0(bcc

−1(Cm)) and, for each i =23

1, . . . ,m the set {R0(y) | y ∈ X ∩ V (Ci)}. Since x0 = u and xm = v, we also24

have R0(x0) and R0(xm) from J(u) and J(v).25

Step 3. For each i = 1, . . . ,m we can check if there is a pair (x, y) ∈ (X ∩26

V (Ci))
2 that is a polar pair in Ci and separates xi−1 and xi. This can be done27

by means of R0(xi−1), R0(xi) and the set of labels R0(X ∩ V (Ci)). If one such28

i is found then, we can stop and report that Conn(u, v,X) is false.29

Step 4. For each i = 1, . . . ,m by using C(xi−1), C(xi) and C(X ∩ V (Ci))30

which we can get from J(u), J(v) and J(X) when performing Step 2, we can31

construct the reduced barrier of X ∩ V (Ci) and check from it and by means32

of the algorithm of Section 4 whether Conn(xi−1, xi, X ∩ V (Ci)) is true or33

not. By Proposition 6.22 reduced barriers suffice for this. We obtain that34
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Conn(u, v,X) holds if and only if all conditions Conn(xi1 , xi, X ∩ V (Ci)) are1

true.2

To achieve this goal, we need some definitions and preliminary results.3

Definition 8.1 (The Tree BT ∗(G) of a Connected Planar Graph) Let G4

be a connected planar graph. Let us choose a vertex r that belongs to a single5

biconnected component as root of B(G). Each biconnected component C has6

thus a leader, that we denote by n(C). For each such component we choose a7

vertex adjacent to n(C), we denote it by s(C) and we define a bipolar orienta-8

tion of C with South pole s(C) and North pole n(C). We make C into a plane9

bipolar graph by choosing an appropriate circular incidence sequence around10

each vertex. We combine the plane biconnected components and we make in11

this way G into a plane graph that we still denote by G.12

For each C ∈ Bcc(G) we let T ∗(C) be the corresponding tree as defined in13

Section 6. If C is reduced to a single edge: s(G) → n(G) we let T ∗(C) be the14

tree s(G)
1← r(C)

2→ n(G) where r(C) is its root with the convention used in15

Figure 11. We recall that the set of nodes of T ∗(C) is the union of V (C) and16

a set of nodes labeled by P or N that represent the decomposition of C with17

the help of auxiliary partial functions g1, . . . , g8.18

We define BT ∗(G) as the union of the trees T ∗(C) for all C ∈ Bcc(G). These19

trees have in common the nodes that are vertices of G. We let Root(C) be the20

root of T ∗(C). It is not in V (G), and will be taken as a node representing C,21

like bcc−1(C) in B(G) (cf. Section 7 for notation about B(G)).22

The following facts are clear from the definitions.23

Fact 8.2 The graph BT ∗(G) is a directed tree. Its nodes labeled by V are24

the vertices of G. Its nodes of indegree 0 are in bijection by a function, that25

we will denote by Root, with Bcc(G) and thus with the set W (G) of B(G).26

For each C ∈ Bcc(G) its leader and North pole n(C) is the unique vertex x27

such that Root(C)
2→ x in BT ∗(G). The nodes of T ∗(C) are the nodes of28

BT ∗(G) accessible from Root(C) by a directed path, and T ∗(C) is the sub-tree29

of BT ∗(G) induced on this set.30

Example 8.3 Let W be the directed plane graph on Figure 14. Its biconnected31

components are bipolar. Letting g3 map 4 to 5 (no other value of g3 and no32

other function g4, . . . , g8 are needed), its tree BT ∗(W ) is shown on Figure 15.33

34

Fact 8.2 shows that the trees T ∗(C), for C ∈ Bcc(G), are induced sub-trees of35

BT ∗(G), and that their sets of nodes are definable by MS formulas. The tree36

B(G), the tree of biconnected components of G, is also definable in BT ∗(G)37

by MS formulas. If N is the set of nodes of BT ∗(G), we let:38
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Fig. 15. The tree BT ∗(W ) of the graph W

(1) V be the set of nodes labeled by V.1

(2) W be the set of nodes in N of in-degree 0.2

(3) member′ be the binary relation such that member′(v, w) holds if and only3

if v ∈ V , w ∈ W and w
∗→ v in BT ∗(G).4

(4) ≤′ be the reflexive and transitive closure of the relation <0 defined as5

follows:6

u <0 u
′ if and only if either u ∈ W , u′ ∈ V and u

2→ u′, ormember′(u, u′)7

and we do not have u′
2→ u.8

We have the following fact.9
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Fact 8.4 The sets V,W , the relations member′ and ≤′ are definable in BT ∗(G)1

by MS formulas. The structure 〈V ∪W,member′,≤′ 〉 is isomorphic to B(G)2

with V = V (G) and W in bijection by Root with Bcc(G).3

The queries ≤,member, P1, P2 for which we constructed in Proposition 7.3 an4

O(log(n))-labeling can be translated into MS queries over BT ∗(G), denoted5

by ≤′,member′, P ′1, P ′2.6

We consider next the construction done for proving Proposition 6.16. Let us
first introduce some notations and a lemma. Let C be a biconnected compo-
nent of a connected graph G. For every vertex u of G we let:

Att(u,C) :=


u if u ∈ C,
u′ if u /∈ C and u′ is the unique vertex of C

on the path in B(G) that links u and bcc−1(C)

In other words, u′ is the first vertex of C on any path in G from u to some7

vertex of C. (We write AttG(u,C) if G must be specified.)8

Lemma 8.5 There exists a monadic second-order formula α(u, u′, w) such9

that for every connected planar graph G, BT ∗(G) |= α(u, u′, w) if and only10

if u, u′ ∈ V (G), w = Root(C) for some biconnected component C of G and11

u′ = AttG(u,C).12

Proof. We let α(u, u′, w) express the following: u and u′ are labeled by V,13

w is of in-degree 0, there is a directed path from w to u′ and, either u = u′14

(which implies u = bcc−1(w)) or there is an undirected path between u and15

u′ containing an edge y → u′ that does not belong to the path from w to16

u′. It follows from the definitions that these conditions are equivalent to u′ =17

AttG(u,C). 218

Example 8.6 (Continuation of Example 8.3) Consider the tree on Fig-19

ure 15. The nodes marked I,II,. . . ,VII (in Roman numbers) are those of the20

form Root(C). We have in particular 10 = Att(2, C) = Att(6, C) = Att(5, C) =21

Att(10, C) where VII=Root(C). The validity of the definition of α can be22

checked on these examples.23

We have used in Proposition 6.16 the query Q(u, v, x, y) relative to a bipo-24

lar plane graph meaning “(x, y) is a polar pair separating u and v”. We let25

Q1(u, v, x, y, w) mean for nodes u, v, x, y, w of BT ∗(G):26

“w = Root(C) for some biconnected component C and (x, y) is a polar pair27

of C separating u and v in C”.28
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We will rather use the property Q′(u, v, x, y, w) meaning:1

“ w = Root(C) for some biconnected component C, (x, y) is a polar pair of2

C that separates Att(u,C) and Att(v, C)”3

that is equivalent to

∃u′, v′[α(u, u′, w) ∧ α(v, v′, w) ∧Q1(u
′, v′, x, y, w)]

Since T ∗(C) is the union of the directed paths in BT ∗(G) originating from4

Root(C) so that its set of nodes is MS-definable in BT ∗(G), the queries Q15

and Q′ can be expressed in BT ∗(G) by monadic second-order formulas.6

Proposition 8.7 For every connected planar graph with associated tree BT ∗(G)7

constructed as in Definition 8.1, we can build in time O(n·log(n)) an O(log(n))-8

labeling R0 of the associated tree BT ∗(G) that supports the queries ≤′,member′, P ′1, P ′29

and Q′.10

Proof. Immediate consequence of Theorem 6.2 and the previous remarks. 211

The construction time of O(n · log(n)) can be reduced to O(n) if a similar
improvement is possible for Theorem 6.2. We let then for each x ∈ VG:

R(x) =
(
R0(x), R0(mother(x)), leader(mother(x))

)
. (8)

It is constructed like M in Proposition 7.3, and refines the labeling K of12

Proposition 6.16. It makes it possible to query, not only the global structure13

of G defined by B(G), but also the internal structure of each biconnected14

component.15

Next we adapt the notion of reduced barrier, and we generalize Propositions16

2.6 and 6.22.17

Definition 8.8 (Augmented Graphs of Biconnected Components) For18

every graph H we let Spl(H) be a simple graph obtained from H by removing19

edges and such that H and Spl(H) have same adjacency relation. Let G be20

a connected plane graph, and G+ be its augmented graph. If G+ has parallel21

edges linking two vertices x and y then one of them is a face and the other is22

a separating vertex. We let G− be Spl(G+). Hence G− is a simple connected23

plane graph.24

Let G be a plane graph and let C be a biconnected component of G. We denote25

by FG(C) the set of faces f ∈ F (G) that are incident with an edge of C26
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equivalently such that there exist two adjacent vertices x, y of C such that1

f − x and f − y are edges of G+.2

Lemma 8.9 Let G be a simple connected plane graph and E be an embedding3

of G+. We let E−(C) be the restriction of E to G−[V (C) ∪ FG(C)] for some4

biconnected component C of G. Then E−(C) is an embedding of C+.5

Before proving the lemma we show an example.6

Example 8.10 Consider the graph G+ of Figure 1. It is not simple. Let G− be7

obtained by deleting a and c, and let E− be the corresponding planar embedding.8

Let C be the biconnected component with V (C) = {x, t, v}. Then the restriction9

of E− to G−[V (C)∪FG(C)] is shown in Figure 16. It is an embedding of C+.10

x

t

v

b

A

Fig. 16. Illustration of Example 8.10.

Proof. It is clear that the restrictions of E and E− to C coincide and form11

an embedding E ′′ of C. Each face f ∈ FG(C) defines a unique face f ′′ of E ′′.12

We first prove that f 6= f ′ if f 6= f ′.13

Assume this is not the case. The border cycle Γ of f (considered as a face of14

G) contains at least one edge of C and at least one edge not in C because15

it separates f and f ′ in E and does not in E− (since we assume f 6= f ′ and16

f = f ′). Hence Γ contains a nonempty path with no edge in C that links17

two distinct vertices of C. This is not possible since we assumed that C is a18

biconnected component of G. It follows that the mapping f 7→ f that maps19

FG(C) into F (C) is injective.20

Conversely, let g ∈ F (C) with the corresponding open subset of the plane21

E ′′(g) associated with the embedding E ′′. Each biconnected component of G22

is either embedded by E in R2 − E ′′(g) or in E ′′(g) ∪ E ′′(Γ). It is clear that23

E ′′(g) − ⋃{E(D) | D is a biconnected component of G, D 6= C} is E(f) for24

some face f ∈ FG(C) and that g = f . Hence we have a bijection f 7→ f of25

FG(C) onto F (C).26

In G+[V (C) ∪ FG(C)] there are several edges between f (such that g = f27

as above) and a vertex x of G if some biconnected component D of G is28
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embedded by E in E ′′(g) ∪ E ′′(Γ) and is such that V (D) ∩ V (C) = {x}. In1

G−[V (C) ∪ FG(C)] only one remains in such a case between f and x. It is2

follows that the restriction of E to G−[V (C) ∪ FG(C)] is an embedding of3

C+. 24

Definition 8.11 (Reduced Barriers for Connected Graphs) Let G,G+, G−

be as in Definition 8.8. For X ⊆ V (G) we define its reduced barrier RBar(X)
as a set of edges from G−, defined as follows:

RBar(X) =
⋃

x,y∈X

x 6=y

RBar({x, y}) (9)

where RBar({x, y}) is the set Bar({x, y}) ∩ E(G−) if x and y are incident5

with at most 2 faces, otherwise RBar({x, y}) consists of the edges x− f and6

y − f of G− where f = Select(x, y), and, as in Section 6, Select associates7

with every two vertices that are incident with at least 3 faces one of these faces.8

We recall that since G− is plane without multiple edges, it has a straight-line9

embedding E0.10

Lemma 8.12 Let C be a biconnected component of G with a bipolar orien-11

tation and adjacent poles (according to Definition 8.1). Let X ⊂ V (C), let12

u, v ∈ V (G)−X that are either in V (C), or are connected to V (C) by paths13

that do not go through X and be such that AttG(u,C) and AttG(v, C) are not14

separated in C by a polar pair in X ×X. Then u and v are separated in G by15

X if and only if they are separated by RBar(X, E0).16

Proof. Let us extend E0 into an embedding E of G+ with edges in E(G+)−17

E(G−) represented by curve segments so that E− = E0. If u and v are separated18

in the plane by RBar(X, E0), they are separated by RBar(X, E−), hence they19

are also separated by X in G.20

For the other direction let u, v be separated by X in G. Then u′ = AttG(u,C)21

belongs to V (C) − X and is linked to u by a path avoiding X. Let v′ =22

AttG(v, C) be similarly linked to v. Clearly, u′ and v′ are separated in C by23

X. By the hypothesis, Case (b) of Proposition 6.22 applies and u′ and v′ are24

separated in the plane by RBar(X, E−(C)) where E−(C) is the embedding of25

C+ from Lemma 8.9 defined as a restriction of E0 = E−. Hence u′ and v′ are26

separated by RBar(X, E0) in the plane. Each of the two paths linking u to u′27

and v to v′ avoids X, hence is in a connected component of R2−RBar(X, E0).28

Hence u and v are also separated in the plane by RBar(X, E0), as was to be29

proved. 230

Example 8.13 We use W of Example 8.3. Figure 17 shows the graph W−.31

We have F (W ) = {A,B,C, . . . , F,G,H}. We do not show in full all edges in-32
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cident with A. Let Z be the biconnected component with V (Z) = {1, 4, 5, 9, 14}, s(Z) =1

9, n(Z) = 1. Then Z+ consists of Z augmented with the following edges: A−2

1, A−5, A−9, , C−1, C−5, C−14, C−4, D−4, D−14, D−5, E−4, E−5, E−3

9, H−1, H−4, H−9. It is clear that Z+ = W−[{1, 4, 5, 9, 14, A, C,D,E,H}].4

Let X = {1, 4, 5}. Condition (a) of Lemma 7.2 shows that 2 and 3, and 95

and 14 are separated by X. Note that 4 and 5 form a //-polar pair. They are6

incident with 3 faces; 1 and 4 form also a polar pair but not a //-polar pair.7

4

312

5
14
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8
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10
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6

13

12

B
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C

D

E
F

G

H

Fig. 17. The graph W− of Example 8.13.

Proof of Theorem 1.1(Main Theorem). We first consider connectivity8

queries in induced subgraphs defined by excluded vertices, as we did in The-9

orems 5.1 and 6.24.10

Let be given a connected planar graph G and let its associated tree BT ∗(G) be11

as explained in Definition 8.1. This can be done in time O(n), using classical12

depth-first algorithms.13

Then we define G− = Spl(G+) by eliminating edges from G+ and we define14

a straight-line embedding E0 of G− in R2 with integer coordinates of absolute15

value in [3n − 6]. We can use here Schnyder’s algorithm [15]. Each vertex of16

G−, i.e, each element x of V (G)∪F (G) has a pair of integer coordinates C0(x)17

of size at most 2 · (dlog(n)e+ log(3)).18

We let m = 2 and we will use 24 unary functions fi, i ∈ [24] (cf Section 3)
in order to construct the necessary reduced barriers. We let thus for every
x ∈ V (G)

C(x) = (C0(x), C0(f1(x)), . . . , C0(f24(x)))
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We also determine the labels R(x) for x ∈ V (G) by Proposition 8.7. They1

make possible to query the tree BT ∗(G). The final labeling is J(x) = R[C](x)2

clearly of size O(log(n)). This labeling can be constructed in time O(n·log(n)).3

We explained at the beginning of the section how J can be used to answer4

queries Conn(u, v,X). We add a few remarks:5

About Step 1 and 2. Since the tree B(G) is definable in BT ∗(G) by6

monadic second-order formulas (Fact 8.4) the 4 queries over it used in Section7

7 can be expressed as MS queries over BT ∗(G), and the labeling R0 makes it8

possible to answer them.9

About Step 3. We must answer for each i an extended connectivity query
Conn(xi−1, xi, X ∩ V (Ci)) where xi−1 and xi may be outside of Ci. Hence, it
is not sufficient to use a translation of Q (used in Section 6) into a query over
BT ∗(G). However, Conn(xi−1, xi, X ∩ V (Ci)) on G is equivalent to the query

Conn(AttG(xi−1, Ci), AttG(xi, Ci), X ∩ V (Ci))

in Ci. The definition of Q′ is based on this observation.10

About Step 4. The correctness of the final answer is ensured by Lemma11

8.12.12

In order to handle forbidden-edge queries Conn(u, v,X, Y ) (where X is a set13

of vertices, Y a set of edges), we transform G by subdividing each edge (or14

only each “unsafe” edge, for which deletions may have to be handled), i.e., by15

inserting a new vertex we on each edge e. We obtain a graph G′ which is simple,16

connected and planar. It is clear that u and v are connected in (G − Y ) \X17

if and only if they are connected in G′ \ X ′ where X ′ = X ∪ {we | e ∈ Y }.18

Hence we can apply to G′ the above described construction, and we obtain an19

O(log(n))-labeling J ′ of vertices G′, whereas we wish an O(log(n))-labeling J20

of the edges and vertices of G, since edges to delete are specified as pairs of21

adjacent vertices.22

We use again unary functions to specify edges from pairs of vertices. We let
g1, g2, g3 : V (G)→ V (G) be 3 functions as in Lemma 3.3. We let g4, g5, g6 be
the 3 functions : V (G)→ E(G) defined as follows:

gi+3(x) = e if e is the edge x− gi(x).

These 6 functions represent adjacency and the binary function Edg : V (G)×
V (G) → E(G) that associates with (x, y) the edge x − y if it exists. We let
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thus J(x) be defined as:

(J ′(x), J ′(g1(x)), . . . , J ′(g6(x)))

for every x ∈ V (G).1

For a family (xy, zy)y∈Y of pairs of adjacent vectices defining a set Y of edges2

to be deleted, we get from the labels J(xy), J(zy) for y ∈ Y the labelings3

J ′(wy). We can thus decide from J(u), J(v), (J(xy), J(zy))y∈Y , and (J(x))x∈X4

whether ConnG′(u, v,X∪{wy | y ∈ Y }) holds, i.e., whether ConnG(u, v,X, Y )5

holds. It is clear that |J(x)| = O(log(n)) and that the computation times for6

constructing J ′ and J and answering queries is as in the initial case. 27

We can also consider extended connectivity queries that include additional8

edges. The idea is simple: for a set X of vertices, and H of edges connecting9

vertices in G \X, we check for each endpoint in H the connected component10

of G \X to which it belongs. The following makes this precise.11

Corollary 8.14 Theorem 1.1 extends to edge additions.12

Proof. Let X and F be respectively the set of vertices and the set of edges13

to delete and let H be a set of new links, defined as a set of pairs of (x, y) for14

x, y ∈ A ⊆ V (G) −X, x 6= y is added. We use the previous constructions as15

follows in order to answer the query Conn(u, v,X, F,H) (cf. Introduction):16

• We build the reduced barrier associated with (X,F ).17

• For any two vertices u′, v′ inA∪{u, v} we can determine whether Conn(u′, v′, X, F )18

holds; we let C be the set of all such pairs {u′, v′} that are connected in19

(G− F )\X).20

• We build the graph G′ with vertex set A ∪ {u, v} and set of edges H ∪ C.21

Then Conn(u, v,X, F,H) holds if and only if u and v are connected in the22

graph G′. 223

The labeling of Corollary 8.14 can be applied to single crossing graphs or in24

general to classes of graphs of bounded crossing number (see [18]).25

Remark 8.15 For planar graphs of degree at most d, we need not use the26

tools of Section 6 because their 2-connected components are d-face bounded.27

However, the tree of biconnected components (Section 7) remains necessary.28

For them we use Proposition 7.4.29
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9 Related Work1

There has been a lot of work on answering connectivity queries after a single2

update to the network, by studying bridges and articulation points in graphs.3

Handling the case of multiple updates, such as multiple failed vertices or edges,4

is significantly more difficult. Obviously, on every batch of updates, one can5

recompute a connectivity oracle (such as the Thorup-Zwick scheme [19], which6

answers standard connectivity queries in O(1) time and space Õ(n1/2)) and7

then make queries to it. But this is inefficient if the network changes often,8

or even worse, in an emergency planning situation where queries need to be9

made without the time to recompute labels or new oracles. In this situation,10

it is also important to have algorithms with good worst-case bounds on the11

query time, rather than amortized bounds. It is this setup that our work lies12

in.13

For general graphs, Pǎtraşcu and Thorup [13] give a centralized construction14

that answers extended connectivity queries of the form “are vertices u, v in the15

same connected component in G− F , where F is a set of d of deleted edges.16

Their oracle answers queries in time O(dpolylogn), after preprocessing the17

graph. It is not clear if their construction extends to handle vertex deletions18

with similar time and space bounds.19

We will now explain how our construction can be modified to give ‘oracle-like’20

bounds when the set X is the same for several queries. One can decompose21

the algorithm into the following general steps:22

Step 1. For a graph G, construct a global data structure S(G) or a labeling.23

Step 2. For given sets X and F of deleted vertices and edges, and by using24

S(G) or the labels of vertices in X and those of the ends of the edges in F ,25

construct an intermediate data structure T (G,X, F ).26

Step 3. For any two vertices u, v, quickly answer Conn(u, v,X).27

For a connected planar graph with n vertices, we can perform Step 1 in time28

O(n) for constructing S(G) and in time O(n log(n)) for a labeling. Then given29

X of size m, we can construct T (G,X), i.e., the data structure of Theorem 4.130

associated with the reduced barrier in expected timeO(m log(m)) (the reduced31

barrier is constructed in O(m2)). After this, each query Conn(u, v,X) with32

u, v 6∈ X can be answered in time O(log(m)).33

It is open whether we can also efficiently answer queries of the form Conn(u, v, Y )34

with Y ⊆ X, and u, v 6∈ X in time O(log(m)) by considering the subset of the35

reduced barrier associated with Y .36
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10 Conclusion1

We conjecture that the main theorem extends to graphs embedded in any2

fixed surface, in particular graphs of bounded genus or those excluding a fixed3

minor.4

An interesting problem is to investigate constructions of graph classes and5

combining their labeling schemes: if C,D are two graph classes supporting6

extended connectivity queries (with small labels) and F is defined as a class7

of combinations of graphs in C and D (by operations like substitutions or8

clique-sums), then we would like to be able to combine the labeling schemes9

of C and D into one supporting extended connectivity queries on graphs in F ,10

still using short labels.11

For example, Kanté [11] has considered graphs that are obtained by “gluing”12

graphs of small clique-width such that their intersection graph 6 is planar and13

has bounded degree.14
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