
Constrained-path labellings on graphs of bounded

clique-width

Bruno Courcelle∗

LaBRI, Bordeaux 1 University and CNRS
courcell@labri.fr

Andrew Twigg†

Computing Laboratory
University of Oxford

andy.twigg@comlab.ox.ac.uk

February 11, 2009

Abstract

Given a graph G we consider the problem of preprocessing it so that
given two vertices x, y and a set X of vertices, we can efficiently report
the shortest path (or just its length) between x, y that avoids X. We
attach labels to vertices in such a way that this length can be determined
from the labels of x, y and the vertices X. For a graph with n vertices of
tree-width or clique-width k, we construct labels of size O(k2 log2 n). The
constructions extend to directed graphs. The problem is motivated by
routing in networks in case of failures or of routing policies which forbid
certain paths.

Keywords: Algorithms, labelling schemes, compact routing, clique-width.

1 Introduction

A labelling scheme for a property P (x1, ..., xk) of vertices of a graph G assigns
a label L(x) to each vertex x in such a way that for any vertices x1, ..., xk,
the validity of P (x1, ..., xk) can be checked from their labels. An example of a
property we can handle is P (x1, x2, x3) stating that every path between x1 and
∗Address: Institut Universitaire de France and Bordeaux University, LaBRI, 351 Cours

de la Liberation, F-33405 Talence, France, Supported by the GRAAL project of “Agence
Nationale pour la Recherche”.
†This work was done under the support of US Army Research Laboratory and UK Ministry

of Defence grant W911NF-06-3-0001, and while at the Computer Laboratory, University Of
Cambridge

1

x2 goes through x3. More generally, labelling schemes can be used in this way
to compute functions. An example can be the function F (x1, x2, x3) giving the
length of a shortest path between x1 and x2 that goes through x3 or a special
value, say -1, if there exists no such path.

More precisely, a labelling scheme for a property P (x1, ..., xk) or a func-
tion F (x1, ..., xk) on graphs of a class C consists of two algorithms, A and B.
Algorithm A takes as input a graph G in C and computes a label LG(x) for
each vertex x of G (labels are bit sequences). This label encodes, among other
information, the name or the index of x hence determines it in a unique way. Al-
gorithm B takes a k-tuple t of bit sequences as input and reports, either that t is
not (LG(x1), ..., LG(xk)) for any graph G in C and any vertices x1, ..., xk of such
a graph or determines the validity of P (x1, ..., xk) or the value of F (x1, ..., xk)
in some graph G belonging to C, for vertices x1, ..., xk of this graph such that
t = (LG(x1), ..., LG(xk)). This algorithm has no other knowlege about G than
the tuple t. The truth value of P (x1, ..., xk) or the value of F (x1, ..., xk) must
be the same for all G, x1, ..., xk with same tuple (LG(x1), ..., LG(xk)). Labels
are intended to be as short as possible, say of size O(logk n) (sizes are measured
in bits) for fixed k, where n is the number of vertices, and the term compact
reflects this. For checking adjacency in a rooted tree T , it suffices to take for
LT (x) the pair consisting of the identifiers of x and of its father. For a tree with
n vertices numbered from 0 to n− 1 in binary notation (and n > 2), the size of
LT (x), i.e., its length is 2.dlog ne.

Motivation from distributed computing.
In a communication network handled formally as a graph G, nodes must

act according to their local knowledge only. This knowledge can be updated by
message passing. Due to space constraints on the local memory of nodes, and
on the sizes of messages, a distributed task like routing cannot be performed on
the basis of an encoding of the whole graph G in each node or in each message,
but it must rather manipulate compact representations of some relevant aspects
of G. Gavoille and Peleg [10] survey many distributed problems that can be
solved by the use of labels attached to vertices.

However, such labels should be usable even when the network has node or
link crashes. This case may be handled by labelling schemes that can check
properties P (x1, ..., xk) or compute functions F (x1, ..., xk) in the given graph
from which a set of vertices X and a set of edges F have been deleted (i.e.,
represent parts of the network that are dead or forbidden). The set X is given
to Algorithm B by the set of its labels, and the set F by the labels of the end
vertices of its edges.

Such sets X and F may arise from failures in the network represented by
the considered graph, or from so-called network routing policies: each node can
assign costs to paths in a way independent of its neighbours’ assignments, so
that the shortest path is not necessarily the most desirable one. Indeed, a policy
may specify that node x wishes to send information to y by using paths avoiding
a certain set X ⊂ V , while some other node z may wishes to use paths avoiding
another set Y ⊂ V . Sets X,Y and F are likely to change frequently, so that we

2

want to avoid recomputation whenever this happens. In addition to the labels,
each node can store some local information that can be updated by the reception
at all surviving nodes of the list of (short) labels of all defected nodes and links,
so that the surviving nodes can update their local routing tables efficiently.

One can also obtain answers to queries by using vertex labels hopefully in
a quicker way than by running an algorithm on the considered (presumably
large) graph, because algorithm A has made in advance a certain amount of
computation that is useful in all cases.

The first concern in this approach is to minimize the sizes of labels. A second
rank one is the time and space taken by the ”decoding” algorithm, called B
above. Last comes the time and space taken by the ”labelling” algorithm A,
because it is used only once for each graph, whereas B is likely to be used
many times. Because of the intended use in routing protocols where headers
of messages must not be too large, minimizing the sizes of labels is the main
objective.

For the problem of exact distance labelling in absence of failures or forbidden
parts, a number of results are known including optimal label sizes for various
families of n-vertex graphs. For general graphs, there is a lower bound of Ω(n)
on label size, and this is achieved by a scheme in [11]. For trees, there is an
optimal distance labelling scheme using Θ(log2 n) bits per label, and, for graphs
of treewidth at most k, an optimal scheme using labels of size O(k log2 n) (see
[11] and the references cited therein).

Contribution of this article
Our aim is to construct constrained distance labelling schemes, that is, to

define a label L(v) for each vertex v in such a way that for every set of vertices
Z, we can compute from (L(z))z∈Z the distance of a shortest path between
x and y that avoids a given set X of forbidden vertices and a given set F of
broken edges whenever x, y, X and the set ends(F) of ends of the edges of F are
contained in Z. A constrained connectivity labelling scheme is similar but can
only report whether there exists a path between x and y that avoids X and F
as above, without giving its minimal length. More general types of constraints
on paths will be considered in future articles. Hence, the term constrained-path
labelling of the title refers to a promising research topic and not to a single
technical notion.

For graphs having a certain ”tree structure”, technically those having tree-
width or clique-width at most k, we show how to construct a constrained distance
labelling scheme using labels of size at most O(k2 log2 n) bits. As by-product, we
obtain a constrained connectivity labelling scheme with labels of sizeO(k2 log n).
This should be contrasted with the optimal bounds of O(k log2 n) and O(k log n)
bits for distance and connectivity labellings in graphs of treewidth k graphs
mentioned above [11]; hence by paying a factor O(k) one can route on arbitrary
subgraphs of the given graph.

Such labelling schemes, for the case where only vertices are deleted, can
actually be obtained from a general construction by Courcelle and Vanicat [8]

3

that we now recall. For every graph property expressible in monadic second-
order logic and for every integer k they construct labelling schemes for graphs
of tree-width and of clique-width at most k. Labels have sizes f(k). log n but
the functions f derived from the general construction are extremely large. This
construction extends to optimization functions definable in monadic second-
order logic (like distance), and the sizes of labels are g(k). log2 n. In both cases
the properties to check and the functions to compute can take set arguments.
(Since, for each graph, each vertex label identifies a single vertex, a set of vertices
can be defined without ambiguity by a set of labels.)

In the present case, the graph property P (x, y,X) stating that there exists
a path between x and y with no vertex in X and the function F (x, y,X) that
defines the length of a shortest such path are monadic second-order expressible,
so the results of this article are applicable, but we obtain a better result by
means of a direct construction avoiding logic.

We use however some basic notions from [8], in particular, the description
of a graph by a term over a finite set of binary operation symbols and constants
that is balanced, that is, has height O(log n), where n is the number of vertices.
The construction of balanced terms describing graphs of bounded clique-width
motivates the introduction of m-clique-width, a variant of clique-width that uses
graphs with vertices labelled by sets of colours taken from a finite set.This notion
may be of independent interest.

Results.
Apart from the definition of m-clique and the construction of balanced terms

the contributions of this article are the following ones :
(a) We replace by k2 the large and unspecified constants depending on k

that arise from the construction of [8].
(b) We give an explicit construction avoiding logic.
(c) Our construction supports edge deletions (a nonempty set F in the above

description) and edge additions whereas the construction based on [8] cannot.
What about real networks ? Table 1 in [12] shows that the networks of some

important major internet providers are of small tree-width, between 10 and 20,
and hence dealing with graphs of small tree-width or clique-width is somehow
realistic. Furthermore, by using a different technique, we can define an O(log n)-
labelling scheme supporting connectivity queries in planar graphs, and in graphs
defined as planar combinations of graphs of bounded clique-width (see [CGKT]).
Hence some of our results extend to certain graphs that are neither planar nor
of bounded clique-width.

Key ideas.
If Z is a set of vertices of a graph G, we denote by G[Z] the subgraph of G

induced by Z and by G+[Z] the graph G[Z] to which we add weighted edges
representing the following information : between any two vertices x and y, we
set an edge with weight d if and only if d is the minimal length of a path between
x and y with no intermediate vertex in Z, and at least one intermediate vertex
not in Z. Such paths have length at least 2 and do not depend on whether

4

x and y are adjacent. Between two vertices, one may have one edge without
weight that is an edge of the graph G and another one with value at least 2 that
represents a path going outside of Z. See Figure 1 of Example 2 below.

We will construct a labelling scheme making it possible to build G+[Z] from
the labels of the elements of any set of vertices Z. Algorithm B intended to
report whether two given vertices x and y are linked by a path avoiding a set
X of vertices and a set F of edges and how long must be such a path uses the
following two steps (we assume of course that x and y are not in X):

(1) by using the labels of the vertices in Z = {x, y} ∪ X ∪ ends(F), it
constructs the graph G+[Z],

(2) the final answer is then easy to obtain from this graph by a classical
shortest path algorithm applied to the graph (G+[Z]− F)\X.

Answer (2) may be obtained from G+[Z ′], where Z ′ is any set containing
{x, y}∪X∪ends(F). It follows that after having computed G+[Z ′] for a ‘large’
set Z ′ of ‘sensible vertices’ we can answer all queries such that {x, y} ∪ X ∪
ends(F) ⊆ Z ′ without having to repeat step (1).

Our main result is the description of such a labelling scheme with labels of
size O(k2 log2 n) where k is a bound on the m-clique-width of the considered
graph. Since graphs with tree-width at most k have m-clique-width O(k), and
since graphs of clique-width at most k have m-clique-width at most k, the results
can be used for graphs of tree-width or clique-width at most k.

Summary of article.
Section 2 reviews notations. Section 3 defines clique-width, m-clique-width

and balanced terms. The long proof of a theorem about balanced terms for m-
clique-width is done in an appendix in order not to break the main exposition.
Section 4 contains the main construction. A preliminary version of this article
[7] was presented at STACS 2007.

2 Definitions, notation and basic facts

2.1 Graphs

All graphs are without loops. Let G = (VG, EG) = (V,E) be a directed or
undirected graph, X ⊆ V be a set of vertices, and F ⊆ E be a set of edges.
We denote by G[X] the induced subgraph of G with vertex set X, by G\X the
graph G[V − X] and by G − F the graph (V,E − F). We denote by ends(F)
the set of end vertices of the edges in F .

An (X,F)-constrained path in G is a path in (G − F)\X i.e., a path (a
directed path if G is directed) that does not use the edges of F and with no
(end or intermediate) vertex in X. We call it X-constrained if F is empty. In
both cases we deal with a constrained path problem. We denote by dG(x, y,X, F)
the length of a shortest (X,F)-constrained path from x to y, that is directed or
undirected depending on the type G.

5

Figure 1: A graph G and the graph G+[{a, b, c, d}].

If Z ⊆ V we denote by G+[Z] the graph consisting of G[Z] to which we add
weighted edges as follows. If G is undirected (directed), if x and y 6= x belong
to Z, we define an undirected (directed) edge with weight d between x and y
(from x to y) if and only if d is the minimal length of a path in G between x and
y (from x to y) with no intermediate vertex in Z, and at least one intermediate
vertex not in Z. We take 1 as weight of an edge of G[Z].

Lemma 1 : For every graph G, if Z ⊆ VG, F ⊆ EG , X∪ends(F) ⊆ Z and
x, y ∈ Z − X, the length of a shortest (X,F)-constrained path in G between
x and y (or from x to y) is the minimal weight of a path between them in
(G+[Z]− F)\X where the weight of a path is the sum of weights of its edges.
It can be determined in time O(| Z −X |2).

Example 2 : Figure 1 shows a graph G and the graph G+[Z] for Z =
{a, b, c, d}. From G+[Z] one obtains that :

dG(a, d,X, F) = 2 if F = ∅ and X = {c} or, if F = ∅ and X = {b} ,
dG(a, d,X, F) = 3 if X = {c} and F = {ab},
dG(a, d,X, F) =∞ if X = {b, c}.�
The graph G+[Z] contains information about separators of G since there

is no edge between x, y in G+[X ∪ {x, y}] if and only if X separates x and
y in G. Our problem comprizes that of constructing a compact distributed
representation of all separators of all pairs of vertices. We will do more because
our labelling scheme will give lengths of shortest X-constrained paths, and not
only their existence.

2.2 Terms

For a finite set C of constants and a finite set F of function symbols, each
given with a fixed arity, we let T (F,C) be the set of finite terms over these two
sets that are well-formed with respect to arities. Terms will also be handled as
labelled trees in the usual way.

6

The size |t| of a term t is the number of occurrences of symbols from C∪F . Its
height ht(t) is 1 for a constant and 1+max{ht(t1), ..., ht(tk)} for t = f(t1, ..., tk).

We denote by t ↓ u the subterm of t starting from a position u, i.e. an
occurrence of some symbol in F ∪ C. Consider for an example the term t =
f(g(a, b), g(a, b)). If u is any one of the two occurrences of g in this term, then
t ↓ u = g(a, b). The same term g(a, b) corresponds to two different concrete
subtrees of the syntactic tree of t.

If a is a real number, we say that a term t is a-balanced if ht(t) 6 a. log(|t|+1).
This definition is meaningful even if t has size 1. (All logarithms are in base 2.)
We now explain how balanced terms of height O(log n) can denote n-vertex
graphs.

3 Balanced terms denoting graphs, clique-width
and m-clique-width.

3.1 Clique-width and m-clique-width.

Let L be a finite set of colours. A coloured graph is a triple G = (VG, EG, γG)
consisting of a graph (VG, EG) and a mapping γG associating with each x in
VG a colour in L. A multicoloured graph is a triple G = (VG, EG, δG) where
δG associates with each x in VG a (possibly empty) subset of L. In both cases,
adjacent vertices may have some colours in common. As set L of colours, we
will frequently use [k] defined as {1, ..., k}.

Definition 3 : Clique-width
The notion of clique-width defined and studied in [6] is based on definitions

of coloured graphs by means of the following operations : for a ∈ L we let ca be
a constant (a nullary operation) denoting the graph with a single vertex with
colour a. The unique binary operation is disjoint union, denoted by ⊕. It defines
G⊕H as the union of G and an isomorphic copy of H disjoint with G.

The other operations are unary : adda,b adds undirected edges and recola→b
modifies colours. For a, b in L , a 6= b :

adda,b(G) = G′ where VG′ = VG, γG′ = γG and EG′ = EG∪{{v, w} : γG(v) =
a, γG(w) = b}.

recola→b(G) = G′ where VG′ = VG, EG′ = EG and γG′ is defined as follows:
γG′(w) = if γG(w) = a then b else γG(w).

For defining directed graphs we use, instead of adda,b, the operation
−−−→
adda,b:

−−−→
adda,b(G) = G′ where VG′ = VG, γG′ = γG, EG′ = EG ∪ {(v, w) : γG(v) =

a, γG(w) = b}.
We let FL be the set of operations consisting of ⊕, adda,b, recola→b, ca for

all a, b ∈ L and a 6= b. If we are to define directed graphs, we replace adda,b by
−−−→
adda,b. We let T (FL) be the set of terms over FL, called clique-width terms. Each
of them denotes a coloured graph. Every coloured graph G has a corresponding

7

term in T (FL) for some L, and its clique-width cwd(G) is the minimal cardinality
of an L such that G is the value of some term in T (FL). It can be seen that
cwd(G) 6 |VG|. The clique-width of a graph G (without colours) is defined
as that of G with all its vertices coloured by the same colour. The width of a
clique-width term t is |L|, where L is the set of colours that occur in a constant
or a unary operation of L. A cwd-term denoting G is optimal if its width is
cwd(G).

The notion of clique-width has proven useful for defining fixed-parameter
tractable algorithms (see Courcelle et al. [2]) and labelling schemes (Courcelle
and Vanicat [8]). The construction of compact labelling schemes needs that
graphs are defined by balanced terms. It is proved in [8] that every graph of
clique-width k can be defined by an f(k)-balanced term using g(k) colours for
fixed (but large and unspecified) functions f and g. The variant of clique-width
defined below improves dramatically this situation, as shown by Theorem 9.

Definition 4 : m-clique-width
Multicoloured graphs are constructed with the following constants and bi-

nary operations, called the m-clique-width operations. (Slightly different opera-
tions based on colourings with several colours as defined in [6]).

For A ⊆ L we let cA be a constant denoting the graph with a single vertex
and set A of colours for this vertex.

We now define binary operations. For every binary relation R ⊆ L × L,
for every mappings g, h : L −→ P(L) (P(L) is the powerset of L) and for
multicoloured undirected graphs G and H, we define K = G⊗R,g,h H if G and
H are disjoint (if they are not, we replace G or H by an isomorphic copy disjoint
from the other) by letting

VK = VG ∪ VH
EK = EG ∪ EH ∪ {{v, w} : v ∈ VG, w ∈ VH , R ∩ (δG(v)× δH(w)) 6= ∅}

δK(x) = (g ◦ δG)(x) = {a : a ∈ g(b), b ∈ δG(x)} if x ∈ VG
δK(x) = (h ◦ δH)(x) if x ∈ VH

The graph G⊗R,g,h H is well-defined only up to isomorphism since we may
need to replace G or H by an (arbitrary) isomorphic copy disjoint from the
other graph.

We denote by ∅ the empty graph. The mapping G 7−→ G⊗∅,g,∅∅ (or G 7−→
G⊗R,g,h∅ for any R and h) is a recolouring based on g. However, recolourings
need not be introduced as unary operations because they can be combined with
the constants and with the binary operations. One can also eliminate ∅ from
terms defining graphs, although ∅ may be useful at intermediate stages in some
constructions.

For defining directed graphs, instead of subsets R of L×L , we take subsets
R of L× L× {+,−}, and in the definition of K = G⊗R,g,h H we only modify
EK as follows :

EK = EG ∪EH ∪{(v, w) : v ∈ VG, w ∈ VH , R∩ (δG(v)× δH(w)×{+}) 6= ∅}

8

∪{(w, v) : v ∈ VG, w ∈ VH , R ∩ (δG(v)× δH(w)× {−}) 6= ∅}.
The width of a term is the number of colours used in this term. Every

directed or undirected graph G is defined by some term, and the m-clique-width
of G is the minimum width of an m-clique-width term that defines this graph.
This number, denoted by mcwd(G), is at most cwd(G) as we will see. An m-
clique-width term denoting G is optimal if its width is mcwd(G). An example
of m-cwd term is given in Example 8 below.

Clique-width, m-clique-width and the operations defining them can be com-
pared as follows : the operations defining clique-width are simpler than those
defining m-clique-width. The latter operations can be expressed as composi-
tions of the former ones, and the corresponding terms are smaller : they have
size 2n − 1 where n is the number of vertices. Those using the operations for
clique-width have sizes O(n) where the constant depends on k.

There is another difference between the two sets of operations. The operation
adda,b(G) adds edges to the argument graph G, whereas the operation ⊗R,g,h
adds edges between the two disjoint graphs that are its arguments (as in the
operations defined by Wanke [15]).

The same classes of graphs have bounded clique-width and bounded m-
clique-width (see Proposition 5) and Theorem 9 below motivates the introduc-
tion of m-clique-width.

To make notation precise, for a finite set L of colours, we let FL be the
set of all binary operations ⊗R,g,h with R ⊆ L × L or R ⊆ L × L × {+,−},
and g, h : L −→ P(L), and CL be the set of constants {cA : A ⊆ L}. Every
term t in T (FL, CL) denotes a multicoloured graph val(t) with colours in L, and
every multicoloured graph G with colours in L0 is the value of such a term t in
T (FL, CL) for large enough L containing L0.

If G is undirected its m-clique-width is the same as that of the directed graph
with directed opposite edges between any two adjacent vertices.

We do not redefine the well-known tree-width of a graph G (denoted by
twd(G)) : see Bodlaender [1] for a thorough survey. We use it only in the
following proposition for the purpose of comparison with m-clique-width.

Proposition 5 : For every graph G we have :
mcwd(G) 6 cwd(G) 6 2mcwd(G)+1 − 1.
If G is undirected mcwd(G) 6 twd(G) + 3. If G directed mcwd(G) 6

2twd(G) + 4.
Proof sketch : For proving mcwd(G) 6 cwd(G) 6 2mcwd(G)+1−1, one can

use constructions similar to those proving Proposition 5.4 and Theorem 5.5 in
[6]. The proof that mcwd(G) 6 twd(G) + 3 for G undirected is essentially the
one of Theorem 5.5 of [6]. For proving that cwd(G) 6 2twd(G)+1 + 1, graphs of
tree-width k are constructed with operations defining m-clique-width that use
colours in {0, 1, ..., k, ∗, $}, which gives twd(G) + 3. For directed graphs of tree-
width k the set of colours is {0, 1, ..., k, 1′, ..., k′, ∗, $, $′} which gives 2.twd(G)+4.
�

9

Remark 6 : For proving that mcwd(G) 6 cwd(G), we transform a
cwd−term t defining G into an equivalent mcwd−term t′ such that ht(t′) 6
ht(t). For proving that cwd(G) 6 2mcwd(G)+1−1, we transform an mcwd−term
t defining G of width k into an equivalent cwd−term t′ of width at most 2k+1−1
such that ht(t′) 6 f(k).ht(t) for some fixed function f . For proving that
mcwd(G) 6 twd(G) + 3 for G undirected, we transform a tree-decomposition T
of G of width k based on a tree of degree at most 3 into an mcwd−term t′ of
width at most k+ 3 such that ht(t′) 6 g(k).Diam(T) for some fixed function g,
where Diam(T) is the diameter of the tree of T .

It follows, and this is important for us, that if the given term t or tree-
decomposition T is a-balanced, then the obtained term t′ is b-balanced for some
b.�

Our main theorem will be shown for graphs of bounded m-clique-width. By
Proposition 5 and the above remark, it holds for graphs of bounded tree-width
and clique-width. The construction of a labelling scheme for graphs of bounded
tree-width is detailed in [7].

Definition 7 : Specification of concrete graphs
Terms in T (FL, CL) define graphs up to isomorphisms. For defining concrete

graphs, it will be convenient to use constants cA(u) instead of cA. In such a
constant, u is the vertex defined by this constant. We still denote by CL the
set of such constants. With this assumption, if a graph G is the value of a term
t, then each vertex is defined by a constant cA(u) having a unique occurrence
in t, and since no constant denotes the empty graph, each leaf of t (considered
as a tree) corresponds to such a constant and defines a vertex. We let h denote
the bijection of the set of leaves of t onto the vertex set of G. For a node u of t,
val(t ↓ u) is the induced subgraph of G whose vertex set is the image under h of
the set of leaves of t that are below u. The colours of vertices in val(t ↓ u) may
not be the same as in G, because of the recolourings that can be performed in
t ”above u”.

Example 8. Let L = [3] and t be the term

⊗D(⊗B [⊗A(c1(u), c1(v)),⊗A(c1(w), c1(x))],⊗C(c2(y), c12(z))))

where A = ({(1, 1), (1, 2)}, {1 7→ 2, 2 7→ 1}, {1 7→ 3}),which means :
A = (R, g, h) with R = {(1, 1), (1, 2)} ,
g(1) = {2}, g(2) = {1}, g(3) = ∅,
h(1) = {3}, h(2) = h(3) = ∅, and similarly :
B = ({(3, 2), (2, 1), (1, 2)}, {2 7→ 1}, {3 7→ {1, 3}}),
C = ({(2, 1)}, {2 7→ 3}, {2 7→ 3}),
D = ({(1, 3), (3, 3)}, {1 7→ 1}, {3 7→ 2}).
The graph val(t) defined by this term is the cycle u1−v−w−x1−y2−z2−u1

with additional edges between u and y, and between x and z. The subscripts
1 and 2 indicate the colours of the vertices.�

10

3.2 The balancing theorem for m-cwd terms

The long proof of the following theorem is in the appendix.
Theorem 9. Every undirected (resp. directed) graph of clique-width or

m-clique-width k with n vertices (n > 1) is the value of an m-cwd term t of
width at most 2k (resp. 3k) and of height at most 3.(log(n− 1) + 1). The time
taken to build t from a given term s of width k is O(n. log n), where n is the
size of s.

Since the size of an mcwd-term t that defines a graph with n vertices is 2n−1,
this theorem defines 3-balanced terms. It proof constructs a 3-balanced m-cwd
term from a cwd- or an m-cwd-term. A balanced m-cwd term can be converted
into an equivalent balanced cwd-term at the cost of an exponential increase of
the number of colours (see Remark 36 in Appendix). Such an increase would
affect significantly the sizes of labels to be constructed. This is why we will base
our constructions on m-cwd terms.

A similar result for tree-decompositions has been obtained by Bodlaender [1].
Courcelle and Kanté [5] give a general framework for establishing such results.

4 Constructions of labelling schemes

We first give constructions for undirected graphs. The extension to directed
graphs is straightforward.

4.1 Adjacency labelling for m-clique-width bounded
graphs

Definition 10 : An adjacency labelling.
Without loss of generality, we let L = [k]. We let G be a graph that is

the value of a term t in T (FL, CL) with constants of the form cA(x) indicating
the vertices they define. From now on by using Definition 7, we identify the
leaves of t to the corresponding vertices of G. We assume that the n vertices are
numbered from 0 to n− 1 in an arbitrary (random) way. (Our construction will
not use a particular numbering). For a vertex x of G, we let Path(x) be the path
(um, um−1, ..., u0) from leaf x = um of t to the root u0. We have m+ 1 6 ht(t).

We now describe an adjacency labelling I(x), i.e. a labelling encoding x and
intended to indicate whether vertices given by their labels are adjacent. We
define

I(x) = (x, k, Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0)

where : (1) Lm = A and cA(x) is the constant at leaf x in t,
(2) for each i = 0, ...,m, Li is the set of colours of the vertex x in the graph

val(t ↓ ui),

11

(3) for each i = 0, ...,m − 1, if ⊗R,g,h is the operation that occurs at node
ui, then :

(3.1) ei = 1 if ui+1 is the left son of ui and Di is the set of colours j′ such
that (j, j′) ∈ R for some j in Li+1

(3.2) ei = 2 if ui+1 is the right son of ui and Di is the set of colours j′ such
that (j′, j) ∈ R for some j in Li+1.

Let us be very concrete. A label I(x) can be encoded as a word of length
dlog ne+ dlog ke+ (2k + 1).m+ 2 over the alphabet {0,1,#}:

bin(x)#bin(k)#[Lm]e′m−1[Dm−1][Lm−1]e′m−2[Dm−2]...e′0[D0][L0]

where bin(x) denotes the binary writing of an integer x (or of the index
number of a vertex x), [L] is the bit sequence of length k that represents in
the obvious way a subset L of {1, ..., k}, and e′i = ei − 1 for each i. The
decoding algorithm must know k in order to analyse correctly the sequence
[Lm]e′m−1[Dm−1]...e′0[D0][L0]. This word can be encoded on {0,1} by a twice
longer sequence.

We obtain thus a bit sequence of length O(k.m+log n) computable from t in
time O(k2.ht(t)). Computing the entire labelling takes time O(k2.n.ht(t)). For
a balanced term t, we get labels of length O(k. log n) and the global computation
time is O(k2.n. log n).

Lemma 11. One can determine in time O(k.ht(t) + log n) whether two
vertices x and y are adjacent in G from the sequences I(x) and I(y).

Proof. From the integers em−1, ..., e0, e
′
m′−1, ..., e

′
0 in the sequences

I(x) = (Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0)
I(y) = (L′m′ , e′m′−1, D

′
m′−1, L

′
m′−1, ..., e

′
0, D

′
0, L
′
0)

one can determine the position i in Path(x) and Path(y) of the least common
ancestor ui of x and y. Without loss of generality we assume that x is below
(or equal to) the left son of ui. Then x and y are adjacent in G if and only if
Di ∩ L′i+1 6= ∅. This is equivalent to D′i ∩ Li+1 6= ∅.�

Proposition 12. From (I(x))x∈Z for a set Z ⊆ V , one can determine the
graph G[Z] in time O(|Z|2.(k.ht(t)+ log n)), or O(|Z|2.k. log n) if t is balanced,
i.e. has height O(log n).

We have thus defined an implicit representation in the sense of Kannan et
al.[14] for graphs of mcwd at most k, using labels of size O(k. log n), with the
help of Theorem 9.

4.2 Construction of a distance labelling for constrained
paths

We recall that we denote by G+[Z] the induced subgraph G[Z] augmented with
directed or undirected edges (according to the case) that have an integer value

12

at least 2 indicating the length of a shortest path between two vertices with no
intermediate vertex in Z and at least one not in Z. We show how to enrich
I(x) in order to be able to construct G+[Z] from the labels of Z. The main
construction of this article establishes the following proposition:

Proposition 13 : For every k, for every directed or undirected graph
G = (V,E) defined by a term t in T (F[k], C[k]), one can build a labelling J
such that, from the labels J(x) of the vertices x in Z where Z ⊆ V , one can
determine G+[Z] in time O(k3.|Z|2.ht(t)). The labels have size O(k2. log2 n).

Here is the idea. From (I(x))x∈Z for any Z ⊆ V , one can reconstruct G[Z],
but for determining the graph G+[Z] we need to know about paths going out
of Z, in particular, we need to know the lengths of shortest such paths.

As in Section 4.1, we assume the graph G defined as the value of a term
t in T (F[k], C[k]). If u is a node of a path Path(x) for some x in Z, and w is
a son of u not on Path(y) for any y in Z, then we will extract from the label
of x the lengths of at most k2 shortest paths running through the subgraph of
G induced on the leaves of t below w (such leaves are not in Z). These values
are precomputed and stored in a matrix of integers MIN(w) inserted at the
position corresponding to u in the label J(x). The matrices of lengths of paths
in the graphs val(t ↓ w) for all nodes w of t will be computed bottom-up by
means of a rule of the form

MIN(u) = F (MIN(u1),MIN(u2), (R, g, h))

where u1 and u2 are the two sons of u and ⊗R,g,h is the operation at node
u.

We introduce an important notion and state some lemmas.
Definition 14 Graph representations of m-clique-width terms.
With every term t in T (F[k], C[k]), we associate a graph denoted by Rep(t)

called its graph representation. This graph is, roughly, the syntactic tree of t
augmented with directed and undirected edges in such a way that the paths in
the graph val(t) can be described as paths of Rep(t) obeying certains constraints
on edge directions. We recall that we consider terms t defining undirected graphs
val(t). The extension to directed graphs will be easy.

The vertices of Rep(t) are the leaves of t and the pairs (u, i) for nodes u of t
and colours i ∈ [k] that colour at least one vertex in val(t ↓ u). This graph has
edges of two types: vertical directed and horizontal undirected edges.

The horizontal edges link (u1, i) and (u2, j) whenever u1, u2 are respec-
tively the left and right sons of a node u that is an occurrence of an operation
⊗R,g,h such that (i, j) ∈ R.

The vertical edges are of three types :

1. u −→ (u, i) for u a leaf with associated constant cA(u) and each i ∈ A.

2. (u1, i) −→ (u, j) whenever u1 is the left son of a node u that is an occur-
rence of ⊗R,g,h and j ∈ g(i).

13

Figure 2: A graph Rep(t)

3. (u2, i) −→ (u, j) whenever u2 is the right son of a node u that is an
occurrence of ⊗R,g,h and j ∈ h(i).

Figure 2 shows t and the graph Rep(t) for the term t of Example 8. On
this figure, we denote the constant c1(u) by 1(u) and similarly for the others.
The relation R of the operation ⊗A = ⊗R,g,h contains the pair (1,2). This pair
yields no horizontal edge in Figure 2 because, in the term t used as example,
the arguments of ⊗A do not define vertices with the colours that would make
this pair useful.

Analyzing graph representations of mcwd-terms
The graph Rep(t) contains all necessary information to build the graph

val(t). We first examine how colours of vertices can be determined.
We will use w −→∗ w′ (equivalently w′ ←−∗ w) to denote a directed path

from w to w′.
Lemma 15. A vertex u of G below or equal to a node w of t has colour i

in val(t ↓ w) if and only if u −→∗ (w, i) in Rep(t).
This is clear from the definitions. We will denote by S(w) the set of colours

i of some vertex of val(t ↓ w), by Rep(t)(u) the set of all vertices (w, i) as in
Lemma 15, and by Rep(t)(Z) the union of these sets for all u in Z, where Z is
any subset of V .

14

We illustrate this lemma with help of the graph of Figure 2 defined by the
term of Example 8. Vertex u initially coloured by 1 gets colour 2 by ⊗A, then
colour 1 by ⊗B and keeps colour 1 in val(t). Vertex v initially coloured by 1
gets colour 3 by ⊗A and looses its colour after ⊗B is applied.

We have S(b) = {1, 3} where b is the occurrence of ⊗B and S(d) = {1, 2}
where d is the root. Figure 2 shows only the colours of S(n) at each node n,
because a pair like (b, 2) is, by Definition 14 not a vertex of Rep(t).

By the definitions, for every (w, i) in Rep(t) there is a path u −→∗ (w, i)
for some vertex u of val(t). We may have u −→∗ (w, i) and u −→∗ (w, j) with
i 6= j because a vertex u may have several colours in val(t ↓ w). This is the case
of vertex z in Rep(t) of Figure 2. We have z −→ (z, 1) and z −→ (z, 2). We also
have x −→∗ (b, 1) and x −→∗ (b, 3) where b is the occurrence of ⊗B . Note that
val(t ↓ b) is the path u − v − w − x where u has colour 1 and x has colours 1
and 3.

Next we examine in a similar way how the adjacency of two vertrices of
val(t) can be determined from the graph Rep(t).

Lemma 17. Two distinct vertices u, v of G are adjacent if and only if we
have a mixed (directed/undirected) path u −→∗ (w, i)−(w′, j)←−∗ v in Rep(t)
for some w,w′, i, j.

We call such a path an elementary path of Rep(t). In the example of Figure
2, the adjacency of u and y in val(t) is witnessed by the elementary path :
u −→ (u, 1) −→ (a, 2) −→ (b, 1) − (c, 3) ←− (y, 2) ←− y where a, b, c denote
occurrences of ⊗A,⊗B ,⊗C respectively. The adjacency of x and y is witnessed
by two distinct elementary paths.

We now describe the paths of the graph val(t), and more generally its walks.
(A walk in a graph is a path where vertices may be visited several times.) A good
walk in Rep(t) is a walk that is a concatenation of elementary paths. Its length
is the number of undirected edges it contains (hence, the number of elementary
paths of which it is the concatenation).

Lemma 18 There is a walk P = x − z1 − ... − zp − y in G = val(t) if and
only if there is in Rep(t) a good walk of the form :

W = x −→∗ − ←−∗ z1 −→∗ − ←−∗ ... −→∗ − ←−∗ zp −→∗ − ←−∗ y

We say in this case that W represents the walk P . In the example of Figure
2, there is a path of length 3 : u− v − w − x in val(t) represented by the good
walk :

u −→ (u, 1)− (v, 1) ←− v −→ (v, 1) −→ (a, 3)− (a′, 2)
←− (w, 1)←− w −→ (w, 1)− (x, 1)←− x

where a and a′ are the two occurrences of ⊗A.
The surgery of good walks will use the following notion. For a nonleaf node

u of the term t, a u-downwalk in Rep(t) is a walk that is formed of consecutive

15

steps of a good walk W and is of the form

(u, i)←−∗ z −→∗ − ←−∗ · · · − ←−∗ z′ −→∗ (u, j) (4.1)

where all vertices except the end vertices (u, i), (u, j) are either u (if u is a leaf)
or of the form w or (w, l) for w strictly below u in t. It goes through at least
one leaf. We may have z = z′ in (4.1). Its length is defined as the number of
undirected edges. It is minimal if there is no u-downwalk of smaller length with
same ends. If we have u −→∗ (w, i) and u −→∗ (w, j) (possibly with i = j) then
(w, i)←−∗ u −→∗ (w, j) is a u-downwalk of length 0.

Lemma 19 : A u-downwalk as defined by (4.1) represents a walk from z
to z′ in the graph val(t ↓ u), that may be empty, i.e. reduced to z. Conversely,
every (possibly empty) walk in val(t ↓ u) from z to z′ such that z has colour i
and z′ has colour j (in val(t ↓ u)) is represented by a u -downwalk of the form
(4.1) from (u, i) to (u, j).

This is clear from the definitions. If in a good walk we replace a downwalk
from (u, i) to (u, j) by a shorter one also from (u, i) to (u, j) (shorter w.r.t.
the particular notion of length defined above) we obtain a shorter good walk.
Again with the example of Figure 2 and the same designation of occurrences of
function symbols, we have the following b-downwalk of length 3 :

(b, 1)←− (a, 2) ←− (u, 1)←− u −→ (u, 1)− (v, 1)←− v −→ (v, 1) −→ (a, 3)−
(a′, 2)←− (w, 1)←− w −→ (w, 1)− (x, 1)←− x −→ (x, 1) −→ (a, 3) −→ (b, 3).

Is it not minimal because the following b-downwalk is shorter :

(b, 1)←− (a, 3) ←− (x, 1)←− x −→ (x, 1) −→ (a, 3) −→ (b, 3).

Definitions 20 : The matrices MIN(u) of shortest paths ; truncated ele-
mentary paths.

For vertices (u, i) and (u, j) of Rep(t), we let Min(u, i, j) be the length
of a minimal u-downwalk from (u, i) to (u, j), or ∞ if no such downwalk ex-
ists. Clearly Min(u, i, i) = 0 ((u, i) is a vertex of Rep(t), so Lemma 15 ap-
plies), and we may have Min(u, i, j) = 0 for i 6= j. We have Min(u, i, j) =
Min(u, j, i). Note that Min(u, i, j) = Min(u, j, `) = 0 does not imply
Min(u, i, `) = 0, and similarly we may have Min(u, i, `) = ∞ whereas
Min(u, i, j) <∞,Min(u, j, `) <∞.

In our current example Min(b, 1, 3) = 0 and Min(d, 1, 2) = 1, where d is the
root.

We define MIN(u) as the symmetric S(u)×S(u) matrix of all such integers
Min(u, i, j) (”integer” means here nonnegative integer or ∞). We recall that
S(u) is the set of colours p such that (u, p) is a vertex of Rep(t). We will see
later how these matrices can be computed.

Yet another technical notion. A truncated elementary path in Rep(t) is
obtained from an elementary path by removing intial and/or final vertical edges.

16

It is a path of the form

q −→∗ (w, j)− (w′, j′) ←−∗ q′ (4.2)

where q is a leaf or a pair (u, i) and q′ is a leaf or a pair (v, i′) , and w and
w′ are the two distinct sons of some w”.

Computation of G+[Z] from information attached to the vertices of Z.
Our objective is to determine G+[Z] from information attached to the paths

in t between the root and the leaves belonging to Z, like in the adjacency
labelling I(x) of Section (4.1).

Notation : We let a(Z) denote the set of vertices (u, i) in VRep(t) for nodes
u on paths Path(x) from the root to each x in Z. Hence a(Z) ⊇ Rep(t)(Z).

We let n(Z) denote the set of vertices in VRep(t)−a(Z) of the form (w, i) for
some w that is a son of some u on a path Path(x) for x in Z.

Clearly, if (w, i) ∈ n(Z) and w′ is strictly below w in t, then (w′, j) /∈
n(Z) ∪ a(Z) for any j.

Example 8 (continued) : In our example of Figure 2, if we take Z =
{u, y}, then

Rep(t)(Z) = {u, (u, 1), (a, 2), (b, 1), (d, 1), y, (y, 2), (c, 3), (d, 2)},
a(Z) = Rep(t)(Z) ∪ {(a, 3), (b, 3)},
n(Z) = {(v, 1), (a′, 2), (a′, 3), (z, 1), (z, 2)}.
And we have also :
a({u}) = {u, (u, 1), (a, 2), (a, 3), (b, 1), (b, 3), (d, 1), (d, 2)}
n({u}) = {(v, 1), (a′, 2), (a′, 3), (c, 3)}.�
Since the vertices of Z ∪ n(Z) ∪ a(Z) are on, or are ”close to the paths in

t ” between the root and the leaves in Z, the edges between them, i.e. those
of the induced subgraph Rep(t)[Z ∪ a(Z) ∪ n(Z)] of Rep(t) can be determined
from (I(z))z∈Z , and so can be G[Z].

Definition 21: Z-external paths.
A Z-external path in G is a path of the form :

P = x− v1 − v2 − ...− vm − y,

with x, y ∈ Z, v1, v2, ..., vm /∈ Z,m > 1.
Let W be a good walk representing P (by Lemma 18). We consider it

as a sequence of edges that we factorize into W = H1W1H2W2...WpHp+1where
H1, H2, ...,Hp+1 are truncated elementary paths with edges in Rep(t)[Z∪a(Z)∪
n(Z)] and W1,W2, ...,Wp are downwalks. Each of these downwalks has ends
(w, i), (w, j) in n(Z), no intermediate vertex in Z ∪ a(Z)∪ n(Z) and no edge in
Rep(t)[Z ∪ a(Z) ∪ n(Z)].

Example 8 (continued) : We take again the example of Figure 2, with
Z = {u, y} and P = u− v − w − x− y with representing good walk :

W = u −→ (u, 1)− (v, 1) ←− v −→ (v, 1) −→ (a, 3)− (a′, 2)

17

←− (w, 1)←− w −→ (w, 1)− (x, 1)←− x −→ (x, 1) −→ (a′, 3)
−→ (b, 3)− (c, 3) ←− (y, 2) ←− y
It can be factorized into H1W1H2W2H3 where :
W1 = (v, 1) ←− v −→ (v, 1) and
W2 = (a′, 2)←− (w, 1)←− w −→ (w, 1)− (x, 1)←− x −→ (x, 1) −→ (a′, 3)
H1 = u −→ (u, 1)− (v, 1)
H2 = (v, 1) −→ (a, 3)− (a′, 2)
H3 = (a′, 3) −→ (b, 3)− (c, 3) ←− (y, 2) ←− y.�
In a factorization W = H1W1H2W2...WpHp+1 a downwalk W` with ends

(w, i), (w, j) represents a walk of G[V − Z]. A truncated elementary path H`

represents a family of edges, created in the same way by an operation ⊗R,g,h
with occurrence w” (cf. (4.2) in Definition 20). One can replace inW a downwalk
W` by another one with same ends. One still gets a good walk W ′ of Rep(t) that
represents a walk in G from x to y. It follows that if P is a shortest Z-external
path between x and y all downwalks of the factorization of W representing it
are minimal.

Conversely, one can determine the lengths of the shortest Z-external paths
between x and y by examining all truncated elementary paths in Rep(t)[Z ∪
a(Z) ∪ n(Z)] and by using the values Min(w, i, j) for all (w, i), (w, j) in n(Z).
These remarks prove the following lemma.

Lemma 22 : One can determine G+[Z] from the graph Rep(t)[Z ∪ a(Z) ∪
n(Z)] and the values Min(w, i, j) for all (w, i), (w, j) in n(Z).

Lemma 26 will establish the time complexity of this computation.
Example 8 (continued) Figure 3 shows Rep+(t)[Z ∪ a(Z)∪ n(Z)] where

Z = {u, y}, using the term t as in Figure 2. It shows also that Min(z, 1, 2) = 0
and that Min(a′, 2, 3) = 1.

Definition 23 : The labelling J(x).
We are now ready to define the label J(x) for each vertex x of G. We

recall that S(u) is the set of colours p such that (u, p) is a vertex of Rep(t) and
that MIN(u) be the symmetric S(u) × S(u) matrix of integers Min(u, i, j).
This matrix can be stored using space O(k2. log n) since n bounds the lengths
of shortest u-downwalks in Rep(t). (This is so because a factor of the form
z −→∗ − ←−∗ ... −→∗ − ←−∗ z in a u-downwalk can be deleted and one
obtains a shorter u-downwalk with same ends.)

For a leaf x of t, i.e., a vertex of G, the path Path(x) is of the form
(um, um−1, ..., u0), with u0 the root and um = x, we recall from Section (4.1)
that

I(x) = (x, k, Lm, em−1, Dm−1, Lm−1, em−2, Dm−2, ..., e0, D0, L0).

We let then

J(x) = (x, k, Lm, em−1, Dm−1, Lm−1,Mm−1, fm−1, em−2, Dm−2, ..., e0, D0, L0,M0, f0)

where fi is the binary function symbol (some ⊗R,g,h) occurring at node ui,

18

Figure 3: The graph Rep(t)({u, y}) with some edges valued by lengths of short-
est special {u, y}-walks.

19

Mi = MIN(RightSon(ui)) if ei = 1 and Mi = MIN(LeftSon(ui)) if ei = 2
for each i = 0, ...,m− 1.�

In J(x) we can delete Dm−1, Lm−1, Dm−2, ..., D0, L0 because the correspond-
ing data can be computed from em−1,Mm−1, fm−1, em−2,Mm−2, fm−2, ..., e0,
M0, f0. Even if we keep this redundant data in J(x) we have the following fact
(we omit a detailed description of the encoding of J(x) as a bit sequence) :

Lemma 24 : Each label J(x) has size O(k2.ht(t). log n).
These cosntructions and lemmas are easily adapted to directed graphs.

In the graph Rep(t), the horizontal edges are directed, and the integers
Min(u, i, j) represent directed paths in val(t ↓ u). Of course, we need not
have Min(u, i, j) = Min(u, j, i).

4.3 The labelling algorithm

We now examine the time taken to construct the labels J(x) for all vertices x,
hence by Algorithm A of the labelling scheme.

Lemma 25 : Assuming t being given, the computation of all labels J(x) for
all vertices x takes time O(k3.|t|).

Proof. From a term t as in Definitions 14,20,21 and 23, the construction of
Rep(t) is straightforward and takes time O(k2.|t|). The construction of labels
extends what was done in (4.1) for I(x) : we only need to know the matrices
MIN(u) for all nodes u of t. This can be done by means of a bottom-up
traversal of t. We now describe this computation.

Case 1 : If u is a leaf, hence an occurrence of a constant cA(u) for a set of
colours A, then S(u) = A, the set of all colours of the unique vertex u of the
graph defined by cA(u). We have Min(u, i, j) = 0 for all i, j in S(u).

Case 2 : Otherwise u is an occurrence of some operation ⊗R,g,h with sons
u1 and u2. We will compute MIN(u) from MIN(u1) and MIN(u2).

First we note that S(u) = g(S(u1)) ∪ h(S(u2)).
Let W be a u-downwalk from (u, i) to (u, j). It can be factorized as W =

e1W1e2W2...Wpep+1 where e1, e2, ..., ep+1 are edges and W1,W2, ...,Wp are u1-
and u2-downwalks of the following forms :

e1 is a vertical edge (u, i)←− (uα1 , iα1)
W1 is a downwalk from (uα1 , iα1) to (uα1 , jα1),
e2 is a horizontal edge (uα1 , jα1)− (uα2 , iα2)
W2 is a downwalk from (uα2 , iα2) to (uα2 , jα2),
....
Wp is a downwalk from (uαp

, iαp
) to (uαp

, jαp
),

ep+1 is a vertical edge (uαp
, jαp

) −→ (u, j),
where α1, α2, ..., αp ∈ {1, 2}, αi+1 = 3−αi for each i = 1, ..., p− 1, and iαk

and jαk
belong to S(uαk

) for each k = 1, ..., p.

20

If W is of minimal length from (u, i) to (u, j), then so is each Wp among those
from (uαp , iαp) to (uαp , jαp).There lengths are given by the matrices MIN(u1)
and MIN(u2).

In a factorization e1W1e2W2...Wpep+1 of W , all edges e1, e2, ..., ep+1 are
from a set determined by the triple (R, g, h). Hence the minimal length of a
downwalk W from (u, i) to (u, j) can be obtained by an all-pairs shortest path
algorithm in a weighted graph with O(k) vertices. (Each edge has a weigth and
the length of a path is the sum of weigths of its edges.) Hence, this computation
takes time O(k3) at each u. We omit routine details. Hence, for all nodes the
total computation time is O(k3.|t|).

The case of directed graphs is very similar. �
Example 8 continued : Figure 4 illustrates the computation at a node

u of MIN(u) from MIN(u1) and MIN(u2) in a case where S(u) = S(u2) =
{1, 2, 3, 4} and S(u1) = {1, 2, 3}. The operation at u is ⊗R,g,h where :

R = {(1, 4), (2, 2), (3, 1)},
g(1) = {1}, g(2) = {2, 3}, g(3) = {4} and
h(1) = {3}, h(2) = {4}, h(3) = ∅, h(4) = {4}.
We assume that, for some integers a, b, ... we have :
Min(u1, 1, 2) = a, Min(u1, 2, 3) = b and Min(u1, 1, 3) =∞
(the absence of an edge between 1 and 3 below S(u1) indicates this last

value). We also have :
Min(u2, 1, 2) = c, Min(u2, 2, 3) = d, Min(u2, 3, 4) = e,
Min(u2, 2, 4) = f,Min(u2, 1, 4) = g,Min(u2, 1, 3) =∞ .
In Figure 4 the arrows to the left from 1 to 1, from 2 to 2 and 3, and from

3 to 4 represent the mapping g (they are vertical edges of Rep(t)), and those to
the right represent h.

The thick horizontal edges between S(u1) and S(u2) represent the pairs in
R. The curves marked a, b, c, ..., f, g represent entries of the matrices MIN(u1)
and MIN(u2) assumed to be known and from which one wants to compute
MIN(u). By looking at all possible paths one gets :

Min(u, 1, 2) = min{a, 2 + f, 2 + b+ g},
Min(u, 1, 3) = min{a, 2 + f, 1 + g},
Min(u, 1, 4) = 1,
Min(u, 2, 3) = 0,
Min(u, 2, 4) = min{1, b},
and Min(u, 3, 4) = min{1, b, c, g}.
For instance, depending on the relative values of a, f and g, a shortest path

in val(t ↓ u) from some vertex coloured 1 to some vertex coloured 3 may be
one in val(t ↓ u1) from a vertex coloured 1 to a vertex coloured 2 or a path
going through val(t ↓ u2) via a vertex coloured 4 and a vertex coloured 2 (with
a portion of length f), or via a vertex coloured 4 and a vertex coloured 1 (with
a portion of length g).�

21

Figure 4: Computation of MIN(u) from MIN(u1) and MIN(u2)

4.4 The decoding algorithm

Lemma 26 : One can determine G+[Z] from the graph Rep(t)[Z∪a(Z)∪n(Z)]
and the matrices MIN(w) for w such that (w, i), (w, j) belong to n(Z) in time
O(k3 + k. | Z | + | Z |2)

Proof. The algorithm is similar to that of Lemma 25 that computes the ma-
trices MIN(u). We assume that Z ∪ a(Z) ∪ n(Z) is known. We construct the
tree t′ defined as the union of the paths Path(x) for x that belongs to Z or is a
son of a node on Path(z) for some z ∈ Z. The computation will be bottom-up
on the tree t′ (this tree is a subgraph of t but not a term because some subterms
are missing).

The following proof deals with undirected graphs.
For each node u of t′ we define two tables T1(u) and T2(u) with values in

N ∪ {∞}.
Table T1(u) indicates for every two vertices in Z ∩ Vval(t↓u) the length of a

shortest path in val(t ↓ u) between them.
Table T2(u) indicates for every vertex x in Z ∩ Vval(t↓u) and every colour i

in S(u) the length of a shortest path in val(t ↓ u) between x and some vertex
having colour i (among possibly other colours). In both cases ∞ means ”no
path”. These two tables are empty if u is not on Path(z) for any z ∈ Z.

Case 1 : If u is a leaf all entries of these matrices will be 0.
Case 2 : Otherwise u is an occurrence of ⊗R,g,h with sons u1 and u2.

We will compute T1(u) from T1(u1), T2(u1), T1(u2) and T2(u2), and we will
compute T2(u) from T2(u1) and T2(u2).

22

We consider the computation of T1(u). For any two vertices x, y in Z ∩
Vval(t↓u) we do as follows.

Subcase 2.1 : x is in Z ∩ Vval(t↓u1) and y is in Z ∩ Vval(t↓u2).
A shortest path between x and y in val(t ↓ u) is represented by a walk W

in Rep(t) that can be decomposed as W = W1e1W2e2...WpepWp+1 where
W1 represents in Rep(t) a shortest path in val(t ↓ u1) between x and some

vertex coloured by i1, e1 is a horizontal edge (u1, i1)− (u2, j2),
W2 is a downwalk from (u2, j2) to (u2, i2),
e2 is (u2, i2)− (u1, j3),
W3 is a downwalk from (u1, j3) to (u1, i3),
....
Wp is a downwalk from (uαp , iαp) to (uαp , jαp),
ep is (u1, ip)− (u2, jp),
Wp+1 represents in Rep(t) a shortest path in val(t ↓ u2) between some vertex

coloured by jp and y.
In this description i1, j1,..., ip, jp are colours in the sets S(u1) (for p odd)

or S(u2) for p even and p is odd. The lengths of W1 and Wp+1 are obtained
from T2(u1) and T2(u2) ; those of W2, ...,Wp are obtained from MIN(u1) and
MIN(u2). The edges e1, e2, ..., ep are obtained from the relation R.

Subcase 2.2: x and y are in Z ∩ Vval(t↓u1).
The length of a shortest path in val(t ↓ u1) is obtained from T1(u1). This

length must be compared with those of paths that go through vertices of val(t ↓
u2). For knowing their lengths, we use a similar decomposition as in Subcase
2.1 with p even and at least 2. The shortest length of such a path is obtained
from T2(u1), MIN(u1) and MIN(u2). We obtain the desired value by taking
a minimum over several possible values. See Figure 5 below.

The cases where x is in Z ∩ Vval(t↓u2) and y is in Z ∩ Vval(t↓u1), and where
x and y are in Z ∩ Vval(t↓u2) are of course similar.

The time taken to determine T1(u) and T2(u), is O(k3 + k. | Z | + | Z |2).
The final results are in T1(roott).

For directed graphs, we need T1(u) which will not be symmetric and two
tables T2+(u) and T2−(u). Table T2+(u) (resp. T2−(u)) indicates for every
vertex x in Z ∩ Vval(t↓u) and every colour i in S(u) the length of a shortest
directed path in val(t ↓ u) from x to some vertex coloured by i (resp. from
some vertex coloured by i to x). The computation time is the same.�

Example 8 continued : Figure 5 extends the example of Figure 4. It
indicates the following (finite) values of the tables for u1and u2 (absent edges
stand for entries equal to ∞):

T1(u1)[x, y] = δ,

T2(u1)[x, 1] = α, T2(u1)[x, 2] = γ, T2(u1)[y, 1] = ε, T2(u1)[y, 2] = β,

T2(u2)[z, 1] = µ, T2(u2)[z, 2] = ν.

From these definitions and those of MIN(u2) that are visible in Figure 5,

23

Figure 5: Computation of lengths of shortest Z-external paths for obtaining
G+[Z]

we have:
α 6 δ + ε, ε 6 δ + α,

β 6 δ + γ, γ 6 δ + β,

a 6 α+ γ, a 6 β + ε.

We also have that Min(u, 1, 3) 6 ε + T2(u1)[y, 3], hence T2(u1)[y, 3] = ∞
because ε is assumed to be finite.

Analyzing the possible paths gives the following:
T1(u)[x, y] = min{δ, α+ ε+ 2, β + γ + 2, α+ β + f + 2, γ + ε+ f + 2}
T2(u)[x, 1] = α

T2(u)[x, 2] = T2(u)[x, 3] = γ

T2(u)[x, 4] = min{α+ 1, γ + 1}
T2(u)[y, 1] = ε

T2(u)[y, 2] = T2(u)[y, 3] = β

T2(u)[y, 4] = min{β + 1, ε+ 1}
and so on.
We can now prove the crucial Proposition 13.

Proof of Proposition 13. Let G be an undirected graph defined by a term
t. Assume that J has been constructed by Lemma 25. Lemmas 22 and 26 show
how to construct G+[Z]. This gives a global time bound of O(|Z|2.k3.ht(t)).

We now review the modifications to be done for handling directed graphs.
In the construction of the graph representation Rep(t), an horizontal edge is

24

directed (u1, i) −→ (u2, j) if u1, u2 are respectively the left and the right son of
a node u that is an occurrence of an operation ⊗R,g,h such that (i, j,+) ∈ R. It
is directed in the other direction if (i, j,−) ∈ R.

Lemma 17 is modified as follows: for distinct vertices u, v we have u −→ v
in G if and only if there is an elementary path of the form u −→∗ (w, i) −→
(w′, j) ←−∗ v in Rep(t) for some w,w′, i, j. The modified versions of Lemmas
17,18,19,25 and 26 follow easily. For this, we use directed u-downwalks from
(u, i) to (u, j), of the form : (u, i) ←−∗ z −→∗ · · · ←−∗ z′ −→∗ (u, j) , where
all horizontal edges are from left to right, all other conditions being as for u-
downwalks. We let Min(u, i, j) be the smallest length of a directed u-downwalk
from (u, i) to (u, j), or ∞ if no such downwalk exists.

The matrices MIN(u) are no longer symmetric. The graph G+[Z] is built
with integer valued directed edges. This completes the proof of Proposition 13.�

Theorem 9 and Proposition 13 yield the following main theorem.
Theorem 27. For a directed or undirected graph G of m-clique-width at

most k on n vertices, one can assign to vertices labels J(x) of size O(k2. log2 n)
such that from the family (J(x))x∈Z for any set Z ⊆ V , one can determine
the graph G+[Z] in time O(|Z|2.k3. log n). The length of a shortest (X,F)-
constrained path such that X ∪ends(F) ⊆ Z can be determined in time O(|Z−
X|2) from G+[Z] and in time O(|Z|2.k3. log n) from (J(x))x∈Z .

Proof. This follows from Proposition 13 and Lemma 1 by using Dijkstra’s
shortest path algorithm.�

Example 8 continued : From Figure 3 one can see that u and y are
adjacent but that, if the edge u − y is broken, they are at distance 4. Figure
6 shows that vertices v and x are at distance 2 in val(t), but if the vertex w
is forbidden they are at distance 3, by a path going through y. The two edges
with their endpoints in the ellipse are no longer usable if w is forbidden.

Handling edge additions.
If for fixed Z , in addition to (X,F) such that X ∪ ends(F) ⊆ Z, we are

given a set H of pairs of vertices of Z representing new directed or undirected
edges, one may ask about the length of a shortest path from x to y (belonging
to Z − X) in ((G − F) ∪ H)\X. We call this handling constrained paths with
edge additions.

Corollary 28 : With the labelling of Theorem 27, one can handle con-
strained paths with edge additions, with same time for answering queries.

For the simpler problem of checking connectivity (possibly with edge addi-
tions) we have a more compact labelling scheme.

Corollary 29: For a directed or undirected graph G of m-clique-width at
most k on n vertices, one can assign to vertices labels C(x) of size O(k2. log n)
such that from the family (C(x))x∈Z for any set Z ⊆ V , one can determine the
(X,F)-constrained connectivity (or the (X,F)-constrained directed connectiv-
ity in case of a directed graph) possibly with edge additions.

25

Figure 6: The graph Rep(t)+({v, w, x, y}).

26

Proof. In the matrices MIN(u) we only have to store values ”∞” or ”not
∞”. This gives two results: directed connectivity for directed graphs, i.e., the
existence of a directed (X,F)-constrained path from x to y, and connectivity
for undirected graphs, i.e., the existence of an (X,F)-constrained path between
x to y.�

4.5 Overview of algorithms

Let us review the steps needed to apply these results. We first consider Algo-
rithm A that constructs labels.

Step 1 : First, we need a tree-decomposition or an mcwd- term of the given
graph, of width at most k. This can be done in linear time for obtaining a tree-
decomposition (for details, see [1]). The problem of determining the m-clique-
width of a graph and the corresponding optimal term is likely to be NP-hard
because the corresponding one for clique-width is NP-complete [9]. The cubic
algorithm given by Oum [13] that constructs non-optimal clique-width terms
for undirected graphs can be used.

The obtained tree-decomposition or clique-width term can easily be trans-
formed into an mcwd- term of width k or k + 3 or 2k + 4, depending on the
case, by Proposition 5.

Step 2 : The term must be turned into a 3-balanced one of width O(k) in
time O(n. log n), denoted by t.

Step 3 : We then construct the graph Rep(t), which can be done in time
O(k2. | t |) = O(k2.n).

Step 4 : The next step consists in computing the matrices MIN(u). This
can be done bottom-up in the term t by Lemma 25. Since at each step we need
time O(k3), we need in total time O(k3.n).

Step 5 : The final step consisting in building the labels J(x) for all vertices
takes time O(k3.ht(t)) = O(k3. log n+ k2.n. log n).

The decoding algorithm B uses two steps :
Step 1 : Construction of G+[Z] in time O(k3 + k. | Z | + | Z |2).
Step 2 : Answers to queries in time O(|Z−X|2). This time does not depend

on k.
These constructions apply to directed graphs in a straightforward manner

except the cubic algorithm of [13] which is designed for undirected graphs. How-
ever there exists a bijective encoding of directed graphs G as bipartite undirected
graphs B(G) (defined in [3]). There exist strictly increasing functions f and g
such that for every directed graph G :

f(cwd(B(G))) 6 cwd(G) 6 g(cwd(B(G)).

Hence the cubic algorithm for undirected graphs can be used for directed
graphs.

27

Another extension can be done for shortest constrained paths in directed
graphs with edges having nonnegative integer lengths. However, all edges cre-
ated by a single pair of colours (a, b) in R in an operation ⊗R,g,h must have the
same length. Otherwise the notion of graph representation of a term, where one
horizontal edge represents all edges created from one pair (a, b) by an operation
⊗R,g,h cannot be used. The above methods and results are easy to adapt to
this extension.

4.6 A compact routing scheme

We now describe how to use a modification of the labelling J to build a compact
routing scheme.

The construction of J is based on matrices that give for each position u in
a term t the length of a shortest u-downwalk in Rep(t) from (u, i) to (u, j).
Storing the sequence of vertices of the corresponding path in G = val(t) uses
space O(n log n) instead of O(log n) for each entry (assuming there are n vertices
numbered from 1 to n, so that a path of length p uses space (p+1).dlog ne). The
corresponding labels J ′(x) have size O(k2.n. log2 n) for each x. This labelling
yields for every pair of vertices x, y a shortest (X,F)-constrained path and not
only its length. This path is obtained by piecing together some edges (the edges
ei of the proof of Lemma 26) and some of the paths stored in the labels J ′(z)
for vertices z in the set {x, y} ∪X ∪ ends(F).

We now give a more economical construction. For having a compact routing
scheme (as opposed to a distance labelling scheme), it suffices to be able to
construct the path in an incremental manner, by finding the next hop at each
node, then forwarding the relevant data to that node. Here is a construction
permitting this.

We only store at each entry (i, i) of the matrix MIN(u) one vertex x such
that (u, i) ∈ Rep(t)(x) instead of the value 0 = Min(u, i, i). If Min(u, i, j) = 0,
we store the same vertex at entries (i, i) and (j, j). This uses slightly more space
than for MIN(u) as in Section 4.2 but still O(k2. log n) and the corresponding
labels J ′′(x) have size O(k2. log2 n) for all x.

From the labels J ′′(x) for all x in Z, one can build an edge-labelled graph
G++[Z] defined by adding new labels to those of G+[Z]. For each edge between
x and y in G+[Z] having weight 2, we add to the label of this edge the interme-
diate vertex z of one of the shortest paths it represents. For each edge between
x and y in G+[Z] having weight at least 3, we add two intermediate vertices z
and z′ of one of the shortest paths it represents, such that z is next to x and z′

is next to y. It is easy to adapt the algorithm of Lemma 26 so as to construct
G++[Z] from (J ′′(x))x∈Z . And from G++[Z] for Z ⊇ {x, y} ∪X ∪ ends(F),
one can determine, not only the length of shortest (X,F)-constrained path from
x to y , but the vertex z following x on such a path. This vertex may not be in
Z. If it is not, and to continue the construction one must compute G++[Z∪{z}]
in order to determine the vertex following z is a shortest path from x to y.

28

These definitions and observations yield the following result.
Theorem 30. Let G be a graph of m-clique-width at most k, each vertex

u of which has an associated set of vertices Forb(u) of size at most r. This
graph has a compact forbidden-set routing scheme using routing tables of size
O(r.k2. log2 n) and message headers of size O(r.k2. log2 n) that permits to route
on shortest paths in G \ Forb(x) from every vertex x.

Proof. Let G = (V,E) be given by a balanced mcwd- term of width at most
2k (or 3k if G is directed), let J ′′(x) be constructed as explained above. Let
a set Forb(u) ⊆ V such that |Forb(u)| 6 r be defined for each vertex u. We
store at each u the labels J”(w) for all w in Forb(u). The algorithm intended
to route a message from x to y in G \ Forb(x) works as follows.

By using J”(x) , J”(y) and {J”(w) : w ∈ Forb(x)}, it determines a vertex
z1 on some shortest path x− z1 − ...− y in G \Forb(x). The message together
with J”(y) and the set {J”(w) : w ∈ Forb(x)} is sent to z1. Then some z2 on
a shortest path z1 − z2 − ...− y in G \ Forb(x) is determined by using J”(z1),
J”(y) and the set {J”(w) : w ∈ Forb(x)}. The message with the same set of
labels is sent to z2, and the procedure is repeated until y is reached. Since exact
distances are computed and since the set of forbidden vertices is not changed
on the way, the message gets closer to y at each step and reaches it. �

This method constructs a path from x to y in G \ Forb(x) that may go
through some z and then through some u such that u ∈ Forb(z). If at each step
we increase the set of forbidden vertices in order to prevent such a situation,
we may build a path that is not shortest or we may find no path at all whereas
there exists one.

5 Open problems

A major open problem is to get good bounds for constrained distance labelling
on planar graphs. Since they have balanced separators of size Θ(

√
n) they have

tree-width O(
√
n), hence our results can be applied with k = O(

√
n). This gives

a labelling scheme with labels of size O(n log2 n), but we think that it is possible
to do much better.

Recently, Courcelle et al. [4] presented an O(log n)-bit labelling scheme
for constrained connectivity in planar graphs, but the problem of constrained
distance labelling is still open.

Acknowledgements : We thank Cyril Gavoille and Mamadou Kanté for
helpful discussions and the referees for their comments which triggered many
improvements.

29

References

[1] H. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. In STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 226–234, New York, NY, USA,
1993. ACM Press.

[2] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory Comput.
Systems, 33:125–150, 2000.

[3] B. Courcelle. The monadic second-order logic of graphs xv : On a conjecture
by d. seese. In Journal of Applied Logic 4, pages 79–114, 2006.

[4] B. Courcelle, C. Gavoille, M. Kanté, and A. Twigg. Connectivity check in
3-connected planar graphs with obstacles. In Electronic Notes in Discrete
Mathematics, volum 31 (2008), 151–155.

[5] B. Courcelle and M. Kanté. Graph operations characterizing rank-width
and balanced graph expressions. In D. Kratsch A. Brandstädt and
H. Müller, editors, Proccedings of the 33rd International Workshop on
Graphs (WG07), volume 4769 of LNCS, pages 66–75. Springer, June 2007.

[6] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.
Discrete Appl. Math., 101(1-3):77–114, 2000.

[7] B. Courcelle and A. Twigg. Compact forbidden-set routing. In W. Thomas
and P. Weil, editors, STACS, volume 4393 of Lecture Notes in Computer
Science, pages 37–48. Springer, 2007.

[8] B. Courcelle and R. Vanicat. Query efficient implementation of graphs
of bounded clique-width. Discrete Applied Mathematics, 131(1):129–150,
2003.

[9] M. Fellows, F. Rosamond, U. Rotics, and S. Szeider. Clique-width min-
imization is NP-hard. In STOC 2006: Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, New York, NY, USA,
2006, pages 354–362. ACM Press.

[10] C. Gavoille and D. Peleg. Compact and localized distributed data struc-
tures. Distrib. Comput., 16(2-3):111–120, 2003.

[11] C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs.
J. Algorithms, 53(1):85–112, 2004.

[12] A. Gupta, A. Kumar, and M. Thorup. Tree based mpls routing. In SPAA
’03: Proceedings of the fifteenth annual ACM symposium on Parallel algo-
rithms and architectures, pages 193–199, New York, NY, USA, 2003. ACM
Press.

30

[13] S. il Oum. Approximating rank-width and clique-width quickly. In Dieter
Kratsch, editor, Proc. 31st International Workshop on Graphs (WG 2005),
volume 3787 of Lecture Notes in Computer Science, pages 49–58. Springer,
2005.

[14] S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs.
SIAM J. Discret. Math., 5(4):596–603, 1992.

[15] E. Wanke. k-nlc graphs and polynomial algorithms. Discrete Applied Math-
ematics, 54(2-3):251–266, 1994.

6 Appendix : Balanced terms defining graphs

We prove Theorem 9 that we restate for the reader’s convenience.
Theorem 9. Every undirected (resp. directed) graph of clique-width or

m-clique-width k with n vertices (n > 1) is the value of an m-cwd term t of
width at most 2k (resp. 3k) and of height at most 3.(log(n− 1) + 1). The time
taken to build t from a given term s of width k is O(n. log n), where n is the
size of s.

A similar result for graphs of bounded tree-width has been proved by Bod-
laender [1] : every graph with n vertices of tree-width k has a tree-decomposition
of width 3k + 2 with underlying tree of height at most 2 log5/4(2n).

We first prove that every m-cwd term can be transformed into a balanced
term using new binary operations that express substitutions of terms for vari-
ables with unique occurrences. These new operations are not among the op-
erations defining m-clique-width but they can be simulated by m-clique-width
operations using more labels than those of the original term.

6.1 Contexts and special terms

Let F is a set of function symbols, and C be a set of constants. A context is
a term in T (F,C ∪ {u}) having a single occurrence of the variable u (nullary
symbol). We denote by Ctxt(F,C) the set of contexts, and by Id (for identity)
the particular context u. We define two binary operations ◦ and • on terms and
contexts for which we use infix notation :

s ◦ s′ = s[s′/u], belongs to Ctxt(F,C) for s, s′ in Ctxt(F,C),
s • t = s[t/u], belongs to T (F,C) for s in Ctxt(F,C), t in T (F,C), where

s[w/u] denotes the substitution in s of a term or context w for u at its unique
occurrence.

Clearly s ◦ Id = Id ◦ s = s ; Id • t = t.The operation ◦ is associative and we
have s • (s′ • t) = (s ◦ s′) • t.

We will consider terms in T (F ∪ {◦, •}, C ∪ {Id}) that evaluate to terms
or contexts according to the above definitions. The evaluation of these terms
consists in eliminating ◦ and • by performing the substitutions they stand for.

31

Example 31 :
The term f(Id, b) ◦ (g(a, Id) ◦ f(Id, c)) evaluates to the context

f(g(a, f(u, c)), b). The term f(Id, b) ◦ (g(a, Id) • f(d, c)) evaluates to the term
f(g(a, f(d, c)), b).

From now on we only consider sets F of binary operation symbols.
Definition 32 : The sets of special terms and contexts SPEt(F,C) and

SPEc(F,C).
We let Sc and St be the least subsets of T (F ∪ {◦, •}, C ∪ {Id}) such that:
St = Sc • St ∪ f(St, St) ∪ b ∪ ...
Sc = Sc ◦ Sc ∪ f(St, Sc)... ∪ f(Sc, St) ... ∪ f(St, Id) ... ∪ f(Id, St)...
where the unions extend to all f in F and b in C.
We denote these sets by SPEt(F,C) and SPEc(F,C) if we need to specify

F and C. Note that Id /∈ St ∪ Sc.
Every term t in SPEt(F,C) evaluates into a term Eval(t) in T (F,C) and

every term c in SPEc(F,C) evaluates into a context Eval(c) in Ctxt(F,C) −
{Id}. The evaluation rules are as follows:

Eval(c ◦ c′) = Eval(c)[Eval(c′)/u],
Eval(c • t) = Eval(c)[Eval(t)/u],
Eval(Id) = u,

Eval(b) = b,

and
Eval(f(w,w′)) = f(Eval(w), Eval(w′))

for terms or contexts c, c′, t, w, w′, functions f and constants b.
For a term t in SPEt(F,C)∪SPEc(F,C) we denote by |t|FC the number of

occurrences of symbols from F ∪C, by |t|0 the number of occurrences of ◦ and •,
and, by |t|Id the number of occurrences of Id. Since F is a set of binary function
symbols, each such term has an odd size |t| defined as |t|FC + |t|0 + |t|Id and it
is clear from the recursive equations defining special terms that |t|Id = |t|0 if
t ∈ SPEt(F,C) and |c|Id = |c|0 + 1 if c ∈ SPEc(F,C).

The following proposition shows how a term or a context can be split into
two or three terms or contexts of less than half size.

Proposition 33 [Lemmas 1,2 in [8]]:
1. Every term t ∈ T (F,C) of size n = 2p + 1, p > 1 can be written

t = c1 • f(t1, t2) where c1 ∈ Ctxt(F,C), t1, t2 ∈ T (F,C), |c1| 6 p, c1 is of
maximal size with this property, and then |ti| 6 p+ 1 for each i = 1, 2.

2. Every context c ∈ Ctxt(F,C) of size n = 2p + 1, p > 1 can be written
c = c1 ◦ f(c2, t1) or c = c1 ◦ f(t1, c2) for c1, c2 ∈ Ctxt(F,C), t1 ∈ T (F,C) and
|c1| 6 p, c1 is of maximal size with this property, and then |c2| 6 p + 1, |t1| 6
2p− 1.

Remark : Let us look at some particular cases. Let t = f(s1, s2) with
p = (|t| − 1)/2 = (|s1|+ |s2|)/2.

32

If |s1| − 2 6 |s2| 6 |s1| + 2 then in Case 1 of Proposition 33, we must take
c1 = u.

If |s1| = |s2|+2 then the “larger context”c′1 = f(u, s2) has size 2+|s2| > p+1
since p + 1 = (|s1| + |s2|)/2 + 1 = |s2| + 2, hence c1 is maximal of size 6 p. If
|s1| = |s2| or if |s2| = |s1|+ 2 the same argument works.

Similarly if c = f(c′, s2) and |c′| 6 |s2| + 2 (in particular if c′ = u) we
must take c1 = u to satisfy (2). Taking the “larger context”c′1 = f(u, s2) would
necessitate |c′1| 6 p that is 2 + |s2| 6 (|c′|+ |s2|)/2, i.e., |c′| > |s2|+ 4. �

A more careful proof than the one of [8] gives the following result.
Proposition 34 : For every term t in T (F,C) − C one can construct a

term tb in SPEt(F,C) such that |tb|FC = |t|FC = |t|, Eval(tb) = t, ht(tb) 6
3. log(|t|−1) and |tb| 6 2.|t|−1 . This term can be constructed in timeO(n. log n)
where n = |t|.

Proof. We will use an induction to construct tb for each t ∈ T (F,C) and
to construct also a context cb in SPEc(F,C) such that Eval(cb) = c for each
c ∈ Ctxt(F,C). The construction will ensure the following properties (note that
|c| = |c|FC + 1) :
|cb|FC = |c|FC , ht(cb) 6 3. log(|c| − 1) + 2 and |cb| 6 2.|c| − 1.
Case 1: Let t ∈ T (F,C) have size |t| = 2p+ 1.

Subcase 1.1 : If |t| = 3 we let tb = t, then ht(tb) = 2 < 3. log(|t| − 1) and
|tb| = |t| 6 2.|t| − 1.

Subcase 1.2: If |t| = 2p + 1 > 3. We use Proposition 33 and write
t = c1 • f(t1, t2).

Subcase 1.2.1: c1 = u. This means that ||t1|− |t2|| 6 2 : assume on the
contrary that |t1| > |t2|+ 4, then |f(u, t2)| = 2 + |t2| 6 p = (|t1|+ |t2|)/2 and c1
is not of maximal size such that case 1 of Proposition 33 holds, because it can
be replaced by a “larger context”, e.g., f(u, t2). In this case we let tb = f(tb1, t

b
2).

We have |t1| = 2p1 + 1, |t2| = 2p2 + 1, |p1 − p2| 6 1. We first assume t1, t2 /∈ C.
By inductive hypothesis :

ht(tbi) 6 3. log(2pi) = 3. log(pi) + 3.
We note that |t| − 1 = 2.p1 + 2.p2 + 2. Since |p1 − p2| 6 1 we have 2.pi 6

(|t| − 1)/2 for each i = 1, 2. Hence:
1 + ht(tbi) 6 1 + 3. log(2pi)

6 1 + 3. log((|t| − 1)/2)

= −2 + 3. log(|t| − 1)
< 3. log(|t| − 1)

and ht(tb) = max{1 + ht(tb1), 1 + ht(tb2)} < 3. log(|t| − 1).
The size of tb is |tb| = |tb1|+ |tb2|+ 1 6 2.(|t1|+ |t2|)− 1 < 2.|t| − 1 by using

induction.
If t1 ∈ T (F,C), then |t1| = 1 which implies |t2| = 3, |t| = 5 and tb = t,

33

ht(t) = 3 6 3 log(4) = 6. The case t2 ∈ T (F,C) is similar.
Subcase 1.2.2: c1 6= u. We let tb = cb1 • f(tb1, t

b
2). We have |c1| 6 p,

|ti| 6 p+ 1. We must prove that 1 + ht(cb1) 6 3. log(2p) and that
2 + ht(tbi) 6 3. log(2p) for i = 1, 2.
By induction : ht(cb1) 6 3. log(p− 1) + 2 6 3. log(p) + 2.
Hence : 1 + ht(cb1) 6 3 + 3. log(p) = 3. log(2p) = 3. log(|t| − 1).
We have also : 2 + ht(tbi) 6 2 + 3. log(p) < 3. log(2p).
This proves the desired assertion.
Case 2: We now consider the case of c ∈ Ctxt(F,C) of size n = 2p+ 1.

Subcase 2.1: If n = 3 then cb = c and the result holds as in Subcase 1.1.
Subcase 2.2: We consider the case |c| = 2p + 1 > 3. We write c =

c1 ◦ f(c2, t1) or c = c1 ◦ f(t1, c2) with c1 of maximal size with |c1| 6 p. We only
consider the first case.

Subcase 2.2.1: c1 = u. This means that c = f(c2, t1), |c2| 6 |t1|+ 2,
because if |c2| > |t1| + 4 then c1 = u could be replaced by a “larger context”,
e.g., f(u, t1).

We take cb = f(cb2, t
b
1). We have |c2| = 2p2 + 1, |t1| = 2p1 + 1, p2 6 p1 + 1.

The proof is similar to that of Subcase (1.2.1). We must prove that :
1 + ht(tb1) 6 3 log(2p) + 2 and 1 + ht(cb2) 6 3 log(2p) + 2.
We have
1 + ht(tb1) 6 1 + 3 log(|t1| − 1) 6 1 + 3 log(|c| − 1) < 3 log(|c| − 1) + 2.
We also have 1 + ht(cb2) 6 1 + 3 log(2p2) + 2. We have
4.p2 6 2.p2 + 2.(p1 + 1) = |c| − 1.
Hence :
1 + ht(cb2) 6 3 + 3 log((|c| − 1)/2) = 3 log(|c| − 1) < 3 log(|c| − 1) + 2.
We also have |cb| = |tb1| + |cb2| + 1 6 2.(|t1| + |c2|) − 1 < 2.|c| − 1 by using

induction, as in Subcase 1.2.2.
Subcase 2.2.2: c1 6= u. Then we let cb = cb1 ◦f(cb2, t

b
1). We have |c1| 6 p,

|c2| 6 p+ 1 and |t1| 6 2p− 1. We must prove :
1 + ht(cb1) 6 3 log(2p) + 2 (7.1)
2 + ht(cb2) 6 3 log(2p) + 2 (7.2)
2 + ht(tb1) 6 3 log(2p) + 2 (7.3).
For (7.1) we have using induction
1 + ht(cb1) 6 1 + 3 log(p− 1) + 2 < 3 + 3 log(p) = 3 log(2p).
For (7.2) we have using induction
2 + ht(cb2) 6 2 + 3 log(p) + 2 = 3 log(2p) + 1.
For (7.3) we have
2 + ht(tb1) 6 2 + 3 log(2p− 2) < 3 log(2p) + 2.
We have |cb| = |tb1|+ |cb1|+ |cb2|+ 2 6 2.(|t1|+ |c1|+ |c2|)− 1 < 2.|c| − 1 by

using induction.

34

In all these cases and subcases, we get |tb|FC = |t|FC and |cb|FC = |c|FC by
induction. �

The decomposition of Proposition 33 can be found in time O(|t|). For a term
t the recursive decomposition procedure (cf. Subcase 1.2) is called for c1, t1, t2
each of size at most (|t| + 1)/2. For a context t the decomposition procedure
(cf. Subcase 2) is called for c1, c2 , each of size at most (|t| + 1)/2 and t2 of
size at most |t|. The decomposition of t2 calls the procedure for at most three
terms and contexts of size at most (|t|+1)/2. Hence, the procedure applied to a
context t uses recursive calls to at most five terms and contexts of size at most
(|t|+ 1)/2. So the total time is O(|t|. log(|t|). �

Example 35 : A term of the form f(a, f(a, f(a,, f(a, b)))...))) with 2n

occurrences of f, hence of height 2n+ 1 and size 2n+1 + 1 is Eval(t) for a term t
in St of height n+ 2 and size 2n+2− 1. For n = 3, we obtain the following term

t = [(f(a, Id) ◦ f(a, Id)) ◦ (f(a, Id) ◦ f(a, Id))]•
[(f(a, Id) ◦ f(a, Id)) • (f(a, Id) • f(a, b))].

6.2 Balanced m-cwd terms

We now prove Theorem 9 by using Propositions 33 and 34 for m-cwd terms. We
will write Fk and Ck instead of F[k] and C[k]. The operations and constants
of these sets transform and define multicoloured graphs with colours in [k]. We
first consider the case of undirected graphs.

The idea of the proof is as follows. Let G be a graph defined by a term in
T (Fk, Ck); by Proposition 34 there exists a 3-balanced special term evaluating
to G but this term uses the operations ◦ and • which are not allowed in the
definition of m-clique-width. We will eliminate them at the cost of using k
more colours : a special term s • t will be rewritten into an equivalent term
Gs⊗R,g,h t. That is, the action of s on arbitrary terms t is simulated by a graph
Gs “representing s” and an appropriate operation ⊗R,g,h depending on s.

The transformation of s into Gs is compositional, that is: Gs◦s′ = Gs⊗R,g,h
Gs′ for some ⊗R,g,h depending on s and s′. We can thus eliminate ◦ and •
without increasing the size and height of the given term. The graphs Gs have
colours in the set [k] ∪ [k]′ where [k]′ := {i′ | i ∈ [k]}. We can of course replace
i′ by k + i so that we obtain terms in T (F2k, C2k).

Proof. The sets of special terms St and contexts Sc are here SPEt(Fk, Ck)
and SPEc(Fk, Ck). For a context defined by a special term s, we denote by s̃
the associated unary graph operation that transforms H into G = s̃(H) (that is,
G = val(s•t) ifH is the value of a term t). Our aim is to expressG asGs⊗R,g,hH
where Gs is a multicoloured graph over the set of colours L := {1, ..., k, 1′, ..., k′}
and R, g, h are chosen adequately. When we write G = s̃(H) we will assume,
without loss of generality that the vertices of H are vertices of G, because when
one builds a graph K = M ⊗R,g,h N from graphs M and N , one can choose to
keep any of M or N untouched and to make a disjoint copy of the other. Hence,

35

in the construction of G = s̃(H) the graph H need not be copied. However, s̃
may add new vertices to H.

We let I be the graph c1(w1)⊕ ...⊕ ck(wk) with vertex set {w1, ..., wk} and
we will use the graph s̃(I) ; this graph contains s̃(∅) as an induced subgraph.
The following fact is clear from the definitions.

Claim 1. A vertex y of s̃(∅) is linked to a vertex x of H in s̃(H) if and
only if y is linked to wi in s̃(I) for some i in δH(x) (i.e., i is one of the colours
of x in H). �

The graph G = s̃(H) is obtained from H as follows:
1. Add to H the vertices and edges of s̃(∅), all created by the operations

and constants of s independently of H.
2. Add edges between the vertices x of H and these new vertices y, on the

basis of δH(x). These edges are defined by the binary operations of s.
3. Recolour the vertices of H according to the operations of s. This re-

colouring is defined by the mapping hs : [k] −→ P([k]) such that hs(i) is the
set of colours of wi in s̃(I).

The graph Gs representing the context s is defined as the graph s̃(∅) mod-
ified as follows : we add to the list of colours of each vertex y the colours i′

such that y −wi in s̃(I). (Recall that u− v indicates that u and v are adjacent
vertices.) Hence Gs has multiple colours in L. In the particular case where
s = Id, this gives Gs = ∅ , hs(i) = {i} for every i in [k].The following is clear
from this construction and Claim 1.

Claim 2. For every graphH multicoloured in [k], we have s̃(H) = Gs⊗R,g,hs

H where R = {(i′, i) | i ∈ [k]} and g(i) = {i},g(i′) = ∅ for i in [k]. �

The relevant information associated with a context s is the pair (Gs, hs).
Contexts are defined inductively; we now show that this information is also
computable inductively.

Claim 3. For any two contexts s, s′, we have
1. hs◦s′ = hs ◦ hs′ and;
2. Gs◦s′ = Gs ⊗R,g,h Gs′ , where R = {(i′, i) | i ∈ [k]} and g(i) = {i},

g(i′) = {j′ | i ∈ hs′(j)}, h(i) = hs(i), h(i′) = {i′}, for all i in [k].

Proof. The first condition is clear from the definitions. We now prove the
second condition. The particular cases where s or s′ is Id can be checked
directly.

Otherwise, by using Claim 2 we have s̃ ◦ s′(∅) = s̃(s̃′(∅)) = Gs ⊗R,m,hs

s̃′(∅), m(i) = {i},m(i′) = ∅ for i in [k] and Gs◦s′ is obtained by adding new
colours to this graph.

We first compare the vertices and edges of Gs⊗R,m,hs s̃
′(∅) and Gs⊗R,g,hGs′ .

From the definitions, the vertices are the same.
Let x− y be an edge of Gs ⊗R,m,hs

s̃′(∅). If x and y are both in Gs or both
in s̃′(∅) then x− y is also an edge of Gs ⊗R,g,h Gs′ (because Gs′ is s̃′(∅) with

36

some new colours added).

If x is in Gs and y is in s̃′(∅) then x has colour i′ and y has colour i for
some i, but y has also colour i in Gs′ hence x − y is also an edge in Gs ⊗R,g,h
Gs′ .The argument is the same in the other direction. Hence Gs ⊗R,m,hs s̃

′(∅)
and Gs ⊗R,g,h Gs′ have the same vertices and edges. We now compare the
colours of a vertex x in these two graphs.

Case 1 : x is in Gs .
Its colours belonging to [k] are as in s̃(∅) and are not modified either by m

or by g. They are the same in the two graphs we compare.

The vertex x has colour j′ in Gs◦s′ if and only if x−wj in s̃ ◦ s′(I) = s̃(s̃′(I)
if and only if x has colour i′ in Gs for some i in hs′(j). Hence, the set of colours
j′ of x in Gs◦s′ is the union of the sets g(i′) for i′ colour of x in Gs.

From the definitions of the mappings m and g (note how g depends on s′),
we get that x has the same colours in Gs◦s′ and in Gs ⊗R,g,h Gs′ .

Case 2 : x is in Gs′ .
The vertex x has colour i in Gs◦s′ if and only if i ∈ hs(j) and x has colour

j in s̃′(∅) equivalently colour j in Gs′ . Since h(j) = hs(j), the vertex x has the
same colours belonging to [k] in Gs◦s′ and in Gs ⊗R,g,h Gs′ .

The vertex x has colour i′ in Gs◦s′ if and only if x−wi is an edge of s̃(s̃′(I))
if and only if x−wi is an edge of s̃′(I) if and only if x has colour i′ in Gs′ if and
only if it has colour i′ in Gs ⊗R,g,h Gs′ because h(i′) = {i′} for all i in [k].

This completes the proof of Claim 3. �
Next we consider the basic contexts f(t, Id) or f(Id, t), but we need only

consider the first case because f(Id, t) = f ′(t, Id), for some f ′.
Claim 4. For s = t ⊗T,m,p Id, we have hs = p and Gs = val(t) ⊗∅,m,∅ ∅,

where m(i) = m(i) ∪ {j′ | (i, j) ∈ T}, and m(i′) = ∅, for i in [k].

Proof. Easy verification from the definitions. We have specified m(i′) = ∅,
for i in [k] but actually, no vertex of val(t) has a colour i′, hence we could take
any set for m(i′). �

Next we consider the contexts of the form f(t, c) or f(c, t), but again we
need only consider the first case.

Claim 5. For s = t⊗T,m,p c, we have hs = p ◦ hc, Gs = val(t)⊗T,g◦m,h Gc,
where m is as in Claim 4, g(i) = {i}, g(i′) = {j′ | i ∈ hc(j)}, h(i) = p(i),
h(i′) = {i′} for all i in [k].

Proof. We observe that s is equivalent to d ◦ c where d = t ⊗T,m,p Id hence,
we can use Claims 3 and 4. These two claims give Gs = Gd ⊗R,g,h Gc where
R = {(i′, i) | i ∈ [k]} and g(i) = {i}, g(i′) = {j′ | i ∈ hc(j)}, h(i) = hd(i) = p(i),
h(i′) = {i′}, for all i in [k], and Gd = val(t)⊗∅,m,∅ ∅, where m(i) = m(i)∪{j′ |
(i, j) ∈ T}, and m(i′) = ∅, for i in [k].

But for all graphs H and K we have that

37

(H ⊗∅,m,∅ ∅)⊗R,g,h K = H ⊗T,g◦m,h K (7.4)
Hence we have the desired equality by taking H = val(t) and K = Gc. �

These claims yield the following one:
Claim 6. Let us fix k. Every term t in SPEt(Fk, Ck) can be transformed in

linear time into a term t̂ in T (F2k, C2k) that defines the same graph as Eval(t)
and has no larger height and no larger size than t.

Proof. The proof is an induction on the structure of t. This induction con-
structs for every term in SPEc(Fk, Ck) a term ĉ in T (F2k, C2k) that defines the
representing graph Gc and the mapping hc : [k] −→ P([k]). The term ĉ has no
larger height and size than c.

1. Definition of t̂ in T (F2k, C2k) for t in SPEt(Fk, Ck).
If t = b ∈ Ck then t̂ = b.
If t = f(t1, t2) then t̂ = f(t̂1, t̂2).
If t = c • t1, then t̂ = ĉ⊗R,g,hc

t̂1, where R and g are defined in Claim 2.
2. Definition of ĉ in T (F2k, C2k) and of hc for c in SPEc(Fk, Ck).

If c = s ◦ s′ we let hs◦s′ = hs ◦ hs′ and ĉ = ŝ ⊗R,g,h ŝ′, where R, g, h are as
in Claim 3.

If c = t⊗T,m,p Id, let hc = p and ĉ = t̂⊗∅,m,∅ ∅, where m is as in Claim 4.
If c = t⊗R,g,h c, we let hs = p ◦ hc, Gs = val(t)⊗T,g◦m,h Gc where m, g, h is

as in Claim 5.
The size and height of t̂ are exactly those of t, and the same for c. However,

one can still decrease them : the constant ∅ can be eliminated by using equalities
like (7.4) used in Claim 5. The size and height can only decrease.

This transformation of terms can be done in linear time. �

End of proof of Theorem 9. Let G be a graph with n vertices, n > 1, given
by an m-cwd term of width k in T (Fk, Ck). This term has size 2n − 1. It can
be transformed into a special term of height at most 3. log(2n − 2). This term
can be transformed into an equivalent one in T (F2k, C2k) of height at most
3. log(2n − 2) = 3.(log(n − 1) + 1). This completes the proof for the case of
undirected graphs.

For directed graphs, instead of one auxilliary set [k]′ we will use two : [k]′ and
[k]” := {i” | i ∈ [k]}. The proof is similar, we only indicate the modifications
to be done. For constructing Gs, we modify the graph s̃(∅) as follows : we add
to the list of colours of each vertex y the colours i′ such that y −→ wi and the
colours i” such that y ←− wi in s̃(I). (We write u −→ v to indicate an edge from
u to v.) Then Claim 2 holds with R := {(i′, i,+) | i ∈ [k]} ∪ {(i”, i,−) | i ∈ [k]}
and g(i) = {i},g(i′) = g(i”) = ∅ for i in [k].

For Claim 3 we let R be the same and g(i) = {i}, g(i′) = {j′ | i ∈
hs′(j)},g(i”) = {j” | i ∈ hs′(j)}, h(i) = hs(i), h(i′) = {i′}, h(i”) = {i”}
for all i in [k].

38

For Claim 4 we let m(i) = m(i) ∪ {j′ | (i, j,+) ∈ T} ∪ {j” | (i, j,−) ∈ T},
and m(i′) = m(i”) = ∅, for i in [k].

For Claim 5 we let m be as above and g(i) = {i}, g(i′) = {j′ | i ∈ hc(j)},
g(i”) = {j” | i ∈ hc(j)}, h(i) = p(i), h(i′) = {i′}, h(i”) = {i”} for all i in [k].

Finally for Claim 6 we transform a term t in SPEt(Fk, Ck) into a term t̂ in
T (F3k, C3k) where i′ is encoded into i+ k and i” into i+ 2k, which explains the
use of (F3k, C3k) in place of (F2k, C2k).

By Proposition 5, one can apply this result to graphs given by clique-width
terms of width at most k and produce balanced m-clique-width terms denoting
them of width 2k or 3k. �

Remark 36 : For a graph given by a cwd-term of width k, if one insists
on obtaining a clique-width term, one can get one of width k.2k for undirected
graphs (and k.22k for directed graphs) with height a. log n where a varies with
k and is not bounded by a constant.

We think that k.2k cannot be replaced by a polynomial in k, however, we
have no proof.

The following example indicates why the construction of a clique-width term
needs exponential number of colours.

Example 37: Let I1, ..., Ih enumerate the nonempty subsets of [k]. Let
S be the edgeless graph with vertices v1, ..., vh all coloured by k + 1. For each
[k]−coloured graph H, we let f(H) be the graph H ⊕ S augmented with undi-
rected edges linking vj to the vertices of H with a colour belonging to Ij for all
j = 1, ..., h. It is easy to write a context s with cwd-operations using only colors
in [k+2] and such that s̃(H) = f(H) for every [k]−coloured graph H. For some
colouring S′ of S with colors in a set L, and some fixed composition ADD of
recolouring and edge addition operations (among cwd-operations), we can have
f(H) = ADD(H ⊕ S′) for every [k]−coloured graph H, but this implies that
L has at least h = 2k − 1 colours. This is so because no two elements of S are
linked in f(H) to the same vertices of H in the case where each element of [k]
colours some vertex of H.

The result in terms of m-clique-width avoids the exponential jump on the
number of colours and the constant a is the same for all k.

However, in view of a concrete implementation, a binary operation in Fk for
defining graphs of m-clique-width at most k may need 3k2 bits to be encoded,
whereas, if we use clique-width operations, one bit is enough for disjoint union
and 2dlog ke bits make it possible to encode unary operation symbols that use
k colours. It remains open to design efficient data structures for both types of
operations.

39

