
Stratified B-trees and versioning dictionaries.

Andy Twigg∗, Andrew Byde∗, Grzegorz Miłoś∗, Tim Moreton∗, John Wilkes†∗ and Tom Wilkie∗
∗Acunu, †Google

firstname@acunu.com

Abstract

External-memory versioned dictionaries are fundamen-
tal to file systems, databases and many other algo-
rithms. The ubiquitous data structure is the copy-on-
write (CoW) B-tree. Unfortunately, it doesn’t inherit the
B-tree’s optimality properties; it has poor space utiliza-
tion, cannot offer fast updates, and relies on random IO
to scale. We describe the ‘stratified B-tree’, which is the
first versioned dictionary offering fast updates and an op-
timal tradeoff between space, query and update costs.

1 Introduction

The (external-memory) dictionary is at the heart of any
file system or database, and many other algorithms. A
dictionary stores a mapping from keys to values. A ver-
sioned dictionary is a dictionary with an associated ver-
sion tree, supporting the following operations:

• update(k,v,x): associate value x to key k in
leaf version v;

• range query(k1,k2,v): return all keys (and
values) in range [k1,k2] in version v;

• clone(v): return a new child of version v that
inherits all its keys and values.

Note that only leaf versions can be modified. If clone
only works on leaf versions, we say the structure is
partially-versioned; otherwise it is fully-versioned.

2 Related work

The B-tree was presented in 1972 [?], and it survives be-
cause it has many desirable properties; in particular, it
uses optimal space, and offers point queries in optimal
O(logB N) IOs1. More details can be found in [?].

1We use the standard notation B to denote the block size, and N the
total number of elements inserted. For the analysis, we assume entries
(including pointers) are of equal size, so B is the number of entries per
block.

A versioned B-tree is of great interest to storage
and file systems. In 1986, Driscoll et al. [?] pre-
sented the ‘path-copying’ technique to make pointer-
based internal-memory data structures fully-versioned
(fully-persistent). Applying this technique to the B-tree
gives the copy-on-write (CoW) B-tree, first deployed in
EpisodeFS in 1992 [?]. Since then, it has become ubiq-
uitous in file systems and databases, e.g. WAFL [?], ZFS
[?], Btrfs [?], and many more.

The CoW B-tree does not share the same optimality
properties as the B-tree. Every update requires random
IOs to walk down the tree and then to write out a new
path, copying previous blocks. Many systems use a CoW
B-tree with a log file system, in an attempt to make the
writes sequential. Although this succeeds for light work-
loads, in general it leads to large space blowups, ineffi-
cient caching, and poor performance.

3 This paper

For unversioned dictionaries, it is known that sacrific-
ing point lookup cost from O(logB N) to O(logN) al-
lows update cost to be improved from O(logB N) to
O((logN)/B). In practice, this is about 2 orders of mag-
nitude improvement for around 3x slower point queries
[?]. This paper presents a recent construction, the Strat-
ified B-tree, which offers an analogous query/update
tradeoff for fully-versioned data. It offers fully-versioned
updates around 2 orders of magnitude faster than the
CoW B-tree, and performs around one order of magni-
tude faster for range queries, thanks to heavy use of se-
quential IO. In addition, it is cache-oblivious [?] and can
be implemented without locking. This means it can take
advantage of many-core architectures and SSDs.

The downside is that point queries are slightly slower,
around 3x in our implementation. However, many appli-
cations, particularly for analytics and so-called ‘big data’
problems, require high ingest rates and range queries,
rather than point queries. For these applications, we
believe the stratified B-tree is a better choice than the
CoW B-tree, and all other known versioned dictionaries.
Acunu is developing a commercial open-source imple-
mentation of stratified B-trees in the Linux kernel.

Structure Versioning Update Range query (size Z) Space
B-tree [?] None O(logB N) random O(logB N + Z/B) random O(N)

CoW B-tree [ZFS] Full O(logB Nv) random O(logB Nv + Z/B) random O(NB logB N)
MVBT [?] Partial O(logB Nv) random O(logB Nv + Z/B) random O(N + V)

Lanka et al. (fat field) [?] Full O(logB Nv) random O((logB Nv)(1 + Z/B)) random O(N + V)
Stratified B-tree [this paper] Full O∗((logNv)/B) sequential O∗(logNv + Z/B) sequential O(N + V)

Table 1: Comparing the cost of basic operations on versioned dictionaries. Bounds marked O∗(·) are amortized over
operations on a given version.

Table ?? summarises our results and known data struc-
tures. We useN for the total number of keys written over
all versions, and Nv for the number of keys live (accessi-
ble) in version v, and V for the total number of versions
(see Preliminaries in Section ??).

3.1 CoW B-tree

The CoW B-tree is the classic versioned dictionary in file
systems, storage and other external-memory algorithms.
The basic idea is to have a B-tree with many roots, one
for each version. Nodes are versioned and updates can
only be done to a node of the same version as the up-
date. To perform an update in v2, one ensures there is a
suitable root for v2 (by duplicating the root for v1, the
parent of v2, if necessary), then follows pointers as in
a normal B-tree; every time a node is encountered with
version other than v2, it is copied to make a new node
with version v2, and the parent’s pointer updated before
the update continues down the tree. A lookup proceeds
as in a B-tree, starting from the appropriate root. More
details can be found in [?].

It has three major problems: slow updates, since each
update may cause a new path to be written – updat-
ing a 16-byte key in a tree of depth 3 with 256K block
size requires 3x256K random reads and writing 768K
of data. Since these nodes cannot be garbage collected
unless a version is deleted, they represent a large space
blowup. Finally, it relies on random IO, for both up-
dates and range queries. Over time, the leaves tend to
be scattered randomly, which causes problems for range
queries, garbage collection and prefetching.

4 Multiversion B-trees

The multi-version B-tree (MVBT) [?] offers the same
query/update bounds as the CoW B-tree, but with asymp-
totically optimal O(N) space. However, it is only
partially-versioned. The basic idea is to use versioned
pointers inside nodes – each pointer stores the range of
(totally-ordered) versions for which the pointer is live. A
query for version v starts by finding the root node for v,
then at every node, extracting the set of pointers live at

v and treating these as an unversioned B-tree node. Up-
dates are more complex and require an additional ‘ver-
sion split’ operation in addition to the standard key split.

Soules et al. [?] compare the metadata efficiency of
a versioning file system using both CoW B-trees and a
structure (CVFS) based on the MVBT. They find that, in
many cases, the size of the CoW metadata index exceeds
the dataset size. In one trace, the versioned data occupies
123GB, yet the CoW metadata requires 152GB while the
CVFS metadata requires 4GB, a saving of 97%.

5 Stratified B-trees

Structure. The high-level structure is vaguely simi-
lar to the logarithmic method (e.g. employed by the
COLA of Bender et al. [?]). We store a collection
of arrays of sorted (key, version, value) ele-
ments, arranged into levels, with ‘forward pointers’ be-
tween arrays to facilitate searches. Each element is writ-
ten (k, v, x), where k is a key, v is a version id, and x
is either a value or pointer to a value. Each array A is
tagged with some subtree W of the version tree, so we
write (A,W). Arrays in the same level have disjoint ver-
sion sets, hence stratified in version space. Arrays in
level l have size roughly 2l+1.

Preliminaries. Elements within an array (A,W) are
ordered lexicographically by (k, v). We assume keys
come equipped with a natural ordering (e.g., byte-order),
and versions are ordered by decreasing DFS (depth-first-
search) number in the version tree. This has the property
that for any v, all descendants of v appear in a contiguous
region to its left. For a version v, we write W [v] for the
subtree of W descendant from v. We also write, for sim-
plicity, V to represent both the global version tree and
the number of versions in it (its use will be clear from
the context).

An element (k, v, x) is said to live at version w iff v
is a descendant of w, and k has not been rewritten be-
tween v and w. An element (k, v, x) is lead at version
v. For an array (A,W), we write live(A,W) to count
all the elements live at some w ∈ W , and similarly for
lead(A,W). We use N to count the total number of ele-
ments inserted, and Nv to count the number of elements
live at version v.

2

k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

W={v1,v2,v3} k0, v0, x k1, v0, x k1, v2, x k2, v1, x k2, v2, x k2, v3, x k3, v1, x k3, v2, x

v0

v1
v4

v3v2

v5

Figure 1: A versioned array, a version tree and its layout
on disk. Versions v1, v2, v3 are tagged, so dark entries
are lead entries. The entry (k0, v0, x) is written in v0,
so it is not a lead entry, but it is live at v1, v2 and v3.
Similarly, (k1, v0, x) is live at v1 and v3 (since it was not
overwritten at v1) but not at v2. The live counts are as
follows: live(v1) = 4, live(v2) = 4, live(v3) = 4, and
the array has density 4

8 . In practice, the on-disk layout
can be compressed by writing the key once for all the
versions, and other well-known techniques.

We say an array (A,W) has density δ if, for all w ∈
W , at least a fraction δ of the elements in A are live at
w. We call an array dense if it has density ≥ 1

6 . The im-
portance of density is the following: if density is too low,
then scanning an array to answer a range query at version
v will involve skipping over many elements not live at v.
On the other hand, if we insist on density being too high,
then many elements must be duplicated (in the limit, each
array will simply contain all the live elements for a sin-
gle version), leading to a large space blowup. The cen-
tral part of our construction is a merging and splitting
process that guarantees that every array has both density
and lead fraction Ω(1). This is enough to guarantee only
a constant O(1) space and query blowup.

The notion of a split is important for the purpose
of breaking large arrays into smaller ones. For an
array (A,W) and version set X ⊆ W , we say
split((A,W), X) ⊆ A contains all the elements in A
live at any x ∈ X .

Notation in figures. Figures ?? and ?? give exam-
ples of arrays and various split procedures. We draw a
versioned array as a matrix of (key,version) pairs, where
the shaded entries are present in the array. For each ar-
ray (A,W), versions in W are written in bold font (note
that arrays may have entries in versions not in W – these
entries are duplicates, they are live in some version in
W , but are not lead). Figure ?? gives an example of a
versioned array.

Queries. In the simplest case, a point query can be
answered by considering each level independently. Un-
like the COLA, each level may have many arrays. We
guarantee that a query for version v examines at most

one array per level: examine the array (A,W) where W
contains the closest ancestor to v. In the simplest con-
struction, we maintain a per-array B-tree index for the
keys in that array, and a Bloom filter on its key set. A
query at v involves querying the Bloom filter for each ar-
ray selected as above, then examining the B-tree in those
arrays matching the filter. If multiple results are found,
return the one written in the nearest ancestor to v – or in
the lowest level if there is more than one such entry. In
practice, the internal nodes of each B-tree can be held in
memory so that this involves O(1) IOs per array.

For a range query, we find the starting point in each ar-
ray, and merge together the results of iterating forwards
in each array. The density property implies that, for large
range queries, simply scanning the arrays with the ap-
propriate version tags will use an asymptotically optimal
number of IOs. For small range queries, we resort to
a more involved ‘local density’ argument to show that,
over a large enough number of range queries, the aver-
age range query cost will also be optimal. Indeed, doing
better withO(N) space is known to be impossible. More
details can be found in [?].

Insertions, promotions and merging. An insert
of (k, v, x) consists of promoting the singleton array
({k, v, x}, {v}) into level 0. In general, an array S =
(A,W) promoted to level l always has a unique root w
in W , so we merge it with the unique array (A′,W ′)
at level l that is tagged with the closest ancestor to v
(if such an array exists) to give an array (A,W) =
(A ∪ A′,W ∪ W ′). If no such array exists, we leave
S in place.

After merging, (A,W) may be too large to exist at
level l. We employ two procedures to remedy this. First,
we call find-promotable in order to extract any possible
subarrays that are large and dense enough to survive at
level l + 1. Secondly, on the remainder (which may be
the entire array if no promotable subarray was found),
we apply density amplification, which produces a col-
lection of dense subarrays that all have the required size.

Find-promotable. This proceeds by searching for
the highest (closest to root) version v ∈ W such that
X = split(A,W[v]) has size ≥ 2l+1 (thus being too
large for level l) and has a sufficiently high live and lead
fraction. If such a version is to be found then it is ex-
tracted and promoted to level l + 1, leaving the remain-
der (A′,W ′) = split(A,W \W[v]). Figure ?? gives an
example of find-promotable.

Density amplification. Now we consider the remain-
der after calling find-promotable. There may be a version
w ∈ W ′ that was originally dense but is no longer dense
in the larger (A′,W ′). To restore density we subdivide
the array into several smaller arrays (A′i,W

′
i), each of

which is dense. Crucially, by carefully choosing which
sets of versions to include in which array, we are able

3

Promote
k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

live(v0) = 2
live(v4) = 2
live(v5) = 4

density = 2/6

Remainder
v0

v1
v4

v3v2

v5

k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

live(v1) = 4
live(v2) = 4
live(v3) = 4

density = 4/8

Promote

Remainder

Figure 2: Example of find-promotable. The merged ar-
ray is too large to exist at the current level (it has size
12, whereas level l = 3 requires size < 8, say). We
promote to the next level the subtree under version v1,
which gives the promoted array of size 8 and density
4
8 = 1

2 . Note that the entries (k0, v0), (k1, v0) are dupli-
cated, since they are also live at v1, v2, v3. The remainder
array has size 6, so it can remain at the original level.

to bound the amount of work done during density am-
plification, and to guarantee that not too many additional
duplicate elements are created.

We start at the root version and greedily search for a
version v and some subset of its children whose split ar-
rays can be merged into one dense array at level l. More
precisely, letting U =

⋃
iW ′[vi], we search for a subset

of v’s children {vi} such that

|split(A′,U)| < 2l+1.

If no such set exists at v, we recurse into the child vi
maximizing |split(A′,W ′[vi])|. It is possible to show
that this always finds a dense split. Once such a set U is
identified, the corresponding array is written out, and we
recurse on the remainder split(A′,W ′ \ U). Figure ??
gives an example of density amplification.

6 Practicalities

Consistency. We would like the data structure to be con-
sistent – at any time, the on-disk representation is in a
well-defined and valid state. In particular, we’d like it
to always be the case that, after a crash or power loss,
the system can continue without any additional work (or
very little) to recover from the crash. Both CoW and
Stratified B-tree implement consistency in a similar way:
the difference between the new and old data structure is
assembled in such a way that it can be abandoned at any
time up until a small in-memory change is made at the

split 1
k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

live(v4) = 2
live(v1) = 3
live(v2) = 3
live(v3) = 3

density = 2/7

split 2
v0

v1
v4

v3v2

v5

k0 k1 k2 k3

v0

v4

v5

v1

v2

v3

live(v0) = 2
live(v5) = 4

density = 2/4

split 2

split 1

live(v0) = 2
density = 2/11

Figure 3: Example of density amplification. The merged
array has density 2

11 < 1
6 , so it is not dense. We find a

split into two parts: the first split (A1, {v0, v5}) has size
4 and density 1

2 . The second split (A2, {v4, v1, v2, v3})
has size 7 and density 2

7 . Both splits have size < 8 and
density ≥ 1

6 , so they can remain at the current level.

end. In the case of CoW it is the root for version v: until
the table mapping v to root node is updated, the newly
copied nodes are not visible in searches, and can be re-
cycled in the event of a crash. Likewise for the Stratified
B-tree arrays are not destroyed until they are no longer
in the search path, thus ensuring consistency.

Concurrency. With many-core architectures, exploit-
ing concurrency is crucial. Implementing a good concur-
rent B-tree is difficult. The Stratified B-tree can naturally
be implemented with minimal locking. Each per-array
B-tree is built bottom-up (a node is only written once all
its children are written), and once a node is written, it
is immutable. If the B-tree T is being constructed as a
merge of T1, T2, then there is a partition key k such that
all nodes with key less than k are immutable; based on
k, queries can be sent either to T , or to T1 and T2. Each
merge can thus be handled with a single writer without
locks. In the Stratified B-tree, there are many merges
ongoing concurrently; each has a separate writer.

Allocation and low free space. When a new array of
size k needs to be written, we try to allocate it in the first
free region of size ≥ k. If this fails, we use a ‘chunking
strategy’: we divide each array into contiguous chunks
of size c >> B (currently 10MB). During a merge, we
read chunks from each input array until we have a chunk
formed in memory to output. When a chunk is no longer
needed from the input chunk arrays, it can be deallocated
and the output chunk written there. This doesn’t guar-
antee that the the entire array is sequential on disk, but
it is sequential to within the chunk size, which is suffi-
cient in practice to extract good performance, and only

4

 100

 1000

 10000

 100000

 1e+06

 1 10

In
se

rt
s

p
er

 s
ec

o
n

d

Keys (millions)

Insert rate, as a function of dictionary size

Stratified B-tree
CoW B-tree

Figure 4: Insert performance with 1000 versions.

uses O(c) extra space during merges - thus the system
degrades gracefully under low free space conditions.

7 Experimental results

We implemented prototypes of the Stratified B-tree and
CoW B-tree (using in-place updates) in OCaml. The ma-
chine had 1GB memory available, a 2GHz Athlon 64
processor (although our implementation was only single-
threaded) and a 500GB SATA disk. We used a block size
of 32KB; the disk can perform about 100 such IOs/s. We
started with a single root version and inserted random
100 byte key-value pairs to random leaf versions, and
periodically performed range queries of size 1000 at a
random version. Every 100,000 insertions, we create a
new version as follows: with probability 1/3 we clone a
random leaf version and w.p. 2/3 we clone a random in-
ternal node of the version tree. The aim is to keep to the
version tree ‘balanced’ in the sense that there are roughly
twice as many internal nodes as leaves.

Figures ?? and ?? show update and range query per-
formance results for the CoW B-tree and the Strati-
fied B-tree. The B-tree performance degrades rapidly
when the index exceeds internal memory available. The
right plot shows range query performance (elements/s
extracted using range queries of size 1000). The Strat-
ified B-tree beats the CoW B-tree by a factor of more
than 10. The CoW B-tree is limited by random IO
here2, but the Stratified B-tree is CPU-bound (OCaml is
single-threaded). Preliminary performance results from a
highly-concurrent in-kernel implementation suggest that
well over 500k updates/s are possible with 16 cores.

2(100/s*32KB)/(200 bytes/key) = 16384 key/s

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10

R
ea

d
s

p
er

 s
ec

o
n

d

Keys (millions)

Range rate, as a function of dictionary size

Stratified B-tree
CoW B-tree

Figure 5: Range query performance with 1000 versions.

5

