
�������������������� ��������������������������������������������������������������������������������������������
INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

Locality-preserving allocations Problems and
coloured Bin Packing

Andrew Twigg Eduardo C. Xavier

Technical Report - IC-10-18 - Relatório Técnico

May - 2010 - Maio

The contents of this report are the sole responsibility of the authors.
O conteúdo do presente relatório é de única responsabilidade dos autores.



Locality-preserving allocations Problems and coloured Bin

Packing

Andrew Twigg∗

Computing Laboratory
University of Oxford

andy.twigg@comlab.ox.ac.uk

Eduardo C. Xavier †

Institute of Computing
University of Campinas (UNICAMP), Brazil

ecx@ic.unicamp.br

Abstract

We study the following problem, introduced by Chung et al. in 2006. We are given,
online or offline, a set of coloured items of different sizes, and wish to pack them into
bins of equal size so that we use few bins in total (at most α times optimal), and that the
items of each colour span few bins (at most β times optimal). We call such allocations
(α, β)-approximate. We prove that for ε > 0, if we desire small α, no scheme can beat
(1 + ε,Ω(1/ε))-approximate allocations and similarly as we desire small β, no scheme
can beat (1.69, 1 + ε)-approximate allocations. We give offline schemes that come very
close to achieving these lower bounds. For the online case, we prove that no scheme can
even achieve (O(1), O(1))-approximate allocations. However, a small restriction on item
sizes permits a simple online scheme that computes (2+ε, 1.7)-approximate allocations.

1 Introduction

We consider the problem of computing locality-preserving allocations of coloured items
to bins, so as to preserve locality (colours span few bins) but remain efficient (use a few
total bins). The problem appears to be a fundamental problem arising in allocating files
in peer-to-peer networks, allocating related jobs to processors, allocating related items in
a distributed cache, and so on. The aim is to keep the communication overhead between
items of the same colour small. One application for example appears in allocating jobs in a
grid computing system. Some of the jobs are related in a such a way that results computed
by one job is used by another one. There are also non-related jobs that may be from
different users and contexts. Related jobs are of a same colour and each job has a length
(number of instructions for example). In the grid environment each computer has a number
of instructions donated by its owner to be used by the grid jobs. This way the objective
is to allocate jobs to machines trying to use few machines (bins) respecting the number of
instructions available (bins size), while also trying to keep related jobs together in as few
machines as possible. In peer-to-peer systems a similar problem also appears where one

∗Supported by a Junior Research Fellowship, St John’s College
†Supported by Fapesp, CNPq and FAEPEX

1



2 A. Twigg and E. C. Xavier

want to split pieces of files across several machines, and want to keep pieces of a file close
together to minimize the time to retrieve the entire file.

These problems can be stated as a fundamental bicriteria bin packing problem. Given
a set of bins with storage capacity 1, and a set of coloured items of different sizes, we would
like to allocate the items to bins so that we use few bins in total (at most α times optimal,
where we call α the bin stretch), and the items of each colour span few bins (at most β
times optimal, where we call β the colour stretch). We call such allocations (or packings)
(α, β)-approximate. The problem of minimizing any one of α or β is equivalent to classical
one-dimensional bin packing, but as we show, in general it is not even possible to minimize
them simultaneously. A natural extension is to consider bins as nodes of some graph G, and
we want to allocate bins so that each subgraph Gc induced by nodes containing items of
colour c has some natural property allowing small communication overhead, such as having
low diameter, or small size.

We prove that for ε > 0, if we desire small bin stretch, no scheme can beat (1+ε,Ω(1/ε))-
approximate allocations and similarly as we desire small colour stretch, no scheme can beat
(1.69, 1+ε)-approximate allocations. We give offline schemes that are based in well know bin
packing algorithms and yet come very close to achieving these lower bounds. We show how
to construct (1 + ε,Ω(1/ε)) and (1.69, 1 + ε) approximate allocations, the first one closing
the gap with the lower bound and the last one almost closing the gap. For the online case,
we prove that no scheme can even achieve (O(1), O(1))-approximate allocations. However,
a small restriction on item sizes permits a simple online scheme that computes (2 + ε, 1.7)-
approximate allocations.

2 Preliminaries

We now formulate the problem of computing locality-preserving allocations as a coloured
bin packing problem. We are given a set I of n coloured items each item e with a size s(e) in
(0, 1] and with a colour c(e) from C = {1, . . . ,m}, and an infinite number of unit-capacity
bins. Let Ic be the set of colour-c items, and denote by OPT(I) (OPT(Ic) respectively) the
smallest possible number of bins needed to store items in I (Ic respectively). For a packing
P of items I, define P (I) as the number of bins used to pack I, and define Pc(I) as the
number of bins spanned by colour-c items in the packing P . When I is obvious, we drop it
and write P and Pc.

We define an (α, β)-approximate packing as one where: (1) P 6 αOPT(I) + O(1) and
(2) for each colour c ∈ C, Pc 6 βOPT(Ic) + O(1). An algorithm that always produces
(α, β)-approximate packings is called an (α, β)-approximation algorithm.

As usal in bin packing problems, we allow additive constants and consider α, β as the
asymptotic performance ratios as the total weight of items (and hence the value of OPT)
grows large. This is because a simple reduction from PARTITION (eg see [4]) shows that,
without allowing additive constants, it would be NP-hard to do better than (1.5− ε, 2− ε)-
approximate packings.

When dealing with the online problem we have similar definitions for the competitive
ratio of an online algorithm, and in this case OPT(I) corresponds to an optimal offline



Locality-preserving allocations 3

solution to instance I that has full knowledge of the request sequence I. As standard,
we shall use the term approximation ratio interchangeably with competitive ratio when
discussing online algorithms (ie a 2-approximate online scheme is one that is within a factor
2 of the optimal offline scheme).

2.1 Related work

Chung et al.[1] consider the case where each item is of a different colour and can be frac-
tionally (arbitrarily) divided between bins, bins have different sizes and the total weight of
items exactly equals the total weight of bins. They show how to compute an allocation that
is asymptotically optimal for each colour. By contrast, we relax the assumption that we
must exactly fill all the bins, and consider the case of indivisible allocations. In this setting,
the problem is much more interesting: it is impossible to get arbitrarily good (1 + ε, 1 + ε)-
approximate allocations in general. Thus, these relaxed packings have a tradeoff between
bin stretch and colour stretch, with polynomial-time approximations. We also consider for
the first time the case where items arrive online. However, the case of heterogenous bins is
open for our setting.

The nonexpansive hashing scheme of Linial and Sasson [9] can also be used to find a
locality-preserving packing for unit-size items. By defining the distance of two items to
be 0 if they are of the same colour, and δ > 1 otherwise, one can interpret their dynamic
hashing result as follows: for any ε > 0, it is possible to hash unit-size items into bins in
O(1) time so that they have use O(OPT1+ε) bins (giving bin stretch O(OPTε) and colour
stretch O(1).

Krumke et al.[8] study a related ‘online coloured bin packing’ problem where the goal
is to minimize the number of different colours packed into each bin, while using the entire
capacity of each bin (in their problem all items have same unit size). However, this problem
is quite different to ours. In particular, an optimal solution problem when minimizing the
number of colours per bin may give arbitrarily bad bin stretch. Consider b bins of capacity
x, and unit size items of many colours c1, c2, ..., c(x−2)b+1. There will be 2b items of colour c1
and 1 item of each of the other colours. Now, a (1, 1)-approximate packing places x colours
from {c2...c(x−2)b+1} into each bin and the items of c1 into the remaining bins. On the other
hand, a packing minimizing the maximum number of colours per bin (while using all the
capacity of each bin) will place 2 items of c1 and x−2 items of other other colours into each
bin. Hence, considering colour 1, it may be packed individually into OPT(I1) = 2b/x bins,
but in this solution it spans b bins, giving colour stretch x/2, which can be made arbitrarily
large.

The ‘class-constrained bin packing problem’, studied by Golubchik et al.[5], Kashyap et
al.[7], Xavier et al.[12] and Shachnai et al.[10] is a coloured bin packing problem. The aim is
to minimize the number of bins used, subject to the constraint that each bin contains items
from at most c different colours (and subject to its capacity constraints). This problem has
applications in developing algorithms for data placement on parallel disk arrays. Again,
optimal solutions to this problem may be arbitrarily far from good if we wish to minimize
colour stretch.



4 A. Twigg and E. C. Xavier

3 Impossibility results for Offline Algorithms

We start by considering some lower bounds on what values of bin and colour stretch can
be achieved simultaneously. All these bounds hold for offline algorithms, so there is some
inherent tension between the two measures of colour stretch and bin stretch. We now show
a lower bound on colour stretch, if we wish to take bin stretch arbitrarily small.

Theorem 1 For bin stretch (1 + ε), it is impossible to achieve better than Ω(1/ε) colour
stretch.

Proof. For 0 < δ < 1/2, consider the instance containing n items of size 1 − δ, one
for each colour 1, . . . , n and n items of size δ, all of colour n + 1. For simplicity assume
that ε = 1/x for some integer x, and δ = 2ε, such that δn and εn are integers. We have
OPT(I) = n,OPT(Ic) = 1 for c = 1, . . . , n and OPT(In+1) = δn. Assume we want to
construct a packing using at most (1 + ε)n bins in total.

Since items of colours c = 1, . . . , n can not fit together, we use at most nε bins only for
colour n + 1, then at least n − (nε/δ) = n/2 colour-(n + 1) items overflow. Therefore at
least n/2 + εn = n(1/2 + ε) bins are used for colour-(n+ 1) items in any packing using at
most n(1 + ε) bins. Since OPT(In+1) = δn, the number of bins for colour-(n+ 1) is at least

OPT(In+1)(1/2 + ε)/δ = OPT(In+1)(1/(4ε) + 1/2)

= Ω(1/ε)OPT(In+1).

The construction holds for δ < 1/2, so it is valid for ε < 1/4. ut

On the other hand, if one wants to keep low colour stretch, no bin stretch smaller than
1.691 can be achieved.

Theorem 2 For colour stretch (1 + ε), it is impossible to achieve bin stretch better than
1.691, for sufficiently small ε.

Proof. Consider the following Sylvester sequence with l0 = 1, lj+1 = lj(lj + 1). For some
constantm, we assume we have items ofm different colours where, for colour ci, i = 1, . . . ,m,
we have a list of n items each one with size 1

li+1 + ε. For each colour ci an optimal packing
OPT(Ici) for colour stretch uses n

li
bins for i = 1, . . . ,m, each bin containing exactly li

items. Let P be the packing corresponding to the union of the optimal packings OPT(Ici)
for each colour. Notice that the bins of this packing cannot be joined together.

Now consider an optimal packing P ∗ for bin stretch, but which has colour stretch at
most (1 + ε). We will show that if the packing has colour stretch (1 + ε), then most of
the bins for each colour ci are packed like the optimal colour stretch packing. So P ∗ uses
almost the same number of bins as P .

For some colour ci, let kcij be the number of bins in P ∗ that contain exactly j items for
j = 1, . . . , li. We want to upper bound the number of bins that contain less than li items,



Locality-preserving allocations 5

which is
∑li−1

j=1 k
ci
j . Since P ∗ has colour stretch (1 + ε), each colour ci must span at most

(1 + ε)n/li bins. Counting the number of items packed less than li per bin gives

kcili +

li−1∑
j=1

kcij =
n−

∑li−1
j=1 jk

ci
j

li
+

li−1∑
j=1

kcij 6 (1 + ε)
n

li
,

so we can write

−
li−1∑
j=1

jkcij + li

li−1∑
j=1

kcij =

li−1∑
j=1

[(li − j)kcij ] 6 εn

Since (li − j) > 1 for j = 1, . . . , li − 1, the number of bins in P ∗ not containing exactly li
items of colour ci is at most

∑li−1
j=1 k

ci
j 6 εn. Hence there are at least n − (li − 1)εn items

that must be packed in bins containing li items. So at least

n− (li − 1)εn

li
=
n

li
(1−O(ε))

bins are used to pack only items of colour ci. The right part of the equality comes from the
fact that m is a constant and then (li − 1) is O(1). The packing P ∗ must use at least

P ∗(I) >
m∑
i=1

n

li
(1− (li − 1)ε)

bins, while an optimal solution for bin stretch uses exactly n bins by packing one item of
each colour in a bin, so the bound

P ∗(I)

OPT(I)
>

m∑
i=1

1− (li − 1)ε

li

=
m∑
i=1

1

li
− ε(m−

m∑
i=1

1

li
) > 1.691− ε′

holds for m > 5 and sufficiently small ε 6 ε′

m . ut

Somewhat suprisingly, the two correct bounds are not symmetric – the upper bounds
in the next section show that we can indeed achieve (O(1), 1 + ε)-approximation schemes.

4 Offline Algorithms

4.1 A (1 + ε,O(1/ε))-approximation algorithm

We now describe how to achieve asymptotically the bound in Theorem 1. We shall make
use of the APTAS of Fernadez de La Vega and Lueker [3] (VL), which operates as follows:



6 A. Twigg and E. C. Xavier

The APTAS VL: fix some ε > 0, and separate items I into small Is (< ε) and large
Il(> ε). For the large items, sort them by increasing size and partition them into K = 1/ε2

groups, each of at most nε2 items. Round each item up to the size of the largest item in its
group, to obtain an instance J .

Each bin contains at most 1/ε items, so the total number of different bin types is at

most t =
(1/ε+K

1/ε

)
, and the total number of possible packings using at most n bins is at most(

n+t
t

)
, which is polynomial in n. Therefore we can enumerate these packings and choose the

best one. Since we have rounded all items up in size, a packing of the rounded up items
gives a valid packing of the original items. The following elegant domination argument
(from [3]) shows that an optimal packing for the rounded up items uses at most a factor
(1 + ε) more bins than packing the original items: consider rounding down item sizes to the
smallest in the group to obtain an instance J ′. Then a packing for J ′ gives a packing for
all but the largest group in J , which contains at most nε2 items. Since each item has size
> ε, we have OPT(Il) > nε. Thus,

OPT(J) 6 OPT(J ′) + nε2 6 (1 + ε)OPT(Il).

Now take the small items Is and pack them into the remaining free space using first fit
(FF). If we do not open more bins, then we already have at most (1 + ε)OPT(I) bins. If
we need to add more bins, then clearly each bin except at most 1 is full to at least 1 − ε.
In this case, we have at most OPT(I)/(1− ε) + 1 6 (1 + 2ε)OPT(I) + 1 bins.

Our modification: For our problem, we can use the rounding step, but we cannot use
the FF step for small items (as some colours may be spread over many bins). However, a
small change fixes this: group small items by colour, pack each group using FF into existing
bins having more than 2ε of free space, then open more bins if necessary. With this idea,
for each colour c, every bin (except at most 1) either contains at least ε weight of colour c,
or no items of colour c (if a bin contains a large item this is clearly true, and if not, since
we used FF and each bin has at least 2ε of free space, at least half of this space is used).

So each colour spans at most OPT(Ic)/ε bins, giving the desired colour stretch. For the
bin stretch, the argument is similar to the one above – if new empty bins are used when
packing small items, then each bin is full to at least (1 − 2ε) and if not, we already have
the desired number of bins.

4.2 A (1.7, 1 + ε)-approximation algorithm

We now present an algorithm that almost closes the gap with the lower bound of Theorem 2.
For this, we will use both the APTAS of Fernadez de La Vega and Lueker (VL) [3] described
above, and the online bin packing algorithm Bounded Best-Fit (BBF), whose competitive
ratio is 1.7 [2].

BBF : maintain at most k open bins, and the rest are closed and cannot be reopened.
An item of size s is packed into the open bin that is most full and has space for the item,



Locality-preserving allocations 7

breaking ties arbitrarily. If no such bin exists, the fullest bin is closed and a new empty bin
opened. It is known that BBF with k = 2 has (asymptotic) competitive ratio 1.7 [2].

Our algorithm is presented in Figure 1. It first packs items of each colour separated
using the algorithm VL. Then given all m packings for each colour in some order, we apply
the algorithm BBF over the items in the order the items appears in these packings.

Algorithm 1 A (1.7,1+ε)-approximation algorithm

1: Arbitrarily order colours c1 . . . cm.
2: for each colour ci do
3: pack items of this colour into new bins using the APTAS of (VL) (all bins are monochromatic).
4: end for
5: Let P = P (c1) ∪ . . . ∪ P (cm) be all bins generated.
6: Let P ′ be a new packing initially empty.
7: for each item e in the order it appears in P do
8: Pack e into P ′ with BBF.
9: end for

10: Return P ′.

We now prove a lemma that shall be useful in proving the desired approximation ratio
of the algorithm.

Lemma 3 Let b = (B−(k−1), . . . , B0), be some opened bins that may contain items, and let
P = (B1, . . . , Bx) be bins packing items of some set S. Let P ′ be the packing generated over
the items in S by the BBF algorithm in the order they appear in P using the bins in b as
initially opened. Then the number of used bins by P ′ is at most k + x.

Proof. Let P ′ = (B′−(k−1), . . . , B
′
0, B

′
1, . . . , B

′
y) be the bins in the order they are closed by

BBF. We will show that any item e ∈ Bi of P for i ∈ {1, . . . , x} is packed in a bin B′j of P ′

where j 6 i.
Assume for contradiction that e ∈ Bi is the first item packed in some bin B′j with j > i.

Since e is the first such item of Bi, all previous items e′ ∈ Bi′ , i′ = 1, . . . , i − 1 must have
been packed in a bin B′j′ with j′ 6 i′. So bin B′i only contains items of Bi. But since P is
a valid packing, there must be room for e in B′i. ut

Theorem 4 The algorithm computes (1.7, 1 + ε)-approximate packings.

Proof. The time bound follows since the number of colours is polynomial in n, and
both algorithms VL and BBF run in polynomial time. In steps (1-4) we generate packings
P (ci) for each colour ci such that P (ci) 6 (1 + 2ε)OPT(ci) + 1. In steps (7-9) of the
algorithm it is used the BBF algorithm to pack the items in the order they appear in
P = (P (c1), . . . , P (cm)). Since the BBF algorithm keeps at any time k = 2 opened bins,
by the previous Lemma 3, in the final packing P ′ we have for each colour ci, P

′
ci(I) 6

(1 + 2ε)OPT(Ici) + 3. Since BBF has approximation factor 1.7 we also have the bound
P ′(I) 6 1.7OPT(I) +O(1) for the entire packing. ut

It is interesting to note that just packing the items of each colour in order using bounded
best fit gives a (1.7, 1.7)-approximate packing (for the bin stretch, ignore colours then



8 A. Twigg and E. C. Xavier

the entire packing is 1.7-approximate, and for colour stretch use Lemma 3 above to get
Pc 6 1.7OPT(Ic) +O(1) since the algorithm is bounded space).

5 Online Algorithms

We now consider the online version of the problem. Coloured items arrive and must be
packed with no knowledge of future arrivals. The main difficulty with constructing an
online algorithm is that we don’t know in advance the total weight of each colour, but on
the other hand would like to reserve space so that colours of small weight aren’t spread over
many bins.

5.1 Impossibility of online (O(1), O(1))-approximation

Even under the restriction that items are > ε, there is still a lower bound L > 1.5401 for
the online classical bin packing problem, due to van Vliet [11]. In this case, L is also a
lower bound for both bin stretch and colour stretch; we cannot hope to do better in either
parameter. To see this, consider packing items of only one colour, then the number of bins
used cannot be smaller than LOPT +O(1).

We now show that no online (O(1), O(1))-approximation scheme exists. The idea is to
consider items in rounds. In each round an optimal packing for the items needs a single
extra bin. If a scheme has bin stretch O(1) it only needs O(1) bins per round, but if the
instance has a large number of colours then some fraction of colours will be forced to split
every few rounds, from which it follows that some colour must split in at least a constant
fraction of rounds.

Theorem 5 There is no (α, β)-approximation online algorithm for the coloured bin packing
problem where (α, β) are constants.

Proof. Consider an instance where there are n different colours and where each item has
size 1/n. We analyze the packing in rounds and in each round we receive a list L of n
items of n different colours. There will be at most nx rounds where x is the number of bins
necessary to pack any colour after nx rounds, and n is going to be defined later.

Let Ii be the total number of items until round i (there are ni) . Since the optimal
packing for bin stretch uses i bins, any (α, β)-algorithm must use at most αi bins by round
i. Wlog assume that in each new round the algorithm uses at most α bins, since otherwise it
will have approximation ratio > α and the adversary will stop at this point. The algorithm
may use less than α bins in one round and more than α bins in a later round, but the
average per round must be α. So we can assume that the algorithm opens α bins per round
even if it will only use some bins in a later round. So we focus on the colour stretch. We
will consider at most nx rounds, and so there are at most nx items of each colour. Clearly
the optimal packing for colour stretch has x bins per colour, so A must guarantee that each
colour spans at most xβ bins.

In each round the algorithm has α bins available and some other bins that were partially
filled. Since the bin stretch is guaranteed to be at most α, the only job of the algorithm is



Locality-preserving allocations 9

to keep the β approximation in colour stretch. We now show that any algorithm A must
incur colour stretch larger than β on the request sequence.

Define s(i) = α + α2 + . . . + αi, with s(0) = 0. For i > 1, stage i consists of rounds
(s(i−1) + 1) . . . s(i). At the end of stage i the algorithm has αs(i) bins available, and items
of total weight s(i). It can be seen that

s(i+ d) = αds(i) + s(d) > αds(i). (1)

We consider groups of d+ 1 stages, where d = d 5
logαe. We will show that for every group of

d+1 stages, there exists a set of at least n/8 colours that split during this group, i.e colours
that need to be packed in more bins than the ones available in the beginning of the group.

Here is the proof of this claim. Assume that less than n/8 colours split during the first
d stages of the group starting at round s(i) + 1. Then there is a set of at least 7n/8 colours
that do not split during the next d stages. All items of these colours remain packed in the
first αs(i) bins. In this case, we have items of weight

7

8
(s(i+ d)− s(i)) + s(i) =

1

8
(7s(i+ d) + s(i))

>
7

8
αds(i)

going into at most αs(i) bins (the last inequality uses (1)). Now we choose d so that
7
8α

ds(i) > αs(i), which is satisfied by taking d = d 5
logαe >

log 8/7
logα + 1.

This shows that at least 7n/8 (> n/8) colours (say C ′) must split during the following
(i.e. (d + 1)th) stage. The argument for this is the following: consider all the bins that
contained items of colours C ′ at the start of the group. All these bins become overfull just
by considering the weight of items with colours in C ′. So for every colour c in C ′, at least
one of its bins splits, and so at least |C ′| colours split.

Clearly, an item of every colour is contained in some bin at the start of every group,
so the claim implies that after q(d + 1) stages, we have at least qn/8 splittings. So taking
q > 8xβ, after 125xβ

logα > 8xβ(d + 1) stages, we have had > xβn splittings, so some colour
must have split > xβ times. It remains to choose n large enough so that we have at least
α
α−12125xβ > s(125xβlogα ) rounds. ut

5.2 An online (3, 1.7)-approximation

In this section we provide an online algorithm that computes (3, 1.7)-approximate packings,
but we need to assume that each colour class has total weight at least ε > 0.

Wlog assume that ε = 1
2j

for some positive integer j. We consider two types of bins:
isolated, that corresponds to bins packing only items of a given colour, and non-isolated,
that may pack items of different colours. The non-isolated bins are partitioned into at most
j levels. A level-i bin is divided in exactly 1/(2iε) regions each of size 2iε for i = 1, . . . , j.
These regions are monochromatic (each region contains items of at most one colour). A
region in some level-i bin is called a level-i region. We use a modified NF algorithm MNF
to pack items into non-isolated bins, and switch to BBF to pack colours in isolated bins.
MNF is similar to NF and a description is given below (Algorithm 2).



10 A. Twigg and E. C. Xavier

Algorithm 2 Modified Next Fit (MNF)

1: To pack item e of colour c and size s(e)
2: Let i be the highest level occupied by colour c
3: (Let i = 1 if this is the first item of colour c)
4: if e can be packed in the level-i region then
5: Pack e into this level-i region
6: else
7: Let l > i be the lowest level such that 2lε > s(e)
8: Pack e into a new level-l region (possibly creating a new level-l bin)

9: end if

Notice that each colour occupies at most 1 level-i bin, for each level i. We say that
a colour c has level i where i is the largest level bin containing items of colour c. The
following algorithm uses MNF to pack items of the same colour until the colour has level
j. When this happens the algorithm starts packing items of the colour in isolated bins (the
last level-j bin is also considered an isolated bin) using the BFF algorithm. A description
of the algorithm is given below (Algorithm 3).

Algorithm 3 A (3,1.7)-approximation algorithm.

Require:
∑

e∈Ic
s(e) > ε for each colour c

1: To pack item e of colour c and size s(e)
2: if colour c has level < j then
3: Pack e with MNF in the non-isolated bins
4: else
5: Pack e with BBF in the isolated bins.

6: end if

The following lemma states that each level-i bin in use has at least 1/3 of its capacity
used by items. Notice that for each level i, at most one level-i bin is not using all its regions,
since a new level-i bin is created only when all existing level-i regions are used. So there
are at most O(log 1

ε ) = O(1) non-isolated bins that have some unused regions.

Lemma 6 Consider the non-isolated bins that have all their regions in use. On average,
each bin has at least 1/3 of its capacity used by items.

Proof. We will prove this by considering the levels used by any colour c using non-isolated
bins.

For each colour c, a group is a maximal sequence of regions 2kε, 2k+1ε, . . . , 2k+pε used by
colour c (each colour may occupy a number of disjoint groups). We will show that for each
group, its regions used by colour c have 1/3 of their area occupied. Let 2kε, 2k+1ε, . . . , 2k+pε
be a group used by colour c.

We have two cases:

• p is odd: Consider the pairs of adjacent regions

(2kε, 2k+1ε), . . . , (2k+p−1ε, 2k+pε).



Locality-preserving allocations 11

Since we used MNF to pack the items, for each pair of regions the total weight of
items is at least the size of the region in the lowest level. Since the higher level region
is twice the size of the lower one, each pair has at least 1/3 of its area occupied.

• p is even: If k > 2 then there is an item in the first region 2kε of the group that could
not fit in a previous used region by colour c. This item was packed in the smallest
region with room for it. So this item occupies at least 1/2 of region 2kε. If k = 1
then the assumption that s(e) > ε implies that this region is filled by at least 1/2.
The remaining regions (2k+1ε), . . . , (2k−1ε, 2k+pε) can be paired as in the odd case,
and for each pair at least 1/3 of its total area is occupied.

ut

With this result we can prove the following theorem:

Theorem 7 The algorithm is a (3, 1.7)-approximation scheme, and uses space at most
O(m).

Proof. Since we use BBF to pack isolated bins we can guarantee that on average at least
1/2 of the area of the isolated bins is occupied, and for the non-isolated bins, the previous
lemma says that at least 1/3 of the capacity of these bins is occupied, with the exception
of at most O(log 1/ε) bins. So for bin stretch we have a bound of 3OPT(I) +O(log 1/ε).

Now we consider the colour stretch. For a colour c using only non-isolated bins, it must
use at most O(log 1/ε) bins, which is a constant. If a colour c also uses isolated bins, then
by the performance bound of BBF [2], it uses at most 1.7OPT(Ic) + O(log 1/ε) bins. The
approximation ratio (3, 1.7) is then valid if 1/ε is bounded by a constant.

For the space bound, BFF uses at most O(1) open bins per isolated colour, and MNF
uses at most one open bin per colour. ut

We may also consider trying to improve the bin stretch bound of 3 by using a variation
of FF instead of NF in the modified next fit scheme. A ‘modified first fit’ MFF works as
MNF except that step 2 is replaced by ‘let i be the lowest level occupied by colour c with
space for e’, so that we try to pack e in each of the used regions, packing it in the first such
region with space for e. This requires at most O(log 1/ε) open bins per colour, but one may
expect better performance, bearing in mind that FF beats NF. The following result shows
that this is not the case, and using MFF provides no improvement in the bin stretch.

Theorem 8 Using either MFF or MNF, the approximation factor (3, 1.7) is tight.

Proof. Consider that ε = 1
2j

for some positive even integer j. We will consider pairs of
colours (c, c′). Assume that for colour c we receive j items in the following order: an item
of size 1

2j−i
followed by an item of size 1

2j−i
+ γ, for i = 0, 2, 6, . . . , j − 2, where γ > 0 is

arbitrarily small. For colour c′ we have j − 2 items in the following order: an item of size
1

2j−i
followed by an item of size 1

2j−i
+ γ, for i = 1, 3, . . . , j − 3.

Using the MFF (or MNF) algorithm to pack these items, we use approximately 1/3 of
the allocated area for the items (for small γ). An optimal packing of the items of the colours



12 A. Twigg and E. C. Xavier

(c, c′) uses one bin almost full. To see this, note that the sum of the sizes of the items of
these colours is

j−1∑
i=1

(
1

2i
+ γ) 6

∞∑
i=1

(1/2)i = 1

for sufficiently small γ (i.e. 1
(j−1)·2j ). So for appropriate values of j and letting γ → 0,

the sum of item sizes of each pair of colours can be made arbitrarily close to 1. We can
then consider arbitrarily large instances by using many pairs of colours, thus establishing
an asymptotic lower bound on 3 on bin stretch.

In the same instance we consider a special colour c∗ where we first receive an item of
size 1 and then an instance that provides the worst case ratio 1.7 for the BBF algorithm
(see [6]). Then for colour stretch the bound 1.7 is also tight. ut

5.3 An online (2 + ε, 1.7)-approximation

In this section we show how to extend the algorithm of the previous section 5.2 to get an
online algorithm that computes (2 + ε, 1.7)-approximate packings. We now assume that
each item has size at least ε > 0 (instead of requiring that the total weight of each colour
is at least ε).

The algorithm also uses isolated and non-isolated bins. It pack items of colour c in
non-isolated bins while the total size of packed items of colour c, w(c) 6 g, where g = 1/ε.
When w(c) > g the algorithm uses isolated bins to pack items of colour c. The algorithm
is given below (Algorithm 4).

Algorithm 4 (2 + ε, 1.7)-approximation

1: Let g = 1/ε
2: For each colour c let w(c) = 0
3: To pack item e of colour c and size s(e)
4: if w(c) 6 g then
5: Pack e into non-isolated bins using FF
6: w(c)← w(c) + s(e)
7: else
8: Pack e into isolated bins of colour c using FF

9: end if

Theorem 9 The algorithm is a (2 + ε, 1.7)-approximation.

Proof. First consider colour stretch. For each colour c, it uses at most g/ε non-isolated
bins, because each item has size at least ε. When w(c) > g it packs all items of this
colour in isolated bins, and since we use the FF algorithm we can bound colour stretch by
1.7OPT +O(g/ε).

Now for bin stretch we have the following. At the end of the execution of the algorithm,
it uses N1 non-isolated bins. It uses some isolated bins as well for large colours (the ones
with w(c) > g). There are some large colours that uses just one isolated bin, and assume



Locality-preserving allocations 13

there are k of these large colours. There are some other large colours that uses more than
one isolated bin, and assume that in total the algorithm uses N2 bins for these large colours.

Since we used FF to pack the items in non-isolated bins we know that on average each
one of the N1 bins are full to 1/2. For the same reason the N2 bins used by large colours
that uses more than one bin are full on average by at least 1/2. So the following bound is
valid OPT >

∑
e s(e) > (N1 +N2)/2.

Notice that the algorithm starts to use isolated bins for colour c, only when w(c) > g,
and then we also have the bound OPT >

∑
e s(e) > k · g.

The approximation ratio of the algorithm is then bounded as follows

ratio =
N1 +N2 + k

OPT

6
N1 +N2 + k∑

e s(e)

6
N1 +N2

(N1 +N2)/2
+

k

gk

= 2 + 1/g.

Since g = 1/ε the algorithm is a (2 + ε, 1.7)-approximation. ut

6 An APTAS to approximate optimal bin stretch

Our lower bounds show that it is impossible in general to achieve a (1+ε, 1+ε)-approximation.
We now show that for any colour stretch β > 1 and every class of instances that admit a
(1, β)-approximate packing, we can compute a (1 + ε, (1 + ε)β)-approximate packing in
polynomial time. In this section we consider that the number of different colours m is
bounded by a constant; relaxing this restriction remains open. It is also worth noting that
our problem now is slightly different since we are assuming instances that admit a (1, β)-
approximate packing, and in general there are instances that does not admit such packings
(see Theorem 1).

We shall use OPTβ(I) to denote the smallest number of bins needed to pack items
I using colour stretch 6 β. Similarly (by slight abuse of notation), OPTβ,c(I) is the
number of bins spanned by colour c in such a packing. Clearly, OPTβ,c(I) 6 βOPT(Ic).
The scheme we describe below computes a packing P satisfying (1) total number of bins
P (I) 6 (1 + ε)OPTβ(I) + O(1), and (2) for each colour c, it uses at most Pc(I) 6 (1 +
ε)OPTβ,c(I) +O(1) 6 β(1 + ε)OPT(Ic) +O(1) bins.

The idea is to use a variant of the grouping and rounding technique, but to explicitly
work with the instance where items are rounded down. We are able to show that by
packing some very large items and very small items separately, only a few items ‘overflow’
from some optimal packing OPT, and thus we can still achieve the desired colour stretch
and bin stretch.

Denote by I l the items in I with size at least ε2 (large items), and Is the remaining
items in I (small items).



14 A. Twigg and E. C. Xavier

Packing large items: Partition the large items by colour: I l = I1, . . . , Im and let nc =
|Ic| be the number of items of each colour c. Then sort each colour Ic by decreasing
order of item size and partition it into at most M = d1/ε3e groups Ic1, Ic2, . . . , IcM , i.e
Ic = Ic1‖ . . . ‖IcM where ‖ is a concatenation operator. Each group has bncε3c items except
perhaps the last.

For each group of each colour, round down the items to the size of the smallest item in
the group (by contrast with VL, who round up item sizes). As before, we can enumerate all
such packings: the number of items per bin is at most y 6 1/ε2, and the number of distinct
item sizes is a constant mM (recall m is the number of colours and is assumed to be a
constant). Thus, there are at most r′ =

(
y+Mm

y

)
different bin configurations. We shall do

something more involved with the small items, so we shall attach to each bin configuration a
subset of colours that shall be used for the small items later on. This gives at most r = r′2m

total configurations so the number of feasible packings into at most n bins is bounded by(
n+r
n

)
6 (n + r)r. Notice that among the configurations there are some that may contain

bins with no large items, and just have a subset of colours attached to show that small
items can be packed later.

We enumerate all such packings, and keep only those that have colour stretch at most β
(ignoring the additive constant). One of these packings corresponds exactly to an optimal
packing after removing its small items and with its large items rounded down.

A similar domination argument to before will now show that at least one of these
packings has close to the desired colour stretch and bin stretch. Let P be one of the
enumerated packings with colour stretch at most β. Since item sizes were rounded down,
each group Icj in P gives a packing for the items with orignal sizes in the next group Ic(j+1)

(all these items have smaller size than the previous group). The only items not packed by
this are those in the first group (with largest size) – denote these items by Q = ∪mc=1Ic1.

The ‘very large’ items in Q are packed into new bins using first fit (FF), considering all
items of one colour before the next colour. Let P (Q) be the size of the packing obtained in
this way. The following simple argument shows that these very large items will contribute
only a small amount to the total bin and colour stretch.

Lemma 10 P (Q) 6 εOPT(I) and P (Qc) 6 εOPT(Ic) for each colour c.

Proof. Clearly first fit packs at least one item per bin. Since |Q| 6
∑

c ncε
3, and each item

has size at least ε2, we have P (Q) 6 εOPT(I). Since we apply first fit to items grouped by
colour, the same argument establishes the claim for colour stretch. ut

Packing small items. Let P = {B1, . . . , Bk} be a packing of the large items I l. We now
wish to pack carefully the small items Is into P .

The packing of the small items is obtained from a solution of a linear program. Recall
that when enumerating packings of large items, each bin was tagged with a subset of colours
that could be used to pack small items. Let Ni ⊆ {1, . . . ,m} be the set of possible colours
that may be used to pack the small items in the bin Bi of the packing P . For each colour
c ∈ Ni, define a non-negative variable xic. The variable xic indicates the total size of small
items of colour c to be packed in the bin Bi. Denote by s(Bi) the total size of items already



Locality-preserving allocations 15

packed in the bin Bi. Consider the program denoted by LPS:

max
k∑
i=1

∑
c∈Ni

xic s.t.

s(Bi) +
∑
c∈Ni

xic 6 1 i = 1, . . . , k (1)

k∑
i=1

xic 6 s(Isc ) c = 1, . . . ,m (2)

where Isc is the set of small items of colour c in I. The constraint (1) guarantees that
the total size of items packed in each bin does not exceed the bins size and constraint (2)
guarantees that the sum of the values of variables xic is not greater than the total size of
small items.

Given a packing P , and a fractional packing of the small items, we do the following:
for each variable xic we pack, while possible, the small items of colour c into the bin Bi, so
that the total size of the packed small items is at most xic. The possible remaining small
items (the ‘overflowing’ items) are packed using FF into new bins, again grouped by colour
(meaning pack all items of one colour before the next).

Algorithm 5 APTAS(I)

Require: Number of different colours m in I is O(1)
1: Fix ε > 0
2: Split items I into small (< ε2) Is and large (> ε2) I l

3: Group large items by colour and sort by decreasing size
4: Group large items of each colour into d1/ε3e groups and round item sizes down in each

group
5: Enumerate all packings of large items, with attached ‘small colours’ labels
6: For each colour c, pack remaining ‘very large’ items Qc using FF
7: For each packing P , solve LPS to add small items
8: For each packing P , pack the overflowing small items into new bins using FF
9: Return the best packing that has colour stretch at most β

Approximation ratio. We will claim that there exists a packing P such that after the
very large items Q and the small items Is have been packed into P , it has the desired bin and
colour stretch. In particular, at least one packing uses at most (1 +O(ε))OPTβ(I) +O(1)
bins in total and at most (1 + O(ε))OPTβ,c(I) + O(1) 6 β(1 + O(ε))OPT(Ic) + O(1) bins
for each colour c.

Theorem 11 Let β > 1 be the desired colour stretch. The algorithm finds a packing P
such that P (I) 6 (1 +O(ε))OPTβ(I) +O(1), and Pc(I) 6 β(1 +O(ε))OPT(Ic) +O(1) for
each colour c.



16 A. Twigg and E. C. Xavier

Proof. Let OPTβ be an optimal packing for the instance I with colour stretch β. Let
OPT′β be the packing OPTβ without the small items and with the large items rounded down
as described. Assume that each bin of OPT′β has an indication of the colours of small items
used in the corresponding bin of OPTβ. Clearly in the enumeration step of the algorithm
one packing with the same configuration of OPT′β with rounded items, is generated. This

gives a packing P for the original items in I l \Q. Notice that the number of bins used by
P and OPTβ is the same. The very large items in Q are packed separately.

In the packing P there must be enough room to pack all small items, since there is in
OPTβ. When packing the small items (guided by the fractional packing LPS), at most one
small item of each colour is not packed into each desired bin. So, the total size of small
items that overflow and need to be packed into new bins is at most OPTβ(I)ε2m. These

small items use at most
⌈

OPTβ(I)ε
2m

(1−ε2)

⌉
+1 new bins, since each bin is full to at least (1−ε2)

except perhaps by the last one. Considering colour stretch, each colour c uses at most⌈
OPTβ(Ic)ε

2

(1−ε2)

⌉
+ 1 new bins.

The algorithm packs these small items in new bins obtaining a new packing P ′(I \Q).
The number of bins is at most

P ′(I \Q) 6 OPTβ(I) +

⌈
OPTβ(I)ε2m

1− ε2

⌉
+ 1 (2)

6 (1 +O(ε))OPTβ(I) +O(1). (3)

Considering colour stretch we have, for each colour c,

P ′(Ic \Qc) 6 OPTβ(Ic) +

⌈
OPTβ(Ic)ε

2

1− ε2

⌉
+ 1 (4)

6 (1 +O(ε))OPTβ(Ic) +O(1). (5)

To finish the proof, it remains to consider the very large items Q. For these, Lemma 10
shows that they need an extra ε fraction of bins for each colour and in total. The running

time of the entire algorithm is dominated by the enumeration step which is O(nO(1/ε2)m/ε
3

)
ut

7 Open Problems

• Improved approximation ratio. Can we get an online algorithm with (1.7+δ, 1.7+
δ) approximation ratio, with the assumption on minimum item sizes?

• Multicoloured items. The multicoloured case is also interesting: fix a set of (possi-
bly unbounded) colours C, and let each item have several (say at most k) colours from
C. The original definitions of colour and bin stretch still apply. By allowing k copies
of each item to be packed, it is certainly possible to reuse any (α, β)-approximation
algorithm in this paper to construct one with bin stretch kα and colour stretch β. Is
it possible to do better?



Locality-preserving allocations 17

• Network packing version. Let the items form a graph as follows: the vertices
are the items, and the (weighted or unweighted) distance between two items is a
measure of how closely together the items should be ‘packed’. The notion of bin
stretch is as before, and colour stretch is replaced by the following notion of ‘strong
diameter stretch’: for a set of vertices X, let diam(X) be their ‘strong diameter’,
i.e. maxu,v∈X dG(u, v). Let B(X) be the bins spanned by items in X. Then strong

diameter stretch is maxX⊆V
diam(X)
|B(X)| . What bounds can we achieve when using this

quantity, and does it depend on eg. the expansion of G?

References

[1] F. Chung, R. Graham, R. Bhagwan, S. Savage, and G. M. Voelker. Maximizing data
locality in distributed systems. J. Comput. Syst. Sci., 72(8):1309–1316, 2006.

[2] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best is better than
first. Algorithmica, 31(2):115–138, 2001.

[3] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+epsilon
in linear time. Combinatorica, 1(4):349–355, 1981.

[4] Jr. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
NP-hard problems, chapter Approximation algorithms for bin packing: a survey, pages
46–93. PWS Publishing Co., Boston, MA, USA, 1997.

[5] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algo-
rithms for data placement on parallel disks. In SODA ’00: Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 223–232, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied Mathematics.

[6] D. S. Johnson, A. J. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput., 3(4):299–325, 1974.

[7] S. Kashyap and S. Khuller. Algorithms for non-uniform size data placement on parallel
disks. J. Algorithms, 60(2):144–167, 2006.

[8] S. O. Krumke, W. de Paepe, J. Rambau, and L. Stougie. Online bin coloring. In ESA
’01: Proceedings of the 9th Annual European Symposium on Algorithms, pages 74–85,
London, UK, 2001. Springer-Verlag.

[9] N. Linial and O. Sasson. Non-expansive hashing. In STOC ’96: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 509–518, New
York, NY, USA, 1996. ACM.



18 A. Twigg and E. C. Xavier

[10] H. Shachnai and T. Tamir. Polynominal time approximation schemes for class-
constrained packing problem. In APPROX ’00: Proceedings of the Third Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization, pages
238–249, London, UK, 2000. Springer-Verlag.

[11] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inf. Process.
Lett., 43(5):277–284, 1992.

[12] E. C. Xavier and F. K. Miyazawa. The class constrained bin packing problem with
applications to video-on-demand. Theor. Comput. Sci., 393(1-3):240–259, 2008.


