
Local routing algorithms for
node-capacitated multicommodity

broadcast

Andrew Twigg and Laurent Massoulié
Thomson Research, Paris

firstname.lastname@thomson.net

Thomson Technical Report
Number: CR-PRL-2007-08-0001

Date: August 22, 2007

Abstract: Given a directed network with upload and download
capacities at nodes, we consider the multicommodity relay-free
multicast problem: there are k multicast sessions, each with a
source si ∈ V , receiver set Ri ⊆ V and demand λi > 0, with
the constraint that nodes only forward packets of commodities
for which they are also a receiver. When each Ri is a clique,
we prove that whenever demands {λi + ε} are feasible, a simple
local-control routing algorithm is stable under demands {λi}.
We also give a randomized procedure for resampling neighbours
that allows the use of bounded-degree neighbourhoods.

C(s) = 2

3

a
−

a
+

∞ ∞

2

s
+

s
−

b
−

3

b
+

C(b) = 3C(s) = 3

a b

s

Figure 1: An example of when the simple node-capacity transformation used
in the unicast case fails in the broadcast case

1 Introduction

Given a directed network G = (V,E) with n nodes, a multicast session
(si, Ri, λi) contains a source si ∈ V , a receiver set Ri ⊆ V and a nonnega-
tive demand λi. We assume that si ∈ Ri. We consider the node-capacitated
problem, where each node u has upload capacity c+u and download capacity
c−u . We are interested in local-control algorithms to route the commodi-
ties from sources to receiver sets that are stable whenever the demands are
feasible.

When there is a single receiver set containing a single destination node,
we have the node-capacitated unicast problem. In this case, Menger’s the-
orem [5] says that there are k vertex-disjoint paths between a source s and
sink t if and only if G is k-vertex-connected, and the maxflow algorithm of
Ford and Fulkerson [2] can be used (replacing each node of capacity c by
two nodes linked by an edge of capacity c).

When the receiver sets contain several nodes, the above technique cannot
be used. Consider the network in Figure 1 – the node-capacitated network
on the left can clearly only support a broadcast rate of one, but the min-
mincut of the network on the right is two (and by Edmonds’ theorem [1]
has broadcast rate two). The problem arises because the transformation
‘creates’ capacity when there are multiple receivers sharing the same flow
paths.

2

1.1 Contributions

In recent work [4], we showed that a simple local-control algorithm achieves
the optimal broadcast rate for the complete graph, when only upload capac-
ities are considered (download capacities were assumed to be infinite) and
there is a single commodity (s, V, λ) to be broadcast to all nodes.

In this paper, we consider the multicommodity version of the problem
with a natural restriction that there are no relay nodes, i.e. node u will
only forward packets of commodities i for which u ∈ Ri. This is a natural
restriction to consider when one cannot assume that network users will for-
ward packets for commodities for which they have no interest in receiving.
Indeed, this is the current model employed by applications such as BitTor-
rent. We also consider the case where download capacities are limited, and
show that the same local-control algorithm achieves the optimal broadcast
rate whenever a given set of demands is feasible.

The paper is structured as follows. In Section 2 we describe the algo-
rithm and derive the fluid limits that we shall make use of in the remainder.
In Section 4 we consider the case where nodes have restrictions on both
their download and upload capacities, and where there is a single commod-
ity. In Section 5 we consider the multicommodity case with no download
constraints. In Section 6 we describe a resampling procedure that allows us
the use of low degree neighbourhoods while maintaining optimal through-
put. The techniques presented in these sections can be combined to get a
stronger result, but for clarity we present them separately.

2 Preliminaries

We consider the following model. Let I be the set of all commodities. Each
node u has a neighbourhood set N(u) and |I|+1 buffers; for each commodity
i ∈ I, a collection P i(u) that stores the packets of commodity i it has
received, and a separate input buffer. When a packet of commodity i is
transmitted to u, it enters u’s input buffer. Packets at the input buffer are
served uar with service time exponentially distributed having mean µu =
1/c−u . When a packet is served, it leaves the input buffer and enters the
collection P i(u). Packets do not leave the collection P i(u) (we assume that
nodes want to store the data they are interested in receiving). This is
illustrated in Figure 2.

We consider the following algorithm. Let R(u) = {i : u ∈ Ri} be the
commodities for which u is a receiver, and R(uv) = R(u) ∩ R(v). We shall

3

µv = c−v

u1

u2

u3

v

c+v

Figure 2: Illustrating the model used. Each node v has a single input buffer,
with service time exponentially distributed having mean µv and one output
buffer per commodity for which it is a receiver.

denote by Gi the subgraph of G induced by Ri. For nodes u, v, define

P+u−v =
⋃

i∈R(uv)

P i(u) \ P i(v)

as the collection of packets that u can forward to v, and that v is interested
in receiving. Each non-source node u chooses a node v ∈ N(u) s.t. |P+u−v|
is maximal, and sends at rate c+u a packet chosen uar from P+u−v. A source
node si chooses a neighbouring node v in the same way, but if there is a
packet in P+si−v that si has not yet sent to any node (a fresh packet), this
packet is sent (if there are several fresh packets, one is chosen uar), otherwise
it sends a packet uar from P+si−v to v. For convenience, let P i

fresh(si) be the
set of fresh packets at si.

Random-Useful-Most-Deprived(RMD)(u)

1 At rate C(u)
2 do v ← random neighbor maximizing |P+u−v|
3 if u = si for some i ∈ I and P i

fresh(si) 6= ∅
4 then Send a random packet in P i

fresh(si) to v
5 else Send a random packet in P+u−v to v

3 Markov process and fluid limits

In order to evaluate the performance of our algorithm, we shall first examine
the lifetime of a typical packet. Once injected at source si, a packet p can

4

be in a number of different states: (a) It can be replicated at all nodes in
Ri, hence successfully broadcast. (b) It can be idle, that is not actively
transferred, and be replicated at nodes u in some set S ⊂ Ri. The subset S
cannot be arbitrary; it must contain a spanning tree of Gi ∩ S rooted at si.
(c) It can be replicated at some nodes u ∈ S for some subset S, and also
actively transferred along some edges e ∈ F , for some subset F ⊆ (S, S̄).

We shall describe the state of the system as follows: (a) For all S ⊂
V , Xi

S denotes the number of idle packets of commodity i ∈ I that are
replicated exactly at the nodes u ∈ S. (b) For each commodity i ∈ I, Ai =
{G1 = (W1, F1), . . . , Gm = (Wm, Fm)} is an unordered list of subgraphs
which describes the active packets of commodity i. Wj denotes the set of
nodes at which the jth active packet is currently replicated; Fj is the set of
edges along which the jth active packet is currently transferred.

Since each node forwards a packet to only one of its neighbours at a given
time. Thus for each node u, there is at most one edge (u,w) appearing in
the sets Fi, i = 1, . . . ,m. We shall assume that packet transmissions are
not preempted, even if a neighbour of some node u becomes more deprived
than the neighbour v to which node u is currently transmitting.

We shall assume that at any given time, at most one packet is transferred
from a given node, hence, the total number of active packets is (at most)
|V | = n. We shall further assume that the same active packet cannot be
received from multiple incoming edges. We also enforce an activity condition
which states that if there is no transfer from u then necessarily there is no
packet that could be transferred from u to any of its neighbours.

For commodity i, we assume that new packets are injected into each
source si at instants of independent Poisson processs having rate λi. We
also assume that the packet transfer time along an edge (uv) is exponen-
tially distributed with mean 1/cuv. The process described by the states((
Xi

S

)
S⊂V,i∈I

,
(
Ai

)
i∈I

)
and the state transitions will be crucial for analyz-

ing the performance of the algorithm.

3.1 Fluid limits

We refer the reader to the full paper for the detailed description of the
Markov process and the derivation of fluid limits from rescaling the Markov
process in space and time as in [4]. Due to space constraints, we simply
state the fluid limits without proof.

We begin by setting our notation. For a commodity i and set S ⊂ V ,
let yi

S(t) be a quantity representing the amount of commodity i replicated
exactly at nodes in S at time t. For a subset S ⊂ V , we write yi

⊆S =

5

∑
S′⊆S y

i
S′ , and for a set of commodities T , yT

S =
∑

i∈T y
i
S . We define the

potential of commodity i between u and v as yi
+u−v =

∑
S:(uv)∈(S,S̄) y

i
S , and

yT
+u−v =

∑
i∈T y

i
+u−v for a set of commodities T . For simplicity, we shall

sometimes write X + i to mean X ∪ {i} for set X and element i.

Definition 1 (Fluid trajectories) The real-valued nonnegative functions
yi

S(t), S ⊂ V, i ∈ I, are called fluid trajectories of the Markov process if they
satisfy the following conditions. For all S ⊂ V, u ∈ S, v /∈ S, i ∈ I, there
exist nonnegative functions φi

S,(uv)(t) that are non-decreasing such that:

yi
{si}

(t) = yi
{si}

(0) + λit−
∑

v∈V \{si}
φi
{si},(siv)(t) (1)

and for j ∈ I, j 6= i we have yj
{si}

(t) = 0. In addition, for S 6= {si}, we have

yi
S(t) = yi

S(0) +
∑

u∈S,v∈S−u

φi
S−v,(uv)(t)−

∑

(uv)∈(S,S̄)

φi
S,(uv)(t). (2)

For all nodes u, the functions {φi
S,(uv)(t)}v:(uv)∈E,i∈R(uv),S⊂Ri,v /∈S are dif-

ferentiable at almost every t, otherwise we fix φi
S,(uv)(t) = 0 for all other

φ.
If

∑
v:(u,v)∈E

∑
i∈R(uv) y

i
+u−v(t) > 0, the derivatives satisfy

d

dt
φ

R(uv)
S,(uv)(t) = 0 if y

R(uv)
+u−v(t) < max

v′:(u,v′)∈E

(
y

R(uv′)
+u−v′(t)

)
, (3)

∑

v:(uv)∈E

∑

S:u∈S,v/∈S

d

dt
φ

R(uv)
S,(uv)(t) = cu (4)

where we use the shorthand φT
S,(uv) =

∑
i∈T φ

i
S,(uv).

If u 6= si for some i ∈ I, that is for a non-source node, we have, for all v
such that (uv) ∈ E and assuming that

∑
S:u∈S,v/∈S

∑
i∈R(uv)

d
dtφ

i
S,(uv)(t) > 0

holds,
∀i ∈ R(uv), S ⊂ Ri, u ∈ S, v /∈ S :

d
dtφ

i
S,(uv)(t) =

yi
S(t)

y
R(uv)
+u−v(t)

∑
S′:u∈S′,v /∈S′

d
dtφ

R(uv)
S′,(uv)(t)

(5)

For a source node si with fresh packets to send, one has the following:

yi
{si}

(t) > 0⇒
∑

v∈Ri,v 6=si

d

dt
φi
{si},(siv)(t) = csi . (6)

6

In the case where the source si has no fresh packets, i.e. y{s} = 0, we have

for all v such that (sv) ∈ E, assuming that
∑

S⊂Ri:S 6={si},v /∈S
d
dtφ

i
S,(siv)(t) > 0

holds,

∀S ⊂ Ri, S 6= {si}, v /∈ S :
d
dtφ

i
S,(siv)(t) =

yi
S(t)∑

S′⊂Ri,S′ 6={si},v /∈S′ yi
S′ (t)

∑
S′⊂Ri,S′ 6={si},v /∈S′

d
dtφ

i
S′,(siv)(t)

(7)

For non-source nodes, the intution is as follows: d
dtφ

i
S,(uv)(t) represents the

rate at which packets of commodity i, previously replicated at nodes in
S are replicated along edge (uv). This rate is the probability of such a

packet being pushed along edge (uv), given by yi
S(t)/y

R(uv)
+u−v(t), multiplied

by the rate at which packets are currently traversing edge (uv), which is∑
S′:u∈S′,v /∈S′

d
dtφ

R(uv)
S′,(uv)(t).

4 Upload and download capacities

In this section we consider the case where there is a single commodity
(s, V, λ), G is the complete graph and each node u finite download and
upload capacities. The restriction on a single commodity can be relaxed by
using the results of Section 5 but significantly complicates the analysis.

First, given the complete graph G = (V,E) with n nodes V having up-
load capacities c+u and download capacities c−u as described earlier, construct
a graph G′ by replacing each node u by two nodes u−, u+ as follows. Let
G′ = (V − ∪ V +, E′) where V − = {u− : u ∈ V } and similarly for V +, and
E′ = {(u−u+) : u ∈ V } ∪ {(u+u−) : u, v ∈ V }. This graph G′ has only
upload capacity constraints given by cu− = c−u and cu+ = c+u . It can be
seen that the algorithm is stable on G′ (with only upload constraints) iff
it is stable on G (with download and upload constraints), since the node
cu− acts as the download buffer for node u. We assume that cs = c+s and
c−s =∞. The main difficulty is in showing stability of the algorithm on this
non-complete graph G′.

Theorem 1 Assume that demand λ satisfies

λ+ ε ≤ c+s
λ+ ε ≤ minu∈V c

+
u

λ+ ε ≤ minu∈V c
−
u

(8)

for some ε > 0. Then the algorithm is stable under demand λ.

7

By stable, we mean that the number Xt of packets undelivered to some
receiver at time t converges in distribution as t → ∞, hence is bounded in
probability, i.e.

∃ψ(a), lim
a→∞

ψ(a) = 0 s.t. Pr(Xt ≥ a) ≤ ψ(a),∀t.

Note that whenever demand λ is feasible, a weaker version of condition

(8) holds with the second requirement replaced by λ + ε ≤
∑

u∈V c+u
n−1 . We

have been unable to prove stability of the distributed algorithm under this
assumption, but we believe it is possible to do so and we leave it as an open
problem.

To show stability of the fluid trajectories, we rely on the following lemma.

Lemma 1 For any y = (yS)S∈S ∈ R
S
+, define the workload function w(y)

as:
w(y) =

∑

S∈S

yS (n− |S|) . (9)

Under the assumption (8), when the graph G is complete, any fluid trajectory
y as per Definition 1 is such that, for some ǫ > 0,

w(y(t)) ≤ max(0, w(y(0))− ǫt). (10)

Proof. First, note that the n in the lemma is the size of the graph G, so the
size of the transformed graph is n′ = 2n. The proof strategy is as follows.
Transform the graph G having upload and download constraints into the
equivalent G′ having only upload constraints. Then there are two main
cases to consider.

Case 1 Assume that all u− ∈ V − are such that y+(u−)−(u+)(t) > 0. Then
consider two cases:

8

Case 1a If there is no node u+ ∈ V + such that
∑

v−∈V − y+(u+)−(v−)(t) =
0, then all nodes are doing useful work and the original argument of [4] gives

d

dt
w(y(t)) ≤ λ(n′ − 1)−

∑

u∈V −∪V +

cu

= λ(n′ − 1)−
∑

u∈V

c−u −
∑

u∈V

c+u

≤ λ(2n− 1)− nλ−
∑

u∈V

c+u

= λ(n− 1)−
∑

u∈V

c+u

< 0

under the assumptions (8), recalling that n′ = 2n.

Case 1b Otherwise, there exists a set S∗ ⊆ V + such that

∀u+ ∈ S∗,
∑

v−∈V −

y+(u+)−(v−)(t) = 0.

Since the only node that can send packets to a deprived u+ ∈ S∗ is its
corresponding neighbour u−, we have to show that u− does enough work to
decrease the work function w(y).

We can assume wlog that y{s}(t) = 0 and hence d
dty{s}(t) = 0 by using

the same continuity argument used in [4] (for otherwise, if y{s}(t) > 0 then
the source has fresh packets and the work function w(y) would immediately
be decreasing). This implies that

∑
v∈V ′ φ{s},(sv)(t) = λ by examining the

fluid trajectories. We also have, ∀S ∈ S, if S ∩ S∗ 6= ∅ then yS(t) = 0 and

9

hence d
dtyS(t) = 0. Using this, write

d

dt
w(y(t)) =

∑

S∈S,S 6={s}

S∩S∗=∅

(2n− |S|)
d

dt
yS(t)

≤ (2n− 1)
∑

v∈V −

d

dt
φ{s},(sv)(t)−

∑

S∈S,S 6={s},

S∩S∗=∅

∑

u∈V +∩S

v∈V −,v /∈S

d

dt
φS,(uv)(t)

−
∑

S∈S,S 6={s},

S∩S∗=∅

∑

u∈V −∩S

v∈V +,v /∈S,v/∈S∗

d

dt
φS,(uv)(t)

−
∑

S∈S,S 6={s},

S∩S∗=∅

(2n− |S|)
∑

u∈V −∩S

v∈V +,v /∈S,v∈S∗

d

dt
φS,(uv)(t)

≤ λ(2n− 1)−
∑

u∈V +\S∗

c+u −
∑

u:u+ /∈S∗

c−u − |S
∗|

∑

u+∈S∗

c−u

≤ λ(n− 1 + |S∗| − |S∗|2)−
∑

u:u+∈V +\S∗

c+u

< 0

whenever c+u > λ for all u.

Case 2 The final case to consider is when there is a set S∗ ⊆ V − of
deprived nodes, where each v− ∈ S∗ has y+(v−)−(v+)(t) = 0. Since the
source s connects directly to all the nodes in V −, we can re-use exactly the
same arguments as before, distinguishing between the cases y{s}(t) = 0 and
y{s}(t) > 0, to show that the source alone does enough useful work to make
w(y) decrease. These give

d

dt
w(y(t)) ≤ −(cs − λ)

< 0

under the assumptions (8). This proves Lemma 1.

Proof of Theorem 1. Theorem 1 can be proved by combining Lemma 1 with
the following suitable ergodicity criterion, which appears as Theorem 8.13,
p.224 in Robert [6].

10

Theorem 2 Let Z(t) be a Markov jump process on a countable state space
Z. Assume there exists a function L : Z → R+ and constants M , ǫ, τ > 0
such that for all z ∈ Z:

L(z) > M ⇒
1

L(z)
EzL (Z(L(z)τ)) ≤ 1− ǫ. (11)

If in addition the set {z : L(z) ≤ M} is finite, and EzL(Z(1)) < +∞ for
all z ∈ Z, then the

Since the Markov process is ergodic, the number of packets Xt remaining
undelivered to some receiver time t converges to a nondegenerate limiting
distribution as t → ∞, and hence is bounded in probability (though not
necessarily in expectation).

5 Multicommodity demands

In this section we consider the multicommodity case, and assume that down-
load capacities c−u =∞. The restriction on infinite download capacities can
be relaxed by using the results of Section 4 but significantly complicates the
analysis, so we omit it for clarity.

We shall prove optimality under the assumption that the subgraph G[Ri]
induced by each receiver set Ri is a clique. This is a relaxation of the
assumption that the entire graphG is a clique. We also require that all nodes
are either receivers of possibly several commodities, or a source of exactly
one commodity. We believe it is possible to remove this last constraint, but
do not try to do so here for clarity of the analysis. The fluid limits are those
given in Definition 1.

The main result of this section is the following.

Theorem 3 Assume that all nodes are either receivers or sources of ex-
actly one commodity and that each receiver set induces a clique in G. Then
whenever demands {λi + ε} are feasible, for some ε > 0, the random-useful
forwarding algorithm is stable under demands {λi}.

As a corollary of the proof, we obtain the following tight characterisation
of the set of feasible demands. For a set of commodities J ⊆ I, define
RJ =

⋃
i∈J Ri.

Corollary 1 Demands {λi} are feasible if and only if the following holds:

λi ≤ csi ∀i ∈ I
∑

i∈J λi ≤
∑

u∈RJ
cu

|RJ |−|J | ∀J ⊆ I
(12)

11

Whenever demands {λi} are feasible, Equation (12) holds. Assume the
demands are feasible but the condition does not hold. Then either there
is a source with less capacity than its demand, or there is a set J ⊂ I of
commodities such that the subgraph of G induced by RJ does not have
enough total upload capacity to support the transmission of commodities
J , even assuming that packets from two commodities i, j ∈ J are treated
as if they are a single commodity. The denominator correctly counts the
number of nodes that want to receive packets of commodity J , since each
commodity has exactly one source, which is not present in any other receiver
set. Clearly, this implies that the demands are not feasible.

To show stability of the fluid trajectories, we rely on the following lemma.

Lemma 2 For any y = (yS)S∈S ∈ R
S
+, define the workload function w(y)

as:
w(y) =

∑

i∈I

∑

S∈S

yi
S (|Ri| − |S|) . (13)

Assume that both the conditions (12) and the conditions of Theorem 3 are
satisfied. Then any fluid trajectory y as per Definition 1 is such that, for
some ǫ > 0,

w(y(t)) ≤ max(0, w(y(0))− ǫt). (14)

Proof. Let |I| = k and assume wlog that |RI | = n (otherwise, there are
some nodes that will never participate in forwarding packets). Also assume
wlog that each node is either a source of exactly one commodity or a re-
ceiver (of possibly several commodities), which can be handled by a similar
transformation as in the multicommodity edge-capacitated case.

If ∀u ∈ V,
∑

v 6=u

∑
i∈R(uv) y

i
+u−v > 0 then every node is doing useful

work, and it can be shown as in [3] that w(y) decreases whenever

∑

i∈I

λi <

∑
u∈V cu

n− 1

holds, which is implied by the condition (12).
Otherwise, there exists a set S∗ ⊆ V such that

∀u ∈ S∗,
∑

v 6=u

∑

i∈R(uv)

yi
+u−v = 0. (15)

Define I∗ as the set of commodities I∗ = {i ∈ I : Ri ∩ S
∗ 6= ∅} having

some deprived node in its receiver set. Define

Θ(S∗) = {v ∈ V : ∃u ∈ S∗, R(uv) 6= ∅}

12

v

S
∗

Θ(S∗)

s3

s2

R̃1

s1 u

Figure 3: Illustrating the structure of the sets R̃i,Θ(S∗). Every node u ∈
Ri\R̃i devotes its entire capacity towards the nodes v in S∗ with R(uv) 6= ∅.

as the ‘neighbours’ of S∗, so that ∀u ∈ Θ(S∗), u has a neighbour v ∈ S∗

that will be its ‘most-deprived’ neighbour, i.e. maximizing |P+u−v|. Finally,
for each i /∈ I∗, define the subset R̃i = Ri \Θ(S∗) (certainly, one must have
si ∈ R̃i,∀i /∈ I

∗). Figure 3 illustrates the structure of these sets.
Now, write

d

dt
w(y(t)) =

∑

i∈I∗

∑

S⊂Ri

d

dt
yi

S(|Ri| − |S|)

︸ ︷︷ ︸
(A)

+
∑

i/∈I∗

∑

S⊂Ri

d

dt
yi

S(|Ri| − |S|)

︸ ︷︷ ︸
(B)

. (16)

Now we tackle the first term (A). Note that ∀S ⊂ V with u ∈ S ∩ S∗,
one has yi

S(t) = 0,∀v 6= u, i ∈ R(uv), and hence d
dty

i
S(t) = 0 by a similar

argument as before.
Define F = {i ∈ I∗ : yi

{si}
(t) > 0} as the set of commodities in I∗ whose

sources have fresh packets to send. With this in hand, write

(A) =
∑

i∈I∗\F

∑

S⊂Ri,S 6={si}

S∩S∗=∅

(|Ri| − |S|)
d

dt
yi

S

︸ ︷︷ ︸
(A1)

+
∑

i∈F

∑

S⊂Ri

(|Ri| − |S|)
d

dt
yi

S

︸ ︷︷ ︸
(A2)

.

(17)

13

For (A1), write

(A1) = −
∑

i∈I∗\F

∑

S⊂Ri,S 6={si}

S∩S∗=∅

(|Ri| − |S|)
∑

u∈S,v∈S∗

d

dt
φi

S,(uv)

≤ −
∑

i∈I∗\F

∑

S⊂Ri,S 6={si}

S∩S∗=∅




∑

v∈S∗

d

dt
φi

S,(siv) +
∑

u∈S,u 6=si

∑

v∈S∗

d

dt
φi

S,(uv)




≤ −
∑

i∈I∗\F

(csi − λi)−
∑

i∈I∗\F

∑

S⊂Ri,S 6={si}

S∩S∗=∅

∑

u∈S,u 6=si

∑

v∈S∗

d

dt
φi

S,(uv)

where the final inequality uses the fact that ∀i ∈ I∗ \ F , d
dty

i
{si}

= 0 =

λi −
∑

v∈S∗
d
dtφ

i
{si},(siv), hence

∑

S⊂Ri,S 6={si}

S∩S∗=∅

∑

v∈S∗

d

dt
φi

S,(siv) = csi − λi.

For (A2), recall that every node is either a source of exactly one com-
modity or is a receiver. In this case for any i such that yi

{si}
(t) > 0, we have

d
dty

i
{si}

= λi − csi by the fluid trajectories of sources with fresh packets to

send. Hence we can write, in a similar way to the single-commodity case [3],

(A2) =
∑

i∈F

(|Ri| − 1)(λi − csi)−
∑

i∈F

∑

S⊂Ri,S 6={si}

S∩S∗=∅

(|Ri| − |S|)
∑

u∈S,v∈S∗

d

dt
φi

S,(uv)

<
∑

i∈F

(λi − csi)−
∑

i∈F

∑

S⊂Ri,S 6={si}

S∩S∗=∅

∑

u∈S,v∈S∗

d

dt
φi

S,(uv)

where the final inequality follows under the condition (12).

14

Combining (A1) and (A2) gives

(A) ≤ −
∑

i∈I∗

(csi − λi)−
∑

i∈I∗

∑

S⊂Ri,S 6={si}

S∩S∗=∅

∑

u∈S,u 6=si

∑

v∈S∗

d

dt
φi

S,(uv)

≤ −
∑

i∈I∗

(csi − λi)−
∑

i∈I∗

j /∈I∗

∑

S⊂Ri∩Rj ,S 6={si}

S∩S∗=∅

∑

u∈S

v∈S∗∩Ri

d

dt
φi

S,(uv)

= −
∑

i∈I∗

(csi − λi)−
∑

i∈I∗

j /∈I∗

∑

u∈Ri∩Rj

cu

= −
∑

i∈I∗

(csi − λi)−
∑

i/∈I∗

∑

u∈Ri\R̃i

cu

where the last equality follows since

{u ∈ Ri \ R̃i : i /∈ I∗} = {u ∈ Ri ∩Rj : i ∈ I∗, j /∈ I∗}.

Now we tackle the second term (B). Using a similar method to the single-
commodity case, by counting the factor that each d

dtφ
i
S,(uv) term appears

with, write

(B) =
∑

i/∈I∗

λi(|Ri| − 1)−
∑

i/∈I∗

∑

S⊂Ri

∑

u∈S∩R̃i

v/∈S,v∈Ri

d

dt
φi

S,(uv)

≤
∑

i/∈I∗

λi(|Ri| − 1)−
∑

i/∈I∗

∑

u∈R̃i

cu

≤
∑

i/∈I∗

λi

(
|RI\I∗ | − |I \ I

∗|
)
−

∑

i/∈I∗

∑

u∈R̃i

cu

where the summation in the first line follows since ∀u ∈ Ri \ R̃i, v ∈ R̃i, S ⊂
Ri, we have d

dtφ
i
S,(uv) = 0 since u is devoting all its capacity towards some

most deprived neighbour in S∗, and away from nodes in Ri. thus, the only
flow is from R̃i to Ri.

The reasoning for the last line is the following. For any J ⊆ I, we have

|RJ | − |J | ≥ max
j∈J
|Rj |+ |J | − 1− |J |

= max
j∈J
|Rj | − 1

15

since for each receiver set Rj , its source is contained in no other receiver set.
Combining (A) and (B) gives

(A) + (B) ≤
∑

i∈I∗

(λi − csi) +
∑

i∈I∗

λi(|RI\I∗ | − |I \ I
∗|)

−
∑

i/∈I∗




∑

u∈Ri

cu +
∑

u∈Ri\R̃i

cu




=
∑

i∈I∗

(λi − csi) +
∑

i∈I∗

λi(|RI\I∗ | − |I \ I
∗|)−

∑

u∈RI\I∗

cu

< 0

under the condition (12). This proves Lemma 2.

Proof of Theorem 3. Theorem 3 can be proved by combining Lemma 2 with
Theorem 2.

6 Neighbourhood Resampling

In this section we describe a random resampling procedure that allows us to
use low degree neighbourhoods while maintaining optimal throughput. The
technique we describe is reminiscent of the following randomized bipartite
maximal matching algorithm of Tassiulas [7]: at time t choose a matching
M uar from the set of possible matchings and compare its weight with the
previous matching Rt−1; if it is better, set Rt = M , otherwise set Rt =
Rt−1. Tassiulas proved that as long as the maximal matching has a nonzero
probability of being chosen, then this procedure will give 100% throughput
in an input-queued switch. With this simple example in mind, we can now
describe our resampling procedure.

Recall the ‘random-useful-to-most-deprived’ (RMD) algorithm, with a
single commodity and infinite download capacities for simplicity. Consider
the following modification for fixed d ≥ 1, t ≥ 0. Each node umaintains a set
of neighbours N(u) of size d. After an exponentially distributed time with
mean t, each node u chooses a new node v at random from the collection
{v : (uv) ∈ E, v /∈ N(u)} and updates its neighbourhood by N ′(u) ←
N(u) ∪ {v} \ {w} iff w ∈ N(u) satisfies w = arg minz∈N(u)∪{v}X+u−z, i.e. v
is a more deprived neighbour of u than some current neighbour w. At each
time step, given the set N(u) of selected neighbours, u performs RMD over
them. We will show that, even for d = 1, this random resampling procedure

16

can give the same fluid limits as for the complete graph, i.e. when N(u) = V
at all time steps. We prove the following lemma.

Lemma 3 For a node u let Xu be a random variable describing the number
of time steps until y+u−v is sampled. Consider any process P where there
exists a constant κ such that Pr(Xu > κ) = ǫ > 0 for all nodes u. Then
the fluid limits of RMD with P are equal to the fluid limits of RMD on the
complete graph.

Proof. For simplicity, we will consider only the case where there is a single
commodity and the download capacity of nodes is infinite. Let E(t) be the
set of edges at time t, i.e. {(uv) : u ∈ V, v ∈ Nu(t)}. If (uv) ∈ E(t) then we
say that v is selected by u at t. We wish to establish that the fluid limits
(3),(4) and (5) as established in Section 2 still hold. We shall consider the
expanded state space ({XS}S∈S , A,E) that includes the current set of active
edges.

Fix h > 0 and assume that u is such that
∑

v′ 6=u y+u−v′(t) > 0. If
y+u−v(t) < maxv′ 6=v y+u−v(t) then the same inequality holds for the interval
[t, t + h]. Let v∗ ∈ arg maxv′ 6=u y+u−v′(t) be the most deprived node wrt u.
Since v 6= v∗, the time until v is evicted is distributed geometrically. Hence
there exists a constant k > κcu such that the probability that u sends more
than k packets to v in the interval [Nt,N(t + h)] decreases exponentially
with N (alternatively, for any ǫ > 0 there exists a constant k′ such that
probability that the edge (uv∗) is inactive by Nt + k′ is less than ǫ). This
means that

lim
N→∞

1

h

(
1

N
ΦN

S,(uv)(N(t+ h))−
1

N
ΦN

S,(uv)(t)

)
= 0, (18)

which establishes (3).
We shall assume that if u has no neighbours that it can give packets to,

then it invokes the sampling procedure immediately. As above, there exists
a constant k such that the probability that v∗ is not selected by u by time
Nt+k decreases exponentially with N . Note that if v∗ is selected at Nt+k
for k ≤ Nh then it shall remain selected until time N(t + h). This implies
that for large enough N we have the same equality as before, which implies
that

lim
N→∞

∑

v 6=u,S∈S:u∈S,v 6∈S

1

h

(
1

N
ΦN

S,(uv)(N(t+ h))−
1

N
ΦN

S,(uv)(Nt)

)
= cu, (19)

from which (4) follows.

17

Now assume that u 6= s and v is such that
∑

S:u∈S,v 6∈S
d
dtφS,(uv)(t) > 0,

i.e. u is transmitting to v. Then of all instants during [Nt,N(t+ h)] when

u sends a packet to v, a fraction yS(t)
y+u−v

+ O(h + 1/N) of these are idle

packets already replicated at S. Assume that v 6= v∗ (otherwise, there is
no problem). We want to make sure that we transmit to a single node long
enough so that the lower order termO(h+1/N) disappears and we obtain the
desired fractions. As before, choose a constant k such that the probability
that v∗ is not selected by u by time Nt+ k decreases exponentially with N .
Once v∗ is selected, it shall remain selected until time N(t+h). Thus, letting
N →∞ and for h→ 0 we find that u transmits to v∗ for an arbitrarily large
fraction of the interval [Nt,N(t+ h)]. This establishes (5).

The case that u = s is handled similarly to before, after accounting for
the fact that we may waste a small amount of time transmitting to a node
that is not the most deprived, but this can be made an arbitrarily small
fraction of the time interval [Nt,N(t+ h)]. This completes the proof of the
lemma.

It would be good to study the effect of the degree on the performance
of the algorithm. In particular, it seems like using degree d ≥ 2 will give
substantially better results for convergence in establishing (19) since we can
avoid the case that a node spends time searching for nodes to transmit to, if
it only has a few possible neighbours with nonzero y+u−v values, by scanning
in the background.

6.1 Efficient resampling using expanders

We now describe how the resampling procedure can be efficiently imple-
mented in a distributed setting.

Let H be a d-regular expander graph on n vertices. For sufficiently large
n, one can obtain a uniform sample of size m from the space {1, . . . , n} by
the following procedure: choose an intial vertex v0 uar from H, then make a
random walk v1, v2, . . . , vm−1 among the vertices of H, at each step choosing
vi+1 uar from the neighbours of vi.

For resampling, each node u does the following. Make a random sample
v0, . . . , vd−1 of size d as described above, and add all d vertices to the neigh-
bourhood set N(u). At each resampling instant t, let vt be the next vertex
chosen in the random walk on H and let vmin = arg minvi∈N(u) P+u−vi . If
P+u−vt > P+u−vmin then update N(u) ← (N(u) \ {vmin}) ∪ {vt}, otherwise
N(u) is unchanged.

18

7 Heavy traffic analysis

Consider the single-commodity case where cs = λ and
∑

u∈V cu > (n− 1)λ.
In this situation, the previous stability results do not apply.

8 Freshness

In this section we prove the following result.

Theorem 4 Assume that the graph G = (V,E) is complete, and that cu ≥
λ + ε for all nodes u and some ε > 0. Then the random useful forwarding
algorithm is stable, even if the source does not prioritise fresh packets.

Proof. The proof parallels that of Theorem 6 in [3], except for the case when
y{s}(t) > 0 and there exists a set S∗ such that all nodes in S∗ are deprived.
We shall show that in this case, the work function w(y(t)) is still decreasing.

We shall use the fact that since S ∩S∗ = ∅ we have |S| ≤ n−|S∗|, hence
n− |S| ≥ |S∗|. Using this, we have

d

dt
w(y) =

∑

S∈S,S∩S∗=∅

d

dt
yS(t)(n− |S|)

≤ (n− 1)λ− |S∗|
∑

u∈S,S∩S∗=∅

∑

u∈S,v∈S∗

d

dt
φS,(uv)(t)

= (n− 1)λ− |S∗|
∑

u∈S,S∩S∗=∅

cu

≤ (n− 1)λ− |S∗|(n− |S∗|)(λ+ ε)

< 0.

The remainder of the proof follows Theorems 6 in [3] and is omitted.

9 Open Problems

In this work we take another step towards advocating simple, local-control
algorithms for network flow problems that previously relied on centralized
algorithms for obtaining optimal solutions. There are some questions that
arise from this work. Firstly, can we obtain explicit backlog and packet delay
distributions? The rescaling techniques used in obtaining fluid limits hide

19

these explicit descriptions. Secondly, we would like to extend the protocol
with a method for regulating the source injection rates to enforce some
fairness properties when the set of feasible demands are unknown.

References

[1] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor, Combina-
torial Algorithms, pages 21–31. Algorithmics Press, 1972.

[2] Lestor R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[3] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez. Provably
optimal decentralized broadcast algorithms. Technical Report MSR-TR-
2006-105, Microsoft Research, Jul 2006.

[4] Laurent Massoulié, Andrew Twigg, Christos Gkantsidis, and Pablo Ro-
driguez. Decentralized broadcasting algorithms. In Proceedings of Info-
com 2007, 2007.

[5] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathemati-
cae, 10:96–115, 1927.

[6] P. Robert. Stochastic Networks and Queues. Springer, 2003.

[7] Leandros Tassiulas. Linear complexity algorithms for maximum throug-
put in radio networks and input queued switches. In INFOCOM, pages
533–539, 1998.

20

