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Abstract. We consider open terms and parametric rules in the context of the
systematic derivation of labelled transitions from reduction systems.

Introduction

Since the seminal ideas of logicians of the early 20th century, it has become custom-
ary to encapsulate the dynamics of computation in terse and elegantrewrite calculi.
For instance, the essence of conventional computation is condensed in Church’s beta-
reduction rule (λx.M)N→ M{x := N}, while the mechanics ofπ-calculus interaction is
captured by the rule

a〈n〉.P | a(x).Q −→ P | Q{x := n} .

The beauty and power of such formalisms can hardly be overestimated: they centre our
models on the essential, and help us focus our reasoning on fundamental principles.
However, models are normally used not only to describe, but also to design, specify,
analyse, and – most importantly – as the foundations for advanced, ground-breaking
techniques. A well consolidated, relevant example is ‘model checking,’ where simple
tools used at a suitable abstraction level and driven by powerful ideas have afforded
spectacular results. Similarly, notions revolving around semantic equivalences and coin-
duction have had a strong, lasting impact.

Several such ideas rely on relatively lower-level models based ontransition systems.
Intuitively, these describe individual steps of computing entities, rather than providing
an overall picture of the computational primitives of the model as such. For instance, in

the case ofπ-calculus terms a transitiona〈n〉.P anI P would express that the system
is ready to evolve toP by engaging in actiona and offering it to (potential partners in)

the environment. There would then be a dual rulea(x).Q a(n)
I Q{x := n} for message

receivers, and finally an inference rule would dictate how dual actions can meet in the
environment and complete each other to yield finished interactions.

A anI A′ B a(n)
I B′

A | B I A′ | B′

Although the resulting term-transformation systems are equivalent, the differences
between these approaches are significant, and are better not dismissed hastily by a sim-
ple ‘matter-of-taste’ argument. The fundamental point of a ‘labelled-transition’ seman-
tics is that it is compositional: it explains the behaviour of complex systems by ex-
trapolating it from the behaviour of their components. This is in sharp contrast with a



‘reduction’ semantics, wherea〈n〉.P anda(x).Q are completely inert, have no meaning
of their own. This distinction is of paramount importance for applications like model
checking and bisimulation, that rely on the information afforded by labels and transi-
tions to analyse system components in isolation.

Influenced by Plotkin’s successful ‘structural operational semantics’ [10], many for-
malisms in the seventies and eighties had been originally equipped exclusively with a
labelled-transition semantics, including CCS and theπ-calculus. In recent years how-
ever it has become increasingly important for complex computational models to have
both a reduction semantics, to explain their mechanics in intuitive, self-justifying terms,
and a labelled-transition semantics, to serve as basis for semantic analysis. In particu-
lar, several papers have been devoted to identify characterisations of reduction-based
equivalences in terms of labels and bisimulations. This is the context of the present
work: is it possible, and how, toderive labelled transition systems from reductionsso
as to equip calculi with rich and treatable semantics theories? And to what extent can
this be done parametrically, i.e., independently on the specific calculus at hand? Ques-
tions like these gained momentum as work on ‘universal’ models emerged from the
field of concurrency, as e.g. action calculi [7], tile systems [2], and, more recently, bi-
graphs [3, 8]. Such models are meant to provide general frameworks independent of
specific models, such that several calculi can be recast and understood as fragments
therein. In ambitious terms, one could think of these frameworks as semantic universes
which individual models can be instantiated from. The question therefore arose as to
how to associate meaning and reasoning techniques to such ‘universal’ meta-models.

Much progress has been made since, mainly by Robin Milner and his collaborators.
The rest of this introduction will revisit the main ideas underlying the approach, whilst
the main body of paper will present the technical details in a slightly novel fashion, and
try to accommodate in the theory the idea of parametric rules and open terms.

The central technical challenge is thus how to associate labelled transitions to terms
from reduction systems. Peter Sewell [16] exploited the intuition that labels in labelled
transition systems express the compositional properties of terms, i.e., the extend to
which a term is amenable to engage in interactions with the environment, and how.
Thus, if terma when inserted in acontext c[−] can perform a reduction, sayc[a] → a′,
thenc[−] is a strong candidate as a label for a transitiona c I a′. (This spells out as:
‘a is ready to interact with contextc[−], anda′ would be the result of such potential
interaction.’) This intuition is very suggestive indeed; the devil however is as usual the
details: in order for this idea to give a sensible bisimulation, it is fundamental to select
carefully which contexts to consider: certainly not all, but only thosec which are the
‘smallest’ to trigger a given reduction. Failing to do so would give rise to a ‘garbled’
semantics, as the excess transitions would convey misleading information as to what
terma is ready to engage with and what the environment is expected to contribute.

The need to formalise the notion of ‘smallest’ leads tocategory theory, where it is
possible to express such universal properties in term of uniqueness of certain ‘arrow’
factorisation. For instance, in categorical terms the fact thatC is the disjoint union
(the so-called coproduct) of setsA andB is expressed by saying that all pairs of maps
(arrows) f : A → X andg : B → X factor uniquely via injections intoC and a map
[ f ,g] : C→ X. In complete analogy, a contextc[−] is the ‘smallest’ to create redexl in



a, if all contextsc′[−] that createl factor asc′[−] = e[c[−]] for a unique contexte[−].
For instance, in theλ-calculus

λx.x (−)y
I y, but not λx.x (−)yz

I yz,

as (−)yzarises uniquely as the composition of (−)z and (−)y.
The first step to rephrase our notion of ‘smallness’ as a problem of unique arrow

factorisation is to recast terms as arrows in categories. This can be done following Law-
vere’s seminal approach to algebraic theories, that here we instantiate using MacLane’s
notion of ‘product and permutation’ category (PROP) – roughly speaking, ‘linear’ Law-
vere theories – that we recall in§1. An arrow f : n→ m in a PROP represents am-tuple
of contexts containing altogethern ‘holes;’ i.e., whenf is fed withn terms to plug its
holes, it yields a tuple ofm terms. The question as to whether or not terma in context
c manifests a redexl becomes now whether there exists a suitable contextd such that
ca = dl. This allows us to express the minimality ofc by ranging over all equations of
the kindc′a = d′l, seeking for unique ways to factorc′ throughc. In §2 we recall how
such universal property is elegantly expressed by the notion ofidem-relative-pushout,
a breakthrough due Leifer and Milner [4]. Remarkably, such formalisation supports the
central ‘congruence theorem’ that bisimulation on the labelled transition systems de-
rived following the theory is a congruence, i.e., it is closed under all contexts. Due to
the generality of the framework, such a result has already been applied to a variety of
different models [1,3,9,12–14]

This paper’s original contribution concerns our initial ideas on the treatment ofopen
termsandparametric rulesin the above framework.

For the sake of illustration, let us consider on the CCS rule for interaction. To ex-
press such a rule as a collection of ground rulesaP | aQ −→ P | Q is not entirely
satisfactory in this setting: even in the simplest cases, we have infinitely many rewrite
rules to deal with, and these give rise to infinitely many higher-order labels, e.g., of

the kindaP −|aQ
I P | Q. This appears to make a poor use of the generality, elegance

and succinctness of theory of relative pushouts. Ideally, the rule should be expressed
parametrically, as in1

a.1 | a.2 −→ 1 | 2

and the labels should be derivable for open terms with universal property imposed both
on the contexts and the parameters. A label should thus consist both of a smallest con-
text and the most general parameter which makes a reduction possible; for example

〈a.P,1〉 1|a.2I P | 1 and a.P | 1
a.1
I P | 1,

where the label above the transition denotes a context with two holes (to insert the left-
hand pair in), and the label below a transition denotes a parameter (to fill the left-hand
side open term with).

As it turns out, the framework is robust enough to adapt easily to the new question.
Rather than investigating (‘square’) equations such asca= dl, we now face ‘hexagonal’

1 In the paper we use natural numbers to denote context parameters (‘holes’).



equationscap= dlq in order to establish the universal property that, at the same time,
identifies the smallest contextc as well as the largest parameterp that unearth redexl
in terma. The main technical device we introduce to that purpose is to pair the notion
of slice pushout (a rephrasing of relative pushouts) with a dual notion of coslice pull-
back: the role of the pushout is to determinec as before, while the pullback of course
ascertainsp. Such coupling of universal properties gives rise to the new notion of ‘lux’
(locally universal hexagon), introduced in§3. These have been considered previously
by Peter Sewell, who referred to them as hex-RPOs. In fact, much of our technical
development has been foreshadowed in his unpublished notes [15].

Our main technical results are a characterisation of categories with luxes in terms of
slice pushouts and coslice pullbacks (Theorem 1) and, of course, the fundamentalcon-
gruence theoremfor the labelled transition systems derived using our theory of luxes
(Theorem 3). Most of the ideas presented here are work in progress, and in the conclud-
ing section we discuss merits and shortcomings of our proposal, as well as identifying
some of the main avenues of future work on luxes.

Structure of the paper.In §1 we recall the notion of PROP and the construction of
categories of terms.§2 illustrates the existing theory based on slice pushouts, and its
extension to a bicategorical setting.§3-5 contain the main body of the paper, with our
definition of luxes, their properties, and the congruence theorem. Finally,§6 discusses
the shortcomings of the current theory and points forward to open issues and future
research.

We assume the reader to have a basic knowledge of category theory, as can be
acquired from any graduate textbook. Throughout the paper we use standard categorical
notations, where◦ denotes (right-to-left) composition and is most often omitted.

1 PROPs as categories of terms

A ‘product and permutation’ category [5], PROP, can be described, roughly, as a linear
Lawvere theory; more accurately, PROPs are one-sorted symmetric monoidal theories
whereas Lawvere theories are one-sorted finite product theories. We recall a straight-
forward definition below.

Definition 1 (PROP).A PROP is a categoryC where:

– objects are the natural numbers (here denoted 0,1,2, . . . );
– for eachn, the group of permutations ofn elements,S(n), is a subgroup of all the

invertible elements of the homset [n,n]. The identity permutation corresponds to
the identity 1n : n→ n;

– there is a functor⊗ : C × C → C which acts as addition on the objects, i.e.,
m⊗ n = m+ n, and additionally:
• is associative: (f ⊗ f ′) ⊗ f ′′ = f ⊗ ( f ′ ⊗ f ′′);
• givenσ ∈ S(n) andσ′ ∈ S(n′), we haveσ ⊗ σ′ = σ × σ′ : n+ n′ → n+ n′,

where× denotes the product of permutations;
• for any two natural numbersn,n′, letγn,n′ : n+ n′ → n+ n′ be the permutation

which swaps the two blocks ofn andn′. Then for any mapsf : m → n and
f ′ : m′ → n′ we haveγn,n′ ( f ⊗ f ′) = ( f ′ ⊗ f )γm,m′ .



Example 1.For any algebraic signature (i.e., set of operator names with finite arities)Σ,
thefree PROPPΣ overΣ hasn-tuples of terms overΣ that altogether containmdistinct
holes, as arrowst : m→ n. Permutations in [n,n] are tuples built solely of holes,⊗ acts
on arrows as tuple juxtaposition, and arrow composition is the standard composition of
terms.

Example 2.PROPs can also be induced from signatures modulo term equations. Con-
sider the signatureΣ = {nil : 0, a. : 1, a. : 1, | : 2} corresponding to the grammar:

P ::= nil | aP | aP | P | P ,

wherea ranges over some fixed setA of actions, and the associativity equation:

P | (Q | R) = (P | Q) | R .

The PROPPAP (Prefix and Associative Parallel composition) is built of terms overΣ
quotiented by the associativity equation, with permutations,⊗ and composition defined
as in Example 1. Additionally, one can quotient terms by the commutativity equation

P | Q = Q | P ;

the resulting PROP will be calledPACP (Prefix and Associative, Commutative Parallel
Composition).

2 Labelled transitions for ground reductions

This section introduces the background material we need in later sections. First, we
briefly recall Leifer and Milner’s notion of idem-relative-pushout (IPO) as well as its
dual, the idem-relative-pullback (IPB). Following a brief informal and discussion on
how IPOs have been used in order to generate labelled transition systems (LTS) for
calculi with ground reduction rules, we shall demonstrate that IPOs and IPBs can be
conveniently studied in a category of factorisations, where they are easily seen to be co-
products and products, respectively. We conclude with a short note on how to generalise
the theory to G-categories [11,13]

2.1 Pushouts in slices

Let C be a category andV, W objects ofC. Theslice categoryC/W has as objects pairs
〈X,a〉, wherea : X → W is an arrow ofC, while its arrowsf : 〈X,a〉 → 〈X′,a′〉 are
arrows f : X → X′ in C such thata′ f = a. The dual notion of acoslice category V/C
consists of the pairs〈b,X〉, whereb : V → X and of mapsf : 〈b,X〉 → 〈b′,X′〉 for
f : X→ X′ such thatf b = b′.

Let r : V → W be an arrow ofC. A pushoutof f : 〈V, r〉 → 〈C, c〉 andg: 〈V, r〉 →
〈D,d〉 in the slice categoryC/W is, equivalently, acoproductin 〈V, r〉 /(C/W). Spelling
this definition out, the span off andg identifies a commutative squarec f = r = dg in
C, while the pushout diagramh: 〈C, c〉 → 〈E,e〉 andk: 〈D,d〉 → 〈E,e〉 determines a



universal set of arrows such thath f = kg, eh= c andek= d, as in the diagram below.
We shall say that a category hasslice pushoutswhen it has pushouts in all slices.2

W

E
e

OO

C

c

EE�������� h

;;xxxxx
D

k

ccFFFFF

d

YY44444444

V
f

bbFFFFF g

;;xxxxx

Lemma 1. Free PROPs have slice pushouts.

Proof (sketch).A diagram 〈
k, c
〉 〈

m, t
〉aoo b //

〈
l,d
〉

in PΣ/n is an arrowt : m→ n in PΣ with its two decompositions:

ca= t = db

As usual, apositionρ in a given termt is a finite sequence of numbers which encodes
a path downward from the root node oft. The set of positions int, with the standard
prefix ordering, is denotedSt.

It is straightforward to check that decompositions of a given arrowt into p arrows
are in 1-1 correspondence to monotonic functions fromSt to the set{1, . . . , p} with
the natural ordering. Consider such functionsΛca andΛdb corresponding to the two
decompositions above, and define

Λ1(ρ) =


1 if Λca(ρ) = 1 andΛdb(ρ) = 1

2 if Λca(ρ) = 1 andΛdb(ρ) = 2

3 if Λca(ρ) = 2

Λ2(ρ) =


1 if Λca(ρ) = 1 andΛdb(ρ) = 1

2 if Λca(ρ) = 2 andΛdb(ρ) = 1

3 if Λdb(ρ) = 2

Λ1 andΛ2 are monotonic, hence they correspond to two decompositions oft:

x1y1z1 = t = x2y2z2

Moreover,x1 = x2, z1 = a andz2 = b. Let the domain ofx = x1 = x2 beq. The square

〈
l,d
〉y2 ??����

〈
q, x
〉

〈
m, t
〉 a

??����b

__????

〈
k, c
〉y1__????

2 Leifer and Milner [4] use the term relative pushouts, or RPOs, to refer to pushouts in slices.



is a pushout inPΣ/n.

Lemma 2. PAPhas slice pushouts.

Proof (sketch).Arrows in PAP can be represented as tuples of finite, ordered trees
with nodes of any degree, where an immediate child of a node of degree higher than 1
must have degree at most 1. Additionally, nodes of degree 1 are labelled with elements
of A. Leaves of such trees correspond to occurrences of the constantnil, nodes of
degree 1 to applications of prefix composition operators, and nodes of higher degree
to term fragments built solely of the associative parallel composition operator. On this
representation of arrows, a pushout construction very similar to that of Lemma 1 can be
made.

Interestingly,PACP does not have slice pushouts. Indeed, there is no unique medi-
ation between the squares in the slice of 1:

〈
0, nil | nil

〉nil

__?????
nil

??�����

〈
1, nil | 1

〉id
??����� 〈

1, nil | 1
〉id

__??????

〈
1, nil | 1

〉

〈
0, nil | nil

〉nil??�����nil

__?????

〈
1, nil | 1

〉〈1,nil〉
??����� 〈

1, nil | 1
〉〈nil,1〉

__??????

〈
2,1 | 2

〉

By an idem-relative-pushout [4] we mean the (square) diagram inC obtained by
applying the forgetful functorUW : C/W→ C (which projects〈V, r〉 to V) to a pushout
diagram inC/W. LetI denote the class of IPOs inC.

In categories with slice pushouts, it makes sense to talk about IPOs without worry-
ing about particular slices, as the conclusion of the following lemma implies:

Lemma 3. If C has slice pushouts and a diagram D inC/X maps via the forgetful
functor UX to an IPO (i.e., UXD ∈ I) then D is a pushout diagram inC/X.

Moreover, in categories with slice pushouts, IPOs behave somewhat like ordinary
pushouts, as demonstrated by the following lemma.

Lemma 4. Suppose thatC has slice pushouts and the left square is an IPO. Then the
entire diagram is an IPO iff the right square is an IPO.

A

��

// B

��

// C

��

D // E // F

2.2 Pullbacks in coslices

Dually, a pullback off : 〈a,A〉 → 〈r,W〉 andg: 〈b, B〉 → 〈r,W〉 in the coslice category
V/C is, equivalently, a product in (V/C)/ 〈r,W〉. We say that a category hascoslice
pullbackswhen it has pullbacks in all of its coslices.
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Fig. 1.An IPO corresponding to a label.

Lemma 5. Free PROPs have coslice pullbacks.PAPhas coslice pullbacks.

Proof. Proceed exactly as in Lemmas 1 and 2.

By an idem-relative-pullback (IPB), we mean the (square) diagram obtained from
a pullback diagram in a coslice category under the image of the forgetful functor toC.
We immediately obtain dual versions of Lemmas 3 and 4, the latter of which we state
below.

Lemma 6. Suppose thatC has coslice pullbacks and the right square is an IPB. Then
the entire diagram is an IPB iff the left square is an IPB.

A

��

// B

��

// C

��

D // E // F

2.3 Labels

As we mentioned in the Introduction, IPOs have been used by Leifer and Milner to de-
rive labelled transition systems for calculi equipped with a reduction semantics derived
from a set of ground rules. Here we give a brief overview of the technique.

Leifer and Milner’s framework of choice is their notion of ‘reactive system,’ which
consists of a category of contexts with a chosen object 0, a subcategory of evaluation
contexts which satisfies certain additional axioms and a set of reduction rulesR. The ar-
rows with domain 0 are thought of as closed terms. We shall not give a formal definition
here; instead we refer the reader ahead to Definition 3, which deals with a more general
situation where reduction rules may be open – to obtain a (closed) reactive system from
that definition one needs to assume additionally that the domains ofl andr in every rule
〈l, r〉 ∈ R are 0.

Sewell’s central idea [16] which guides the definition of the derived LTS is that la-

bels should be certain contexts – more accurately,a f
I a′ when f a (a in the context

of f ) can perform a single reduction and result ina′. Moreover, as explained in the In-
troduction, f must be the ‘smallest’ such context. The notion of IPO gives us a precise
way to measure when a context is the smallest. Indeed, consider Fig. 1, wherea is an
arbitrary term,l is the left hand side of a reduction rule〈l, r〉 ∈ R andd is an evalu-
tation context. The fact that the diagram is commutative implies thatf a can perform
a reduction resulting indr, where the redexl has been replaced byr, the right-hand
side of the rule. Requiring the diagram to be an IPO results in an elegant formalisation



of the fact thatf does not contain redundant material, not necessary for the reduction.
The LTS determined in this way can be shown to be well-behaved. In particular, if the
underlying category has slice pushouts then bisimilarity is acongruence, in the sense
thata ∼ b implies thatca∼ cb for al c in C.

2.4 Category of factorisations

The category of factorisations of an arrow provides a convenient setting for studying
slice pushouts and coslice pullbacks which we shall use in the rest of the paper.

Definition 2 (Factorisations). The category Fact(C, r) of factorisations of an arrow
r : V →W in C is consists of objects and arrows as defined below.

– objects: commutative diagrams inC of the form

W

P

p′ 99rrrrrr

V

r

OO

p

eeLLLLLL

– arrows: an arrow from〈P, p, p′〉 to 〈Q,q,q′〉 is a commutative diagram inC of the
form

W

P

p′
;;wwwwww

h // Q

q′
ccGGGGGG

V
p

ccGGGGGGG q

;;wwwwwww

r

OO

– Composition and identities are obvious.

The following fact is immediate.

Proposition 1. (V/C)/ 〈r,W〉 � Fact(C, r) � 〈V, r〉 /(C/W).

Such categories of factorisations form a convenient universe to speak about slice
pushouts from〈V, r〉 and coslice pullbacks from〈r,W〉 in C, since the former are pre-
cisely the coproducts and the latter are the products in Fact(C, r).

2.5 Generalisation to G-categories

In [11, 13] the second and third author generalised Leifer and Milner’s theory to a 2-
categorical setting, where structural congruence axioms (usually involving the commu-
tativity of parallel composition) are replaced by invertible 2-cells. The extra structure
is necessary, because simply quotienting terms results in structures where IPOs do not
exist, as in the case ofPACP defined in Example 2 (cf. also [11]).



The problem is alleviated by working with G-categories – 2-categories with in-
vertible 2-cells – and considering GIPOs. The latter are the natural bicategorical gen-
eralisation of IPOs: namely, rather than pushouts in slice categories, one considers bi-
pushouts in pseudo-slice categories. One can, equivalently, define a category of pseudo-
factorisations and consider bicoproducts (obtaining GIPOs) and biproducts (obtaining
GIPBs).

Example 3.A G-PROPis a PROP with the underlying category carrying the structure
of a G-category, i.e., a 2-category with all 2-cells invertible. As an example, consider the
PROPPAP from Example 2 (see the proof of Lemma 2 for an explicit representation of
the arrows ofPAP). Additionally, a 2-cell from a termt to a termt′ is a family, indexed
by the nodes oft, of permutations on the sets of their immediate children, such that
the application of all these permutations tot yields t′. Note how such 2-cells induce
bijections between the setsSt andS′t of positions respectively int and t′. Clearly, all
such 2-cells are invertible, hence the theory of GIPOs described in [11, 13] applies. In
particular, the lack of slice pushouts in the PROPPACP is avoided here: pseudo-slice
bipushouts exist in the above G-PROP, which in the following will be denotedPA2CP.

3 Hexagons and universality

In this section we set out on a path to extend the technique of LTS derivation to systems
where reduction rules are open in the sense that they can be instantiated with arbitrary
parameters. In such a setting, we would also like generate labels for possibly open
terms. The basic idea is that instead of considering simply the smallest context which
allows a reduction, we would like to calculate both a smallest context and the most
general parameter at the same time. We discuss a reasonable universal property, the
locally universal hexagon, or lux, referred to by Sewell [15] as hex-RPO. These can be
used to generate a labelled transition system with information about both contexts and
parameters, reminiscent of work on tile systems [2].

In order to understand this universal property, we consider its relationship with slice
pushouts and coslice pullbacks in the underlying category. It is convenient to work in
slices of the so-called twisted arrow category. We show in Theorem 1 that a category has
luxes if and only if it has slice pushouts, coslice pullbacks and these ‘commute.’ This
result allows us isolate sufficient conditions for luxes to exist. Assuming that the under-
lying category has mono arrows, we show that bisimilarity is a congruence. Finally, we
examine how the theory generalises to G-categories.

Definition 3 (Open reactive system).An open reactive systemC is a triple〈C,D,R〉
consisting of:

– a categoryC with a distinguished object 0 – we shall usually refer to its arrows as
contexts and, specifically, to the arrows with domain 0 as terms;

– a composition reflecting subcategoryD of C – the arrows ofD are termedevalua-
tion contexts;

– a setR of pairs of arrows ofC, so that if〈l, r〉 ∈ R, then the domains and codomains
of l andr are equal – we shall refer toR as the set of reduction rules.
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Fig. 2.A hexagon.

Given an open reactive systemC, one can define a reduction relation on the terms
of C as follows:a Ba′ if a = dlx anda′ = drx for somed ∈ D, x ∈ C, and〈l, r〉 ∈ R.

We shall refer to commutative diagrams such as the one illustrated if Figure 2 as
commutative hexagons, or simplyhexagons. The following universal property defines
locally universal hexagons, or luxes.

Definition 4 (Luxes).A locally universal hexagon(lux) for the hexagon of Fig. 2 is a
hexagon that factors through it (cf. diagrami), and that additionally satisfies a universal
property:

for any other such hexagon (cf. diagramii ), there exist uniqueh′′ : Y→ Y′ and
z′′ : X′ → X such that diagram (iii ) is commutative,h = h′h′′ andz= z′′z′.

W

C

c
<<yyyyyy

f
// Y

h

OO

Dg
oo

d
bbEEEEEE

A

p
OO

X
xoo

y
// B

q
OO

V

z
OO

a

bbEEEEEE b

<<yyyyyy

(i)

W

C

c
<<yyyyyy

f ′
// Y′

h′
OO

D
g′
oo

d
bbEEEEEE

A

p
OO

X′
x′oo

y′
// B

q
OO

V

z′
OO

a

bbEEEEEE b

<<yyyyyy

(ii )

Y′

C

f ′ <<yyyyyy
f
// Y

h′′
OO

Dg
oo

g′bbEEEEEE

A

p
OO

X
xoo

y
// B

q
OO

X′
z′′
OO

x′

bbEEEEEE y′

<<yyyyyy

(iii )

We denote the lux of diagram (i) above as (p) f
x

g
y(q).

We shall say that a categoryC has luxes if every hexagon has a lux. As was the case
for IPOs, in categories with luxes one does not need to know which hexagon is a lux
for: if a hexagon is a lux, then it is such for all hexagons through which it factors. This
property, analogous to Lemma 3, will be proved formally as Lemma 7 below.

In order obtain first intuitions about luxes, let us consider a very simple example.
Below we denote string concatenation by ; noted in diagrammatic order (i.e., left-to-
right).
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OO

a
OO

__???
??���

b ??���
__???

a
OO

ab
OO

__???
??���

??���
__???

ab
OO

b
OO

__???
a

??���

??���
a__???

OO OO

a

__???
??���

Fig. 3.Luxes in a free monoid.

Example 4.Consider a free monoid over an alphabetΣ viewed as a categorySwith one
object. Then luxes exist inS. Consider a hexagon as in Fig. 2, wherea; p; c = b; q; d.
Let h be the largest suffix common toc andd, then there exist wordsf andg so that
c = f ; h andd = g; h. Similarly, let z be the largest prefix common toa andb, then
there exist wordsx andy so thatz; x = a andz; y = b. Clearlyx; p; f = t; q; g and it is
straightforward to check that the universal property holds. We now fixΣ = {a,b} and
illustrate several examples of luxes inS in Fig. 3.

Armed with the notion of lux, we are ready to define a labelled transition system on
possibly open terms.

Definition 5 (LTS). Given an open reactive systemC, an LTS can be derived as fol-
lows:

– nodes are arbitrary arrowsa : A → C – i.e., domain does not need to be 0: terms
are possibly open;

– there is a transitiona f
x I b whenever there exist〈l, r〉 ∈ R and a lux

f ??���
g__???

a
OO

l
OO

x

__???
y

??���

such thatb = gry – thanks to Lemma 7 below, this is well given.

4 Properties of locally universal hexagons

In order to study the properties of luxes, it is convenient to work intwisted arrow cat-
egories, that we introduce below. Here we give their definition from [6], and examine
some of its basic properties. We mention that the category can be concisely described
as the category of elements for the homfunctorC(−,−) : Cop × C→ Set.

Definition 6 (Twisted Arrow Categories).Given a categoryC, the twisted arrow cat-
egory Tw(C) has

– objects: the arrows ofC;



– arrows: an arrow fromf : A → B to f ′ : A′ → B′ consists of arrowsp: B → B′

andq: A′ → A such thatp f q = f ′; in other words, an arrow fromf to f ′ is a
factorisation off ′ through f , as in the diagram below.

B
c // B′

A

f
OO

A′a
oo

f ′
OO

In symbols, we shall usef
c
↽⇀

a
f ′ to denote such an arrow of Tw(C).

As promised, the twisted arrow category gives us a simplified setting in which we
may consider the universal property of luxes. Indeed, our first observation is that hexes
are in 1-1 correspondence with cospans

p
c
↽⇀

a
r

d
↽⇀

b
q

in Tw(C), wherecpa= r = dqb. Secondly, it is easily verified that luxes are precisely
the coproduct diagrams in slices of Tw(C).

Proposition 2. A lux is a hexagon inC that results from a coproduct diagram in the
slice categoryTw(C)/r.

Notice that we explicitly talk about the coproductdiagram(as opposed toobject),
which includes the cospan formed by the coproduct coprojections.

The following lemma justify us referring to locally universal hexagons (without
mentioning which hexagon it is universal with respect to). Thus, when talking about
categories with luxes, we shall often abuse notation – in contrast with§2 where we
distinguished between slice pushouts and IPOs and coslice pullbacks and IPBs.

Lemma 7. In a category with luxes, if a hexagon factors through a lux (possibly for
another hexagon) then it is a lux for that hexagon.

Proof. We know that a category has luxes iff every slice Tw(C)/r has coproducts. It
is straightforward to verify that, given an arbitrary categoryC, when every slice has

coproducts, if 〈A,a〉
f
// 〈C, c〉 〈D,d〉

g
oo is a coproduct diagram inC/X, then for any

X′ ∈ C with a′ : A→ X′, b′ : B→ X′ andc′ : C→ X′ such thata′ = c′ f andb′ = c′g

〈A,a′〉
f
// 〈C, c′〉 〈D,d′〉

g
oo is a coproduct diagram inC/X′.

In order to obtain further insights into luxes, we shall explore the relationship be-
tween slices of Tw(C) and the category of factorisations of Definition 2.

First we notice that there is a faithful functorI : V/C → Tw(C) which is the first

projection on objects and takes an arrowh : 〈p,P〉 → 〈q,Q〉 to p
h
↽⇀

id
q. Similarly, there

is a functorJ : (C/W)op→ Tw(C) which takesh : 〈P, p′〉 → 〈Q,q′〉 to q′
id
↽⇀

h
p′.



I/r : Fact(C, r)→ Tw(C)/r

V
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A
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r
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V
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V
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J/r : Fact(C, r)op→ Tw(C)/r
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A
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a
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A
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�

W

Fig. 4.I/r andJ/r on objects and arrows.

Both Fact(C, r) and Fact(C, r)op can be seen as full subcategories of Tw(C) via the
functorsI/r : Fact(C, r)→ Tw(C)/r andJ/r : Fact(C, r)op→ Tw(C)/r. Observe that
the second functor is well defined, since (C/W)op/ 〈V, r〉 � (〈V, r〉 /(C/W))op, for all
categoriesC and arrowsr : V → W in it. We illustrate the actions ofI/r andJ/r in
Fig. 4.

Lemma 8. I/r andJ/r have left adjoints, respectivelyΦ : Tw(C)/r → Fact(C, r) and
Ψ : Tw(C)/r → Fact(C, r)op.

It is useful for us to examine the functorsΦ andΨ in more detail. The action ofΦ on
objects and arrows of Tw(C)/r is shown in Fig. 5. Note thatΦ ◦ I/r = idFact(C,r) and
Ψ ◦ J/r = idFact(C,r)op. In fact, Lemma 8 states that both Fact(C, r) and its opposite are
full reflective subcategories of Tw(C)/r.

Corollary 1. Coproducts inTw(C)/r map viaΦ to coproducts inFact(C, r), and thus
to coproducts in〈V, r〉 /(C/W), which are pushouts inC/W.

Corollary 2. Coproducts inTw(catC)/r map viaΨ to products inFact(C, r), and thus
to products in(V/C)/ 〈r,W〉 which are pullbacks in V/C.

Lemma 9. A diagram (i) is a coproduct diagram of p
c
↽⇀

a
r and q

d
↽⇀

b
r in Tw(C)/r

iff (1) diagram (ii) is a pushout inC/W, and (2) diagram (iii) is a pullback in V/C.

W

C

c
>>~~~~~

f
// Y

h

OO

D

d
``AAAAA

g
oo

A

p
OO

X
xoo

y
//

s
OO
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q
OO

V
a

``AAAAA z
OO

b

>>}}}}}@A

GF

r
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(i)

Y
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f ??�����
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V
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__????? qb

??~~~~~

(ii )

W

A

cp >>~~~~~
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X
x

``@@@@@ y

>>~~~~~

(iii )



Φ : Tw(C)/r → Fact(C, r)

A
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Ψ : Tw(C)/r → Fact(C, r)op
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// A
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W

Fig. 5.Φ andΨ on objects and arrows.

Proof. The only if direction is given by Corollaries 1 and 2. The if direction is easily
verified.

Note that Lemma 9 explicitly assumes that the resulting hex is commutative. Con-
sider for instance the following diagram inSet:

1

1

==||||||
0
// 2

OO

1
1
oo

aaBBBBBB

1

OO

1oo // 1

OO

0

OOaaBBBBBB

==||||||

The lower hexagon results from calculating a local pushout of 0→ 1 with itself in
Set/1 � Set, while the upper one from a local pullback of 1→ 1 with itself in 0/Set�
Set. Notice that the resulting inner hexagon isnot commutative.

We shall say that slice pushouts and coslice pullbackscommutewhen, given a com-
mutative square (the outside of Fig. 6), constructing a pushout ofa andb in C/W and a
pullback ofc andd in V/C results in an inner commutative diagram (f x = gy).

Theorem 1. A categoryC has luxes iff it has slice pushouts, coslice pullbacks and these
commute.

Proof. If C has slice pushouts, coslice pullbacks and these commute, then one can
explicitly construct a lux, using the conclusions of Lemma 9, since it is easy to show
that the commutativity property ensures the commutativity of the resulting hexagon.

Conversely, ifC has luxes then it is easy to show that it has slice pushouts, i.e.,
coproducts in Fact(C, r) and coslice pullbacks, i.e., products in Fact(C, r). Indeed, it is
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Y
h
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P
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f ::uuuuuu
Q

gddIIIIII
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X
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z
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TT

b

JJ

Fig. 6.Commutativity of slice pushouts and coslice pullbacks.

enough to calculate the lux of the hexagon below:

W

A

c
<<yyyyyy

B

d
bbEEEEEE

A

id

OO

B

id

OO

V
a

bbEEEEEE b

<<yyyyyy

Using the fact thatΦ andΨ preserve coproducts, the resulting lux maps viaΦ to the
slice pushout ofa andb in C/W and viaΨ to the coslice pullback ofc andd in V/C.
The commutativity property follows directly.

As an immediate consequence, it follows thatSet does not have luxes, since the
commutativity property is not satisfied.

When working in categories with luxes, we can use the conclusions of Lemma 9 to
obtain a characterisation of luxes in terms of IPOs and IPBs.

Lemma 10. In a category with luxes, a commutative diagram (i) is a lux iff diagram (ii)
is an IPO and diagram (iii) is an IPB.

Y

C

f
<<zzzzzz

D

g
bbDDDDDD

A

p
OO

B

q
OO

X
x

bbDDDDDD y

<<zzzzzz

(i)

Y

C

f
<<zzzzzz

D

g
bbDDDDDD

X

px

OO

qy

OO

(ii )

Y

A

f p

66

B

gq

hh

X
x

aaDDDDDD y

==zzzzzz

(iii )

It is useful to consider properties ofC that ensure that slice pushouts and coslice
pullbacks commute. One obvious such property is that either all arrows ofC are mono,
another is that all arrows ofC are epi.



Corollary 3. The following conditions are each sufficient for the existence of luxes in
categoryC.

1. C has slice pushouts, slice pullbacks and all arrows are mono;
2. C has slice pushouts, slice pullbacks and all arrows are epi.

Theorem 2. Free PROPs have luxes.PAPhas luxes.

Proof. It is easy shown by induction that all arrows in free PROPs, and all arrows in
PAP, are mono. This means that no two different terms can be made equal by putting
them in the same context. Then use Lemmas 1, 2, and 5.

Theorem 3 (Congruence).Suppose thatC is an open reactive system. Let∼ denote
bisimilarity on the LTS introduced in Definition 5.

If C has luxes and all arrows ofC are mono, then∼ is a congruence, in the sense that
if p ∼ q, then cp∼ cq for all contexts c inC.

Proof. It is enough to show that{ 〈cp, cq〉 | p ∼ q, c ∈ C } is a bisimulation.

Indeed, suppose thatp ∼ q andcp f
x I p′. Then we can find a lux, illustrated as

the outside of diagram (i) below, where〈l, r〉 ∈ R andp′ = gry.

(α)

f 66mmmmmmm h

OO

c

OO

(β)

f ′

66mmmmmmm

g

jj

g′

hhQQQQQQQ

p

OO

l

OO

xhhQQQQQQQ
y 66mmmmmmm

(i)

(α)

f 66mmmmmmm h

OO

c

OO

(γ)

f ′

66mmmmmmm

hg′′

jj

g′′

hhQQQQQQQ

q

OO

l′

OO

xhhQQQQQQQ
y′ 66mmmmmmm

(ii )

We now calculate a slice pushout ofpx and ly in diagram (i), resulting in f ′, g′ and
h such thath f ′ = f c and hg′ = g. Then (β) is an IPB and an IPO in the sense of

Lemma 10, using the Lemma yields that (β) is a lux. We obtainp f ′

x I g′ry

Sincep ∼ q, alsoq f ′

x I q′ whereq′ ∼ g′ry. Let (γ) be a lux responsible for the
transition, so that〈l′, r ′〉 ∈ R andq′ = g′′r ′y′. Pasting the IPO (α) results in a hexagon

which is an IPO. Using the fact thath is mono, it is also an IPB. Thuscq f
x I hq′. But

p′ = gry = hg′ry, and sinceq′ ∼ g′ry′, the proof is complete.

Dually, the following holds.

Proposition 3. If C has luxes and all arrows ofC are epi, then px∼ qx for all x inC.

As a consequence of Theorem 2 and the fact that the arrows of free PROPs are
mono, the LTS obtained from Definition 5 for any reactive system over a free PROP
yields a congruent bisimilarity.



5 Structural congruence as invertible 2-cells

In §2.5 we gave a rough description of how to generalise the concepts of IPOs and IPBs
to G-categories. Here we give a brief description of how to generalise the theory of
luxes. The definition of G-lux is simple to state.

Definition 7 (G-lux). Given a G-categoryC, the definition of Tw(C) can easily be ex-
tended to a G-category. The arrows are now twisted squares with a 2-cell, and the 2-cells
are 2-cells between the top and bottom components such that everything commutes. A
G-lux is a bicoproduct in pseudo-slice category Tw(C)/r.

An open G-reactive system is simply an open reactive system on a G-category, the
only extra requirement is for the subcategory of evaluation contexts to be full on the
2-dimensional structure.

Given a G-reactive system, it is easy to extend Definition 5 to generate an LTS using
G-luxes. One obtains a transition system with possibly open terms as states. It is also
possible to consider an LTS where the states are terms quotiented by isomorphism (or,
in process calculus terminology, structural congruence) – the congruence theorem holds
in both instances; see [17, Ch. 2] for details.

It is fairly straightforward to rework the theory presented in the previous section in
this more general setting, but we omit the details here. Using the concepts discussed in
§2.5, one obtains generalised versions of Theorem 1, Lemma 10 and Theorem 3. In the
latter, the mono requirement is replaced by a 2-categorical version which states that for
any arrowf and 2-cellsα andβ, if fα = fβ thenα = β.

Proposition 4. PA2CP(cf. Example 3) has G-luxes.

Proof (sketch).The proof follows the general structure of those of Theorem 2 and
Lemma 2. To show thatPA2CPhas pseudo-slice bipushouts, consider a 2-cellα : t ⇒ t′

with decompositionst = ca, t′ = db. These decompositions correspond to monotonic
functionsΛca, Λdb as sketched in the proof of Lemma 1. The following function onSt:

Λ1(ρ) =


1 if Λca(ρ) = 1 andΛdb(α(ρ)) = 1

2 if Λca(ρ) = 1 andΛdb(α(ρ)) = 2

3 if Λca(ρ) = 2

(whereα : St → St′ is the bijection, induced byα, between positions in terms) defines a
decompositiont = xyz, and moreoverz= a. Analogously one obtains a decomposition
t′ = x′y′z′, with z′ = b andx′ = x. These decompositions form the 1-cell part of the
required pseudo-slice bipushout square; to find the required 2-cells, proceed as in the
case of free monoids and permutations in [17].

Example 5.We can construct an open (G-)reactive system onPA2CPby letting the set
of reduction rulesR be the singleton consisting of the single rule〈a.1 | a.2,1 | 2〉. In the
following, we shall useP, Q andX as meta variables which stand for any closed term
(arrow 0→ 1) of PA2CP.
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Fig. 7.G-luxes inPA2CP.

The subcategory of evaluation contexts is taken to be the smallest composition re-
flecting 2-full 2-subcategory which includes arrows of the form〈1 | P〉 : 1 → 1. In
more intuitive terms, the non-evaluation contexts are precisely the contexts which have
a hole under a prefix.

In Fig. 7, we illustrate several examples of G-luxes, which in turn lead to labels of

the induced LTS. Thus, the top left diagram gives a transition〈a.P,1〉 1|a.2I P | 1, the
next diagram leads to a transitiona.P | 1

a.1
I P | 1. The next transition induced is

a.P | a.Q I P | Q, which can be seen as internal reduction since no external context
or parameter is required. In the second row, the first lux from the left demonstrates the
function of the 2-cells inPA2CP: hereγ is the unique permutationa.P | a.Q | a.1 →

a.P | a.1 | a.Q. The label generated is〈a.P | a.Q,1〉 1|a.2I a.P | a.1 | a.Q.

The final two diagrams illustrate what we believe is the main problem with luxes –
indeed, the problem can be observed already in the much simpler Example 4. Roughly,
while the universal property of luxes ensures that there is no redundant information in
the contexts and in the parameters, there may still be some overlap between contexts
and parameters. Indeed, consider the middle diagram of the second row of Fig. 7. The

lux leads to the transitiona.P 1|a.Q
I P | Q. However, the information inQ is not

necessary for this reduction, since it appears both in the context on the left and in the
parameter on the right. Unfortunately, sinceQ is arbitrary, this means that the resulting
LTS is infinitely branching. The final diagram is even more redundant, since no part
of the term is actually necessary for the reduction; now we haveX appearing both as
a parameter an the left and as part of the context on the right, andP andQ appearing
both as the parameters on the right and as part of the context on the left. This diagram

induces the transitiona.1 1|a.P|a.Q
X
I a.X | P | Q.
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Fig. 8.An irredundant hexagon.

6 Towards a general theory

Let us consider the following simple property, in order to rule out some of the ‘redun-
dant’ luxes identified in Example 5.

Definition 8 (Irredundant hexagon). A hexagon is said to be irredundant when there
exist k: A → D and l : B → D so that all regions of Fig. 8 are commutative; that is
lb = pa, cl = dq, ka= qbanddk= cp.

A lux is said irredundantwhen it is irredundant as a hexagon. The property can
be extended to cover G-luxes in the obvious way, that is, instead of commutativity one
requires the presence of compatible 2-cells.

Example 6.Consider the luxes illustrated in Fig. 3 and discussed in Example 4. It is
easy to show that the first three diagrams are irredundant as hexes, but the final one is
not. Now consider the G-luxes illustrated in Fig. 7 and discussed in Example 5. Again,
all of the luxes apart from the middle and the right lux of the second row are irredundant.

Thus, by considering irredundant luxes, we eliminate the problematic luxes identi-
fied in our case studies. The obvious next steps are to alter the LTS definition so that
only irredundant luxes are taken into account, and to study bisimilarity on the resulting
structures. Alas, the simple-minded modification to Definition 5 will not do: the tech-
nique we use to prove our congruence results (viz., Theorem 3 and Proposition 3) does
not stand for irredundant luxes alone, as a lux that is a factor of an irredundant lux need
not be irredundant itself. Indeed, bisimilarity in general isnot a congruence. Recalling
e.g. the reactive system of Example 5, and consider the possible labels of transitions
with domains of the forma.P. If a reduction involvesa.P, then it must occur in context
with an outputa.Q, for someQ; this introduces redundancy, asQ must arise as a pa-
rameter that instantiates the reduction rule. Thusa.P hasno irredundant labels, which
impliesa.P ∼ b.P, for all a , b. But a.P can reduce in the presence of an output ona
while b.P cannot, and so congruence is broken. As future work, we plan to study ways
of deriving transition systems for open terms that at the same time carry no redundancy
in the labels, and are sufficient for coinductive reasoning.

In any case, we feel that the framework for deriving labelled transition systems from
reductions is still in its infancy, and requires further development. Our ultimate goal is



an abstract method that, when applied to the standard reduction system of a calculus
like, say, theπ-calculus, yields a labelled transition system on which bisimilarity is a
congruence, and moreover: (1) gives rise to feasible coinductive techniques, and (2)
is fully abstract with respect to standard equivalences defined in terms of contextual
closures (such as barbed congruence). The final theory will necessarily involve a satis-
factory treatment of variables, parameters and parametric rules. We believe that luxes
and irredundancy, introduced in this paper, shall serve as important tools in our future
research on ‘labels from reductions.’
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