
Presenting Morphisms of Distributive Laws∗

Bartek Klin1 and Beata Nachyła2

1 University of Warsaw, Poland
klin@mimuw.edu.pl

2 Institute of Computer Science, Polish Academy of Sciences, Poland
beatanachyla@gmail.com

Abstract
A format for well-behaved translations between structural operational specifications is derived
from a notion of distributive law morphism, previously studied by Power and Watanabe.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages – Operational
semantics

Keywords and phrases coalgebra, bialgebra, distributive law, structural operational semantics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.190

1 Introduction

Since [13], distributive laws of functors (or pointed functors, or monads) over other functors
(or copointed functors, or comonads), and bialgebras for them, have been a useful categorical
tool to study various kinds of structural operational semantics (SOS, [10, 1]). Several formats
of well-behaved operational specifications can be understood as kinds of distributive laws,
and some desired properties (mostly compositionality of behavioural equivalences) can be
proved in terms of bialgebras. See [7] for a recent introduction to this topic.

One advantage of abstraction is that sometimes notions or results readily available at the
abstract level, can be instantiated in the concrete setting in previously unforeseen ways. One
such example are morphisms of distributive laws, studied by Power and Watanabe [11, 14]
as abstract notions of well-behaved translations between operational specifications.

The issue of translating specifications have attracted limited attention in the SOS
community so far; apart from a general notion of conservative extension [1], which can be
seen as a simple embedding of one specification into another, only isolated examples of
well-behaved translations have been studied [5], with no attempt at a general theory. This is
unfortunate, as translating operational semantics from one language to another, and from
one type of behaviour to another, is very useful in modular SOS development. When different
parts of a language, or different aspects of its semantics, are specified separately, they must
be combined somehow, for example via a family of translations.

In [11], distributive law morphisms were studied in the abstract, with a few concrete
examples provided in [14] (see also [4] for a slightly different application). In this paper
we pick up that line of work and provide a characterization of morphisms between GSOS
specifications [3] understood as distributive laws. A morphism between laws is presented as
a syntactic translation, together with a behavioural translation presented by inference rules
similar to SOS, subject to a compatibility condition. Importantly, for finite specifications
the condition is decidable. Decidability is a key property of any reasonable format for

∗ This work was supported by the Polish National Science Centre (NCN) grant 2012/07/E/ST6/03026.

© Bartek Klin and Beata Nachyła;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 190–204

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.190
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Klin and B. Nachyła 191

specifications or their translations, and it is the reason why we choose to work with GSOS
rather than with more general, and mathematically more pleasing, distributive laws of
monads over comonads [13, 9]. The latter do not admit a decidable presentation (see [8]).

This paper is only a small step in what should become a long-term research programme.
We only study morphisms between GSOS specifications of labelled transition systems (LTSs),
whereas the abstract framework of distributive laws and their morphisms covers different types
of behaviour and even different underlying categories. A question of translating operational
descriptions up to various behavioural equivalences, using e.g. ideas from [6], is not touched
upon. A framework for defining diagrams of distributive law morphisms and combining
operational descriptions by means of (co)limits of such diagrams, and many other related
tasks, are left for future work. However, we believe that even a simple characterization
of GSOS specification morphisms sheds some light on the strengths and limitations of the
bialgebraic approach to SOS translation.

We begin the paper by studying a special case of GSOS, so called simple SOS specifications,
recalled from [7] in Section 3. We work out this special case in detail: in Section 4 we define
morphisms of simple distributive laws, a special case of definitions studied in [11, 14]. In
Section 5, syntactic and behavioural translations are defined, and in Section 6 a compatibility
condition is shown that is equivalent to the translations forming a morphism of distributive
laws. In Section 7, the case of full GSOS is sketched briefly: while technically slightly more
complicated, it does not introduce any new conceptual difficulties. Section 8 contains some
illustrative examples.

2 Preliminaries

A signature is a set Σ of symbols, where each symbol f ∈ Σ has an associated finite arity
]f ∈ N. With any signature we associate an endofunctor ΣX =

∐
f∈ΣX

]f on the category
Set of sets and functions. We shall only consider endofunctors Σ that arise from signatures
in this way. Algebras for the functor (in the categorical sense) are then exactly algebras
for the signature (in the universal-algebraic sense). For any set X, the set Σ∗X of Σ-terms
with variables from X carries an obvious Σ-algebra structure; Σ∗0, for 0 the empty set, is an
initial Σ-algebra. The construction Σ∗ is a monad on Set; it is the free monad over Σ.

All coalgebras [12] considered in this paper are for Set-functors of the form BX = (PωX)L,
where Pω is the finite powerset functor and L is a finite set of labels. As is well known, such
coalgebras are finitely branching L-labeled transition systems (LTSs). B-coalgebra morphisms
are functional bisimulations, i.e., functions whose graphs are bisimulation relations.

3 Simple distributive laws and SOS

A simple distributive law of an endofunctor Σ over an endofunctor B is a natural transform-
ation λ : ΣB =⇒ BΣ. A λ-bialgebra is then a Σ-algebra g : ΣX → X and a B-coalgebra
k : X → BX with the same carrier X, such that the following diagram commutes:

ΣX g //

Σk
��

X
k // BX

ΣBX
λX

// BΣX.

Bg

OO

Morphisms of bialgebras are functions between their carriers that are simultaneously algebra
and coalgebra morphisms between the respective bialgebra components. Bialgebras for a

CALCO’15

192 Presenting Morphisms of Distributive Laws

fixed distributive law form a category. Under our assumptions an initial λ-bialgebra always
exists, and is of the form:

ΣΣ∗0
∼= // Σ∗0 kλ // BΣ∗0 , (1)

where the algebraic component is an initial Σ-algebra, hence (by Lambek’s Lemma) an
isomorphism. The coalgebraic component kλ of an initial λ-bialgebra is called the B-coalgebra
induced by λ. For a detailed introduction to these notions see e.g. [7].

If Σ is a polynomial functor arising from a signature, and if BX = (PωX)L for some
finite set L of labels, simple distributive laws may be presented by sets of inference rules.
This has been known since [13] for the more general case of GSOS laws (see Section 7.1),
and studied in detail in [2, 7]. We now briefly recall the main idea.

For any set X, an X-literal (or simply a literal, when no risk of confusion arises) is an
expression x a→ y where x, y ∈ X and a ∈ L. In such a literal, x is called the source, a the
label and y the target.

Fix a countably infinite set of variables V 3 x, y, z,

I Definition 1. A simple SOS specification (over Σ and L) is a finite set of simple SOS rules,
i.e., expressions of the form{

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , x]f) c→ g(z1, . . . , z]g)
(2)

where f, g ∈ Σ and m, l ∈ N; all ij , ik ∈ {1, . . . ,]f}; all xi, yj ∈ V are pairwise distinct;
z1, . . . , z]g ∈ {y1, . . . , ym}; and aj , bk, c ∈ L.

The V-literals xij
aj→ yj above are called positive premises, and the expressions xik 6

bk→
negative premises of the rule. The ΣV-literal below the inference line is called the conclusion.
The source and target of the rule are, respectively, the source and the target of its conclusion.
Note that variables from the source of a simple SOS rule do not appear in its target.

For any set X, we say that a rule R as in (2) is triggered by a set Φ of X-literals if there
is a substitution σ : V → X such that:

for each positive premise xi
a→ y in R, the literal σ(xi) a→ σ(y) is in Φ,

for each negative premise xi 6 b→ in R, there is no literal of the form σ(xi) b→ y in Φ.
If that is the case, the rule R infers from Φ the ΣX-literal

f(σ(x1), . . . , σ(x]f)) c→ g(σ(z1), . . . , σ(z]g)).

Note that a single rule may infer more than one ΣX-literal from the same set of X-literals,
depending on the substitution σ used. Note also that the literal inferred from a rule, if any,
depends only on how σ acts on the variables present in the rule. Moreover, the target of the
literal and its transition label depend only on how σ acts on the variables yj .

By Λ[Φ] we will denote the set of literals inferred from Φ by rules from a specification Λ.
Given a specification Λ, for any set X define a function λX : Σ(PωX)L → (PωΣX)L by:

λX(f(γ1, . . . , γ]f))(c) =
{
t ∈ ΣX | (f(x1, . . . , x]f) c→ t) ∈ Λ[Φ]

}
, where (3)

Φ = {xi a→ y | 1 ≤ i ≤]f, a ∈ L, y ∈ γi(a)}

for any f ∈ Σ, a family of functions γ1, . . . , γ]f : L→ PωX, a c ∈ L, and a family of distinct
x1, . . . , x]f. It is not difficult to see that for a given f(γ1, . . . , γ]f), the value of λX does not
depend on the choice of x1, . . . , x]f, as long as they are distinct; this is thanks to the fact
that variables from the source of a simple SOS rule do not appear in its target. Note that
one could even choose some xi = xj as long as γi = γj , without affecting the value of λX .

B. Klin and B. Nachyła 193

I Example 2. Consider a signature Σ = {f, g} with]f = 2,]g = 1, giving rise to a functor
ΣX = X2 +X. Consider also a set of labels L = {a, b}, and let a specification Λ consist of
the following three rules:

x a→ x′ y b→ y′

f(x, y) a→ f(x′, y′)
x 6 b→ x a→ x′ y a→ y′

f(x, y) a→ g(y′)
x b→ x′

g(x) b→ f(x′, x′)

where x, y, y′, y′ ∈ V. For X = {u, v, w}, consider the set of X-literals:

Φ = {u a→ v, u a→ w, v a→ u, v b→ w}.

Then all three rules are triggered, and the following literals are inferred:

Λ[Φ] = {f(u, v) a→ f(v, w), f(u, v) a→ f(w,w), f(v, v) a→ f(u,w), f(u, u) a→ g(v),

f(u, u) a→ g(w), f(u, v) a→ g(u), g(v) b→ f(w,w)}.

Keeping Λ and X as above, choose f ∈ Σ and a ∈ L, and consider γ1, γ2 : L → PωX

defined by: γ1(a) = {v, w}, γ1(b) = ∅, γ2(a) = {u}, γ2(b) = {w}. For any x1 6= x2,
according to (3) this gives rise to:

Φ = {x1
a→ v, x1

a→ w, x2
a→ u, x2

b→ w}, and
λX(f(γ1, γ2))(a) = {f(v, w), f(w,w), g(u)};

note how the latter does not depend on the choice of x1 and x2.

The following theorem is a special case of a more general result concerning GSOS
specifications, formulated first in [13] and proved in detail in [2]; we omit the proof here.

I Theorem 3. For any specification Λ, the functions λX defined by (3) form a natural
transformation λ : Σ(Pω−)L =⇒ (PωΣ−)L. Moreover, every natural transformation of this
type arises this way from some simple SOS specification.

Rule-based presentation of distributive laws suggests a notion of derivation; this can be
defined in standard terms of SOS theory, see e.g. [1]. A labelled transition system derived
from a simple SOS specification Λ coincides with the coalgebra induced by the corresponding
distributive law λ, i.e., with the coalgebraic component of the initial λ-bialgebra (1).

4 Distributive law morphisms

I Definition 4. A distributive law morphism from λ : ΣB =⇒ BΣ to λ′ : Σ′B′ =⇒ B′Σ′
consists of natural transformations α : Σ =⇒ Σ′ and θ : B′ =⇒ B such that the following
diagram commutes:

ΣB′ Σθ +3

αB′ �'

ΣB λ +3 BΣ
Bα

�'
Σ′B′

λ′
+3 B′Σ′

θΣ′
+3 BΣ′.

(4)

In [11, 14] distributive law morphisms were defined in a more general framework where
Σ, B and Σ′, B′ operate on different categories connected by an additional functor. Although
important for SOS specifications of systems other than LTSs, here we work in a simplified
setting to illustrate the basic issues of presenting morphisms on a classical example.

CALCO’15

194 Presenting Morphisms of Distributive Laws

In [11, 14] another definition of distributive law morphism was also considered, with two
natural transformations α : Σ =⇒ Σ′, θ : B =⇒ B′ going in the same direction. We defer
the issue of presenting such morphisms to a full version of this paper; their presentations are
technically quite similar to the ones presented here, although they carry slightly different
intuitions.

Any distributive law morphism as in Definition 4 induces a functor from the category of
λ′-bialgebras to the category of λ-bialgebras (see also [4]), mapping every

Σ′X g // X
k // B′X to ΣX αX // Σ′X g // X

k // B′X
θX // BX.

Consider this functor applied to the initial λ′-bialgebra, and the unique morphism α∗0 from
the initial λ-bialgebra to the result of that application:

ΣΣ∗0
∼= //

Σα∗0
��

Σ∗0 kλ //

α∗0
��

BX

Bα∗0
��

ΣΣ′∗0
αΣ′∗0 // Σ′Σ′∗0

∼= // Σ′∗0
kλ′ // B′Σ′∗0

θΣ′∗0 // BΣ′∗0

As an algebra morphism from an initial Σ-algebra, α∗0 is an inductively defined translation of
Σ-terms to Σ′-terms according to α (hence the name). As a bialgebra morphism, it is also a
B-coalgebra morphism.

For BX = (PωX)L, coalgebra morphisms are functional bisimulations. As a result, if
α and θ form a distributive law morphism from λ to λ′ then the translation α∗0 of Σ-terms
to Σ′-terms according to α, maps a term in the transition system kλ induced by λ, to a
bisimilar term in the system kλ′ induced by λ′, with the behaviour translated according to θ.
A useful intuition to hold is that B′ is somehow richer than B, and θ projects B′-behaviours
to B-behaviours by ignoring some components. In the following sections we will provide
examples of both α and θ that will illustrate these intuitions.

5 Syntactic and behavioural translations

To characterize morphisms of distributive laws in terms of rules, premises, literals etc., we
first provide straightforward complete characterizations of natural transformations α and θ
introduced in the previous section.

5.1 Syntactic translations
I Definition 5. For signatures Σ, Σ′, a syntactic translation from Σ to Σ′ consists of:

a function α : Σ→ Σ′ between the underlying sets of function symbols,
for each f ∈ Σ, a function αf : {1, . . . ,]α(f)} → {1, . . . ,]f}.

For any set X, a syntactic translation α determines a function αX : ΣX → Σ′X by:

αX(f(x1, . . . , x]f)) = α(f)
(
xαf(1), . . . , xαf(]α(f))

)
. (5)

We abuse the notation by denoting different entities by α, but this should not lead to any
confusion.

I Example 6. For Σ = {‖} with](‖) = 2, consider a syntactic translation from Σ to Σ that
exchanges the arguments of ‖, defined by α(‖) = ‖ and α‖(1) = 2, α‖(2) = 1. For any set X,
this determines a function αX : ΣX → ΣX given by αX(x ‖ y) = y ‖ x for x, y ∈ X.

B. Klin and B. Nachyła 195

Neither component of a syntactic translation is required to be an injective function. For
example, consider Σ = {f, g} and Σ′ = {k} with]f =]g = 1 and]k = 2, and a syntactic
translation from Σ to Σ′ defined by: α(f) = α(g) = k and αf(1) = αf(2) = αg(1) = αg(2) = 1.
This determines, for any X, a function αX(f(x)) = αX(g(x)) = k(x, x).

It is a standard exercise to prove that for any syntactic translation, the functions αX
defined by (5) form a natural transformation α : Σ =⇒ Σ′. Moreover, every natural
transformation of this type arises this way from some syntactic translation.

5.2 Behavioural translations
Natural transformations θ : (Pω−)L′ =⇒ (Pω−)L are almost a special case of simple
distributive laws λ : Σ(Pω−)L =⇒ (PωΣ−)L considered in Section 3, for Σ = Id; the only
difference is the use of two sets of transition labels L,L′. Accordingly, specifications of such
transformations look almost like degenerated cases of simple SOS specifications.

I Definition 7. A behavioural translation Θ (from L′ to L) is a set of behavioural rules, i.e.,
expressions of the form{

x aj→ yj
}
j=1..m

{
x 6 bk→

}
k=1..l

x c→ y
(6)

where m, l ∈ N; x and all yj ∈ V are all distinct; y ∈ {y1, . . . , ym}; aj , bk ∈ L′ and c ∈ L.

For any set X, rules are triggered by sets of X-literals just as in the case of SOS specifications;
the only difference is that they infer X-literals rather than ΣX-literals, and that the triggering
literals use labels from L′ rather than L. For a behavioural translation Θ, Θ[Φ] will denote
the set of literals inferred from Φ by rules from Θ.

A behavioural translation Θ induces a function θX : (PωX)L′ =⇒ (PωX)L by:

θX(γ)(c) = {y ∈ X | (x c→ y) ∈ Θ[Φ]}, where Φ = {x a→ y | a ∈ L′, y ∈ γ(a)} (7)

for a function γ : L′ → PωX, a c ∈ L, and any x ∈ X. As in (3), the value of θX does not
depend on the choice of x.

I Example 8. Consider a totally ordered set of labels L = {a1, a2, . . . , an}, with the
intuition that ai has a higher “priority” than aj , for i < j. Consider the following behavioural
translation from L to L:{

x 6 aj→
}
j<i

x ai→ y

x ai→ y
for i = 1, . . . , n.

Intuitively, this translation selects transitions with labels of the highest available priority.
According to (7), this defines:

θX(γ)(ai) =
{
γ(ai) if γ(aj) = ∅ for all j < i

∅ otherwise.

I Theorem 9. For any behavioural translation from L′ to L, the functions θX defined
in (7) form a natural transformation θ : (Pω−)L′ =⇒ (Pω−)L. Moreover, every natural
transformation of this type arises this way from some behavioural translation.

Proof. This is essentially a special case of Theorem 3; the distinction between sets of labels
L and L′ does not change the proof in any essential way. J

CALCO’15

196 Presenting Morphisms of Distributive Laws

Some behavioural translations arise from functions between transition labels. On one
hand, a function l : L→ L′ gives rise to a natural transformation θ : (Pω−)L′ =⇒ (Pω−)L:

θX(γ)(c) = γ(l(c)) for γ : L′ → PωX and c ∈ L,

specified by rules x l(c)→ y
x c→ y

for c ∈ L. On the other hand, a function k : L′ → L determines

a transformation θ of the same type by:

θX(γ)(c) =
⋃
{γ(a) | k(a) = c} for γ : L′ → PωX and c ∈ L,

specified by rules x a→ y

x k(a)→ y
for a ∈ L′.

6 Compatible translations

A morphism from an SOS specification Λ over syntax Σ and transition labels L, to a
specification Λ′ over syntax Σ′ and transition labels L′, should be presented by a syntactic
translation from Σ to Σ′ and a behavioural translation from L′ to L, specified as in Sections 5.1-
5.2, subject to a condition abstractly presented as the diagram (4). We shall now present
that condition in elementary terms.

I Definition 10. A syntactic translation α together with a behavioural translation Θ are
compatible translations from Λ to Λ′ if for any set Φ of V-literals with transition labels from
L′, a term s ∈ ΣV and a label c ∈ L:

for every r ∈ ΣV such that s c→ r is in Λ[Θ[Φ]], the literal αV(s) c→ αV(r) is in Θ[Λ′[Φ]],
and
for every t ∈ Σ′V such that αV(s) c→ t is in Θ[Λ′[Φ]], there is some r ∈ ΣV such that:
αV(r) = t and the literal s c→ r is in Λ[Θ[Φ]].

This bisimulation-like condition can be more succinctly written as:

{αV(r) ∈ Σ′V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′V | (αV(s) c→ t) ∈ Θ[Λ′[Φ]]}. (8)

Before we prove that compatible translations are equivalent to distributive law morphisms,
let us elaborate the sets Λ[Θ[Φ]] and Θ[Λ′[Φ]], which arise from different ways of combining
SOS rules with behavioural rules. In the following, a V-instance of a rule (either an SOS
one, or one of a behavioural translation) will mean a rule translated along some renaming
function σ : V → V, not necessarily bijective.

For a Λ and Θ as above, a ΛΘ-derivation consists of:
an V-instance R of a rule in Λ,
for each positive premise of R, a V-instance of a rule in Θ with that premise as the
conclusion.

A derivation is naturally presented as a simple tree-like structure built of rule instances. It
has three types of premises: (a) positive premises of the Θ-rules, (b) negative premises of the
Θ-rules, and (c) negative premises of the Λ-rule. Note that transition labels in premises of
type (a) and (b) come from L′, and of type (c) – from L.

We say that such a derivation is triggered by a set Φ of V-literals with labels from L′ if:
every Θ-rule in the derivation is triggered by Φ, and
for every premise x 6 a→ of type (c), there is no instance of a Θ-rule triggered by Φ and
with conclusion of the form x a→ y for any y ∈ V.

B. Klin and B. Nachyła 197

In that case we say that the ΣV-literal (with a transition label from L) that is the conclusion
of the derivation, is ΛΘ-inferred from Φ. It is straightforward to check that Λ[Θ[Φ]] is the
set of all literals ΛΘ-inferred from Φ.

I Example 11. For Σ = {⊗} with](⊗) = 2, and for L = {a1, . . . , an}, consider a specification
Λ with rules:

x ai→ x′ y ai→ y′

x⊗ y ai→ x′ ⊗ y′
for i = 1, . . . , n.

For the behavioural translation Θ from Example 8, ΛΘ-derivations are of the form:{
w 6 aj→

}
j<i

w ai→ w′

w ai→ w′

{
z 6 aj→

}
j<i

z ai→ z′

z ai→ z′
w⊗ z ai→ w′ ⊗ z′

for any (not necessarily distinct) w, w′, z, z′ ∈ V and ai ∈ L. A set Φ of V-literals triggers the
derivation if and only if {w ai→ w′, z ai→ z′} ⊆ Φ and Φ contains no literals with source w
or z and label aj for j < i.

On the other hand, a ΘΛ′-derivation consists of:
an Σ′V-instance R of a rule in Θ,
for each positive premise of R, a V-instance of a rule in Λ′ with that premise as the
conclusion.

Such a derivation has three types of premises: (a) positive premises of the Λ′-rules, (b)
negative premises of the Λ′-rules, and (c) negative premises of the Θ-rule. Note that transition
labels in all these premises come from L′. However, while sources of premises of type (a)
and (b) come from V, sources of premises of type (c) come from Σ′V. Such a derivation is
triggered by a set Φ of V-literals with transition labels from L′, if:

every Λ′-rule in the derivation is triggered by Φ, and
for every premise f(x1, . . . , x]f) 6 a→ of type (c), there is no instance of a Λ′-rule triggered
by Φ and with conclusion of the form f(x1, . . . , x]f) a→ t for any t ∈ Σ′V.

In that case we say that the Σ′V-literal that is the conclusion of the derivation, is ΘΛ′-inferred
from Φ. As before, it is easy to check that the set of all such literals is equal to Θ[Λ′[Φ]].

I Example 12. For Σ, L, Λ′ = Λ and Θ as in Example 11, ΘΛ-derivations are of the form:

{
w⊗ z 6 aj→

}
j<i

w ai→ w′ z ai→ z′

w⊗ z ai→ w′ ⊗ z′

w⊗ z ai→ w′ ⊗ z′

for any (not necessarily distinct) w, w′, z, z′ ∈ V and ai ∈ L. A set Φ of V-literals triggers
the derivation if and only if {w ai→ w′, z ai→ z′} ⊆ Φ and Λ infers from Φ no literals with
source w⊗ z and label aj for j < i.

For example, Φ = {w a2→ w′, z a1→ z′, z a2→ z′} triggers the above derivation (for i = 2),
but it does not trigger the ΘΛ-derivation in Example 11. Indeed, it is easy to check that
w⊗ z a2→ w′ ⊗ z is ΛΘ-inferred but not ΘΛ-inferred from Φ so, according to Definition 10,
the identity syntactic translation from Σ to itself, together with Θ from Example 8, do not
form a compatible translation from Λ to itself.

We are now ready for our main characterization of distributive law morphisms:

I Theorem 13. Translations α and Θ are compatible from Λ to Λ′ if and only if α and the
corresponding θ form a morphism of the corresponding distributive laws from λ to λ′.

CALCO’15

198 Presenting Morphisms of Distributive Laws

Proof. The diagram in Definition 4 states that two composite natural transformations
from ΣB′ to BΣ′ are equal. It is not difficult to see that one can equivalently ask for
their components at V to be equal. Indeed, in general, for any natural transformations
φ, ψ : F =⇒ G between functors on Set, if F is finitary and G preserves monomorphisms
then for any infinite set V , if φV = ψV then φ = ψ. All functors considered in this paper are
finitary and preserve monomorphisms, therefore we can replace the diagram in Definition 4
by its component at V:

ΣB′V ΣθV //

αB′V $$

ΣBV λV // BΣV
BαV

$$
Σ′B′V

λ′V

// B′Σ′V
θΣ′V

// BΣ′V

(9)

and ask for it to commute. To this end, consider an arbitrary A = f(γ1, . . . , γn) ∈ ΣB′V
where n =]f, and denote:

B = ΣθV(A) ∈ ΣBV, C = λV(B) ∈ BΣV, D = BαV(C) ∈ BΣ′V,
E = αB′V(A) ∈ Σ′B′V, F = λ′V(E) ∈ B′Σ′V, G = θΣ′V(F) ∈ BΣ′V.

Our goal is to show that α and Θ are compatible if and only if D = G, for any A. To this
end, we unfold the definition of θ according to (7) to obtain:

B = f(δ1, . . . , δn) where δi(b) = {y ∈ X | (xi b→ y) ∈ Θ[Φi]} for any b ∈ L,
Φi = {xi a→ y | a ∈ L′, y ∈ γi(a)}

where for each i = 1..n a distinct variable xi ∈ V is chosen. Further, we unfold the definition
of λ using the same variables x1, . . . , xn according to (3), to get:

C(c) = {r ∈ ΣV | (f(x1, . . . , xn) c→ r) ∈ Λ[Υ]}

where Υ = {xi b→ y | 1 ≤ i ≤ n, b ∈ L, y ∈ δi(b)} =
n⋃
i=1

Θ[Φi] = Θ
[
n⋃
i=1

Φi

]
for any c ∈ L. The last equality holds by definition of Θ, since literals in distinct Φi have
distinct sources, and all premises in any single Θ-rule have the same source. Denoting
Φ =

⋃n
i=1 Φi, we further obtain

D(c) = {αV(r) ∈ Σ′V | (f(x1, . . . , xn) c→ r) ∈ Λ[Θ[Φ]]}

for any c ∈ L. For the other side of the diagram, put g = α(f) and m =]g; then
E = g(γαf(1), . . . , γαf(m)). Further, unfold according to (3) the definition of λ′ using variables
xαf(1), . . . , xαf(m) where each xi was chosen above, to obtain:

F(b) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) b→ t) ∈ Λ′[Ψ]}
where Ψ = {xαf(i)

a→ y | 1 ≤ i ≤ m, a ∈ L′, y ∈ γαf(i)(a)}

for any b ∈ L′. Observe that Ψ ⊆ Φ, and Ψ coincides with Φ when restricted to literals whose
sources are among xαf(1), . . . , xαf(m) (indeed, Ψ = Φ if αf : m→ n is surjective). This implies
that Λ′[Ψ] coincides with Λ′[Φ] when restricted to literals with source g(xαf(1), . . . , xαf(m))).
As a result, we may write:

F(b) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) b→ t) ∈ Λ′[Φ]}.

B. Klin and B. Nachyła 199

Finally, we unfold the definition of θ according to (7), using g(xαf(1), . . . , xαf(m)) ∈ Σ′V as
the variable, to obtain:

G(c) = {t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) c→ t) ∈ Θ[Ξ]}

where Ξ = {(g(xαf(1), . . . , xαf(m)) b→ t) | b ∈ L′, t ∈ F(b)} = Λ′[Φ].

Putting it all together, the diagram (9) commutes if and only if, for every f(γ1, . . . , γn) ∈ ΣBV
and every c ∈ L:

{αV(r) ∈ Σ′V | (f(x1, . . . , xn) c→ r) ∈ Λ[Θ[Φ]]} =
{t ∈ Σ′V | (g(xαf(1), . . . , xαf(m)) c→ t) ∈ Θ[Λ′[Φ]]} (10)

where Φ = {xi a→ y | 1 ≤ i ≤ n, a ∈ L′, y ∈ γi(a)}. (11)

It is easy to see that (10) is implied by the condition (8) of the definition of compatible
translation, therefore if α and Θ form a compatible translation from Λ to Λ′ then the
diagram (9) commutes.

For the implication from (10) to (8), consider any s = f(x1, . . . , xn) ∈ ΣV , any c ∈ L and
any set Ψ of V-literals. Define γi(a) = {y ∈ V | (xi a→ y) ∈ Ψ} for 1 ≤ i ≤ n and a ∈ L′,
and define Φ from the γi as in (11). Clearly Φ ⊆ Ψ; moreover, Φ and Ψ coincide on literals
whose sources are among the xi. As a result:

Λ[Θ[Φ]] and Λ[Θ[Ψ]] coincide on literals with source f(x1, . . . , xn), and
Θ[Λ′[Φ]] and Θ[Λ′[Ψ]] coincide on literals with source g(xαf(1), . . . , xαf(m)).

The implication from (10) to (8) follows immediately. J

I Remark. It is important to note that the defining property of compatible translations,
Definition 10, is decidable for given Λ, Λ′, α and Θ. First, for a fixed finite set Φ of literals
it is possible to compute Λ[Θ[Φ]] and Θ[Λ′[Φ]] by checking all combinations of Λ-, Λ′- and
Θ-rules; each rule can have infinitely many V-instances, but one only needs to consider those
instances where all variables are present in Φ, which only leaves finitely many cases to check.

Moreover, one may restrict attention to finitely many sets Φ, all of them finite. Indeed, if
a literal with source s is ΘΛ- or ΛΘ-inferred from Φ, then the derivation only depends on
V-literals with sources that are present in s; this gives a bound on the number of different
source variables in Φ’s worth considering. The number of literals in Φ with a particular
source variable can be bound by the number of premises with the same source in a ΘΛ-
or ΛΘ-derivation; this gives a computable bound on the size of Φ worth checking. Finally,
the condition of Definition 10 is invariant with respect to bijective renaming of variables.
Altogether, this gives an effective procedure for checking whether given translations form a
valid distributive law morphism.

7 Extensions

The framework of simple SOS specifications is very restrictive, and covers very few interesting
examples of operational semantics. Right from the beginning [13], the distributive law
approach to SOS was designed to cover far more general classes of specifications. So far in
this paper we only treated simple SOS, to explain the general idea of presenting distributive
law morphisms in a relatively basic setting. In this section we sketch two extensions of that
basic setting: to GSOS specifications, and to extended syntactic translations. Fortunately, as
we shall see, these extensions require little effort and everything works essentially as before.

CALCO’15

200 Presenting Morphisms of Distributive Laws

7.1 GSOS specifications

A GSOS law of Σ over B is a natural transformation λ : Σ(Id×B) =⇒ BΣ∗, where Σ∗ is the
(underlying functor of) the free monad over Σ. Refer to [13] to see a notion of bialgebra for
such laws, or [9] to see how they are equivalent to distributive laws of the copointed functor
Id×B over the monad Σ∗. Those results are crucial for the abstract theory of GSOS laws,
but not necessary for understanding of our elementary development.

The following, introduced in [3], is a generalization of Definition 1:

I Definition 14. A GSOS specification Λ is finite set of GSOS rules, i.e., expressions of the
form{

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , x]f) c→ t
(12)

where: f ∈ Σ; m, l ∈ N; all ij , ik ∈ {1, . . . ,]f}; all xi, yj ∈ V are pairwise distinct, aj , bk, c ∈ L;
and t is a Σ-term whose all variables come from the xi and yj .

GSOS rules generalize simple SOS rules in that their targets t are arbitrary terms rather
than single operations from Σ, and in that their source variables xi are allowed in the target.

The notions of triggering rules and inferred literals Λ[Φ] are as for simple SOS specifications,
except that now targets of inferred literals are arbitrary Σ-terms. A GSOS specification Λ
determines a function λX : Σ(X × (PωX)L)→ (PωΣ∗X)L as in (3):

λX(f(x1, γ1, . . . , x]f, γ]f))(c) =
{
t ∈ Σ∗X | (f(x1, . . . , x]f) c→ t) ∈ Λ[Φ]

}
, where

Φ = {xi a→ y | 1 ≤ i ≤]f, a ∈ L, y ∈ γi(a)},

except this definition is actually slightly simpler than (3), since the values x1, . . . , x]f need
not be chosen arbitrarily, as they are provided in the argument of λX .

A generalization of Theorem 3, which was actually the result stated in [13] and proved in [2],
shows that GSOS specifications correspond to GSOS laws just as simple SOS specifications
correspond to simple distributive laws.

By analogy to Definition 4, a morphism of GSOS laws is a pair of natural transformations
α : Σ =⇒ Σ′ and θ : B′ =⇒ B such that

Σ(Id×B′)
Σ(id×θ)+3

α(Id×B′) #+

Σ(Id×B) λ +3 BΣ∗

Bα∗

�'
Σ′(Id×B′)

λ′
+3 B′Σ′∗

θΣ′
+3 BΣ′∗

commutes, where α∗ : Σ∗ =⇒ Σ′∗ is the obvious inductive extension of α to all Σ-terms.
Definition 10 of compatible translations carries over to GSOS specifications almost

verbatim, except that αV(r) needs to be replaced by α∗V(r), as now r ∈ Σ∗V is an arbitrary
term. Stated succinctly by analogy to (8), the compatibility condition becomes:

{α∗V(r) ∈ Σ′∗V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′∗V | (αV(s) c→ t) ∈ Θ[Λ′[Φ]]}

for all s ∈ ΣV, c ∈ L and Φ a set of V-literals. Theorem 13 still holds with these changes,
with a completely analogous proof.

B. Klin and B. Nachyła 201

7.2 Generalized syntactic translations
In practical examples of translations between operational specifications, one often wishes to
interpret an operation from the source signature not as a single operation, but as a complex
term over the target signature. A natural way to model such situations is to consider an
extended definition of a syntactic translation as a natural transformation α : Σ =⇒ Σ′∗. Such
a transformation can be presented much the same as in Section 5.1, by a function from Σ to
Σ′-terms (over some fixed set of variables), together with a function αf for each f ∈ Σ as in
Definition 5, where arity of complex terms is defined inductively in an obvious way.

I Example 15. Consider signatures Σ = {‖} and Σ′ = {b,+}, where all operators have arity 2
(so that ΣX = X2 and Σ′X = X2 +X2). A translation that maps every term x ‖ y ∈ ΣX
to (xby) + (ybx) ∈ Σ′∗X is formally defined by a function that maps the symbol ‖ to a term
(1b2) + (3b4) ∈ Σ′∗N together with a mapping α‖(1) = α‖(4) = 1, α‖(2) = α‖(3) = 2.

I Example 16. Consider signatures Σ = {p} with]p = 3 and Σ′ = {‖} with](‖) = 2. Two
extended syntactic translations from Σ to Σ′ come to mind, given by:

αX(p(x, y, z)) = (x ‖ y) ‖ z or α′X(p(x, y, z)) = x ‖ (y ‖ z), for x, y, z ∈ X.

Generalized syntactic translations make sense already in connection to morphisms of
simple distributive laws, but they are more naturally considered in the context of GSOS
laws. A GSOS law λ : Σ(Id×B) =⇒ BΣ∗ extends, by induction on Σ-terms, to a natural
transformation λ∗ : Σ∗(Id × B) =⇒ BΣ∗ (see [9] for a detailed study of this and related
issues). It is natural to redefine a morphism between GSOS laws λ and λ′ as an (extended)
syntactic translation α : Σ =⇒ Σ′∗ and a natural transformation θ : B′ =⇒ B as before, such
that

Σ(Id×B′)
Σ(id×θ) +3

α(Id×B′) #+

Σ(Id×B) λ +3 BΣ∗

Bα∗

�'
Σ′∗(Id×B′)

λ′∗
+3 B′Σ′∗

θΣ′∗
+3 BΣ′∗.

commutes, where α∗ : Σ∗ =⇒ Σ′∗ is the inductive extension of α to all Σ-terms.
A corresponding notion of compatible translations is straightforward to define, but a

little less so than in Section 7.1. For a GSOS specification Λ, one defines Λ∗-derivations as
well-formed trees built of instances of rules from Λ. For example, for Λ as in Example 11,

x ai→ x′ y ai→ y′

x⊗ y ai→ x′ ⊗ y′ z ai→ z′

(x⊗ y)⊗ z ai→ (x′ ⊗ y′)⊗ z′

is a valid derivation triggered by Φ = {x ai→ x′, y ai→ y′, z ai→ z′}, and it infers the literal
in the conclusion; the (usually infinite) set of all inferred literals is denoted by Λ∗[Φ].

Compatible translations are then defined similarly as in Definition 10, with Λ′-derivations
replaced by Λ′∗-derivations. By analogy to (8), the compatibility condition becomes:

{α∗V(r) ∈ Σ′∗V | (s c→ r) ∈ Λ[Θ[Φ]]} = {t ∈ Σ′∗V | (αV(s) c→ t) ∈ Θ[Λ′∗[Φ]]} (13)

for all s ∈ ΣV, c ∈ L and Φ a set of V-literals. The corresponding version of Theorem 13
still holds; the proof is slightly more complex technically due to the presence of additional
induction on Σ-terms, but no essentially new aspects arise in it.

CALCO’15

202 Presenting Morphisms of Distributive Laws

I Remark. Although even for a finite Φ the set Θ[Λ′∗[Φ]] will often be infinite, it will still be
finite when restricted to literals with the source αV(s), for any fixed s ∈ ΣV. As a result,
the above compatibility condition remains decidable.

8 Examples

I Example 17 (Conservative extension). Consider a signature Σ′ and its subsignature Σ (i.e.,
Σ ⊆ Σ′ and the arities of Σ-symbols are matched in Σ′), and two GSOS specifications Λ and
Λ′ over Σ and Σ′ respectively, with the same set L of transition labels. We say that Λ′ is a
conservative extension of Λ if Λ ⊆ Λ′ and if no rule from Λ′ \ Λ has its source from Σ.

Note that this notion is more restrictive than usual definitions of conservative extension
considered in SOS theory [1]. There, global properties of specifications play a role; for
example, a new rule with a source from Σ may be allowed in Λ′ as long as it it has some
positive premise whose label cannot possibly be matched by a conclusion of a Λ-rule.

Consider a trivial inclusion syntactic translation α : Σ =⇒ Σ′, and the identity behavioural
translation Θ. It is easy to see that α and Θ form a compatible translation from Λ to Λ′.
Indeed, for any s = f(x1, . . . , xn) ∈ ΣV and c ∈ L, there is a correspondence between
ΛΘ- and ΘΛ′-derivations:{

xij
aj→ yj

xij
aj→ yj

}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , xn) c→ t
vs.

{
xij

aj→ yj
}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , xn) c→ t
f(x1, . . . , xn) c→ t

(14)

that are triggered by the same sets Φ and infer the same conclusions, for any rule from Λ as
in (12). No other ΘΛ′-derivation for f is possible, by definition of conservative extension.

I Example 18 (Nservative coextension). Dually, consider a signature Σ, two sets of labels
L ⊆ L′, and two GSOS specifications Λ and Λ′ over Σ and over labels L and L′, respectively.
We say that Λ′ is, for lack of a better name, an nservative coextension of Λ if Λ ⊆ Λ′ and if
the conclusion of each rule from Λ′ \ Λ has a transition label from L′ \ L.

Intuitively, just as a conservative extension (Example 17) defines behaviour for a new
part of syntax while leaving the behaviour of the old syntax intact, an nservative coextension
defines new aspects of behaviour (i.e., L′ \ L-transitions) while leaving old aspects intact.

Consider the identity syntactic translation on Σ and a trivial behavioural translation Θ

from L′ to L specified by rules x c→ y
x c→ y

for c ∈ L. Again, it is easy to see that α and θ are a

compatible translation from Λ to Λ′. Indeed, for any s = f(x1, . . . , xn) ∈ ΣV and c ∈ L, a
correspondence between ΛΘ- and ΘΛ′-derivations is exactly the same as in (14); again, no
other ΘΛ′-derivation is possible since c ∈ L and there are no new rules in Λ′ with c as the
conclusion label.

In the next example, neither α nor θ is identity.

I Example 19. For Σ = {!} with](!) = 2 and L = {a1, . . . , an}, consider Λ with rules:

x ai→ x′ (y 6 aj→)j<i
x!y ai→ x′!y

(x 6 aj→)j<i y ai→ y′

x!y ai→ x!y′
for i = 1, . . . , n. (15)

Moreover, let Σ′ = {‖} with](‖) = 2 and, for the same L, let Λ′ consist of rules:

x ai→ x′

x ‖ y ai→ x′ ‖ y
y ai→ y′

x ‖ y ai→ x ‖ y′
for i = 1, . . . , n. (16)

B. Klin and B. Nachyła 203

Consider a syntactic translation from Σ to Σ′ defined by αX(x!y) = x ‖ y, and the behavioural
translation Θ from Example 8. Then ΛΘ-derivations are of the form:{

x 6 aj→
}
j<i

x ai→ x′

x ai→ x′
{

y 6 aj→
}
j<i

x!y ai→ x′!y

{
x 6 aj→

}
j<i

{
y 6 aj→

}
j<i

y ai→ y′

y ai→ y′

x!y ai→ x!y′

and ΘΛ′-derivations are of the form:
x ai→ x′

x ‖ y ai→ x′ ‖ y
{

x ‖ y 6 aj→
}
j<i

x ‖ y ai→ x′ ‖ y

{
x ‖ y 6 aj→

}
j<i

y ai→ y′

x ‖ y ai→ x ‖ y′

x ‖ y ai→ x ‖ y′

It is easy to see that for any Φ these derivations infer the same literals up to α, since a
negative premise x ‖ y 6 aj→ holds for Φ if and only if both premises x 6 aj→ and y 6 aj→ hold.
As a result, α with Θ form a morphism from Λ to Λ′.

Note that the identity syntactic translation together with Θ does not give a morphism
from Λ′ to itself, for reasons similar to Example 12. Indeed, Λ′Θ-derivations are of the form:{

x 6 aj→
}
j<i

x ai→ x′

x ai→ x′
x ‖ y ai→ x′ ‖ y

{
y 6 aj→

}
j<i

y ai→ y′

y ai→ y′

x ‖ y ai→ x ‖ y′

and for Φ = {x a2→ x′, y a1→ y′} they infer the literal x ‖ y a2→ x′ ‖ y, whereas ΘΛ′-literals
above do not.

The following example was considered also in [14].

I Example 20. Consider Σ and Σ′ from Example 15, over the same set of labels L. Let Λ
consist of rules:

x a→ x′

x ‖ y a→ x′ ‖ y
y a→ y′

x ‖ y a→ y′ ‖ x
for a ∈ L, (17)

and let Λ′ be the GSOS specification:

x a→ x′

x + y a→ x′
y a→ y′

x + y a→ y′
x a→ x′

xby a→ (x′by) + (ybx′)
for a ∈ L.

Pick a syntactic translation is as in Example 15, and let Θ be the identity behavioural
translation. ΛΘ-derivations are very simple:

x a→ x′

x a→ x′
x ‖ y a→ x′ ‖ y

y a→ y′

y a→ y′

x ‖ y a→ y′ ‖ x

ΘΛ′∗-derivations are more interesting; the only ones for the term αV(x ‖ y) = (xby) + (ybx)
are:

x a→ x′

xby a→ (x′by) + (ybx′)
(xby) + (ybx) a→ (x′by) + (ybx′)
(xby) + (ybx) a→ (x′by) + (ybx′)

y a→ y′

ybx a→ (y′bx) + (xby′)
(xby) + (ybx) a→ (y′bx) + (xby′)
(xby) + (ybx) a→ (y′bx) + (xby′)

It is easy to see that the condition (13) is satisfied, therefore α and Θ form a morphism
from Λ to Λ′. Note the slight difference between the targets of rules (16) and (17). There
seems to be no morphism from (16) to Λ′, which suggests that the notion of distributive law
morphism could perhaps be relaxed in a useful way. We leave this for future work.

CALCO’15

204 Presenting Morphisms of Distributive Laws

I Example 21. Consider Σ, Σ′ and α from Example 16. Let Λ over Σ consist of rules:

x a→ x′

p(x, y, z) a→ p(x′, y, z)
y a→ y′

p(x, y, z) a→ p(x, y′, z)
z a→ z′

p(x, y, z) a→ p(x, y, z′)
for a ∈ L,

and let Λ′ over Σ′ be defined by rules as in (16). For the identity Θ, there is an easy
correspondence between ΛΘ-derivations and ΘΛ′-derivations, for example:

x a→ x′

x a→ x′
p(x, y, z) a→ p(x′, y, z)

vs.

x a→ x′

x ‖ y a→ x′ ‖ y
(x ‖ y) ‖ z a→ (x′ ‖ y) ‖ z
(x ‖ y) ‖ z a→ (x′ ‖ y) ‖ z

which shows that α with Θ form a morphism from Λ and Λ′. By analogy, α′ with Example 16
forms a similar morphism with Θ. This proves that the equation (x ‖ y) ‖ z = x ‖ (y ‖ z)
holds up to bisimilarity in the transition system induced by Λ′. This suggests a connection
to quotients of distributive laws studied in [4]; we leave this for future work.

References
1 L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A. Bergstra,

A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier,
2002.

2 F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD
dissertation, CWI, Amsterdam, 2004.

3 B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42:232–268, 1995.

4 M. Bonsangue, H.H. Hansen, A. Kurz, and J. Rot. Presenting distributive laws. In Procs.
CALCO’13, volume 8089 of LNCS, pages 95–109, 2013.

5 M. Hennessy, W. Li, and G.D. Plotkin. A first attempt at translating CSP into CCS. In
Proc. Second International Conference on Distributed Systems, pages 105–115, 1981.

6 B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Inform-
ation and Computation, 207:237–257, 2009.

7 B. Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011. CMCS Tenth Anniversary Meeting.

8 B. Klin and B. Nachyła. Distributive laws and decidable properties of SOS specifications.
In Procs. EXPRESS/SOS’14, volume 160 of ENTCS, pages 79–93, 2014.

9 M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics. The-
oretical Computer Science, 327(1-2):135–154, 2004.

10 G.D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

11 J. Power and H. Watanabe. Combining a monad and a comonad. Theor. Comput. Sci.,
280:137–162, 2002.

12 J. J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

13 D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc.
LICS’97, pages 280–291. IEEE Computer Society Press, 1997.

14 H.Watanabe. Well-behaved translations between structural operational semantics. ENTCS,
65, 2002.

	Introduction
	Preliminaries
	Simple distributive laws and SOS
	Distributive law morphisms
	Syntactic and behavioural translations
	Syntactic translations
	Behavioural translations

	Compatible translations
	Extensions
	GSOS specifications
	Generalized syntactic translations

	Examples

