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Abstract

A previously introduced combination of the bialgebraic approach to structural operational semantics with
coalgebraic modal logic is re-examined and improved in some aspects. Firstly, a more abstract, conceptual
proof of the main compositionality theorem is given, based on an understanding of modal logic as a study
of coalgebras in slice categories of adjunctions. Secondly, a more concrete understanding of the assumptions
of the theorem is provided, where proving compositionality amounts to finding a syntactic distributive law
between two collections of predicate liftings.
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1 Introduction

Compositionality of process equivalences is an important issue in the theory of
Structural Operational Semantics (SOS; see e.g. [1,7]). Compositionality proofs
for specific languages are often tedious, therefore plenty of meta-results have been
proved that guarantee the compositionality of various equivalences by subjecting
operational specifications to certain syntactic restrictions, called formats.

The process of inducing well-behaved transition systems from SOS specifications
has been explained at the abstraction level of coalgebras, in the bialgebraic frame-
work of [28]. There, a well-known SOS format called GSOS was understood as a
type of distributive laws between behaviour and syntax endofunctors. The fact that
LTS bisimilarity on GSOS-induced specifications is compositional, was explained at
that level of generality.

One way to extend that approach to equivalences other than bisimilarities is to
understand them as logical equivalences for some modal logics, and use a general
coalgebraic approach to modal logic as developed, e.g., in [4,5,10,12,16,18,19,23,27].
In [15,17], such a combination of the bialgebraic approach with coalgebraic modal
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logic was presented. To prove that an equivalence defined by some logic on a transi-
tion system induced from an SOS specification is a congruence, one needs to equip
logical formulas with a coalgebraic behaviour, and exhibit a “logical distributive
law” of logical syntax over that behaviour that reflects the distributive law model-
ing the SOS specification.

Looking from some perspective, neither mathematical economy nor practical
usability of [15,17] was entirely satisfactory. Firstly, the proof of the main composi-
tionality result, albeit elementary, involved plenty of diagram chasing and inductive
proofs, and in general was not very illuminating. Second, perhaps more painful
deficiency, was that no intuitive general understanding of coalgebraic behaviour for
logical formulas was provided. Although logical distributive laws for some specific
kinds of logical behaviour were presented in an appealing, SOS-like manner, no
concrete understanding of such laws for other types of behaviour was found. Also,
no guidelines to finding behaviour functors for logical formulas were given, other
than wild guessing. Checking that a candidate logical distributive law was correct
involved heavy calculations of complex natural transformations, far removed from
common understanding of formulas and processes.

This paper is an attempt to remove these two deficiencies to some degree. First,
a more abstract, conceptual proof of the main compositionality theorem of [15]
is provided (and the theorem is mildly generalized in the process). To this end,
the interpretation of modal logic in coalgebras is understood as a functor from the
category of coalgebras to a slice category of an adjunction. The compositionality
theorem then follows from lifting that functor to structures that involve process
syntax, via an adjoint lifting theorem.

Secondly, a concrete understanding of the compositionality theorem is provided
for the important example where both processes and formulas live in the category
of sets. Coalgebraic behaviour for formulas is explained in terms of predicate lift-
ings [22,27], and logical distributive laws are syntactic distributive laws between two
collections of liftings. Proving compositionality of a logical equivalence amounts to
finding a suitable collection of liftings for process syntax, together with a set of
equations that involve those liftings. Since the notion of predicate lifting is well
studied and understood, this formulation should hopefully aid the understanding of
our bialgebraic approach to logical compositionality.

The paper is structured as follows. In Sections 2 and 3, the bialgebraic approach
to SOS and coalgebraic modal logic are briefly recalled. Section 4 studies endofunc-
tors, algebras and coalgebras in slice categories of adjunctions, and culminates in a
proof of the main compositionality theorem. Section 5 provides a concrete interpre-
tation of the theorem in terms of predicate liftings. Finally, Sections 6 explains how
both deficiencies mentioned above persist to some degree in the present formulation.
Some proofs, not essential for the main line of reasoning, are relegated to Appendix.

Parts of the paper might be of interest also to those readers who do not care
much about compositionality or SOS. For an explanation of coalgebraic modal logic
in terms of (co)algebras in slice categories of adjunctions, without any involvement
of process syntax, it is enough to read Sections 3, 4.1 and 4.2.

The reader is expected to be acquainted with basic category theory ([21] is a
standard reference) and with the coalgebraic approach to theory of systems [26].
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2 SOS and distributive laws

In the context of Structural Operational Semantics, transition systems of various
kinds are defined by structural induction using inference rules, and have closed
terms over some signature as states. For example, given a fixed set A of labels, the
set of rules

a a→ 0

x a→ x′ y a→ y′

x⊗ y a→ x′ ⊗ y′
(1)

(where a ranges over A) inductively defines a labeled transition system (LTS) on
the set of closed terms over the grammar:

t ::= 0 | a | t⊗ t (a ∈ A). (2)

In [28], this situation was expressed in the coalgebraic setting with the use of dis-
tributive laws and bialgebras for them. For example, rules (1) define a natural
transformation λ : ΣB =⇒ BΣ (see e.g. [17] for a gentle explanation of this con-
struction), where Σ is the polynomial endofunctor on Set corresponding to the
grammar (2), and B = (Pω−)A, where Pω is the finite powerset endofunctor; B-
coalgebras are image-finite A-labeled transition systems (LTSs).

For any endofunctors Σ and B on a category C, a transformation as above, called
a distributive law of Σ over B, induces an endofunctor Σλ on the category B-coalg
of B-coalgebras, and an endofunctor Bλ on the category Σ-alg of Σ-algebras, acting
on objects as follows:

Σλ(X h //BX ) = ΣX Σh // ΣBX
λX //BΣX

Bλ( ΣX g
//X ) = ΣBX λX

//BΣX Bg
//BX

and as Σ (resp. B) on morphisms. Clearly Σλ lifts Σ and Bλ lifts B along the
respective forgetful functors UB : B-coalg→ C and UΣ : Σ-alg→ C.

It is easy to see that a Σλ-algebra, or a Bλ-coalgebra, consists of a Σ-algebra g
and a B-coalgebra h with the same carrier, so that the diagram:

ΣX
g //

Σh
��

X
h //BX

ΣBX λX
//BΣX

Bg

OO

(3)

commutes. Such structures are called λ-bialgebras (with carrier X), and a λ-
bialgebra morphism is a map in C between the respective carriers that is simul-
taneously an algebra morphism and a coalgebra morphism; this defines a category
λ-bialg of λ-bialgebras. There is an isomorphism of categories and a commuting
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square of forgetful functors:

λ-bialg ∼= Σλ-alg ∼= Bλ-coalg

λ-bialg UΣλ //

UBλ
��

B-coalg

UB
��

Σ-alg
UΣ

// C.

(4)

If g is an initial Σ-algebra, then there is a unique B-coalgebra h such that (3)
commutes, defined as the unique Σ-algebra morphism from g to Bλ(g). The result
is an initial λ-bialgebra, and if λ corresponds to an SOS specification as in (1), then
h corresponds to the transition system induced by the specification.

Dually, if a final B-coalgebra exists, it extends uniquely to a final λ-bialgebra.
This immediately implies:

Proposition 2.1 For any λ-bialgebra ΣX
g //X

h //BX , the unique coalgebra
morphism from h to the final B-coalgebra is a Σ-algebra morphism from g.

When C = Set, two elements x, y ∈ X for a given coalgebra h : X → BX are
called observationally equivalent if they are identified by some coalgebra morphism.
In particular, if final B-coalgebras exist, observational equivalence on h is the kernel
relation of the final coalgebra morphism from h. Thus Proposition 2.1, applied to
initial bialgebras, means that observational equivalence on the transition system
induced by a specification is a congruence, if the specification corresponds to a
distributive law λ. 2

The practical applicability of Proposition 2.1 as stated here is rather limited,
since few interesting examples actually correspond to λ as above. Already in [28]
more general laws were studied, involving the free pointed endofunctor Id + Σ and
the free monad Σ∗, and the cofree copointed endofunctor Id×B and cofree comonad
Bω (assuming they exist). In particular, distributive laws of Σ∗ over Id×B corre-
spond bijectively [20] to natural transformations λ : Σ(Id × B) =⇒ BΣ∗, and for
B = (Pω−)A, these correspond [2] to SOS specifications in the well-studied GSOS
format [3]. Similarly, distributive laws of Id + Σ over Bω correspond to a format
called safe-ntree in [28]. Proposition 2.1 is proved without much change for each of
these more expressive laws; in fact, one does not need to prove each case separately,
as each type of laws in question induces distributive laws of the monad Σ∗ over the
comonad Bω along the lines of [20], and Proposition 2.1 works for such laws as well,
with essentially the same proof.

In this paper, only simple distributive laws λ : ΣB =⇒ BΣ are considered. This
is mainly to simplify the presentation and save space in the technical development
in Section 4. The general case of distributive laws of monads over comonads is
dealt with in an entirely analogous manner, but with additional checks to ensure
the existence of certain (co)free (co)monads and the compatibility of (co)units and
(co)multiplications, and is better left to an extended version of this paper.

2 In [28], the congruence result is proved for coalgebraic bisimilarity [26] rather than observational equiv-
alence; for that, the additional assumption of B preserving weak pullbacks was needed.
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3 Coalgebraic modal logic

An abstract approach to modal logics for coalgebras, based on adjunctions of con-
travariant functors, has attracted considerable attention (e.g., [4,5,10,12,16,18,27]).
Assume an adjunction Sop a T : Cop → D, with the intuition that objects of D are
sets (or structures) of formulas, and objects of C are sets (or structures) of processes
or states. For an endofunctor B on C, a coalgebraic modal logic for B-coalgebras
is given by an endofunctor L on D (the logical syntax), and a natural transforma-
tion ρ : LT =⇒ TBop (called a connection). Under the assumption that an initial
L-algebra a : LΦ → Φ exists (intuitively, it is an algebra of logical formulas), the
interpretation of logic (L, ρ) on a given coalgebra h : X → BX is obtained by
transposing along the adjunction Sop a T the unique L-algebra morphism s from a

to Th ◦ ρX , as in the diagram:

LTX

ρX
��

LΦ

a∼=

��

Lsoo

BX TBX

Th
��

X

h

OO

s[
//SΦ TX Φs

oo_ _ _ _

(5)

where the left part is drawn in C and the right part in D.
Take for example C = D = Set and S = T = 2− (where 2 = {tt, ff}), and

B = (Pω−)A. The trace fragment of Hennessy-Milner logic for B-coalgebras (i.e.
LTSs) has syntax described by the grammar φ ::= > | 〈a〉φ that corresponds to
the endofunctor LΦ = 1 + A × Φ, and its standard semantics corresponds to ρX :
L2X → 2BX defined by:

ρX(>)(b) = tt always (6)
ρX(〈a〉φ)(b) = tt ⇐⇒ ∃y ∈ b(a). φ(y) = tt

for any X. It is straightforward to check that (the kernel relation of) the interpre-
tation of this (L, ρ) on a B-coalgebra is the trace equivalence on it.

When searching for a logic for a given B, one may often restrict attention to
endofunctors of a certain shape, without losing any generality. We now briefly recall
an analysis from [16]. Connections ρ : LT =⇒ TBop are in bijective correspondence
with natural transformations ρ̃ : L =⇒ TBopSop by ρ̃ = ρSop ◦Lη, where η : IdD →
TSop is the unit of Sop a T . If one insists on L being finitary, then ρ̃ factors through
the finitary restriction of TBopSop. The latter is defined by a coend formula; without
losing generality one may replace the coend with a coproduct and, for D = Set,
require a natural transformation

ρ̃ : L =⇒
∐
n∈N

TBSn× (−)n.

For S = T = 2− and n ∈ N, elements of TBSn are functions β : B(2n)→ 2, which
we call n-ary B-modalities. (By Yoneda Lemma, these bijectively correspond to
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natural transformations βY : (2−)n =⇒ 2B−, i.e., polyadic predicate liftings of [27].)
As a result, a finitary L with ρ can be presented as a collection of B-modalities: a
family (Ln)n∈N of sets Ln ⊆ 2B2n represents the polynomial endofunctor

L =
∐
n∈N

Ln × (−)n, (7)

with ρ : L(2−) =⇒ 2B− defined by copairing all predicate liftings βY : (2−)n =⇒
2B− for each n ∈ N and β ∈ Ln.

For example, the trace logic for B = (Pω−)A is represented by the following
collection of modalities: L0 = {>}, L1 = {〈a〉 | a ∈ A}, Ln = ∅ for n > 1, where
> : B1→ 2 and 〈a〉 : B2→ 2 are defined by:

>(b) = tt always, 〈a〉(b) = tt ⇐⇒ tt ∈ b(a). (8)

We mention in passing that this approach to logics suffers from practical expres-
sivity problems similar to those mentioned in Section 2. For example, although a
version of finitary Hennessy-Milner logic [8] for bisimilarity can be defined this way,
it is rather unwieldy, with infinitely many modalities of arbitrary arities (see [16]).
This is because logics based on S = T = 2− lack in-built support for propositional
connectives, which must then be encoded as parts of complex modalities.

One way to avoid this problem is to change the adjunction Sop a T in question
(see [12] for examples). Another way is to consider, by analogy to distributive
laws and SOS, more general types of connections. For example, one can allow ones
like ρ : LT =⇒ T (Id × B)op, whereby propositional connectives such as ∧ can
easily be defined as simple modalities. One can even consider connections such as
ρ : LT =⇒ T (Bω)op to describe e.g. Hennessy-Milner logic for weak bisimilarity.

Again, in this paper only simple connections ρ : LT =⇒ TB are considered; the
issue of coalgebraic modal logics based on more complex connections is left for a
separate study.

4 Compositionality for logical equivalences

Our main technical goal is to modify Proposition 2.1 to deal with logical equiva-
lences rather than with observational equivalence. We shall prove (in Theorem 4.6)
that under certain assumptions, for any λ-bialgebra ΣX

g //X
h //BX , the in-

terpretation of logic (L, ρ) on h is a Σ-algebra morphism from g. To formulate
the theorem and its proof, we introduce some basic notions and results regarding
(co)algebras on slice categories of adjunctions. To structure the development to
some degree, we shall begin with slice categories of functors, and later see what
additional structure the adjunction Sop a T introduces.

4.1 Slice categories

For a functor T : Cop → D, the slice category (D↓T ) has:

• as objects, triples 〈Φ, X, s〉 with Φ ∈ D, X ∈ C and s : Φ→ TX in D,
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• as maps from 〈Φ, X, s〉 to 〈Ψ, Y, r〉, pairs (g, f) with g : Φ→ Ψ in D and f : Y →
X in C such that

Φ s //

g

��

TX

Tf

��
Ψ r

// TY

(9)

commutes.

There are obvious projection functors, denoted Π1 : (D ↓ T ) → D and Π2 : (D ↓
T )→ Cop.

If an initial object 0 in D exists, it determines a full embedding 0→ : Cop → (D↓
T ) defined on objects by 0→(X) = 〈0, X, 0 : 0→ TX〉, where the arrow 0 is unique
by initiality, and on arrows by 0→(g) = 〈id0, g〉. It is easy to verify that:

Proposition 4.1 0→ is left adjoint to Π2 : (D ↓ T ) → Cop, and the unit of the
adjunction is the identity natural transformation. 2

Sliced endofunctors. Assume endofunctors B : C → C and L : D → D, and a
natural transformation ρ : LT =⇒ TBop.

These ingredients define an endofunctor on (D↓T ), denoted ρ̂, as follows:

• on objects, ρ̂ 〈Φ, X, r〉 = 〈LΦ, BX, ρX ◦ Lr〉
• on maps, ρ̂ 〈g, f〉 = 〈Lg,Bf〉.

It is easy to check that this is well-defined and functorial. Clearly ρ̂ lifts L along
Π1, in the sense that Π1 ◦ ρ̂ = L ◦Π1. Similarly, ρ̂ lifts Bop along Π2.

Endofunctors on (D↓T ) that arise in this way will be called sliced (by ρ). Not
every endofunctor on (D ↓ T ) is sliced in general, even if T is well-behaved (for a
counterexample, see the Appendix). However:

Proposition 4.2 Consider an endofunctor K : (D ↓ T ) → (D ↓ T ) such that for
some L : D → D and B : C → C, K lifts L along Π1 and Bop along Π2. Then K is
sliced in a unique way.

Proof. See the Appendix. 2

It immediately follows that sliced endofunctors are closed under composition.
However, a more direct proof is possible: for ρ : LT =⇒ TBop and ρ′ : L′T =⇒
T (B′)op, it is easy to check that the composite endofunctor ρ̂ρ̂′ is sliced by:

ρ(B′)op ◦ Lρ′ : LL′T =⇒ T (BB′)op. (10)

Sliced natural transformations. Assume connections ρ : LT =⇒ TBop and
ρ′ : L′T =⇒ TB′op. Any two natural transformations α : L =⇒ L′ and β : B′ =⇒ B

such that
LTS

ρ +3

αT
��

TBop

Tβop

��
L′T ρ′

+3 TB′op

(11)
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commutes, give rise to a natural transformation α~ β : ρ̂ =⇒ ρ̂′ defined by:

α~ β〈Φ,X,s〉 = 〈αΦ, βX〉 . (12)

Not every transformation between sliced endofunctors is of this form (for a coun-
terexample, see the Appendix). However, in Section 4.2 we shall show that this is
the case if T has a left adjoint.

Algebras. Given a connection ρ : LT =⇒ TBop, a ρ̂-algebra is, equivalently, an L-
algebra g : LΦ→ Φ in D, a B-coalgebra h : X → BX in C, and a map s : Φ→ TX,
such that the diagram

LΦ Ls //

g

��

LTX
ρX // TBX

Th
��

Φ s
// TX

(13)

commutes in D. Moreover, ρ̂-algebra morphisms are easily seen to be pairs of an
L-algebra morphism and a B-coalgebra morphisms. In particular, there are evident
projection functors Π1 : ρ̂-alg→ L-alg and Π2 : ρ̂-alg→ (B-coalg)op.

Let us pause for a moment to reflect on the meaning of ρ̂-algebras: they are
B-coalgebras h (systems) together with L-algebras g (logical theories) interpreted
in them (via s). For example, if C = D = Set and S = T = 2−, the function
s : Φ → TX in the carrier of a ρ̂-algebra is just a relation between Φ and X.
For B = (Pω−)A and (L, ρ) as in (6), the equivalence relation on X defined by
this relation is always contained in trace equivalence on h, and coincides with it if
g is initial. Morphisms of ρ̂-algebras reflect these equivalence relations, implicitly
present in their carriers. This suggests that when one wants to study coalgebras “up
to” some logical equivalence, and when the task of finding an explicit coalgebraic
presentation of these “up to” structures (such as in [11]) seems difficult or simply
not worthwhile, one may try to resort to implicit modeling of logical equivalences
by theories interpreted in coalgebras; this view is advocated e.g. in [23], and the
present paper may be considered as an example application of it. One may argue
that, just as structural operational semantics is a study of coalgebra in categories
of algebras, coalgebraic modal logic is a study of (co)algebra in slice categories.

Back to the formal development: an alternative reading of (13) is that s is
a L-algebra morphism. In other words, ρ̂-algebras are morphisms between L-
algebras of a certain shape. To formalize this, observe that ρ induces a functor
T : (B-coalg)op → L-alg defined by T (X h //BX ) = LTX

ρX // TBX
Th // TX

on B-coalgebras, and as T on B-coalgebra morphisms.

Proposition 4.3 ρ̂-alg ∼= (L-alg↓T ).

Proof. We have already essentially noticed the correspondence on objects; mor-
phisms are equally easy. 2

Corollary 4.4 If an initial L-algebra exists, then the projection functor Π2 : ρ̂-alg→
(B-coalg)op has a left adjoint, and the unit of the adjunction is the identity natural
transformation.
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Proof. Use Proposition 4.3 and apply Proposition 4.1. Given an initial L-algebra
a, the left adjoint will be denoted a→. 2

Note that the composition of a→ with the forgetful functor from ρ̂-alg:

(B-coalg)op
a→ ,,
⊥ ρ̂-alg U bρ //
Π2

nn (D↓T )

corresponds almost entirely to the interpretation of coalgebraic modal logic in B-
coalgebras, as constructed in (5). Indeed, the only step missing in this functorial
presentation is the transposition of the semantic map s from the initial L-algebra.
For this final step, obviously, it is crucial that the functor T has a left adjoint; we
shall now proceed to develop our theory further with this additional assumption.

4.2 Slice categories of adjunctions

In this section, we shall assume that T : Cop → D has a left adjoint Sop : D → Cop.
The unit and counit of the adjunction Sop a T will be denoted η : Id =⇒ TSop

and ε : SopT =⇒ Id respectively. Obviously then T op : C → Dop is left adjoint to
S : Dop → C, and ηop : T opS =⇒ Id and εop : Id =⇒ ST op are the counit and
the unit of the adjunction T op a S. This adjoint situation means that there is a
bijection

C(X,SΦ) ∼= D(Φ, TX)

natural in X ∈ C and Φ ∈ D; we shall abuse notation and denote both sides of
this bijection by −[. A defining property of adjunctions is the isomorphism of
slice categories: (D ↓ T ) ∼= (C ↓S)op (the isomorphism maps an object 〈Φ, X, s〉 to〈
X,Φ, s[

〉
).

Coalgebraic modal logic as a functor. One immediate consequence of the
adjunction assumption is that one can represent the entire modal logic interpretation
construction (5) as a functor from the category of B-coalgebras:

(B-coalg)op
g→

,,
⊥ ρ̂-alg U bρ //
Π2

nn (D↓T ) ∼= (C ↓S)op (14)

However, the most useful consequences of that assumption appear when one decides
to study coalgebras for sliced endofunctors on (D↓T ).

Coalgebras. In the situation considered in Section 4.1, categories of coalgebras
for sliced endofunctors have, in general, considerably less structure than those of
algebras.

Consider endofunctors Σ on C and Γ on D, and a connection ζ : ΓT =⇒ TΣop

as in Section 4.1. A ζ̂-coalgebra is a Γ-coalgebra h : Φ → ΓΦ in D, a Σ-algebra
g : ΣX → X in C, and a map s : Φ→ TX, such that the diagram

ΓΦ Γs // ΓTX
ζX // TΣX

Φ s
//

h

OO

TX

Tg

OO
(15)
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commutes in D, and a ζ̂-coalgebra morphisms is a pair of a Γ-coalgebra morphism
and a Σ-algebra morphism. This gives projection functors Π1 : ζ̂-coalg→ Γ-coalg
and Π2 : ζ̂-coalg→ (Σ-alg)op.

In general, contrary to the situation of sliced algebras, the diagram (15) can-
not be read as a coalgebra morphism (in [23], it was called a “twisted coalgebra
morphism”). As a result, no property analogous to Proposition 4.3 holds for ζ̂-
coalgebras in general. However, additional structure appears when we assume a
left adjoint Sop a T . Indeed, then connections ζ : ΓT =⇒ TΣop are in bijective
correspondence with their adjoint mates [14] ζ? : ΣS =⇒ SΓop, defined by trans-
posing ζSop ◦ Γη : Γ =⇒ TΣopSop. It is straightforward to check that ζ̂? coincides
with (ζ̂)op along the isomorphism (C ↓S) ∼= (D↓T )op. In particular, this implies an
isomorphism

ζ̂-coalg ∼= (ζ̂?-alg)op. (16)

Natural transformations are sliced. Finally, the fact that T has a left adjoint
implies that all natural transformations between sliced endofunctors are sliced. In-
deed, consider any ρ : ΓT =⇒ TΣop and ρ′ : Γ′T =⇒ TΣ′op.

Proposition 4.5 If Sop a T then natural transformations κ : ρ̂ =⇒ ρ̂′ are in one-
to-one correspondence with pairs 〈α : Γ =⇒ Γ′, β : Σ′ =⇒ Σ〉 such that Tβop ◦ ρ =
ρ′ ◦ αT as in (11).

Proof. (12) shows how to define κ from α and β. For the other direction, see the
Appendix. 2

4.3 Sliced distributive laws and compositionality

We now proceed to the study of bialgebras for distributive laws between sliced
endofunctors.

Sliced distributive laws. For an adjunction Sop a T : Cop → D, consider endo-
functors B,Σ on C and L,Γ on D, together with connections ρ : LT → TBop and
ζ : ΓT =⇒ TΣop that define sliced endofunctors ρ̂, ζ̂ on (D↓T ).

Now assume a distributive law of ρ̂ over ζ̂, i.e., a natural transformation κ :
ρ̂ζ̂ =⇒ ζ̂ ρ̂. By (10), both ρ̂ζ̂ and ζ̂ ρ̂ are sliced, and further by Proposition 4.5,
κ is of the form κ = χ ~ λ (see (12)) for some distributive laws χ : LΓ =⇒ ΓL
and λ : ΣB =⇒ BΣ such that the hexagon of natural transformations commutes
(cf. (11)):

LΓT
Lζ +3

χT

��

LTΣop ρΣop
+3 T (BΣ)op

Tλop

��
ΓLT Γρ

+3 ΓTBop
ζBop

+3 T (ΣB)op.

(17)

Sliced bialgebras. As in Section 2, the law κ defines endofunctors ρ̂κ on ζ̂-coalg
and ζ̂κ on ρ̂-alg, with an isomorphism of categories and a commuting square of
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forgetful functors (cf. (4)):

κ-bialg ∼= ρ̂κ-alg ∼= ζ̂κ-coalg

κ-bialg U bρκ //

Ubζκ
��

ζ̂-coalg
Ubζ
��

ρ̂-alg
U bρ // (D↓T ).

(18)

To convey some intuition, it might be useful to provide a more concrete descriptions
of κ-bialgebras. Each of these consists of a χ-bialgebra LΦ k // Φ l // ΓΦ , a λ-
bialgebra ΣX

g //X
h //BX and an arrow s : Φ → TX in D, such that the

diagram:

LΦ k //

Ls
��

Φ l //

s

��

ΓΦ

Γs
��

LTX ρX
// TBX Th

// TX Tg
// TΣX ΓTXζX

oo

(19)

commutes. Morphisms of κ-bialgebras are pairs of a χ- and a λ-bialgebra mor-
phisms; in particular, there is an evident projection functor, which we will denote
Π2 : κ-bialg→ (λ-bialg)op.

Lifting coalgebraic modal logic. Our immediate goal now is to exhibit a left
adjoint to Π2. Note that the bottom row of (19) is not a χ-bialgebra, so κ-bialg is
not easily a slice category and the simple tactic of using Proposition 4.1 cannot be
used. Instead, adjoint lifting can be used in the following way.

Since κ acts as λ on C-components (see (12)), it is straightforward to check that
ζ̂κ acts as Σλ on the B-coalgebra components of ρ̂-algebras and their morphisms;
formally, Π2 ◦ ζ̂κ = (Σλ)op ◦ Π2 : ρ̂-alg→ (B-coalg)op. This defines a lifting of Π2

to a functor from ζ̂κ-coalg to (Σλ-alg)op as in (A.1); it is straightforward to check
that this lifted functor coincides with Π2, which justifies its name. We can now
apply Proposition A.1 to

(λ-bialg)op

(UΣλ )op

��

κ-bialg

Ubζκ
��

Π2oo

(B-coalg)op ρ̂-alg
Π2

oo

and obtain a left adjoint a→ a Π2. Combined with (18) and (16), this completes a
lifting of the coalgebraic modal logic semantics (14) as in the diagram:

(λ-bialg)op

(UΣλ )op

��

a→ --
⊥ κ-bialg

Ubζκ
��

Π2

nn
U bρκ // ζ̂-coalg

Ubζ
��

∼= (ζ̂?-alg)op

(U
cζ? )op

��
(B-coalg)op

a→ ,,
⊥ ρ̂-alg

U bρ //
Π2

nn (D↓T ) ∼= (C ↓S)op

(20)

Note that, by Corollary 4.4 and by the remark after Proposition A.1, the monad
Π2 ◦ a→ is (naturally isomorphic to) identity. This, together with the evident com-
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muting square of forgetful and projection functors:

(λ-bialg)op
(UBλ )op

// (Σ-alg)op

κ-bialg

Π2

OO

U bρκ // ζ̂-coalg

Π2

OO

∼= (ζ̂?-alg)op

Πop
1

ffNNNNNNNNNNN

means that the top row of (20) commutes with (the opposites of) forgetful functors
from λ-bialg and ζ̂?-alg to Σ-alg. Thus we arrive at the conclusion that for any
λ-bialgebra ΣX

g //X
h //BX , the interpretation of logic ρ on h is a carrier

of a ζ̂?-algebra and a Σ-algebra morphism from g. Note that neither ζ nor χ is
mentioned in this conclusion, so the most useful way to state this is:

Theorem 4.6 For any Sop a T , Σ, B, λ, L and ρ as above, if a Γ, ζ and κ = χ~λ

as above exist, then for any λ-bialgebra ΣX
g //X

h //BX , the interpretation
of logic ρ on h is a Σ-algebra morphism from g. 2

When applied to initial λ-bialgebras, Theorem 2 of [15] is obtained.

5 Logical distributive laws over Set

Theorem 4.6 can be used to prove that a logical equivalence (defined by syntax
L and semantics ρ) on a transition system (B-coalgebra) induced by a structural
operational specification (defined by λ) is a congruence (with respect to syntax Σ).
To use the theorem, one needs to find three additional ingredients: an endofunctor
Γ and natural transformations ζ and χ such that (17) commutes. So far we have
provided no intuitive meaning of these ingredients. This is the purpose of this
section, where we restrict attention to the dual adjunction C = D = Set, S = T =
2−.

5.1 Distributive laws and predicate liftings

The search for Γ and ζ for a given Σ is entirely analogous to the search for modal
logics L and ρ for a given B, as described in Section 3. One may therefore restrict
attention to functors of the form

Γ =
∐
n∈N

Γn × (−)n, (21)

where Γn ⊆ 2Σ2n . Recall that we may safely assume that L is of a similar form (7).
This means that, once Γ with ζ were chosen, the last missing ingredient χ for
Theorem 4.6 is a distributive law χ between polynomial functors. Such laws can be
presented as systems of equations, as follows.

Suppose Γ and L are as in (21) and (7), presented by families of Σ- and B-
modalities (Γn)n∈N and (Ln)n∈N respectively. Then a distributive law χ : LΓ =⇒ ΓL

12
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is equivalent to a family of equations of the form:

β(σ1(x11, . . . , x1m1), . . . , σn(xn1, . . . , xnmn))
= (22)

σ(β1(y11, . . . , y1l1), . . . , βk(yk1, . . . , yklk)),

where:

• β ∈ Ln, σi ∈ Γmi , σ ∈ Γk and βi ∈ Lli ,
• all variables xij are distinct,
• every variable yij occurs on the left side.

The latter two conditions determine a function v : l→ m, where m =
∑n

i=1mi and
l =

∑k
i=1 li are arities of both sides of the equation.

To define a distributive law χ, the family must contain exactly one equation for
each combination β, σ1, . . . , σn of a B-modality (of arity, say, n) and a sequence of
Σ-modalities (of length n).

We shall now formulate the condition (17), necessary for the application of
Theorem 4.6, in terms of modalities and equations. To this end, first note that each
β, σ1, . . . , σn as on the left hand side of (22), defines a BΣ-modality of arity m =∑n

i=1mi, (where σi ∈ Γmi), which, following [27], will be denoted β } (σ1, . . . , σn) :
BΣ(2m) → 2. Moreover, the composite polynomial endofunctor LΓ is represented
by the collection of all such composite modalities, and the connection ρΣop ◦ Lζ as
in (17) (see also (10)) is obtained by copairing all the corresponding predicate liftings
(β} (σ1, . . . , σn))Y . Similarly one can define a lifting σ} (β1, . . . , βk) : ΣB(2l)→ 2,
from the right hand side of (22).

Since LΓ is a polynomial functor, the condition (17) can be checked by cases,
for each (left hand side of) equation (22). Each case amounts to checking that the
following square of natural transformations commutes:

(2−)m
(β}(σ1,...,σn))Y +3

(2−)v

��

2BΣ−

2λ

��
(2−)l

(σ}(β1,...,βk))Y
+3 2ΣB−.

By Yoneda lemma, this amounts to checking the equality of two ΣB-modalities of
arity m:

(β } (σ1, . . . , σn)) ◦ λ2m = (σ } (β1, . . . , βk)) ◦ ΣB(2v) (23)

This condition can be intuitively explained as follows. For a fixed set X, if predicates
on X are substituted for variables xi1, . . . , ximi , then the expression σ(xi1, . . . , ximi)
on the left hand side of (22) defines a predicate on ΣX; similarly, the entire left
hand side defines a predicate on BΣX from a collection of m predicates on X.
Further, the right hand side (together with the function v : l → m implicit in the
equation) defines a predicate on ΣBX. Now the condition (23) means that the
former predicate coincides with the latter when precomposed with λ.

13
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5.2 A toy example

Consider Σ, B and λ as in (2) and (1) in Section 2. Consider also, as L and ρ, the
trace equivalence defined in (6), represented by the collection of modalities given
in (8). To apply Theorem 4.6 to infer the compositionality of trace equivalence for
the language defined by (1), one needs to find a collection (Γn)n∈N of Σ-modalities,
and an collection of equations (22), such that the condition (23) holds for each
equation.

As a first attempt, one might try the empty collection (Γn = ∅ for n ∈ N),
i.e., no Σ-modalities. There is only one left hand side of (22) to take care of: the
0-ary B-modality >. Unfortunately, however, there are no possible right hand sides
of (22) at all, therefore no equation for > can be written.

To amend this, one can include an “always true” Σ-modality T : Σ1→ 2 to Γ0,
formally defined by T(t) = tt always. Then one can write an equation for >:

> = T (24)

and the condition (23) holds. Unfortunately now there are more left hand sides to
take care of: no appropriate equation can be written for 〈a〉(T).

The latter expression denotes a 0-ary BΣ-modality that, intuitively, checks
whether some a-successor of a process exists. To express a corresponding (along λ)
ΣB-modality, one may add, for each a ∈ A, a new unary Σ-modality a∨[⊗] : Σ2→ 2
to Γ2, formally defined by: a ∨ [⊗](t) = tt ⇐⇒ t ∈ {a , tt ⊗ tt}, and write an
equation:

〈a〉T = a ∨ [⊗](〈a〉>). (25)

Intuitively, a process has an a-successor if and only if it is the process a or it is of the
form p ⊗ q such that both p and q have a-successors. Formally, the condition (23)
holds for this equation.

However, there is a slight problem here: formally, the right hand side of this
equation is not of the form allowed in (22), as 〈a〉> is not a modality used in L.
A principled solution to this problem would be to allow composite B-modalities
on the right sides of equations; i.e., consider distributive laws χ : LΓ =⇒ ΓL∗,
just as complex types of distributive laws are considered in the theory of SOS (see
Section 2). Another solution is to simply add the missing (0-ary) B-modalities
〈a〉> to L0 and proceed to find further equations. Changing a logic to prove its
compositionality is an awkward step, but in this case it does not cause any serious
harm, as the logical equivalence of the resulting logic is still trace equivalence.
Formally, one then needs to provide suitable equations with 0-ary modalities 〈a〉>
on the left hand side, but this is now straightforward:

〈a〉> = a ∨ [⊗](〈a〉>). (26)

To complete the picture, one still needs to come up with equations for left hand
sides such as 〈a〉(b ∨ [⊗]x). This is solved by adding yet another, unary modality
[⊗] to Γ1, defined by [⊗](t) = tt ⇐⇒ t = tt⊗ tt, with equations

〈a〉(b ∨ [⊗]x)) = [⊗]〈a〉x, 〈a〉[⊗]x = [⊗]〈a〉x.

14
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These, together with (24–26), form a complete family of equations for our chosen
Σ-modalities:

Γ0 = {T} Γ1 = {[⊗]} ∪ {a ∨ [⊗] | a ∈ A} Γn = ∅ for n > 1

and the condition (23) holds for each equation, hence we can use Theorem 4.6 to
conclude that trace equivalence is compositional for (1). The same result was used
as an example in [15,17]; however, our crude understanding of Γ and χ there resulted
in unnecessarily rich logical behaviours and complicated distributive laws.

5.3 Compositionality for expressive logics

An important question about the robustness of our approach to compositionality is
whether Theorem 4.6 is a generalization of Proposition 2.1, i.e., whether it covers
observational equivalence without any loss of generality. Under mild conditions
(such as finitarity of B) studied in [16], observational equivalence on B-coalgebras
is a logical equivalence for some logic (L, ρ) (such logic is called expressive). If this
is the case, then the conclusion of Proposition 2.1 is a special case of the conclusion
of Theorem 4.6. However, is there an expressive logic that satisfies the assumptions
of Theorem 4.6?

We shall now give a partial positive answer to this question: we restrict attention
to C = D = Set and S = T = 2−, polynomial process syntax functors Σ, and finitary
B that preserve finite sets. In the general case the question is left open.

For our special case, observational equivalence for B-coalgebras is defined by the
expressive logic (L, ρ) presented by the collection of all finitary B-modalities, i.e., by
Ln = 2B2n for n ∈ N. We shall now show that this logic satisfies the assumptions of
Theorem 4.6 when one takes Γ and ζ presented by all Σ-modalities, i.e., Γn = 2Σ2n

for n ∈ N.
To this end we need, for every B-modality β ∈ Ln and Σ-modalities σ1, . . . , σn,

to present the ΣB-modality (β } (σ1, . . . , σn)) ◦ λ2m (where m is the sum of arities
of the σi) in the form

(σ } (β1, . . . , βk)) ◦ ΣB2v (27)

for some σ ∈ Γk and β1, . . . , βk B-modalities with sum of arities l, and v : l → m

a function between arities. Under our assumptions this can be done without any
analysis of β, σi or λ, by the following result:

Proposition 5.1 If Σ is polynomial and B preserves finite sets then every ΣB-
modality of arity m can be decomposed as in (27).

Proof. Let Σ =
∐
i∈I(−)ni . Consider any γ : ΣB(2m)→ 2. Put k = |B(2m)| (note

that B(2m) is finite). For any b ∈ B(2m), define βb : B(2m)→ 2 by βb(b′) = tt ⇐⇒
b = b′. Then define σ : Σ(2k)→ 2 by:

σ(ιi(p1, . . . , pni)) = tt

⇐⇒
∀b1, . . . , bni ∈ B2m.

(
(∀j = 1..ni. pj(bj) = tt) =⇒ γ(ιi(b1, . . . , bni)) = tt

)
,
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where ιi : (−)ni =⇒ Σ ranges over the coproduct injections into Σ. This gives a
composite modality σ } (βb)b∈B2m of arity m× k, and it turns out that

γ = (σ } (βb)b∈B2m) ◦ ΣB2π

where π : m× k → m is the evident projection. 2

6 Future work

Unfortunately, both deficiencies that this paper aims at removing, still persist to
some extent in the present formulation. On the abstract level, there clearly is a
2-categorical treatment of coalgebraic modal logic waiting to be discovered and
combined with the one developed in [24] for bialgebras. Connections ρ and ζ are
simply morphisms of endofunctors, just as λ and χ are endomorphisms on them;
also sliced distributive laws χ~λ are distributive law morphisms in the sense of [24].
There is clearly more structure in the story than currently explained.

On the concrete level, some more specific guidelines for finding suitable collec-
tions of Σ-modalities are much needed. Last but not least, more examples of logical
distributive laws, and their relation to other work on SOS compositionality such
as [6], need to be shown.
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A Adjoint lifting

The following theorem is standard; a proof of it (more precisely, its dual) can be
found in [9], see also [13].

Consider endofunctors B on C and B′ on C′, together with a functor R : C → C′.
A natural transformation α : RB =⇒ B′R induces a functor R : B-coalg →
B′-coalg defined by:

R(X h //BX ) = RX
Rh //RBX

αX //B′RX . (A.1)

Then, for the commuting diagram:

B′-coalg

UB′

��

B-coalgRoo

UB
��

C′ C,
R

oo

the following holds:

Proposition A.1 If α is a natural isomorphism than a left adjoint L a R induces
a left adjoint L a R.

17



Klin

Moreover, the adjunction L a R lifts L a R along the respective functors. In
particular, since UB′ reflects isomorphisms, this implies that if the unit of L a R is
a natural isomorphism then so is the unit of L a R.

B Proofs

B.1 Section 4.1: Not every endofunctor on (D↓T ) is sliced.

One important counterexample is the biextensional collapse construction on Chu
spaces [25], seen as an endofunctor on Chu(Set, 2) = (Set ↓ 2−). For a simpler
counterexample, consider C = Setop, D = Set and T = Id. Then (D ↓ T ) =
Ar(Set), the arrow category of Set. Now consider an endofunctor Q : Ar(Set)→
Ar(Set) defined by:

• on objects, Q(s : X → Y ) = m : Z → Y , where X
e // //Z

� � m // Y is the epi-
mono factorization of s,

• on arrows, a pair 〈f : X → X ′, g : Y → Y ′〉 such that

X
s //

f
��

Y

g

��
X ′ s′

// Y ′

commutes, is mapped to 〈z, g〉 as in the diagram:

X
e // //

f

��

Z
� � m //

z

���
�
� Y

g

��
X ′ e′

// //Z ′
� � m′ // Y ′,

where z exists uniquely by the epi-mono factorization system of Set.

Functoriality of Q is ensured by the factorization system as well.
However, Q does not lift any functor on Set along Π2, since it might give

different results for different functions (objects in Ar(Set)) even if they have the
same domain.

B.2 Section 4.1: Proof of Prop. 4.2.

For any object X ∈ C, consider the object 〈TX,X, idX〉 ∈ (D↓T ) and define

ρX = π3(K 〈TX,X, idX〉).

Then ρ : LT =⇒ TBop is natural. Indeed, take any f : X → Y in C. The square

TY

Tf
��

TY

Tf
��

TX TX

18
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trivially commutes, hence

〈Tf, f〉 : 〈TY, Y, idY 〉 → 〈TX,X, idX〉

is a valid morphism in (D↓T ). But then also

K 〈Tf, f〉 : K 〈TY, Y, idY 〉 → K 〈TX,X, idX〉

must be a valid morphism. Since K lifts L and Bop, there is K 〈Tf, f〉 = 〈LTf,Bf〉
and by (9) the naturality square

LTY
ρY //

LTf

��

TBY

TBf

��
LTX ρX

// TBX

commutes.
Moreover, K = ρ̂. To see this, it is enough to show, for any object 〈Φ, X, s〉,

that
π3K 〈Φ, X, s〉 = π3K 〈TX,X, idX〉 ◦ Ls.

To this end, notice that the square

Φ s //

s

��

TX

T idX

TX idTX
TX

obviously commutes, hence

〈s, idX〉 : 〈Φ, X, s〉 → 〈TX,X, idX〉

is a valid morphism in (D↓T ). But then also

K 〈s, idX〉 : K 〈Φ, X, s〉 → K 〈TX,X, idX〉

must be a valid morphism. Since K lifts L and Bop, there is K 〈s, idX〉 = 〈Ls, idBX〉
and by definition of morphisms in (D↓T ), the square

LΦ
π3K〈Φ,X,s〉 //

Ls
��

TBX

LTX
π3K〈TX,X,idX〉

// TBX

commutes; but this is exactly the required equation. 2

B.3 Section 4.1: Not every natural transformation between sliced endofunctors is
sliced.

For a counterexample, take C = 1, D = Set and T = C2 (the constant functor at a
two-element set). Then (D↓T ) = Set/2 is the category of sets over a two-element
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set 2. Now consider endofunctors K = Id (the identity functor) and K ′ = Cid2 (the
constant functor at id2) on (D↓T ). It is easy to see that both functors are sliced.

Define κ : K =⇒ K ′ by κs:X→2 = s. It is easy to see that this is well-defined as
a morphism in (D ↓ T ); to show naturality, assume any s : X → 2 and r : Y → 2
and some f : X → Y such that r ◦ f = s. The naturality square of κ at f is:

s
f //

κs=s
��

r

κr=r
��

id2 id2

// id2

and this commutes immediately by the assumption on f .
However, the above κ is not sliced. To see this, take any two distinct functions

s, r : X → 2 for some set X. Then obviously κs 6= κr, therefore a purported
α : Id =⇒ 2 in Set cannot be defined on X.

B.4 Section 4.2: Proof of Proposition 4.5.

(12) shows how to define κ from α and β. For the other direction, for any κ : ρ̂ =⇒
ρ̂′, define

αΦ = Π1κ〈Φ,SΦ,ηΦ〉 βX = Π2κ〈TX,X,idTX〉

for any X ∈ C and Φ ∈ D, where η : Id→ TSop is the unit of Sop a T .
To check the naturality of α, for any f : Φ→ Ψ in D consider the first component

of the naturality square of κ at 〈f, Sopf〉 : 〈Φ, SΦ, ηΦ〉 → 〈Ψ, SΨ, ηΨ〉, which is a
well-defined morphism in (D ↓ T ) by naturality of η. For the naturality of β, for
any g : X → Y in C consider the second component of the naturality square of κ at
〈Tg, g〉 : 〈TY, Y, idTY 〉 → 〈TX,X, idTX〉, which is trivially a well-defined morphism
in (D↓T ). The equation Tβop ◦ ρ = ρ′ ◦ αT follows, for any given X ∈ C, from the
fact that the component of κ at 〈TX,X, idTX〉 is a well-defined morphism. Finally,
it is straightforward to check that the construction of α and β from κ is mutually
inverse with (12).
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