
Syntactic Formats for Free

An Abstract Approach to Process Equivalence

Bartek Klin Pawe l Sobociński

BRICS?

University of Aarhus, Denmark

Abstract. A framework of Plotkin and Turi’s, originally aimed at pro-
viding an abstract notion of bisimulation, is modified to cover other oper-
ational equivalences and preorders. Combined with bialgebraic methods,
it yields a technique for the derivation of syntactic formats for transi-
tion system specifications which guarantee operational preorders to be
precongruences. The technique is applied to the trace preorder, the com-
pleted trace preorder and the failures preorder. In the latter two cases,
new syntactic formats ensuring precongruence properties are introduced.

1 Introduction

Structural operational semantics [18, 2] is one of the most fundamental frame-
works for providing a precise interpretation of programming and specification
languages. It is usually presented as a labelled transition system (LTS), in which
states (sometimes called processes) are closed terms over some syntactic signa-
ture, and transitions are labelled with elements of some fixed set of actions. The
transition relation is in turn specified by a set of derivation rules.

Many operational equivalences and preorders have been defined on processes.
Among these are: bisimulation equivalence [17], simulation preorder, trace pre-
order, completed trace preorder, failures preorder [13, 21] and many others (for
a comprehensive list see [10]). In the case of processes without internal actions,
all of the above have been given modal characterisations [10].

Reasoning about operational equivalences and preorders is significantly easier
when they are congruences (resp. precongruences). This facilitates compositional
reasoning and full substitutivity. In general, operational equivalences (preorders)
are not necessarily congruences (resp. precongruences) on processes defined by
operational rules. Proofs of such congruence results for given transition system
specifications can be quite demanding.

One way to ensure congruential properties is to impose syntactic restrictions
(syntactic formats) on operational rules. Many such formats have been devel-
oped. For bisimulation equivalence, the examples are: de Simone format [23],
? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

GSOS [8], and ntyft/ntyxt [11]. For trace equivalence, examples include [27, 5],
while decorated trace preorders have been provided with formats in [6]. For an
overview of the subject see [2].

The search for an abstract theory of bisimulation and ’well-behaved’ operational
semantics has led to development of final coalgebra semantics [22], and bialge-
braic semantics [25, 26] of processes. In these frameworks, the notion of a transi-
tion system is parametrised by a notion of behaviour. Bisimulation is modelled
abstractly as a span of coalgebra morphisms.

In [25, 26] it was shown how to define operational rules on an abstract level,
guaranteeing bisimulation equivalence (defined abstractly, using spans of coalge-
bra morphisms) to be a congruence. At the core of this so-called abstract GSOS
is the modelling of a transition system specification as a natural transformation

λ : Σ(id×B) → BT

where Σ is the syntactic endofunctor, T is the monad freely generated from
Σ, and B is some behaviour endofunctor. In the special case of the behaviour
endofunctor Pf(A×−), the abstract operational rules specialise to GSOS rules.

The abstract framework which defines bisimulation as a span of coalgebra mor-
phisms is not sufficient for certain purposes [19]. Recently, another abstract
notion of bisimulation, based on topologies (or complete boolean algebras) of
tests, has been proposed [20, 24].

In this paper we show that the latter abstract definition of bisimulation can
be modified in a structured manner, to yield other known equivalences and
preorders. We illustrate this approach on trace, completed trace and failures
preorders. This constitutes a systematic approach to operational preorders, such
as those based on testing scenarios [10], modal logics [10], and quantales [1].

Although the framework is general, in this paper we shall concentrate on the
category of sets and functions, Set. We define the test-suite fibration with total
category Set∗ having as objects pairs consisting of a set X and a test suite (a
subset of PX) over X. We lift the abstract-GSOS framework to Set∗ by de-
scribing how to lift the syntactic functor Σ and the behaviour functor B. By
changing how B lifts to Set∗ we alter the specialisation preorder of certain test
suites in Set∗. In particular, taking liftings which strongly resemble fragments of
the Hennessy-Milner logic [12] causes the specialisation preorder to vary between
known operational preorders. The abstract framework guarantees precongruence
properties. The only hurdle is proving that a particular transition system speci-
fication (natural transformation) λ lifts to a natural transformation in Set∗:

λ : Σ∗(id×B∗) → B∗T ∗.

The consideration of which properties λ must satisfy in order to lift provides us
with syntactic sub-formats of GSOS which guarantee precongruence properties
for various operational preorders.

In this paper, we illustrate this approach by presenting precongruence formats
for the trace preorder, the completed trace preorder and the failures preorder.

The format derived for the trace preorder coincides with the well known de
Simone format [27]. The format derived for the completed trace preorder is, to
the best of our knowledge, the first such format published. The format derived
for the failures preorder is incomparable with the analogous format given in [6].

The structure of the paper is as follows. After §2 of preliminaries, we present the
three obtained syntactic formats in §3, together with some examples and coun-
terexamples from literature. The remaining sections are devoted to proving that
the presented formats are indeed precongruence formats w.r.t. their respective
preorders, and at the same time to illustrating the method of deriving such for-
mats from a given operational preorder. In §4, we recall the basics of bialgebraic
semantics. In §5, we present an abstract approach to operational preorders based
on the notion of a test suite. In §6, this approach is merged with the bialgebraic
framework to yield a general way of checking whether a given operational pre-
order is a congruence for a given transition system specification. Finally, in §7,
we show that the formats presented in §3 ensure the respective precongruence
results. We conclude in §8 by showing possible directions of future work. Due to
lack of space, most proofs are left to the full version of this paper [15].

Acknowledgements. Most of the contents of §5 and §6 is a modified version
of the framework developed (and, unfortunately, not yet published) by Gordon
Plotkin [20] and Daniele Turi [24]. Thanks also goes to Mikkel Nygaard for
reading the paper and providing us with many valuable comments. The first
author is also grateful to Daniele Turi for introducing him to the subject and
for inspiration, and to Gordon Plotkin for discussions and encouragement.

2 Preliminaries

A labelled transition system (LTS) is a set P of processes, a set A of actions, and
a transition relation I ⊆ P ×A×P . As usual, we write p a I p′ instead of
〈p, a, p′〉 ∈ I . An LTS is finitely branching, if for every process p there are
only finitely many transitions p a I p′.

Given a set of actions A, three sets of modal formulae FTr, FCTr, and FFl are
given by the following BNF grammars:

FTr FCTr FFl

φ ::= > | 〈a〉φ φ ::= > | 〈a〉φ | Ã φ ::= > | 〈a〉φ | Q̃

where a ranges over A, and Q ranges over subsets of A. Formulae in FTr are
called traces over A. Formulae in FCTr ended with Ã are called completed traces,
and formulae in FFl — failures.

Given an LTS, the satisfaction relation |= between processes and modal formulae
is defined inductively as follows:

p |= >
p |= 〈a〉φ ⇐⇒ p′ |= φ for some p′ such that p a I p′

p |= Q̃ ⇐⇒ there is no a ∈ Q, p′ ∈ P such that p a I p′

Then three operational preorders on the set of processes are defined: the trace
preorder vTr, the completed trace preorder vCTr, and the failures preorder vFl:

p vW p′ ⇐⇒ (∀φ ∈ FW .p |= φ =⇒ p′ |= φ)

where W ∈ {Tr,CTr,Fl}.
In the context of structural operational semantics, processes are usually closed
terms over some signature. A signature Σ is a set (also denoted Σ) of language
constructs, together with an arity function ar : Σ → N. For a given set X of
variables, ΣX is the set of expressions of the form f(x1, . . . , xar(f)), where f ∈ Σ
and xi ∈ X. Given a signature Σ and a set X, the set TΣX of terms over Σ
with variables X is (isomorphic to) the least fixpoint of the operator

ΦY = X +ΣY

where + denotes disjoint union of sets. When describing terms from TΣX the
injections ι1 : X → TΣX and ι2 : ΣTΣX → TΣX will often be omitted, i.e., we
will write f(x, y) rather than ι2(f(ι1(x), ι1(y))). Also the subscript in TΣX will
be omitted if Σ is irrelevant or clear from the context. Elements of T∅ are called
closed terms over Σ.

For a term t ∈ TX and a function σ : X → Y , t[σ] will denote the term in TY
resulting from t by simultaneously replacing every x ∈ X with σ(x).

In the following, we assume a fixed, infinite set of variables Ξ, ranged over by
x1, x2, . . . , y1, y2, Terms with variables from Ξ will be typeset t, t′, etc.

Let us fix an arbitrary set of labels A. For a signature Σ, a positive Σ-literal is
an expression t a I t′, and a negative Σ-literal is an expression t a6 I, where
t, t′ ∈ TΞ and a ∈ A. A transition rule ρ over Σ is an expression H

α , where H is
a set of Σ-literals and α is a positive Σ-literal. Elements of H are called premises
of ρ, and α — the conclusion of ρ. The left-hand side and the right-hand side
of the conclusion of ρ are called the source and the target of ρ, respectively. A
transition system specification over Σ is a set of transition rules over Σ.

Similarly, a Σ-semiliteral is either a negative Σ-literal, or an expression t a I ,
where t ∈ TΞ and a ∈ A. A positive literal t a I t′ completes the semiliteral
t a I , and we say that a negative literal completes itself.

In the following definition assume a fixed signature Σ, and a finite set A.

Format 1 (GSOS) A transition system specification R is in GSOS [8] format
if every rule ρ ∈ R is of the form{

xi
aij I yij : i ≤ n, j ≤ mi

}
∪

{
xi

bik6 I : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c I t

with f ∈ Σ and n = ar(f), such that xi ∈ Ξ and yij ∈ Ξ are all distinct and are
the only variables that occur in ρ. In the following, we will consider only image
finite GSOS specifications, i.e. those with finitely many rules for each construct
f ∈ Σ and action c ∈ A.

Given a transition system specification R in GSOS format, one defines a notion
of a provable positive literal in a straightforward way. The set of all provable
literals forms a finitely branching LTS with closed terms over Σ as processes,
and with positive closed literals as transitions (for details, see [2]).

An operational preorder v is a precongruence with respect to a transition system
specification R, if in the LTS induced by R, for each f ∈ Σ with arity n, if
t1 v t′1, . . . , tn v t′n, then f(t1, . . . , tn) v f(t′1, . . . , t

′
n).

The examples in §3 are based on basic process algebra BPA. Assuming a finite
set A of actions, its syntax Σ is defined by the BNF grammar t ::= 0 | αt | t+t
and the transition system specification BPA over Σ is a collection of rules

αx α I x

x α I x′

x + y α I x′
y α I y′

x + y α I y′

where α ranges over A. When presenting terms over the above syntax, the trailing
0’s will be omitted. It is easy to see that BPA is in the GSOS format.

3 Precongruence Formats

In this section we introduce the syntactic formats derived using the framework
described in the latter parts of the paper. The precongruence properties of these
formats are formally stated in §7.

Format 2 (Tr-format) A set of GSOS rules R is in Tr-format, if for each ρ ∈ R,
all premises of ρ are positive, and no variable occurs more than once in the left-
hand sides of premises and in the target of ρ.

It is easy to see that this format coincides with the well-known de Simone format
[23]. The fact that this syntactic format ensures the trace preorder to be a
precongruence was first proved in [27].

We proceed to define an analogous syntactic format for the completed trace
preorder.

Definition 1 (CTr-testing set). A CTr-testing set P over a set of variables
{x1, . . . , xn} is a set of semiliterals of the form

P =
{
xi

ai6 I : i ∈ I
}
∪

{
xi

a I : i ∈ J, a ∈ A
}

where I, J ⊆ {1, . . . , n}.

Format 3 (CTr-format) A set of GSOS rules R is in CTr-format, if

1. For each rule ρ ∈ R:
– if ρ has a negative premise x a6 I, than for every label b ∈ A, ρ has also

the negative premise x b6 I,

– no variable occurs more than once in the target of ρ,
– no variable occurs simultaneously in the left-hand side of a premise and

in the target of ρ,
– no variable occurs simultaneously in the left-hand side of a positive

premise and in the left-hand side of any other premise of ρ.
2. For each construct f(x1, . . . , xn) of the language, there exists a sequence
P1, . . . , Pk of CTr-testing sets over {x1, . . . , xn}, such that
– For every (possibly renamed) rule ρ ∈ R with source f(x1, . . . , xn) there

exists a sequence p1, . . . pk of semiliterals from P1, . . . , Pk respectively,
such that for every i ∈ {1, . . . , k} there exists a premise r of ρ such that
r completes pi.

– For every sequence p1, . . . , pk of semiliterals from P1, . . . , Pk respectively,
there exists a (possibly renamed) rule ρ ∈ R with source f(x1, . . . , xn)
such that for each premise r of ρ there exists an i ∈ {1, . . . , k} such that
r completes pi.

Proposition 2. BPA is in CTr-format. ut

The following example is taken from [2]. Assume A = {a, b}, and extend BPA
with an operational rule for the so-called encapsulation operator ∂{b}:

x a I y

∂{b}(x) a I ∂{b}(y)

Then it is easy to check that aa+ ab ∼CTr a(a+ b) but that ∂{b}(aa+ ab) 6vCTr

∂{b}(a(a+ b)).

Another example of an operational construct that is not well behaved with re-
spect to completed traces is the synchronous composition, as shown in [27]. Here,
we add the rules

x α I x′ y α I y′

x× y α I x′ × y′

where α ranges over A = {a, b}. Here it is easy to see that aa× (aa + ab) 6vCTr

aa× a(a+ b).

These two examples have led the authors of [2] to speculate that one cannot
hope for a general syntactic congruence format for completed trace equivalence.

Proposition 3. The semantics for the encapsulation operator ∂ and the syn-
chronous composition × are not in CTr-format. ut

For a non-trivial example of a transition system specification in CTr-format,
extend BPA with sequential composition, defined by rules

x α I x′

x; y α I x′; y
x a6 I for all a ∈ A y α I y′

x; y α I y′

where α ranges over A.

Proposition 4. BPA extended with sequential composition is in CTr-format.
ut

We proceed to define a precongruence syntactic format for the failures preorder.

Definition 5 (Fl-testing set). An Fl-testing set P over a set of variables
{x1, . . . , xn} is a set of semiliterals of the form

P =
{
xi

ai6 I : i ∈ I
}
∪

{
xi

bij I : 1 ≤ i ≤ n, 1 ≤ j ≤ mi

}
(where I ⊆ {1, . . . , n}, mi ∈ N), such that for any labels a, b ∈ A, if xi

a I ∈ P
and xi

b6 I ∈ P then xi
b I ∈ P .

Format 4 (Failures Format) A set of GSOS rules R is in Fl-format, if

1. For each rule ρ ∈ R:
– no variable occurs more than once in the target of ρ,
– no variable occurs simultaneously in the left-hand side of a premise and

in the target of ρ,
– no variable occurs simultaneously in the left-hand side of a positive

premise and in the left-hand side of any other premise of ρ.
2. For each construct f(x1, . . . , xn) of the language, and for each set of labels
Q ⊆ A, there exists a sequence P1, . . . , Pk of Fl-testing sets over {x1, . . . , xn},
such that
– For every (possibly renamed) rule ρ ∈ R with the conclusion of the

form f(x1, . . . , xn) a I t with a ∈ Q and an arbitrary t, there exists
a sequence p1, . . . , pk of semiliterals from P1, . . . , Pk respectively, such
that for every i ∈ {1, . . . , k} there exists a premise r of ρ such that r
completes pi.

– For every sequence p1, . . . , pk of semiliterals from P1, . . . , Pk respectively,
there exist a label a ∈ Q, a term t, and a (possibly renamed) rule ρ ∈ R
with the conclusion f(x1, . . . , xn) a I t such that for each premise r of
ρ there exists an i ∈ {1, . . . , k} such that r completes pi.

Proposition 6. BPA is in Fl-format. ut

In [7] it was shown that the failures preorder is not a precongruence for BPA
extended with sequential composition.

Proposition 7. If A contains at least two different labels a, b, then BPA ex-
tended with sequential composition is not in Fl-format. ut

The Fl-format excludes many examples of transition system specifications that
behave well with respect to the failures preorder. Many of these examples are
covered by the ‘failure trace format’ introduced in [6]. However, the latter format

excludes also some examples covered by Fl-format. Indeed, assume a, b ∈ A and
extend BPA with two unary constructs g, h and rules (where α ranges over A)

x α I x′

g(x) α I h(x′)
x a6 I

h(x) b I 0

Proposition 8. BPA extended with g and h as above, is in Fl-format. ut

However, the rules above are not in the ‘failure trace format’ proposed in [6].
This means that Fl-format is incomparable with that format.

4 An Abstract Approach

In this section we shall recall the foundations needed for the framework described
in §5 and §6. First, we briefly recall how LTS can be described as coalgebras for
a specific behaviour endofunctor and briefly recall final coalgebra semantics. We
then proceed to recall several notions from the abstract approach to operational
semantics of Plotkin and Turi [26].

In the following, P : Set → Set will denote the (covariant) powerset functor.
The (covariant) finite powerset functor Pf : Set → Set takes a set to the set of
its finite subsets. The reader is referred to [16] for any unexplained categorical
notation used henceforward.

There is a bijection between the set of finitely branching LTS over a fixed set
of actions A and the coalgebras of the functor Pf(A×−). Indeed, given an LTS
〈P,A, I〉 let

h : P → Pf(A× P)

be defined by h(p) =
{
〈a, p′〉 : p a I p′

}
.

The functor Pf(A×−) has a final coalgebra ϕ : S → Pf(A×S). The carrier S of
this coalgebra may be described as the set of synchronisation trees with edges
having labels from A, quotiented by bisimulation [4, 25].

In the following we specialise the framework of [26] to the category Set and
behaviour functor Pf(A×−). Any syntactic signature Σ determines a so-called
syntactic endofunctor Σ : Set → Set which acts on sets by sending

ΣX =
∐
f∈Σ

Xar(f) (1)

and the action on functions is the obvious one. The functor Σ freely generates
a monad 〈T, µ, η〉 : Set → Set. It turns out that TX is (isomorphic to) the set
of all terms over Σ with variables from X.

Theorem 9 ([26]). There is a correspondence between sets of rules in the
GSOS format (Format 1) and natural transformations

λ : Σ(id×Pf(A×−)) → Pf(A× T−)

Moreover, the correspondence is 1-1 up to equivalence of sets of rules. ut

Assume a natural transformation λ : Σ(id×B) → BT . A λ-model is a pair

ΣX
h−→ X

g−→ BX

such that g ◦ h = Bh] ◦ λX ◦Σ 〈id, g〉, (h] : TX → X is the inductive extension

of h). A λ-model morphism between ΣX h−→ X
g−→ BX and ΣX ′ h′−→ X ′ g′−→ BX ′

is a morphism f : X −→ X ′ which is simultaneously a Σ-algebra morphism and
a B-coalgebra morphism, ie. h′ ◦ Σf = g ◦ h and g′ ◦ f = Bf ◦ g. Let λ-Mod
denote the category of λ-models and λ-model morphisms.

Theorem 10 ([26]). Suppose that C is a category, Σ is an endofunctor which
freely generates a monad T and B is an endofunctor which cofreely generates a
comonad D. Then the following hold:

1. λ-Mod has an initial and final object,
2. the carrier and algebra part of the initial λ-model is the initial Σ-algebra,
3. the carrier and coalgebra part of the final λ-model is the final B-coalgebra,
4. the coalgebra part of the initial λ-model is the so-called intended operational

model of λ. ut

In particular, if C = Set and B = Pf(A × −), then the intended operational
model of λ is the LTS generated by the GSOS rules associated to λ.

5 Process Equivalences from Fibred Functors

In this section, we introduce the central concept of a test suite fibration. This is a
modification of the yet unpublished framework [20, 24] due to Plotkin and Turi.
In that approach, the test suites (Definition 11) are necessarily topologies, that is,
they satisfy certain closure properties. We relax this definition and require only
that a test suite contains the largest test. This modification allows us to consider
operational preorders and equivalences different from bisimulation. Also, the
original framework was developed largely for Cppo-enriched categories, here we
deal primarily with Set.

We define 2 = {tt, ff}. Given a function f : X → Y and subsets V ⊆ X, V ′ ⊆
Y , we shall use f(V) to denote the set { y ∈ Y : ∃x ∈ V. fx = y } and similarly
f−1(V ′) to denote {x ∈ X : fx ∈ V ′ }. Given a set τ ⊆ PX, the specialisation
preorder of τ is defined by

x ≤τ x′ iff ∀V ∈ τ. x ∈ V ⇒ x′ ∈ V

For an introduction to fibrations and related terminology, the reader is referred
to the first chapter of [14].

Definition 11 (Test suite). A test on a set X is a function V : X → 2. We say
that an element x passes a test V iff V x = tt. A test suite on X is a collection
of tests on X which includes the maximal test, that is, the function constant at
tt. Let X∗ denote the poset of test suites on X ordered by inclusion.

We can define a functor (−)∗ : Setop → Pos which sends a set to the poset of
test suites X∗ and sends a function f : X → Y to f∗ : Y ∗ → X∗ defined by

f∗τ ′ = {V ′ ◦ f : V ′ ∈ τ ′ } .

Intuitively, we think of tests on X as subsets of X. Then f∗ is the pre-image
operation, taking each test on Y to the test on X which maps to Y via f .

Definition 12 (Test suite fibration). A fibration of test suites for (−)∗ is the
fibration obtained using the Grothendieck construction, ie. the total category
Set∗ has

– objects: pairs 〈X, τ〉 where X ∈ Set and τ ∈ X∗, τ is a test suite.

– arrows: 〈X, τ〉 f−→ 〈X ′, τ ′〉 iff f : X → X ′ and f∗τ ′ ⊆ τ .

It is then standard that the obvious forgetful functor U : Set∗ → Set taking
〈X, τ〉 to X is a fibration.

It will be useful to define various operations on test suites τ . Letting∇ : 2 + 2 → 2
be the codiagonal and ∧ : 2× 2 → 2 be logical-and, we let

τ ⊕ τ ′ = {∇ ◦ (V + V ′) : V ∈ τ, V ′ ∈ τ ′ }
τ ⊗ τ ′ = {∧ ◦ (V × V ′) : V ∈ τ, V ′ ∈ τ ′ }
τ 1 τ ′ = {V ◦ π1 : V ∈ τ } ∪ {V ′ ◦ π2 : V ′ ∈ τ ′ } .

It is easy to check that given two test suites, families τ ⊕ τ ′, τ ⊗ τ ′ and τ 1 τ ′

are test suites. Intuitively, given test suites τ and τ ′ on X and Y , τ ⊕ τ ′ is
the test suite on X + Y obtained by taking (disjoint) unions of tests from τ on
X and τ ′ on Y , τ ⊗ τ ′ is the test suite on X × Y consisting of tests built by
performing a test from τ on X and simultaneously performing a test from τ ′ on
Y and accepting when both tests accept; finally, τ 1 τ ′ is the test on X × Y
which consists of either a test from τ on X or a test from τ ′ on Y .

Proposition 13. The category Set∗ has coproducts and products:

〈X, τ〉+ 〈Y, τ ′〉 = 〈X + Y, τ ⊕ τ ′〉
〈X, τ〉 × 〈Y, τ ′〉 = 〈X × Y, τ 1 τ ′〉

Let B : Set → Set be some behaviour endofunctor. A lifting of B to Set∗ is
an endofunctor B∗ : Set∗ → Set∗ such that, for some BX : X∗ → (BX)∗ we
have B∗ 〈X, τ〉 = 〈BX,BXτ〉 and B∗f = Bf . It turns out that there are many
possible choices for BX giving different liftings of B to Set∗. One systematic way

to construct such liftings is via families of functions from B2 to 2. Intuitively,
such functions correspond to modalities like those in the Hennessy-Milner logic.
In the original framework due to Plotkin and Turi [20, 24] the canonical choice
of all functions from B2 to 2 is taken.

For any X, let ClX : PPX → X∗ denote a closure operator. We shall only
demand that for all f : X → Y and Z ⊆ PY we have ClX f∗Z = f∗ ClY Z
(with the obvious extension of the domain of f∗ from Y ∗ to PPY). Intuitively,
a closure operator corresponds to a set of propositional connectives.

Given an arbitrary family W of functions B2 → 2, we define an operator BWX :
X∗ → (BX)∗ as follows:

BWX (τ) = ClBX {w ◦BV : w ∈W and V ∈ τ } .

We are now in a position to construct a lifting of B to Set∗. Indeed, we let
BW 〈X, τ〉 =

〈
BX,BWX τ

〉
and BW f = Bf . It turns out that this defines an

endofunctor BW on Set∗.

Theorem 14. Suppose that B : Set → Set has a final coalgebra ϕ : S → BS.
Then ϕ :

〈
S,MW

〉
→

〈
BS,BWS MW

〉
is a final BW coalgebra where MW is the

least fixpoint of the operator Φ(τ) = ϕ∗BWS τ on S∗. ut

Suppose that B : Set → Set lifts to a functor BW : Set∗ → Set∗ with BW

defined as before.

Theorem 15. Take any coalgebra h : X → BX, and let k : X → S be the
unique coalgebra morphism from h to the final B-coalgebra. Then k∗M (where
〈S,M〉 is the carrier of the final BW -coalgebra) is the least test suite τ on X
such that h : 〈X, τ〉 →

〈
BX,BWX τ

〉
is a morphism in Set∗. ut

From now on we shall assume a finite set of labels A and confine our attention
to the endofunctor BX = Pf(A×X) on Set.

Assuming a ∈ A and Q ⊆ A, let w〈a〉, wrQ : B2 → 2 denote the functions

w〈a〉X =

{
tt if 〈a, tt〉 ∈ X
ff otherwise,

wrQX =

{
tt if ∀a ∈ Q∀v ∈ 2. 〈a, v〉 /∈ X
ff otherwise.

We shall now define three subsets of maps B2 → 2:

Tr =
{
w〈a〉 : a ∈ A

}
CTr = Tr ∪ {wrA} Fl = Tr ∪ {wrQ : Q ⊆ A }

The set Tr together with the closure operator Cl>X(τ) = τ ∪ {X}, determines
BTr
X for any X and therefore determines a lifting of B to BTr : Set∗ → Set∗.

Similarly, CTr with Cl> and and Fl with Cl> determine liftings BCTr and BFl

respectively.

The following Theorems 16-18 show that the specialisation preorders in the final
BTr, BCTr and BFl-coalgebras coincide with the trace, the completed trace and
the failures preorders. We use these facts to prove Theorem 19 which states that
given any h : X → Pf(A×X), the specialisation preorders on certain test suites
on X coincide with these operational preorders.

Theorems 16-18. In the final BW -coalgebra, the specialization preorder coin-
cides with vW , where W ∈ {Tr,CTr,Fl}.

Theorem 19. Suppose that h : X → Pf(A×X) is a coalgebra (LTS), ϕ : S →
BS is the final B-coalgebra and that k : X → S is the unique morphism given
by finality. Then x ≤k∗MW x′ if and only if x vW x′, where W ∈ {Tr,CTr,Fl}
and

〈
S,MW

〉
is the carrier of the final BW -coalgebra. ut

6 Application: Congruence Formats from Bialgebras

To lift the bialgebraic framework to the total category Set∗, we need a way to
lift the syntactic and the behaviour functors together with the natural trans-
formation λ. Various ways to lift the behaviour B were shown in the previous
section, now we proceed to show a lifting of the syntactic functor.

Given a syntactic endofunctor Σ on Set defined as in Equation (1), define an
endofunctor Σ∗ on Set∗: Σ∗ 〈X, τ〉 = 〈ΣX,ΣXτ〉, where

ΣXτ = Cl∪
(⊕

f∈Σ
τ⊗ar(f)

)
where Cl∪ is closure under arbitrary unions, and τ⊗n denotes

n times︷ ︸︸ ︷
τ ⊗ τ ⊗ · · · ⊗ τ .

On arrows, given f : 〈X, τ〉 → 〈X ′, τ ′〉, we define simply Σ∗f = Σf . It turns
out that Σ∗ defined this way is an endofunctor on Set∗.

Theorem 20. Suppose that an endofunctor F lifts to a endofunctor F ∗, and
has an initial algebra ψ : FN → N . Then ψ : 〈FN,FNP 〉 → 〈N,P 〉 is the initial
F ∗ algebra where P is the greatest fixpoint of the operator Ψ(τ) = (ψ−1)∗FNτ .

Corollary 21. For any syntactic endofunctor Σ, the functor Σ∗ freely generates
a monad T ∗ that lifts the monad T freely generated by Σ. ut

A similar corollary about a behaviour BW cofreely generating a comonad DW

can be drawn from Theorem 14. These two corollaries allow us to apply Theo-
rem 10 for the category Set∗ and endofunctors Σ∗ and BW .

The following theorem is a crucial property of the endofunctor Σ∗. Indeed, vary-
ing the definition of Σ∗ in our framework would lead to definition of various
precongruence formats, but only as long as the following property holds.

Theorem 22. For any Σ∗-algebra h : 〈ΣX,ΣXτ〉 → 〈X, τ〉, the specialisation
preorder ≤τ is a precongruence on h : ΣX → X. ut

We now have the technology needed to prove the main result of this section.

Consider a natural transformation λ : Σ(id×B) → BT . By Theorem 10, the
coalgebraic part of the initial λ-model has N = T∅ as its carrier, and it is the
intended operational model of λ. If B = Pf(A×−), then the intended operational
model is the LTS generated by GSOS rules associated to λ. Let k : N → S be
the final coalgebra morphism from the intended operational model to the final
B-coalgebra. Assume B lifts to some B∗ as before, and let 〈S,M〉 be the carrier
of the final B∗-coalgebra.

Theorem 23. If λ lifts to a natural transformation in the total category:

λ : Σ∗(id×B∗) → B∗T ∗.

then the specialisation preorder on k∗M is a precongruence on N .

Proof. (Sketch) In diagram (i) below, the left column is the initial λ-model while
the right column is the final λ-model; the λ-model morphism k is the unique
morphism making both squares commutative.

Σ∗ 〈N,P 〉

ψ

��

Σ∗k // Σ∗ 〈S,M〉

δ

��

〈N,P 〉

ε

��

k // 〈S,M〉

ϕ

��

B∗ 〈N,P 〉
B∗k

// B∗ 〈S,M〉

(i)

Σ∗ 〈N, k∗M〉

ψ

��

Σ∗k // Σ∗ 〈S,M〉

δ

��

〈N, k∗M〉

ε

��

k // 〈S,M〉

ϕ

��

B∗ 〈N, k∗M〉
B∗k

// B∗ 〈S,M〉

(ii)

Our goal is to show that (ii) above a diagram in Set∗. If all the morphisms
are defined then its commutativity follows from the commutativity of (i). By
Theorem 15, ε : 〈N, k∗M〉 → B∗ 〈N, k∗M〉 is a B∗-coalgebra.

Now ψ∗k∗M = (Σk)∗δ∗M ⊆ (Σk)∗(ΣSM) ⊆ ΣX(k∗M) where we use the fact
that δ is a morphism in Set∗ and the fact that Σ∗ is a functor. Thus ψ :
〈N, k∗M〉 → B∗ 〈N, k∗M〉 is a Σ∗-algebra and by Theorem 22 the specialisation
preorder of k∗M is a precongruence. ut

7 Precongruence Formats for (almost) Free

In this section we consider a syntactic endofunctor Σ with a freely generated
monad T , the behaviour functor BX = Pf(A ×X), and a set R of GSOS rules
with the corresponding natural transformation λ : Σ(id×B) → BT . The pur-
pose is to describe syntactic conditions on R that would ensure that λ lifts to a

natural transformation λ : Σ∗(id×BW) → BWT ∗, where W ∈ {Tr,CTr,Fl}. As
a consequence of Theorem 23, such syntactic conditions ensure that the respec-
tive operational preorders are precongruences.

Theorems 24-26. For W ∈ {Tr,CTr,Fl}, if R is in W -format (see Form. 2-4),
then λ : Σ∗(Id×BW) → BWT ∗ is a natural transformation in Set∗. ut

8 Conclusions

We have presented an abstract coalgebraic approach to the description of vari-
ous operational preorders, via a fibration of test suites. In Theorems 16-18 we
illustrated this approach on the trace preorder, the completed trace preorder
and the failures preorder. Combined with bialgebraic methods, this framework
allows the derivation of syntactic subformats of GSOS which guarantee that the
above operational preorders are precongruences. Theorem 23 is a guideline in the
search for such formats, and Theorems 24-26 are applications of the framework.

The generality and abstractness of Theorem 23 prompted us to coin the expres-
sion ‘precongruence format for free’. However, it must be stressed that to derive
a format for a given operational preorder remains a non-trivial task. Indeed, the
proofs of Theorems 24-26 are quite long and technical. The expression ‘for free’
reflects the fact that Theorem 23 lets us prove precongruence properties without
considering the global behaviour (e.g. traces) of processes. Instead, one considers
only simple test constructions, corresponding intuitively to single modalities.

Related abstract approaches to operational preorders and equivalences include
those based on modal characterisations [10] and quantales [1]. In the latter
framework, no syntactic issues have been addressed. In the former, some general
precongruence formats have been obtained by attempting to decompose modal
formulae according to given operational rules [7]. This technique bears some re-
semblance to our approach, and the precise connections have to be investigated.

There are several possible directions of future work. Firstly, the approach pre-
sented here can be extended to deal with other operational preorders and equiv-
alences described in literature. Secondly, one can move from the GSOS format
(and its subformats) to the more general (safe) ntree format [9], which can also
be formalised in the bialgebraic framework [26]. Thirdly, the abstract frame-
work of test suites seems to be general enough to cover other notions of process
behaviour (e.g. involving store), or even other underlying categories (e.g. com-
plete partial orders instead of sets). It may prove interesting to formalise various
operational preorders in such cases and to find precongruence formats for them.

References

1. S. Abramsky and S. Vickers. Quantales, observational logic and process semantics.
Math. Struct. in Comp. Sci., 3:161–227, 1993.

2. L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra. Else-
vier, 1999.

3. P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt et al., editors,
Proc. CTCS’89, volume 389 of LNCS, pages 357–365, 1989.

4. M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer
Science, 114:299–315, 1993.

5. B. Bloom. When is partial trace equivalence adequate? Formal Aspects of Com-
puting, 6:25–68, 1994.

6. B. Bloom, W. Fokkink, and R. J. van Glabbeek. Precongruence formats for deco-
rated trace preorders. In Logic in Computer Science, pages 107–118, 2000.

7. B. Bloom, W.J Fokkink, and R.J van Glabbeek. Precongruence formats for deco-
rated trace semantics. ACM Transactions on Computational Logic. To appear.

8. B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42:232–268, 1995.

9. W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules. Infor-
mation and Computation, 126:1–10, 1996.

10. R. J. van Glabbeek. The linear time-branching time spectrum I. In J. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra. Elsevier, 1999.

11. J. F. Groote. Transition system specifications with negative premises. Theoret.
Comput. Sci., 118:263–299, 1993.

12. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137–161, 1985.

13. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
14. B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and

the Foundations of Mathematics. North Holland, Elsevier, 1999.
15. B. Klin and P. Sobociński. Syntactic formats for free: An abstract approach to

process equivalence. BRICS Report RS-03-18, Aarhus University, 2003. Available
from http://www.brics.dk/RS/03/18/BRICS-RS-03-18.pdf.

16. S. Mac Lane. Categories for the Working Matematician. Springer-Verlag, 1998.
17. D. M. Park. Concurrency on automata and infinite sequences. In P. Deussen,

editor, Conf. on Theoretical Computer Science, volume 104 of Lecture Notes in
Computer Science. Springer Verlag, 1981.

18. G. Plotkin. A structural approach to operational semantics. DAIMI Report FN-19,
Computer Science Department, Aarhus University, 1981.

19. G. Plotkin. Bialgebraic semantics and recursion (extended abstract). In A. Corra-
dini, M. Lenisa, and U. Montanari, editors, Electronic Notes in Theoretical Com-
puter Science, volume 44. Elsevier Science Publishers, 2001.

20. G. Plotkin. Bialgebraic semantics and recursion. Invited talk, Workshop on Coal-
gebraic Methods in Computer Science, Genova, 2001.

21. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
22. J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency.

In J. de Bakker et al., editors, Proc. of the REX workshop A Decade of Concurrency
– Reflections and Perspectives, LNCS vol. 803, pp. 530–582. Springer-Verlag, 1994.

23. R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoret. Comput.
Sci., 37:245–267, 1985.

24. D. Turi. Fibrations and bisimulation. Unpublished notes.
25. D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis,

Vrije Universiteit, Amsterdam, 1996.
26. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Pro-

ceedings 12th Ann. IEEE Symp. on Logic in Computer Science, LICS’97, Warsaw,
Poland, 29 June – 2 July 1997, pages 280–291. IEEE Computer Society Press, 1997.

27. Frits W. Vaandrager. On the relationship between process algebra and in-
put/output automata. In Logic in Computer Science, pages 387–398, 1991.

