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Abstract
We introduce an extension of modal µ-calculus to sets with atoms and study its basic properties.
Model checking is decidable on orbit-finite structures, and a correspondence to parity games
holds. On the other hand, satisfiability becomes undecidable. We also show some limitations to
the expressiveness of the calculus and argue that a naive way to remove these limitations results
in a logic whose model checking is undecidable.
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1 Introduction

Modal µ-calculus [1,4,5,29] is perhaps the best known formalism for describing properties of
labeled transition systems or Kripke models. It combines a simple syntax with a mathemat-
ically elegant semantics and it is expressive enough to specify many interesting properties
of systems. For example, the property “[in the current state] the predicate p holds, and
there exists a transition path where it holds again some time in the future” is defined by a
µ-calculus formula:

p ∧ ♦µX.(p ∨ ♦X).

Other similar formalisms, such as the logic CTL∗ [17], can be encoded in the modal µ-calculus.
However, decision problems such as model checking (“does a given formula hold in a given
(finite) model?”) or satisfiability (“does a given formula hold in some model?”) are decidable.

Formulas of the µ-calculus are built over some fixed set of basic predicates, such as p above,
whose semantics is provided in every model. In principle the set of such basic predicates may
be infinite, but this generality is hardly useful: since a formula of the µ-calculus is a finite
object, it may only refer to finitely many predicates.

In modeling systems, this finiteness may sometimes seem restrictive. Real systems
routinely operate on data coming from potentially infinite domains, such as numbers or
character strings. Basic predicates observed about a system may reasonably include ones like
“a number n was input”, denoted here pn, for every number n. If one considers properties
such as “there exists a transition path where the currently input number is input again some
time in the future”, one is in trouble writing finite formulas to define them. Were infinitary
connectives allowed in the formalism, the formula∨

n∈N
(pn ∧ ♦µX.(pn ∨ ♦X))
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would do the job; however, few good properties of the µ-calculus transport to a naively
construed infinitary setting. In particular, an obvious obstruction to any kind of decidability
results is that a general infinitary formula is not readily presented as input to an algorithm.

In this paper we introduce µ-calculus with atoms, where infinitary propositional connect-
ives are allowed in a restricted form that includes formulas such as the one above. Roughly
speaking, basic properties in formulas, and indeed whole Kripke models, are assumed to be
built of atoms from a fixed infinite set. Connectives in µ-formulas are indexed by sets that
are potentially infinite but are finitely definable in terms of atoms. This makes formulas
finitely presentable.

Several basic properties of the standard µ-calculus hold in the atom-based setting. Syntax
and semantics of the calculus is defined in a standard way. The model checking problem
remains decidable, although this is not trivial, as formulas and models are now, strictly
speaking, infinite. A correspondence between µ-formulas and parity games with atoms holds.

Some other properties of the classical calculus fail. The satisfiability problem becomes
undecidable. The atomic µ-calculus also turns out to be less expressive than might be
expected. In particular, the property “there exists a path where no basic predicate holds
more than once”, although decidable, is not definable. This means that, unlike in the classical
setting, an atomic extension of CTL∗ (where explicit quantification over paths makes such
properties easy to define) is not a fragment of the atomic µ-calculus. As it turns out, for
atomic CTL∗ even the model-checking problem is undecidable.

Our approach is a part of a wider programme of extending various computational models
to sets with atoms, also known as nominal sets [34]. For example, in [2] the classical notion of
finite automaton was reinterpreted in the universe of sets with atoms, with the result related
to register automata [21,31], an established model of automata over infinite alphabets.

Temporal logics over structures extended with data from infinite domains, and their
connections to various types of automata, have been extensively studied in the literature. For
example, the linear time logic LTL has been extended with a freeze quantifier [15, 16, 20, 35]
which, for structures where every position is associated with a single data item, can store
the current item for future reference. This can serve as a mechanism for detecting repeated
data values (see also [13,14]). Another known idea is to extend temporal logics with local
constraints over data from a fixed infinite domain, see e.g. [7, 12]. In [19, 25], alternating
register automata on data words and trees were studied, closely connected to µ-calculi.

In all these works, the main goal is to study the decidability border for satisfiability (or
nonemptiness, in the case of automata). To that end, the authors impose various, sometimes
complex restrictions on their logics or automata, and inevitably limit their expressiveness to
some extent. In contrast to that, our aim is to lift the classical modal µ-calculus to data-
equipped structures in the most syntactically economic way, and to achieve an expressive
formalism. As a price for this, the satisfiability problem quickly becomes undecidable.
However, we believe that this does not disqualify the atomic µ-calculus as a practical
formalism: most applications of temporal logics in system verification rely only on solving
the model checking problem, and that remains decidable here on a wide class of structures.

It would be easy to give up even the decidability of model checking. This was done
in [33], in a setting very similar to ours, by extending a basic multimodal logic with infinitary
boolean connectives subject only to a finite support condition. The resulting logic has few
good properties except its huge expressive power (indeed, it can immediately encode our
atomic µ-calculus, and much more): its set of formulas is not even countable. Instead, our
boolean connectives are subject to a more restrictive condition of orbit finiteness, an idea
first used in [3] in the context of first-order logic with atoms.
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Another branch of related work is centered around algebras of name-passing processes such
as the π-calculus, and variants of the µ-calculus aimed at specific transition systems induced
by those algebras. This line of work was started in [10], where a version of the µ-calculus for
model checking properties of π-calculus processes was proposed, with a sound-and-complete
proof system. Other efforts in this direction, resulting in logics fine-tuned to specific infinite
models, include [18,30], and a more abstract calculus was proposed in [11]. Finally, [23,24]
introduced a µ-calculus extended with predicates over arbitrary infinite data domains, with
no hope for any general decidability results and with a focus on pragmatic usability.

The structure of this paper is as follows. In Sect. 2 we briefly recall the modal µ-calculus
and related logics in the classical setting. In Sect. 3 we recall the basics of sets with atoms,
including the notions of finite support and orbit finiteness. In Sect. 4 we introduce the syntax
and semantics of the atomic µ-calculus. In Sect. 5 we prove that model-checking is decidable,
and study a correspondence with parity games. In Sect. 6 we prove various undecidability
results, and in Sect. 7 we study the undefinable path property mentioned above. A list of
future work directions is in Sect. 8.
Acknowledgments. We are very grateful to A. Facchini for collaboration in initial stages of
this work, to M. Bojańczyk, S. Lasota, S. Toruńczyk and B. Wcisło for valuable discussions,
and to anonymous reviewers for their thorough work.

2 µ-calculus and related logics

To fix the notation and terminology, we begin by recalling basic definitions and properties of
the µ-calculus in the classical setting. For a more detailed exposition see e.g. [1, 4–6,36,38].

I Definition 2.1 (Syntax). Let P be an infinite set of basic propositions and X an infinite
set of variables. The set Lµ of µ-calculus formulas is generated by the grammar:

φ ::= p | X | φ ∨ φ | ¬φ | ♦φ | µX.φ

where p ranges over P and X over X. We only allow formulas µX.φ where X occurs only
positively in φ (i.e. under an even number of negations).

We put > = p ∨ ¬p, φ ∧ ψ := ¬(¬φ ∨ ¬ψ), �φ := ¬♦¬φ, νX.φ := ¬µX.¬φ[X := ¬X].

I Definition 2.2 (Kripke model). A Kripke model is a triple 〈K,R,W 〉 such that
1. 〈K,R〉 is a directed graph, i.e., R is a binary relation on the set K of states,
2. W is a function from P to P(K).
If K = 〈K,R,W 〉 is a Kripke model and k ∈ K then 〈K, k〉 is called a pointed Kripke model.

I Definition 2.3 (Semantics). Formulas of µ-calculus are interpreted in the context of a
Kripke model K = 〈K,R,W 〉 and an environment, i.e., a partial function ρ : X⇀ P(K). For
any formula φ, assuming ρ is defined on all free variables in φ, the interpretation [[φ]]ρ ⊆ K
is defined by induction:

[[p]]ρ = W (p),
[[X]]ρ = ρ(X),
[[¬φ]]ρ = K \ [[φ]]ρ,

[[φ ∨ ψ]]ρ = [[φ]]ρ ∪ [[ψ]]ρ,
[[♦φ]]ρ = {k ∈ K | ∃s ∈ [[φ]]ρ. 〈k, s〉 ∈ R},
[[µX.φ]]ρ =

⋂
{L ⊆ K | [[φ]]ρ[X 7→L] ⊆ L},

where ρ[X 7→ L] denotes the function that maps X to L and acts as ρ on all other arguments.
We write [[φ]] (or [[φ]]K if K is less clear from context) instead of [[φ]]ρ if ρ is empty. We

say that φ holds in a state k ∈ K if k ∈ [[φ]] and denote it k |= φ.

CSL 2017
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I Example 2.4. The formula µX.(p ∨ ♦X) holds for pointed Kripke structures (K, k) such
that from k there is a finite path to a state where p holds. The formula νX.(�X∧µY.(p∨�Y ))
holds in those pointed Kripke structures where on every path p holds infinitely often.

For applications in system verification, the following two problems are considered:
Model checking: given a finite pointed Kripke model 〈K, k〉 and a formula φ ∈ Lµ, decide
if k |= φ.
Satisfiability: given a formula φ ∈ Lµ, decide if there exists a pointed Kripke model 〈K, k〉
s.t. k |= φ.

It is very easy to see that model checking is decidable: in a finite Kripke model, one
can compute the semantics of an Lµ-formula inductively, calculating least fixpoints using
approximants. A more efficient procedure can be derived from a correspondence of µ-calculus
with parity games (see e.g. [6, 38]).

Some well-known logics used in system verification can be translated into fragments of
the µ-calculus. We give two important examples:

I Definition 2.5 (CTL∗). In the logic CTL∗ we distinguish state formulas Φ and path
formulas φ, formed according to the following grammar:

Φ ::= p | Φ ∨ Φ | ¬Φ | ∃φ φ ::= Φ | φ ∨ φ | ¬φ | φUφ | Xφ

where p comes from some fixed set of propositional variables.

Standard notational conventions are ∀φ = ¬∃¬φ, φRψ = ¬(¬φU¬ψ), Fφ = >Uφ, Gφ = ¬F¬φ.
CTL∗ formulas are interpreted in Kripke models K: state formulas are interpreted over

states, and path formulas over paths. In the following definition of a satisfaction relation |=,
for a path π = 〈k0, k1, k2, . . .〉, by π[n..] we denote the subpath starting at kn.

k |= p ⇐⇒ k ∈W (p).
k |= ∃φ ⇐⇒ for some path π starting at k, π |= φ.
π |= Φ ⇐⇒ π[0] |= Φ.
π |= Xφ ⇐⇒ π[1..] |= φ

π |= φUψ ⇐⇒ there exists j ≥ 0 s.t. π[j..] |= ψ and for all i < j, π[i..] |= φ.
Boolean connectives are interpreted as expected.

The logic LTL is the fragment of CTL∗ where the symbol ∃ does not occur, with semantics
inherited from CTL∗. Usually LTL (where the distinction between state and path formulas
disappears) is interpreted in models that are infinite paths. Slightly more generally (and
more conveniently for our purposes), we will interpret them over pointed deterministic Kripke
models, i.e., ones where for each k ∈ K there is exactly one s ∈ K such that 〈k, s〉 ∈ R. This
makes little difference, since in such a model every state uniquely determines an infinite path.

3 Sets with atoms

We now recall the basic notions and results concerning sets with atoms, also known as
nominal sets [34]. There are several essentially equivalent ways to introduce these; we follow
the set-theoretic presentation of [22], culminating in the notion of orbit-finite sets [2, 34] and
computable operations on them.

Fix a countably infinite set A, whose elements we shall call atoms. A bijection on A will
be called an atom automorphism, and the group of atom automorphisms is denoted Aut(A).
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Loosely speaking, a set with atoms is a set that can have atoms, or other sets with atoms,
as elements. Formally, the universe UA of sets with atoms is defined by a von Neumann-like
hierachy, by transfinite induction on ordinal numbers α:

UA
0 = ∅, UA

α+1 = P(UA
α ) + A, UA

β =
⋃
α<β

UA
α for β a limit ordinal,

where + denotes disjoint union of sets.
We are interested in sets that depend only on a finite number of atoms, in the following

sense. Atom automorphisms act on UA by consistently renaming all atoms in a given set.
Formally, this is again defined by transfinite induction. This defines a group action:

_ ·_ : UA ×Aut(A)→ UA.

For a finite set S ⊂ A, let AutS(A) be the group of those automorphisms of A that fix every
element of S. We say that S supports a set x if x · π = x for every π ∈ AutS(A). A set is
equivariant if it is supported by the empty set. If x has a finite support then it has the least
finite support (see [34] for a proof), denoted supp(x).

Relations, functions etc. are sets in the standard sense, so the notions of support and
equivariance applies to them as well. Unfolding the definitions, for equivariant sets X and
Y , a relation R ⊆ X × Y is equivariant if 〈x, y〉 ∈ R implies 〈x · π, y · π〉 ∈ R and a function
f : X → Y is equivariant if f(x · π) = f(x) · π, for every π ∈ Aut(A).

From now on, we shall only consider sets with atoms that are hereditarily finitely supported,
i.e., ones that have a finite support, whose every element has some finite support and so on.

For any x with atoms, the S-orbit of x is the set {x · π | π ∈ AutS(A)}. For example, if
S supports x then the S-orbit of x is the singleton {x}.

For any S, S-orbits form a partition of the universe UA. Moreover, for any S-supported
set X, the S-orbits of its elements form a partition of X. We call such X S-orbit-finite if it is
a union of finitely many S-orbits. If S ⊆ T are finite, S supports X and X is S-orbit-finite,
then (T supports X and) X is also T -orbit-finite. Thanks to this observation, we may drop
the qualifier and simply call X orbit-finite, meaning “S-orbit-finite for any/every S that
supports X”.

I Example 3.1. Any classical set (without atoms) is an equivariant set with atoms. Since
its every element is also equivariant, it forms its own orbit. Therefore, a classical set is
orbit-finite if and only if it is finite.
An atom a ∈ A has no elements, and it is supported by {a}. Every finite set of atoms
S ⊆ A is supported by S, and every element of it forms a singleton S-orbit. Its complement
A \ S is also supported by S, and is a single S-orbit. A subset of A that is neither finite
nor co-finite, is not finitely supported.
The set A of atoms, the set

(A
2
)
of two-element sets of atoms, and the set A2 of all ordered

pairs of atoms, are equivariant sets. The first two have a single orbit each, and the last
one is a union of two orbits:

A2 = {〈a, a〉 | a ∈ A} ∪ {〈a, b〉 | a 6= b ∈ A}.

Similarly, An is orbit-finite for every n ∈ N. The set A∗ of finite sequences of atoms is
hereditarily finitely supported, but not orbit-finite. The powerset P(A) is equivariant
itself, but it contains elements that are not finitely supported, and therefore is not
considered a legal set with atoms.
There are four equivariant binary relations on A: the empty relation, the equality relation,
the inequality relation and the full relation.

CSL 2017
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There is no equivariant function from
(A

2
)
to A, but {〈{a, b}, a〉 | a 6= b ∈ A} is a legal

equivariant relation, and the function constant at an atom a is supported by {a}. The
only equivariant function from A to A is identity. The only equivariant functions from
A2 to A are the two projections, and the only equivariant function from A to A2 is the
diagonal a 7→ 〈a, a〉.

Orbit-finite sets, although usually infinite, can be presented by finite means and are
therefore amenable to algorithmic manipulation. There are a few ways to do this. In [2]
(with the idea going back to [8]), it was observed that every single-orbit equivariant set is
in an equivariant bijection with a set of k-tuples of distinct atoms, suitably quotiented by
a subgroup G ≤ Sym(k) of the symmetric group on k elements. Thus such a set can be
presented by a number k and the finite group G, and an orbit-finite set is a formal union of
such presentations. A somewhat more readable and concise scheme was used in [26], where
orbit-finite sets are presented by set-builder expressions of the form

{e | v1, . . . , vn ∈ A, φ}

where e is again an expression, vi are bound atom variables and φ is a first-order formula with
equality. We refer to [26] for a precise formulation (and to [32] for a proof that all orbit-finite
sets can be presented this way); suffice it to say that the expressions in Example 3.1 are of
this form, and other similar expressions are allowed. The set defined by such an expression
is supported by the atoms that appear freely in the expression.

It is not entirely trivial whether two representations define the same set or not. For
example, the two-orbit equivariant set A2 from Example 3.1 can be represented in two
different ways (with some light syntactic sugar added for representing ordered pairs):

{〈a, b〉 | a, b ∈ A,>} or {〈a, a〉 | a ∈ A,>} ∪ {〈a, b〉 | a, b ∈ A, a 6= b}.

However, set equality and other basic operations on orbit-finite sets are computable on
their representations, including:

checking whether one set is an element (or a subset) of another,
union and intersection of sets, cartesian product, set difference,
applying an orbit-finite function to an argument, composing functions or relations,
finding the image of a subset along a relation,
checking whether a finite set S supports a given set, calculating the least support of a set,
partitioning a given set into S-orbits, calculating the S-orbit of a given element.

These basic operations have been implemented as components of atomic programming
languages [27,28].

4 µ-calculus with atoms

Syntactically, the µ-calculus with atoms (or atomic µ-calculus) is simply an extension of the
classical formalism with orbit-finite propositional connectives.

From now on, fix a countably infinite set X of variables. (Until Remark 4.3 below it is
convenient to think of it simply as a discrete countable set as in the classical µ-calculus.)

I Definition 4.1. Let P be an equivariant set with atoms of basic propositions. The set LA
µ

of formulas of the atomic µ-calculus is generated by the following grammar:

φ ::= p | X |
∨

Φ | ¬φ | ♦φ | µX.φ

where p ranges over P, X ranges over X and Φ ranges over orbit-finite sets of formulas. As
usual we only allow µX.φ where X occurs only positively in φ.
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The “orbit-finite set of formulas” above refers to a canonical action of Aut(A) on formulas,
extending the action on P inductively. Note that, despite ostensibly infinite disjunctions,
every formula in LA

µ has a finite depth, since two formulas in the same orbit necessarily have
the same depth. Thanks to this, no need arises for transfinite induction in reasoning about
the syntax of LA

µ formulas.
As expected, we put �φ as a shorthand for ¬♦¬φ, νX.φ for ¬µX.¬φ[X := ¬X] and

∧
Φ

for ¬
∨
{¬φ | φ ∈ Φ}. With these conventions, every formula can be written in the negation

normal form, where negation occurs only in front of a basic proposition or a variable.
Often it is notationally convenient to view an orbit-finite set Φ as a family of formulas

indexed by a simpler orbit-finite set. For example, we may write∨
a∈A♦a to mean

∨
{♦a | a ∈ A}.

I Example 4.2. Put P = A. For every a ∈ A let Φa = {¬b | b ∈ A \ {a}}. Then Φa is
supported by {a} and orbit-finite, hence

∧
Φa :=

∧
b 6=a ¬b is a formula in LA

µ. The set

Ψ =
{
♦
(
a ∧

∧
b6=a ¬b

)
| a ∈ A

}
is equivariant and orbit-finite, hence∧

Ψ =
∧
a∈A♦

(
a ∧

∧
b 6=a ¬b

)
is also a legal formula in LA

µ.

I Remark 4.3. In the classical µ-calculus, one often wants a formula to be clean, or well-
named, meaning that every bound variable is bound only once. In the presence of infinitary
connectives this may seem problematic. For example, in the formula∧

a∈A (µX.a ∨ ♦X)

the variable X occurs infinitely many times, and naively replacing each binding occurrence
with a completely fresh variable would result in an orbit-infinite conjunction. An easy solution
is to allow a nontrivial action of the group Aut(A) on the set of variables. One way to do
this is to replace each (occurrence of) a bound variable with a formal occurrence of it as a
subformula, i.e., a (finite) nested sequence of subformulas that contains that occurrence.

The following syntactic properties are easily proved by induction on the depth of formulas:
Every formula φ is finitely supported.
For every formula φ, the set of its subformulas is finitely supported and orbit-finite.
The relation E ⊆ LA

µ ×LA
µ of being a subformula is equivariant, i.e. for every π ∈ Aut(A)

and every φ, ψ ∈ LA
µ we have φ E ψ if and only if φ · π E ψ · π.

Semantics of the atomic µ-calculus is a straightforward extension of the classical one: we
simply require all sets and relations to be sets with atoms, and replace finite models with
orbit-finite ones.

I Definition 4.4. An atomic Kripke model is a triple K = 〈K,R,W 〉 where
1. K is a set with atoms,
2. R is a finitely supported binary relation on K,
3. W is a finitely supported subset of P×K.

CSL 2017
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For every p ∈ P we denote W (p) = {k ∈ K | 〈p, k〉 ∈W}. Thus W can be equivalently seen
as a finitely supported function from P to Pfs(K), the set of finitely supported subsets of K.

For any k ∈ K, the pair 〈K, k〉 is called a pointed Kripke model. We shall say that an
atomic Kripke model 〈K,R,W 〉 is orbit-finite if the set K is so.

I Example 4.5. K = 〈K,R,W 〉, where:

K = {?} ∪ A, R = {〈?, a〉 | a ∈ A}, W = {〈a, a〉 | a ∈ A}

(with ? is an equivariant element, i.e., an atom-less object that forms a singleton orbit by
itself) is an infinite but orbit-finite, equivariant atomic Kripke model which can be drawn as:

?

tt yy �� %% ** ,,a b c d e . . .

I Definition 4.6. For an atomic Kripke model K = 〈K,R,W 〉, the meaning of a formula
φ ∈ LA

µ in a variable environment ρ : X⇀ Pfs(K) is defined exactly as in Definition 2.3, with
the obvious modification:[[∨

Φ
]]
ρ

=
⋃
{[[ψ]]ρ | ψ ∈ Φ}. (1)

Following the philosophy of considering only finitely supported sets with atoms, the case of
fixpoint formulas should also be modified to:

[[µX.φ]]ρ =
⋂
{L ⊆ K | L is finitely supported and [[φ]]ρ[X 7→L] ⊆ L}. (2)

The following easy lemma says that the meaning of every formula is a finitely supported
set of states; in particular, it implies that if K is an equivariant model then for any formula
φ without free variables, [[φ]]K is supported by supp(φ).

I Lemma 4.7. For every φ ∈ LA
µ, an atomic Kripke model K = 〈K,R,W 〉 and a variable

environment ρ, the set [[φ]]ρ ⊆ K is supported by S = supp(φ) ∪ supp(K) ∪ supp(ρ) ⊆ A.

Proof (sketch). By structural induction on φ. For example, consider the case of orbit-finite
disjunction above, i.e., φ =

∨
Φ. By the inductive assumption, the set {[[ψ]]ρ | ψ ∈ Φ} is

supported by S. Since
⋃

is an equivariant operation, the lemma follows.
The most interesting case is that of the fixpoint operator, φ = µX.ψ. Recall the

definition (2). The inclusion [[ψ]]ρ[X 7→L] ⊆ L, considered as a property of subsets L ⊆ K, is
supported by S. Indeed, take any atom automorphism π ∈ AutS(A). Since supp(φ) ⊆ S, we
have φ · π = φ, hence X · π = X and ψ · π = ψ. Since supp(ρ) ⊆ S, also ρ · π = ρ. As a
result, [[ψ]]ρ[X 7→L] ⊆ L implies:

[[ψ]]ρ[X 7→L·π] = [[ψ · π]](ρ·π)[X·π 7→L·π] = ([[ψ]]ρ[X 7→L]) · π ⊆ L · π

where the last inclusion holds since the inclusion relation ⊆ is equivariant.
Since the property of being finitely supported is equivariant, it follows that the family on

the right of (2), hence its intersection, is supported by S. J

Atomic CTL∗ and atomic LTL are defined by analogy to atomic µ-calculus, extending
Definition 2.5 with orbit-finite disjunctions, with semantics extended by analogy to (1) in
Definition 4.6. With CTL∗ a design decision is to be made: in the semantic clause

k |= ∃φ ⇐⇒ for some path π starting at k, π |= φ,
do we require the path π to be finitely supported or not? Note that even an equivariant
Kripke model can contain infinite paths that are not finitely supported. We do not commit
to a particular variant for now. Similar remarks apply to atomic LTL.
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5 Basic properties

This section studies some basic results about the classical µ-calculus transported to the
atomic setting. Proofs in this section are not difficult, but they illustrate standard techniques
used to generalize properties of finite structures to orbit-finite ones.

5.1 Model-checking
I Theorem 5.1. Model-checking problem for atomic µ-calculus over orbit-finite atomic
Kripke models is decidable.

Proof. Let us fix an orbit-finite atomic Kripke model K = 〈K,R,W 〉. We shall show that
the meaning of any formula φ in K (under a variable environment ρ) can be computed from
φ, by structural induction on φ and using basic operations listed at the end of Section 3.

The cases of basic propositions, variables, negation and the modality ♦ are straightforward.
For the case of orbit-finite disjunction φ =

∨
Φ, first calculate S = supp(Φ) ∪ supp(K) ∪

supp(ρ). Then partition Φ into S-orbits (there are finitely many of them), and select a
system of representatives φ1, . . . , φn, one from each orbit. Using the inductive assumption,
calculate Pi = [[φi]]ρ for each i. Then compute the S-orbit Oi of each Pi; each Oi is an
S-supported family of subsets of K. The union of all

⋃
Oi is the desired set [[φ]]ρ.

The most interesting case is computing [[µX.φ]]ρ. This is done by approximating the least
fixpoint by the following standard procedure:

(1) Put L = ∅,
(2) Extend ρ by mapping the variable X to L,
(3) Using the inductive assumption, calculate [[φ]]ρ[X 7→L] and put it as a new value of L,
(4) Repeat steps (2)-(3) until L stabilizes.
By the Knaster-Tarski theorem (see [1]) all we need to show is that this procedure terminates.
Note that, by Lemma 4.7, each value assigned to L is a subset of K supported by S =
supp(φ) ∪ supp(K) ∪ supp(ρ). In other words, L is the union of some selected S-orbits of
K. Since K is orbit-finite, L can take on only finitely many values, therefore the above
procedure terminates after finitely many steps. J

5.2 Parity games with atoms
The definition of atomic parity game is essentially as in the classical case (see e.g. [6, 38]):

I Definition 5.2. An atomic parity game G is a G quadruple 〈V, V∃, R,Ω〉 such that
1. V is a set with atoms, V∃ is a finitely supported subset and we put V∀ = V \ V∃;
2. R ⊆ V 2 is a finitely supported relation;
3. Ω : V → N is a bounded, finitely supported parity function.
The game is called orbit-finite if V is orbit-finite.

The notions of a match, partial match, strategy, positional strategy, winning strategy and
determinacy are exactly as in the classical case.

Atomic parity games are obviously (forgetting about the action of atom automorphisms)
parity games in the classical sense, so they are positionally determined. However, it might
happen that in some atomic parity games no winning strategy is finitely supported.

I Example 5.3. Consider an atomic parity game where:

V =
(A

2
)
∪ A, V∃ =

(A
2
)
, R = {〈{a, b}, a〉 | a 6= b ∈ A} ∪ {〈a, {b, c}〉 | a, b, c ∈ A, b 6= c}

Ω(v) = 0 for all v ∈ V .
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Since ∃ wins every infinite play and every state has a successor with respect to R, it is clear
that every state is winning for ∃. However, no winning strategy for ∃ is finitely supported.
Indeed, such a strategy would determine a finitely supported function from

(A
2
)
to A such as

f(C) ∈ C for all C ∈
(A

2
)
, and it is easy to see that no such function exists.

In spite of this, winning regions in orbit-finite parity games are computable. Indeed, every
orbit-finite game can be effectively transformed into a finite game in the following way. For
an orbit-finite parity game G = 〈V, V∃, R,Ω〉, let S be any finite set of atoms that supports G.
Let V/S, V∃/S be the sets of S-orbits of V and V∃, respectively; let [v] denote the S-orbit of
v ∈ V . Obviously V∃/S ⊆ V/S. Define R/S ⊆ V/S × V/S and Ω/S : V/S → N by:

〈[v], [w]〉 ∈ R/S if 〈x, y〉 ∈ R for some x ∈ [v], y ∈ [w]
Ω/S([v]) = n if Ω(x) = n for some x ∈ [v]

This is well defined since S supports both R and Ω. In particular, Ω/S is a function. We
call G/S = 〈V/S, V∃/S,R/S,Ω/S〉 the orbit game of G.

I Lemma 5.4. The quotient function Π defined for every v ∈ V by Π(v) = [v] is a bisimulation
between labeled Kripke models 〈V,R,Ω〉 and 〈V/S,R/S,Ω/S〉.

Proof. First, if Π(w) = [v], then w ∈ [v] and consequently all the elements of [v] have label
Ω(w). So, by definition Ω/S([v]) = Ω(w).

Now suppose Π(w) = [v] and 〈[v], [z]〉 ∈ R/S. It means that there are x ∈ [v], y ∈ [z]
such that 〈x, y〉 ∈ R. Since w and x are in the same S-orbit, pick a π ∈ AutS(A) such that
x · π = w. Since S supports R, we get 〈w, y · π〉 ∈ R. But y · π ∈ [z], so Π(y · π) = [z].

For the opposite direction, let Π(w) = [v] and for some x, 〈w, x〉 ∈ R. Then by the
definition of R/S, 〈[v], [x]〉 ∈ R/S and obviously Π(x) = [x]. J

Moreover, for every v ∈ V , v ∈ V∃ if and only if [v] ∈ V∃/S. As a result, ∃ has a
(positional) winning strategy from v in G if and only if she has a (positional) winning strategy
from [v] in G/S. This implies that one can effectively decide whether a player has a winning
strategy in an orbit-finite atomic parity game G by calculating first S = supp(G), then G/S,
and finally solving the problem in the finite parity game obtained, using standard methods.

A correspondence of the atomic µ-calculus with atomic parity games is proved essentially
in the same way as in the classical case (see e.g. [6, 38]) using the notion of unfolding games.
Together with the orbit game construction, this gives an alternative route to decidability of
the model-checking problem for the atomic µ-calculus.

5.3 Failure of the orbit-finite model property
The classical modal µ-calculus enjoys the so-called finite model property: every satisfiable
formula has a finite model. (In fact a stronger small model property holds, useful for
complexity upper bounds.) There is no chance for this property to hold in the atomic setting,
but since orbit-finite sets play the role of finite sets in the universe of sets with atoms, one
might hope that an orbit-finite model property holds, i.e., that every satisfiable formula in LA

µ

has an orbit-finite model. However, even that weaker property fails, as we shall now prove.
Over a vocabulary of basic propositions that includes a proposition pa for each atom a,

consider the following three properties:
P1: every state reachable from the current state has at least one successor;
P2: in every state reachable from the current state some pa holds;
P3: on every path starting in the current state, no pa holds more than once.
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All these are definable in the atomic µ-calculus. P1 is simply νX.(♦> ∧ �X), P2 is
νX.

(∨
a∈A pa ∧�X

)
, and P3 is

¬(µX.(ψ ∨ ♦X)) where ψ =
∨
a∈A

(pa ∧ ♦µY.(pa ∨ ♦Y )).

To build an atomic Kripke model for the conjunction of P1, P2 and P3, put as states finite,
nonempty sequences of distinct atoms. These form an equivariant set with atoms which,
however, has infinitely many orbits (sequences of different lengths fall into separate orbits).
For the transition relation put

R = {〈w,wa〉 | a 6∈ w},

that is, a sequence w can make a step to another valid sequence by appending a single atom
a. The basic predicates are interpreted so that each pa holds in exactly those sequences that
end with the atom a. Properties P1, P2 and P3 hold in (every state of) this model.

However, the conjunction P1, P2 and P3 has no orbit-finite models. Indeed, assume
that some state x0 in such a model (with the transition relation denoted by R) satisfies all
three properties. By P1, there exists an infinite path in the model:

x0, x1, x2, x3, x4, . . . such that 〈xi, xi+1〉 ∈ R.

By P2, each state on this path satisfies some predicate pa, and by P3 no such predicate is
satisfied more than once.

Since the model is orbit-finite, there exists a global upper bound on the size of the least
supports supp(xi). This implies that there exists a number j and atoms a 6= b such that:

pa holds in some xi where i < j,
pb holds in some xk where j < k, and
a, b 6∈ supp(xj).

Let π ∈ Aut(A) be the atom automorphism that swaps a and b and leaves all other atoms
untouched; then xj · π = xj , therefore 〈xj−1, xj · π〉 ∈ R. As a result:

x0, x1, x2, . . . , xi, . . . , xj−1, xj · π, . . . , xk · π, . . .

is a legal path. But pa holds both in xi and in xk · π, so P3 is violated on this path.

6 Undecidability results

I Theorem 6.1. It is undecidable whether a given atomic LTL formula is satisfiable.

Proof. See Appendix A. The proof follows the lines of the proof from [31] of the undecidability
of the universality problem for register automata. J

I Theorem 6.2. It is undecidable whether a given formula of the atomic µ-calculus is
satisfiable.

Proof. See Appendix B for details. Use a translation M from LTL into LA
µ such that:

(i) In every word model, if a state satisfies φ then it satisfies M(φ),
(ii) In every Kripke model K, if a state x satisfies M(φ) then every path in K that starts

from x, considered as a word model, satisfies φ.
Then apply Theorem 6.1. J

I Theorem 6.3. The model checking problem for atomic CTL∗ is undecidable.

Proof. Easy reduction from the satisfiability problem for atomic LTL; see Appendix C. J
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7 Expressiveness limitations

In this section, consider Kripke models over a vocabulary of basic propositions that includes
a proposition pa for each atom a. For a state x in such a model, define pred(x) ⊆ A to be
the set of those atoms a for which pa holds in x. Note that pred(x) ignores all propositions
that are not of the form pa.

Denote the property “there exists an infinite path where no pa holds more than once”, by
#Path. Such properties of states in Kripke models have potentially significant practical
importance. For example, one may imagine a system equipped with a token (e.g. password)
generator where one needs to verify that, on every path where no token is generated more
than once, the security of the system is never breached.

We shall show that although #Path is decidable, it is not definable in atomic µ-calculus.
This is in contrast to the similar but definable property P3 from Section 5.3.

I Theorem 7.1. #Path is decidable on orbit-finite Kripke models.

Proof. For simplicity, assume that a given orbit-finite Kripke model K = 〈K,R,W 〉 is
equivariant; a generalization to finitely supported models is straightforward.

Notice that for every state x ∈ K, the set pred(x) is either finite (and contained in
supp(x)) or co-finite. Moreover, a single orbit of K only contains states of one of these two
kinds. It is not difficult to decide the existence of a desired path where at least one state
is of the second kind. Indeed, two such states cannot occur on the path at all, and even
if exactly one of them occurs, almost all other states on the path must satisfy none of the
predicates pa. The existence of such a path from a given state x is straightforward to decide.

Once the existence of such paths is excluded, all (orbits of) states x with co-finite pred(x)
may be safely deleted from the model. From now on, assume that pred(x) ⊆ supp(x) for
each x ∈ K.

Derived from K, construct a new orbit-finite Kripke model K̂ = 〈K̂, R̂, ∅〉, over the empty
set of basic predicates, defined as follows:

K̂ = {〈x, S〉 | x ∈ K, S ⊆ supp(x) \ pred(x)}

R̂ = {〈〈x, S〉, 〈y, T 〉)〉 | 〈x, y〉 ∈ R, (S ∪ pred(x)) ∩ supp(y) ⊆ T}.

The intuition is that in a state 〈x, S〉, atoms in S are marked as having had occurred
previously on a path, and are forbidden from occurring in the future. Note that this marking
is restricted to atoms from the support of the current state x only.

In Appendix D we prove that a state x ∈ K admits an infinite path where no pa holds
more than once, if and only if (x, ∅) ∈ K̂ admits any infinite path. The theorem follows
since the latter property is decidable (indeed, it is definable in the atomic µ-calculus, whose
model-checking problem is decidable by Theorem 5.1). J

We shall now show that, in spite of its decidability and intuitive simplicity, #Path is not
definable by a formula of the atomic µ-calculus. To this end, we introduce a hierarchy of
bisimulations on atomic Kripke models.

Denote by A(≤k) the set of ordered tuples of pairwise distinct atoms of length at most k.
Elements of such sets will be denoted with vector notation: ~a,~b etc. We shall write x ∼ y to
say that x and y are in the same orbit.

I Definition 7.2. For a number k ∈ N, a k-bisimulation on a Kripke model K = 〈K,R,W 〉
is a symmetric relation B on K × A(≤k) such that, whenever 〈x,~a〉B〈y,~b〉 then:
(i) 〈pred(x),~a〉 ∼ 〈pred(y),~b〉,
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(ii) for every x′ such that 〈x, x′〉 ∈ R there is a y′ such that 〈y, y′〉 ∈ R and 〈x′,~a〉B〈y′,~b〉,
(iii) for every ~c ∈ A(≤k) there exists a ~d ∈ A(≤k) such that 〈~a,~c〉 ∼ 〈~b, ~d〉 and 〈x,~c〉B〈y, ~d〉.
Two states are called k-bisimilar if they are related by a k-bisimulation.

Some properties of k-bisimulations are straightforward to check. For example, by a
standard argument, k-bisimilarity on a Kripke model is an equivalence relation. From
condition (i) above it immediately follows that if 〈x,~a〉 and 〈y,~b〉 are k-bisimilar then |~a| = |~b|
and there exists a π ∈ Aut(A) such that ~a · π = ~b. Furthermore, if shorter tuples ~a′ and ~b′
arise from ~a and ~b respectively by selecting the same subset of positions, then 〈x,~a′〉 and
〈y,~b′〉 are k-bisimilar as well. Finally, for l < k, the restriction of a k-bisimulation to the set
K × A(≤l) is an l-bisimulation.

The following result shows that k-bisimilar states cannot be distinguished by formulas
from a certain fragment of the atomic µ-calculus. Call a formula φ ∈ LA

µ globally k-supported
if every subformula of it (including φ itself) has a support of size at most k.

I Theorem 7.3. For a globally k-supported formula φ, if
〈x,~a〉 and 〈y,~b〉 are k-bisimilar,
π ∈ Aut(A) is such that ~a · π = ~b,
supp(φ) ⊆ ~a, and x |= φ

then y |= φ · π.

I Corollary 7.4. Assume that 〈x, ε〉 and 〈y, ε〉 are k-bisimilar. For every equivariant, globally
k-supported formula φ, x |= φ if and only if y |= φ.

Proof. The Corollary is simply a special case of the Theorem, for ~a = ~b = ε. To prove the
Theorem, first apply a standard translation of the formula φ to infinitary modal logic, where
no fixpoint operators are allowed, but boolean connectives of any arity are admitted. The
translation is defined by induction. In the only interesting case, consider φ = µX.ψ. For
each ordinal α define a formula φα by:

φ0 = ⊥, φα+1 = ψ[X 7→ φα], φβ =
∨
α<β

φα for a limiting ordinal β.

It is then a standard result that x |= φ if and only if x |=
∨
α<κ φα, where κ is the first

cardinal larger than the Kripke model in question. Note that every φα is supported by
supp(φ), and so is the entire infinite alternative. As a result, if an original formula φ is
globally k-supported then the resulting infinitary formula is also globally k-supported.

From now on, assume that φ is an infinitary modal logic formula. The Theorem is proved
by transfinite induction on the depth of φ, as follows:

Assume φ = pc for some basic predicate pc. Since x |= pc (hence c ∈ pred(x)) and 〈x,~a〉
and 〈y,~b〉 are k-bisimilar then, by condition (i) in Defn. 7.2, c ·π ∈ pred(y) and y |= pc ·π.
Assume φ = ♦ψ. Then x |= φ means that 〈x, x′〉 ∈ R for some x′ such that x′ |= ψ. By
condition (ii) in Defn. 7.2, there is some y′ such that 〈y, y′〉 ∈ R and 〈x′,~a〉 and 〈y′,~b〉 are
k-bisimilar. Since supp(ψ) = supp(φ) ⊆ ~a, by the inductive assumption we get y′ |= ψ · π.
As a result, y |= ♦(ψ · π), and the latter formula equals φ · π.
Assume φ = ¬ψ, and towards a contradiction that y |= ψ · π. Notice that supp(ψ · π) ⊆ ~b.
Applying the inductive assumption to ψ · π, by the symmetry of k-bisimilarity we obtain
x |= ψ · ππ−1, and the latter formula is ψ, contradicting the assumption that x |= φ.
Assume φ =

∨
Φ, where Φ is a set of formulas such that supp(Φ) ⊆ ~a. Pick ψ ∈ Φ such

that x |= ψ, and let ~c be the set supp(ψ), ordered in an arbitrary way. Note that |~c| ≤ k
by the assumption that φ is globally k-supported. Pick a tuple ~d that exists by condition
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(iii) in Defn. 7.2. Since 〈~a,~c〉 ∼ 〈~b, ~d〉, there exists a σ ∈ Aut(A) such that ~a · σ = ~b and
~c · σ = ~d. Moreover, since 〈x,~c〉 and 〈y, ~d〉 are k-bisimilar, we can apply the inductive
assumption on ψ to obtain y |= ψ · σ. This means that y |= φ · σ. However, since σ and π
are equal on ~a and supp(φ) ⊆ ~a, we get φ · σ = φ · π.
Note that we did not assume that Φ is an orbit-finite set; the reasoning works for any set
of formulas as long as it is supported by ~a. J

Note that every formula of the atomic µ-calculus is globally k-supported for some number
k. Therefore, by Cor. 7.4, to prove that #Path is not definable it is enough to construct,
for every number k, an orbit-finite Kripke model K = 〈K,R,W 〉 over the language of
basic predicate symbols {pa | a ∈ A}, and two states x, y ∈ K such that 〈x, ε〉 and 〈y, ε〉
are k-bisimilar and #Path fails for x but holds for y. To this end, choose any S ⊆ A
s.t |S| = 2k + 1. Let K = A and define the transition relation R by:

〈a, b〉 ∈ R ⇐⇒ (a ∈ S ⇐⇒ b ∈ S).

In words, R forms a disjoint sum of a finite clique of size 2k + 1 and an infinite clique.
Interpret the basic predicates by:

a |= pb ⇐⇒ a = b.

Finally, pick some x ∈ S and y 6∈ S. It is easy to see that #Path fails for x and holds for y.
It remains to be proved that 〈x, ε〉 and 〈y, ε〉 are k-bisimilar. To this end, consider a

relation B on K × A(≤k):

〈u,~a〉B〈v,~b〉 ⇐⇒ (|~a| = |~b|) ∧ (u ∈ S ⇐⇒ v 6∈ S) ∧
∧ (∀i. ai ∈ S ⇐⇒ bi 6∈ S) ∧ (∀i. ai = u ⇐⇒ bi = v).

ObviouslyB is a symmetric relation and 〈x, ε〉B〈y, ε〉. We shall show thatB is a k-bisimulation
by checking, for any 〈u,~a〉B〈v,~b〉, the three conditions of Defn. 7.2 in turn:
(i) We have pred(u) = {u} and pred(v) = {v}, and from the definition of B it immediately

follows that 〈{u},~a〉 ∼ 〈{v},~b〉.
(ii) Consider any u′ such that 〈u, u′〉 ∈ R. If u′ = ai for some i then put v′ = bi. On the

other hand, if u′ does not appear in ~a then take v′ to be any atom that does not appear
in ~b and such that u′ ∈ S ⇐⇒ v′ 6∈ S. (For u′ 6∈ S, this is possible since |~b| ≤ k < |S|.)
Either way, 〈v, v′〉 ∈ R and 〈u′,~a〉B〈v′,~b〉 as required.

(iii) For any ~c ∈ A(≤k) construct ~d ∈ A(≤k) as follows:
if ci = aj for some (necessarily unique) j then put di = bj ,
if ci = u then put di = v,
otherwise put di to be any atom that does not occur in ~b, is different from v and such
that ci ∈ S iff di 6∈ S. At the same time, ensure that di 6= dj for i 6= j. This is possible
since |S| = 2k + 1, so there are at least k distinct atoms in S that do not occur in ~b
and are different from v.

For ~d constructed this way, 〈~a,~c〉 ∼ 〈~b, ~d〉 and 〈u,~c〉B〈v, ~d〉 as required.

The above Kripke model is not equivariant; its support is the chosen set S. However,
a similar effect can be achieved in an equivariant model. Indeed, given a number k, it is
enough to take the disjoint union, indexed by the family of all finite sets S of size 2k + 1, of
the models as above. The resulting model is equivariant with 2k + 2 orbits of states, and the
above reasoning holds for it without significant changes.
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I Remark 7.5. The property #Path is easy to define in atomic CTL∗ with path formulas
interpreted over arbitary paths, by a formula:

∃
(∧

a∈A G(pa → X(G¬pa))
)
.

This is, however, of little practical use due to Theorem 6.3. It also means that, contrary to
the classical atom-less setting, atomic CTL∗ is not a fragment of the atomic µ-calculus.

8 Future work

We list some interesting aspects of the atomic µ-calculus that are best left for future work.
Complexity issues. For the decidability results we presented, in particular for the model
checking problem over orbit-finite structures, one immediately asks about the complexity
of the algorithms proposed. The answer depends on the way one measures the size of
input structures. One obvious option is to consider the length of their representation with
set-builder expressions and first-order formulas. With this view, most basic operations
listed at the end of Section 3 become Pspace-hard, because the first-order theory of pure
equality is Pspace-complete. As a result, the complexity of basic operations dwarfs the
distinction between the two algorithmic approaches to model checking based on direct fixpoint
computation and on parity games.

Another approach is to measure orbit-finite structures by the number of their orbits, and
the (hereditary) size of their least support. Note that the number of orbits of a set can
be exponentially bigger than the size of its logical representation; for example, the number
of orbits of the set An, whose representation has size linear in n, is equal to the n-th Bell
number. In this view the difference between the two approaches to model checking becomes
more prominent.

We defer precise complexity analyses until we have a better general understanding of
various time and space complexity models on atomic structures.
Other atoms. As advocated in [2], much of the theory of sets with atoms can be generalized
to other relational structures A. For example, one can consider ordered atoms A = 〈Q, <〉,
where sets such as the interval {b ∈ A | 2 < b < 5} become finitely supported. Other atom
structures are also possible; see [2] for details.

If the first-order theory of A is decidable then most definitions and results in this paper
generalize to other structures of atoms studied in [2]. An interesting exception is the
undefinability of #Path studied in Section 7. Our construction there does not work for
ordered atoms; indeed, in the model K constructed after Corollary 7.4, the states 〈x, ε〉 and
〈y, ε〉 are not even 1-bisimilar.

The property #Path does not mention the order of atoms in any way, so it would be
quite surprising if it turned out to be definable in the µ-calculus with ordered atoms. We
leave this as an open problem.
Defining #Path. The fact that #Path is not definable in the µ-calculus with equality
atoms is disappointing, since it looks like a property of potential practical importance in
system verification. Since we know that #Path is decidable, it is desirable to extend atomic
µ-calculus in some well-structured and syntactically economic way that would allow one to
define such properties while preserving the decidability of model checking. The property of
“global freshness” has been studied in the context of automata with atoms [37], and one may
look for inspiration there. Our proof of Theorem 7.1 also suggests some promising options.
We leave this for future work.
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A Proof of Theorem 6.1

Given a Turing machine M with a (finite) set of states Q, a (finite) working alphabet Γ
(including a blank symbol [), initial and accepting states qinit, qacc ∈ Q and a transition
relation δ, we shall build an atomic LTL formula that is satisfiable if and only ifM accepts
the empty word. Without loss of generality assume that M, upon reaching an accepting
configuration, enters an infinite loop in that configuration.

Consider the following language of basic predicate symbols:
a special symbol $,
atoma for each a ∈ A,
tapeγ for each γ ∈ Γ,
headq for each q ∈ Q.

Our formula shall be a conjunction of several properties. First, we enforce that every state
in a model either satisfies $ (and no other basic predicates) or satisfies exactly one predicate
atoma, exactly one predicate tapeγ and at most one predicate headq. This is ensured by a
conjunction of formulas such as:

G
(

$ ∨
∨
a∈A

atoma

)
and

∧
a 6=b∈A

G(atoma → ¬atomb)

and so on. We also ensure that the initial state of the model satisfies $.
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Furthermore, we ensure that as far as predicates $ and atoma are concerned, the model
can be presented as an infinite word:

$w$w$w · · ·

where w is a finite sequence of predicate symbols of the form atoma such that no single
predicate appears in w more than once. This is achieved by a conjunction of formulas such
as: ∧

a,b∈A G(atoma ∧ Xatomb → G(atoma → Xatomb))∧
a∈A G(atoma → (¬atomaU$)).

Portions of the model between two consecutive occurrences of $ will store configurations
ofM. To this end, we ensure that each portion contains exactly one state that satisfies some
head predicate:

G($→ X((¬ψ ∧ ¬$)U(ψ ∧ X(¬ψU$))))

where ψ =
∨
q∈Q headq.

We then ensure that every two consecutive configurations encode a legal step of M.
Predicates atom are useful for this, as they trace single tape cells in subsequent configurations.
To ensure that the letters on the tape do not change unless the machine head is directly over
them, we state for each γ ∈ Γ:∧

a∈A
G(atoma ∧ tapeγ ∧ ¬ψ → X(¬atomaU(atoma ∧ tapeγ)))

where ψ is as before. Furthermore, for every “head to the right” rule

〈q, γ, q′, γ′,⇒〉 ∈ δ

we add a formula∧
a∈A

G(atoma ∧ headq ∧ tapeγ → X(¬atomaU(atoma ∧ tapeγ′ ∧ Xheadq′)))

and similarly for “head to the left” transition rules.
Finally we ensure the correct form of the initial configuration and that an accepting state

is reached, by adding formulas Xheadqinit , X(tape[U$) and Fheadqacc
.

Models of the conjunction of all these formulas correspond to accepting runs ofM on
the empty input word. As a result, it is undecidable whether an LTL formula has a model.

B Proof of Theorem 6.2

For any LTL formula φ in the negation normal form (i.e., one where negations occur only in
front of basic predicates, and where conjunction, disjunction, X, U and R modal operators
are used), construct an atomic µ-calculus formula M(φ) by induction as follows:

M(>) = >, M(⊥) = ⊥, M(p) = p, M(¬p) = ¬p, M(Xφ) = �M(φ)
M(φ ∨ ψ) = M(φ) ∨M(ψ), M(φ ∧ ψ) = M(φ) ∧M(ψ)
M(φUψ) = µq.(M(ψ) ∨ (M(φ) ∧�q)), M(φRψ) = νq.(M(ψ) ∧ (M(φ) ∨�q))

This translation does not have all properties that may be desired (see e.g. [9]) but it is
sufficient for our purposes:
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(i) In every word model, if a state satisfies φ then it satisfies M(φ),
(ii) In every Kripke model K, if a state x satisfies M(φ) then every path in K that starts

from x, considered as a word model, satisfies φ.
Note that the converse to the implication in (ii) does not hold in general (consider e.g.
φ = Xp ∨ Xq and its translation M(φ) = �p ∨�q). Both properties (i) and (ii) are proved
by induction, for example for (ii):

Assume x |= M(φ ∨ ψ). Without loss of generality, assume x |= M(φ). By the inductive
assumption, every path starting from x satisfies φ, so it satisfies φ ∨ ψ.
Assume x |= M(φUψ). By definition of M , on every path π starting from x the formula
M(φ) holds in every state y until at some point M(ψ) holds. Now, for each state y the
path π has a sub-path that starts at y, and by the inductive assumption φ holds for all
these subpaths until at some point ψ holds. As a result, φUψ holds for the path π.

Properties (i) and (ii) immediately imply that M(φ) is satisfiable if and only if φ is. By
Theorem 6.1, satisfiability of atomic µ-calculus formulas is undecidable.

C Proof of Theorem 6.3

We reduce the satisfiability problem for atomic LTL, with some insight into the proof of
Theorem 6.1. Given any Turing machineM as considered there, consider a Kripke model
with the set of states:

(A× Γ× (Q ∪ {nohead})) ∪ {$}

with basic predicates defined in the obvious way, and with transitions going both ways
between every two states. This model is orbit-finite and equivariant.

Now, for the atomic LTL formula φ obtained fromM as in the proof of Theorem 6.1,
the formula ∃φ holds in this model in the state $ if and only if φ is satisfiable.

This works regardless of whether we interpret CTL* path formulas over arbitrary paths
or over finitely supported ones, because the formula φ in the proof of Theorem 6.1 forces its
model to be finitely supported.

D Details of the proof of Theorem 7.1

Note that K̂ is indeed equivariant and orbit-finite: every orbit of K gives rise to at most 2k
orbits in K̂, where k is the size of the least support of any (equivalently, every) element in
the orbit. Moreover, (a representation of) K̂ is computable from K: for each orbit in K one
can enumerate all corresponding orbits in K̂, and orbits of transitions in R̂ are also easy to
enumerate.

We prove that a state x ∈ K admits an infinite path where no pa holds more than once,
if and only if (x, ∅) ∈ K̂ admits any infinite path.

For the left-to-right implication, assume an infinite path in K, i.e., a sequence x =
x0, x1, x2, x3 . . ., such that 〈xi, xi+1〉 ∈ R for each i ∈ N, and pred(xi) ∩ pred(xj) = ∅ for
each i 6= j ∈ N. Define

yi = 〈xi, Si〉, where Si = supp(xi) ∩
i−1⋃
j=0

pred(xj).

In particular, y0 = 〈x, ∅〉. Then

〈〈xi, Si〉, 〈xi+1, Si+1〉〉 ∈ R̂ (3)
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for each i ∈ N. Indeed, calculate

(Si ∪ pred(xi)) ∩ supp(xi+1) =

supp(xi) ∩
i−1⋃
j=0

pred(xj)

 ∪ pred(xi)

 ∩ supp(xi+1)

⊆

 i⋃
j=0

pred(xj)

 ∩ supp(xi+1) = Si+1.

As a result, the pairs

(〈x, ∅〉 =)〈x0, S0〉, 〈x1, S1〉, 〈x2, S2〉, . . . (4)

form an infinite path in K̂.
For the right-to-left implication, assume any infinite sequence as in (4), for some xi and

Si such that the condition (3) holds for every i ∈ N. We construct sequences

y0, y1, . . . ∈ K T0, T1, . . . ⊆ A π1, π2, . . . ∈ Aut(A)

by simultaneous induction as follows:
y0 = x0 and T0 = S0,
πi+1 is an atom automorphism such that:
πi+1(a) = a for a ∈ supp(yi), and
πi+1(a) 6∈

⋃i
j=0 supp(yj) for a ∈ supp(xi+1 · π1π2 · · ·πi) \ supp(yi),

and acting in an arbitrary way on the remaining atoms,
yi+1 = xi+1 · π1π2 · · ·πiπi+1,
Ti+1 = Si+1 · π1π2 · · ·πiπi+1.

Notice that, since 〈xi+1, Si+1〉 is a legal state in K̂, by equivariance so is 〈yi+1, Ti+1〉.
Moreover,

〈〈yi, Ti〉, 〈yi+1, Ti+1〉〉 ∈ R̂

for each i ∈ N, therefore the sequence

〈y0, T0〉, 〈y1, T1〉, 〈y2, T2〉, . . .

forms an infinite path in K̂. To see this, note that (by equivariance of R̂)

〈〈yi · πi+1, Ti · πi+1〉, 〈yi+1, Ti+1〉〉 ∈ R̂, yi · πi+1 = yi and Ti · πi+1 = Ti

since πi+1 by definition fixes supp(yi) and Ti ⊆ supp(yi).
As a consequence, the sequence y0, y1, y2, . . . forms a path in K. A useful property of this

path, easy to infer from the definition of yi, is that:

(supp(yi+1) \ supp(yi)) ∩
i⋃

j=0
supp(yj) = ∅. (5)

In words, whenever a locally fresh atom appears in some yi, then it does not appear anywhere
earlier in the path.

We shall show that no predicate pa holds on this path more than once. Assume towards
a contradiction that a ∈ pred(yi) ∩ pred(yj) for some a ∈ A and i < j. Then obviously
a ∈ supp(yi) and a ∈ supp(yj), and by induction on the difference j − i, using (5), we
get that a ∈ supp(yk) for all k between i and j. Again by induction, and by definition of
R̂, a belongs to all sets Ti+1, Ti+2, . . . , Tj . But this means that a ∈ Tj ∩ pred(yj), which
contradicts the fact that 〈yj , Tj〉 is a legal state in K̂. This completes the proof of the
right-to-left implication, and of the entire theorem.
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