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Abstract. We present a semantics for architectural specifications in
Casl, including an extended static analysis compatible with model-
theoretic requirements. The main obstacle here is the lack of amalgama-
tion for Casl models. To circumvent this problem, we extend the Casl

logic by introducing enriched signatures, where subsort embeddings form
a category rather than just a preorder. The extended model functor has
amalgamation, which makes it possible to express the amalgamability
conditions in the semantic rules in static terms. Using these concepts,
we develop the semantics at various levels in an institution-independent
fashion.

Introduction

A common feature of present-day algebraic specification languages (see e.g.
[Wir86,EM85,GHG+93,CoFI96,SW99]) is the provision of operations for build-
ing large specifications in a structured fashion from smaller and simpler ones
[BG77]. For the quite different purpose of describing the modular structure of
software systems under development [SST92], architectural specifications have
been introduced as a comparatively novel feature in the algebraic specification
language Casl recently developed by the CoFI group [CoF,CoF99a,Mos99].

The main idea is that architectural specifications describe branching points
in system development by indicating units (modules) to be independently de-
veloped and showing how these units, once developed, are to be put together
to produce the overall result. Semantically, units are viewed as given models
of specifications, to be used as building blocks for models of more complex
specifications, e.g. by amalgamating units or by applying parametrized units.
Architectural specifications have been introduced and motivated in [BST99].

The aim of the present paper is to outline the semantics of architectural
specifications at various levels. We use a simple subset of Casl architectural
specifications, which is expressive enough to study the main mechanisms and
features of the semantics. A crucial prerequisite for a semantics of architectural
specifications is the amalgamation property, which allows smaller models to be
combined into larger ones under statically checkable conditions. Somewhat in-
formally, the amalgamation property ensures that whenever two models ‘share’
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components in the intersection of their signatures, they can be unambiguously
put together to form a model of the union of their signatures. Many standard
logical systems (like multisorted equational [EM85] and first-order logic [MT93]
with the respective standard notions of model) admit amalgamation, so quite
often this property is taken for granted in work on specification formalisms (cf.
e.g. [ST88]). However, the expected amalgamation property fails to hold for the
logical system underlying Casl.

We develop a three-step semantics that circumvents this problem. The first
step is a purely model-theoretic semantics. Here, amalgamability is just required
whenever it is needed. This makes the definition of the semantics as straightfor-
ward and permissive as possible, but leaves the task of actually checking these
model-theoretic requirements. Thus, the natural second step is to give a seman-
tics of architectural specifications in terms of diagrams which express the sharing
that is present in the unit declarations and definitions. This allows us to reformu-
late the model-theoretic amalgamability conditions in ‘almost’ static terms. A
suitable amalgamation property is needed to make the static character of these
conditions explicit. The trick used in the third step to achieve this is to embed
the Casl logic into a richer logic that does have amalgamation. This makes it
possible to restate the amalgamability conditions as entirely static factorization
properties of signature morphisms.

These three steps of the semantics are in fact independent of the details of
the underlying Casl logical system: we present them in the framework of an
arbitrary logical system formalized as an institution [GB92]. As a result, the
factorization properties to which we reduce the amalgamation conditions are
still relatively abstract. A calculus for checking these factorization properties
in the case of the specificic logic underlying Casl is developed in a separate
paper [KHT+].

We refer to [Mac97,AHS90] for categorical terminology left unexplained here.

1 Architectural Specifications

As indicated above, architectural specifications in Casl provide a means of stat-
ing how implementation units are used as building blocks for larger components.
(Dynamic interaction between modules and dynamic changes of software struc-
ture are currently beyond the scope of this approach.)

Units are represented as names to which a specification is assigned. Such a
named unit is to be thought of as a given model of the specification. Units may be
parametrized, where specifications are assigned to both the parameters and the
result. The result specification is required to extend the parameter specifications.
A parametrized unit is to be understood as a function which, given models of
the parameter specifications, outputs a model of the result specification; this
function is required to be persistent, i.e. reducing the result to the parameter
signatures reproduces the parameters.

Units can be assembled via unit expressions which may contain operations
such as renaming or hiding of symbols, amalgamation of units, and application
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of a parametrized unit. Terms containing such operations will only be defined
if symbols that are identified, e.g. by renaming them to the same symbol or by
amalgamating units that have symbols in common, are also interpreted in the
same way in all ‘collective’ models of the units defined so far.

An architectural specification consists in declaring or defining a number of
units, as well as in providing a way of assembling them to yield a result unit.

Example 1. A (fictitious) specification structure for a compiler might look
roughly as follows:

Identifier List

HHHHj ���
��

ProgramText

���
�� HHHHj

AbstractSyntax SymbolTable

���
�� HHHHj ���

�� HHHHj
Parser StaticAnalyser CodeGeneratorXXXXXXXXXz 9���

���
��

Compiler

?

(The arrows indicate the extension relation between specifications.) An archi-
tectural specification of the compiler in Casl [CoF99a] might have the following
form:

arch spec BuildCompiler =
units I : Identifier with sorts Identifier ,Keyword ;

L : Elem → List[Elem];
PT = L[I fit sort Elem 7→ Identifier ]

and L[I fit sort Elem 7→ Keyword ];
AS : AbstractSyntax given PT ;
ST : SymbolTable given PT ;
P : Parser given AS ;
SA : StaticAnalyser given AS , ST ;
CG : CodeGenerator given ST

result P and SA and CG
end
(Here, the keyword with is used to just list some of the defined symbols. The
keyword given indicates imports.) According to the above specification, the
parser, the static analyser, and the code generator would be constructed build-
ing upon a given abstract syntax and a given mechanism for symbol tables,
and the compiler would be obtained by just putting together the former three
units. Roughly speaking, this is only possible (in a manner that can be statically
checked) if all symbols that are shared between the parser, the static analyser
and the code generator already appear in the units for the abstract syntax or
the symbol tables.

In order to keep the presentation as simple as possible, we consider a modified
sublanguage of Casl architectural specifications:
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Architectural specifications: ASP ::= arch spec UDD∗ result T ;
UDD ::= Dcl | Dfn
An architectural specification consists of a list of unit declarations and defi-
nitions followed by a unit result term.

Unit declarations: Dcl ::= U : SP | U : SP1
τ−→SP2

A unit declaration introduces a unit name with its type, which is either
a specification or a specification of a parametrized unit, determined by a
specification of its parameter and its result, which extends the parameter via
a signature morphism τ — we assume that the definition of specifications and
some syntactic means to present signature morphisms are given elsewhere.
(By resorting to explicit signature morphisms, we avoid having to discuss
the details of signature inclusions.)

Unit definitions: Dfn ::= U = T
A unit definition introduces a (non-parametrized) unit and gives its value
by a unit term.

Unit terms: T ::= U | U [T fit σ] | T1 with σ1 and T2 with σ2

A unit term is either a (non-parametrized) unit name, or a unit application
with an argument that fits via a signature morphism σ, or an amalgamation
of units via signature morphisms σ1 and σ2. We require that σ1 and σ2 form
an episink (have a common target signature and are jointly epi); we thus
slightly generalize the amalgamation operation of Casl here, again avoiding
the need to present the details of signature unions (cf. [Mos00]).

Imports as used in Example 1 can be regarded as syntactical sugar for a
parametrized unit which is instantiated only once.

2 Institutions and Amalgamation

The semantic considerations ahead rely on the notion of institution [GB92]. An
institution I consists of a category Sign of signatures, a model functor

Mod : Signop → CAT,

where CAT denotes the quasicategory of categories and functors [AHS90], and
further components which formalize sentences and satisfaction. In this context,
we need only the model functor. For a signature Σ, Mod(Σ) is referred to as
the category of models for Σ, and for a signature morphism σ : Σ1 → Σ2,
Mod(σ) : Mod(Σ2) → Mod(Σ1) is called the reduct functor. Mod(σ)(M) is
often written as M |σ.

A cocone for a diagram in Sign is called amalgamable if it is mapped to a
limit under Mod. I has the (finite) amalgamation property if (finite) colimit
cocones are amalgamable, i.e. if Mod preserves (finite) limits.

The underlying logic of Casl is formalized by the institution SubPCFOL
(for ‘subsorted partial first order logic with sort generation constraints’); the
associated signature category is denoted by CASLsign [CoF99b,Mos]. As men-
tioned above, SubPCFOL does not have the finite amalgamation property (cf.
Example 3).
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3 Basic Architectural Semantics

We now proceed to give a basic semantics of the architectural language defined
in Section 1 similarly as for full Casl [CoF99b]. We use the natural semantics
style, by presenting rules for the static semantics, with judgements written as
` B , and for the model semantics, with judgements written as `
⇒ (where the blank spaces represent, in this order, a context of some

kind, a syntactical object, and a semantical object). We simplify the rules of the
model semantics by assuming a successful application of the corresponding rules
of the static semantics, with symbols introduced there available for the model
semantics as well. Moreover, we will regard Mod(Σ) as a class of models for
the purposes of the model semantics.

The static semantics for an architectural specification yields a static context
describing the signatures of the units declared or defined within the specification
and the signature of its result unit. Thus, a static context Cst = (Pst ,Bst)
consists of two finite maps: Pst from unit names to parametrized unit signatures,
which in turn are signature morphisms τ : Σ1 → Σ2, and Bst from unit names to
signatures (for non-parametrized units). We require the domains of Pst and Bst

to be disjoint. The empty static context that consists of two empty maps will
be written as C ∅st . Given an initial static context, the static semantics for unit
declarations and definitions produces a static context by adding the signature
for the newly introduced unit, and the static semantics for unit terms determines
the signature for the resulting unit.

In terms of the model semantics, a (non-parametrized) unit M over a sig-
nature Σ is just a model M ∈ Mod(Σ). A parametrized unit F over a
parametrized unit signature τ : Σ1 → Σ2 is a persistent partial function
F : Mod(Σ1) ⇀ Mod(Σ2) (i.e. F (M)|τ = M for each M ∈ domF ); the
domain of F is determined by the argument specification.

The model semantics for architectural specifications yields a unit context C,
which is a class of unit environments E, i.e. finite maps from unit names to units
as introduced above, and a unit evaluator UEv , a function that yields a unit when
given a unit environment in the unit context. The unconstrained unit context,
which consists of all environments, will be written as C∅. The model semantics
for unit declarations and definitions enlarges unit contexts as expected. Finally,
the model semantics for a unit term yields a unit evaluator, given a unit context.

The complete semantics is given in Figure 1, where we use some auxiliary
notation: given a unit context C, a unit name U and a class of units V,

C × {U 7→ V} := {E + {U 7→ V } | E ∈ C,V ∈ V},

where E + {U 7→ V } maps U to V and otherwise behaves like E . Moreover,
given a unit context C, a unit name U and a unit evaluator UEv ,

C ⊗ {U 7→ UEv} := {E + {U 7→ UEv(E )} | E ∈ C}.

We assume that the signature category is equipped with a partial selection
of pushouts (σR : Σ1 → ΣR, τR : Σ2 → ΣR, ΣR) for spans (σ : Σ → Σ1, τ : Σ →
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Σ2) of signature morphisms (where (σ, τ) may fail to have a selected pushout
even when has a pushout). In Casl, the selected pushouts would be the ones that
can be expressed by signature translations and simple syntactic unions. We also
assume that the semantics for specifications is given elsewhere, with ` SP B Σ
and ` SP ⇒M implying M⊆Mod(Σ).

Perhaps the only points in the semantics that require some discussion are
the rules of the model semantics for unit application and amalgamation.

In the rule for application of a parametrized unit U , we have the requirement

for each E ∈ C,UEv(E )|σ ∈ domE (U ),

where UEv denotes the unit evaluator and C the unit context. This is just the
statement that the fitting morphism correctly ‘fits’ the actual parameter as an
argument for the parametrized unit. To verify this requirement, one typically
has to prove that σ is a specification morphism from the argument specification
to the specification of the actual parameter (which, in the general case, has to
be constructed from the relevant unit term by means of a suitable calculus). In
general, this requires some semantic or proof-theoretic reasoning.

The situation is different with the conditions marked with a (∗) in Figure 1.
These ‘amalgamability conditions’ are typically expected to be at least par-
tially discharged by some static analysis — similarly to the sharing require-
ments present in some programming languages (cf. e.g. Standard ML [Pau96]).
Of course, the basic static analysis given here is not suited for this purpose, since
no information is stored about dependencies between units. This will be taken
care of in the second level of the semantics.

4 Extended Static Architectural Semantics

As a solution to the problem just outlined, we now introduce an extended static
analysis that keeps track of sharing among the units by means of a diagram of
signatures; the idea here is that a symbol shares with any symbol to which it is
mapped under some morphism in the diagram.

For our purposes, it suffices to regard a diagram as a graph morphism D :
I→ Sign, where I is a directed graph called the scheme of the diagram. We use
categorical terminology for I, i.e. we call its nodes ‘objects’, its edges ‘morphisms’
etc., and we write Ob I for the set of objects.

We will use the usual notion of extension for diagrams. Two diagrams D1, D2

disjointly extend D if both D1 and D2 extend D and moreover, the intersection
of their schemes is the scheme of D. If this is the case then the union D1 ∪D2

is well-defined.
The judgements of the extended static semantics are written as ` BB .

Most of the rules differ only formally from the rules for the static semantics; the
essential differences are in the rules for unit terms. The extended static semantics
additionally carries around the said diagram of signatures. Signatures for unit
terms are associated to distinguished objects in the diagram scheme.
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` UDD∗ B Cst Cst ` T BΣ

` arch spec UDD∗ result T
B(Cst , Σ)

` UDD∗ ⇒ C C ` T ⇒ UEv

` arch spec UDD∗ result T
⇒ (C,UEv)

C ∅st ` UDD1 B (Cst)1

· · ·
(Cst)n−1 ` UDDn B (Cst)n

` UDD1 . . .UDDn B (Cst)n

C∅ ` UDD1 ⇒ C1
· · ·

Cn−1 ` UDDn ⇒ Cn
` UDD1 . . .UDDn ⇒ Cn

` SP BΣ U 6∈ (domPst ∪ domBst)

(Pst ,Bst) ` U : SP B (Pst ,Bst + {U 7→ Σ})
` SP ⇒M

C ` U : SP ⇒ C × {U 7→ M}

` SP1 BΣ1 ` SP2 BΣ2 τ : Σ1 → Σ2 U 6∈ (domPst ∪ domBst)

(Pst ,Bst) ` U : SP1
τ−→SP2 B (Pst + {U 7→ τ},Bst)

` SP1 ⇒M1 ` SP2 ⇒M2

F = {F :M1 →M2 | for M ∈M1, F (M)|τ = M}
C ` U : SP1

τ−→SP2 ⇒ C × {U 7→ F}

(Pst ,Bst) ` T BΣ U 6∈ (domPst ∪ domBst)

(Pst ,Bst) ` U = T B (Pst ,Bst + {U 7→ Σ})
C ` T ⇒ UEv

C ` U = T ⇒ C ⊗ {U 7→ UEv}

U ∈ domBst

(Pst ,Bst) ` U B Bst(U ) C ` U ⇒ λE ∈ C · E(U )

Pst(U ) = τ : Σ1 → Σ2 Cst ` T BΣA σ : Σ1 → ΣA

(σR, τR, ΣR) is the selected pushout of (σ, τ)

(Pst ,Bst) ` U [T fit σ]BΣR

C ` T ⇒ UEv
for each E ∈ C,UEv(E)|σ ∈ domE(U )

for each E ∈ C, there is a unique M ∈Mod(ΣR) such that
M |τR = UEv(E) and M |σR = E(U )(UEv(E)|σ)

}
(∗)

UEvR = {E 7→M | E ∈ C,M |τR = UEv(E),M |σR = E(U )(UEv(E)|σ)}
C ` U [T fit σ]⇒ UEvR

Cst ` T1 BΣ1 Cst ` T2 BΣ2

σ1 : Σ1 → Σ and σ2 : Σ2 → Σ form an episink

(Pst ,Bst) ` T1 with σ1 and T2 with σ2 BΣ

C ` T1 ⇒ UEv1 C ` T2 ⇒ UEv2

for each E ∈ C, there is a unique M ∈Mod(Σ) such that
M |σi = UEv i(E), i = 1, 2

}
(∗)

UEv = {E 7→M | E ∈ C and M |σi = UEv i(E), i = 1, 2}
C ` T1 with σ1 and T2 with σ2 ⇒ UEv

Fig. 1. Basic semantics
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Explicitly, an extended static context Cst = (Pst ,Bst , D) consists of a map Pst

that assigns unit signatures to parametrized unit names (as before), a signature
diagram D, and a map Bst that assigns objects of the diagram scheme to (non-
parametrized) unit names. As before, we require that the domains of Pst and Bst

are disjoint. Cst determines a static context ctx (Cst) formed by extracting the
signature information for non-parametrized unit names from the diagram and
forgetting the diagram itself. The empty extended static context, which consists
of two empty maps and the empty diagram, is written as C∅st . The extended static
semantics for unit declarations and definitions expands the given extended static
context; for unit terms, it extends the signature diagram and indicates an object
in the scheme that represents the result.

The diagrams enable us to restate the amalgamability conditions in a static
way: for any diagram D : I → Sign, 〈Mi〉i∈Ob I is called consistent with D
if for each i ∈ Ob I, each Mi ∈ Mod(D(i)), and for each m : i → j in I,
Mi = Mj |D(m). We denote the class of all model families that are consistent
with D by Mod(D). Then D ensures amalgamability for D′, where D′ extends
D, if any family in Mod(D) can be uniquely extended to a family in Mod(D′).

Although we have formulated this property in terms of model families, it
is essentially static: the class of model families considered is not restricted by
axioms, but only by morphisms between signatures. The static nature of this
condition will be made explicit in Section 6.

The rules of the extended static semantics are listed in Figure 2; given the
heuristics provided above, they should be largely self-explanatory. However, the
relationship between the basic static and model semantics and the extended
static semantics requires a few comments.

Since, as stated at the end of the previous section, the correctness condition
for arguments of parametrized units cannot be disposed of statically, one cannot
expect that the extended static semantics is stronger than the model semantics,
i.e. that its successful application guarantees that the model sematics will succeed
as well. However, this is almost true in the sense that argument fitting is the
only point that is left entirely to the model semantics. Formally, this can be
captured by the statement that, assuming a successful run of the extended static
semantics, the conditions marked with a (∗) in the rules of the model semantics
(cf. Figure 1) can be removed.

Calling the combination of the extended static semantics and the thus sim-
plified model semantics extended semantics, we now indeed have:

Theorem 2. If the extended semantics of an architectural specification is de-
fined, then the basic semantics is defined as well and yields the same result.

Of course, no completeness can be expected here: even if the basic semantics is
successful for a given phrase, the extended semantics may fail. This happens if the
model-theoretic amalgamability conditions hold due to axioms in specifications
rather than due to static properties of the involved constructions.

An additional source of failures of the extended static semantics is that we
have deliberately chosen a so-called generative static analysis: the results of ap-
plications of parametrized units ‘share’ with other units in the signature diagram
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` UDD∗ BB Cst Cst ` T BB (i,D)

` arch spec UDD∗ result T BB (ctx (Cst), D(i))

C∅st ` UDD1 BB (Cst)1

· · ·
(Cst)n−1 ` UDDn BB (Cst)n

` UDD1 . . .UDDn BB (Cst)n

` SP BΣ U 6∈ (domPst ∪ domBst)
D′ results from D by adding a new object i with D′(i) = Σ

(Pst ,Bst , D) ` U : SP BB (Pst ,Bst + {U 7→ i}, D′)

` SP1 BΣ1 ` SP2 BΣ2 τ : Σ1 → Σ2

U 6∈ (domPst ∪ domBst)

(Pst ,Bst , D) ` U : SP1
τ−→SP2 BB (Pst + {U 7→ τ},Bst , D)

(Pst ,Bst , D) ` T BB (i,D′) U 6∈ (domPst ∪ domBst)

(Pst ,Bst , D) ` U = T BB (Pst ,Bst + {U 7→ i}, D′)

U ∈ domBst

(Pst ,Bst , D) ` U BB (Bst(U ), D)

Pst(U ) = τ : Σ1 → Σ2 Cst ` T BB (i,D) σ : Σ1 → D(i)
(σR, τR, ΣR) is the selected pushout of (σ, τ)

D′ results from D by adding new objects j, k
and new morphisms m : j → i, n : j → k with D′(m) = σ,D′(n) = τ

D′′ results from D′ by adding a new object l
and new morphisms r : i→ l, s : k → l with D′′(r) = τR, D

′′(s) = σR
D′ ensures amalgamability for D′′

(Pst ,Bst , D) ` U [T fit σ] BB (l,D′′)

(Pst ,Bst , D) ` T1 BB (i1, D1) (Pst ,Bst , D) ` T2 BB (i2, D2)
σ1 : D1(i1)→ Σ and σ2 : D2(i2)→ Σ form an episink

D1 and D2 are disjoint extensions of D
D′ results from D1 ∪D2 by adding a new object j

and new morphisms m1 : i1 → j,m2 : i2 → j with D′(m1) = σ1, D
′(m2) = σ2

D1 ∪D2 ensures amalgamability for D′

(Pst ,Bst , D) ` T1 with σ1 and T2 with σ2 BB (j,D′)

Fig. 2. Extended static semantics
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constructed only via the morphisms from the parameter signatures to the actual
arguments. Thus, two applications of the same unit to the same argument need
not ‘share’. As a consequence, the amalgamability condition of the extended
static semantics may fail for them, while the corresponding condition in the
basic model semantics would clearly hold. A ‘non-generative’ (or ‘applicative’)
version of the extended static semantics is sketched in Remark 11 below.

The motivation for this choice is the fact that many typical programming
languages we aim at (notably, Standard ML [Pau96]) impose such a ‘generative’
semantics in their static analysis — working with more permissive conditions
here would make our architectural specifications incompatible with the modu-
larization facilities of such languages.

However, we will see in Section 5 (Th. 6) that — generativity issues aside —
we have as much completeness as one may hope for, i.e. that the extended static
semantics detects all the amalgamation that can be established statically.

5 Enriched Signatures

The actual verification of the amalgamability conditions in the extended static
semantics is precisely the point where the fact that amalgamation fails in the
Casl institution begins to cause difficulties:

Example 3. Assume that the specification List[Elem] that appears in Exam-
ple 1 provides a type List [Elem] of lists of type Elem. Recall that the specifi-
cation of identifiers introduces two sorts Identifier and Keyword , and that the
parametrized unit L (‘list’) is applied to these two sorts in the ‘program text’
unit PT .

Now suppose that the specifier of Parser decides that key words should
be treated as identifiers, so that Keyword < Identifier and List [Keyword ] <
List [Identifier ] . Suppose, moreover, that the specifier of StaticAnalyser finds
it convenient to code simple elements as lists in some way, i.e. Identifier <
List [Identifier ] and Keyword < List [Keyword ]. Singling out the union P and
SA from the term defining the compiler in Example 1, we thus obtain a diagram
of Casl signatures for the union that has the following (abstracted) form, where
the arrows within the squares represent subsort embeddings:

s t

u v

-

s - t

u - v

s t

u
?

v
?

?

-

s - t

@@R
u
?
- v
?

?
(1)
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Even though the above diagram is in fact a pushout in the category
CASLsign, compatible models of the component signatures cannot in general be
amalgamated, since the composed subsort embeddings s < t < v and s < u < v
in the result need not be the same. (Consequently, the extended static semantics
defined in the previous section fails here.)

This observation suggests that one should enlarge the signature category in
such a way that the above square is no longer a pushout, and that, moreover,
the enlarged category would have to take the fact into account that there may,
in general, be more than one embedding between two sorts. Thus, the ‘correct’
pushout signature would have the form

s - t

@@R@@R

u
?
- v
?

. (2)

Motivated by this example, we introduce a category enrCASLsign of en-
riched signatures in which CASLsign can be represented via a functor

Φ : CASLsign→ enrCASLsign.

Moreover, we equip this category with a model functor

Mode : enrCASLsignop → CAT

which has the amalgamation property (i.e. preserves limits) and which ‘extends’
the model functor Mod of the Casl institution SubPCFOL, i.e. Mode ◦ Φop
and Mod are naturally isomorphic. One can build an institution around
enrCASLsign and define an institution representation of SubPCFOL therein
in the sense of [Tar96]. At any rate, we shall use terms like ‘amalgamable’ w.r.t.
Mode. The details of the definitions and full proofs will be presented sepa-
rately [SMT+]; the basic concepts are outlined below.

As suggested by the example, the step from CASLsign to enrCASLsign
chiefly consists in replacing the preorder on the sorts by a sort category (category
sorted algebras, although without a view on amalgamation, go back to [Rey80]).
The fact that all embeddings are actually interpreted as injective maps is re-
flected by the requirement that all morphisms in the sort category are monomor-
phisms. There is an elegant way to handle overloading of function and predicate
symbols in this setting using left and right actions of the sort category on the
symbols; see [SMT+] for details.

Now sets and partial maps form a (rather large) enriched signature Setp:
take injective maps as the sort category, relations as predicate symbols, and
total (partial) functions as total (partial) function symbols.

Signature morphisms are defined in the obvious way, i.e. as consisting of
a functor between the sort categories and maps between the respective symbol
classes which are compatible with symbol profiles and ‘overloading’ (i.e. with the
mentioned actions of the sort category). These data define the signature category
enrCASLsign, where objects have to be restricted to small signatures (i.e.
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signatures where the sort category and the symbol classes are small) in order to
actually obtain a category. It is easily seen that enrCASLsign is cocomplete,
and that, just as with small and large categories, colimits in enrCASLsign
remain colimits in the world of ‘large enriched signatures’ such as Setp.

Models of an enriched signatureΣ can now be defined as signature morphisms

Σ → Setp.

Model morphisms are defined by the standard homomorphy conditions. Signa-
ture morphisms induce reduct functors in the opposite direction via composition;
this defines the model functor Mode.

The functor Φ : CASLsign → enrCASLsign acts on Casl signatures by
interpreting the sort preorder as a thin category (and by completing the symbol
sets as required by the mentioned actions; cf. [SMT+]).

Now it is easily verified that one indeed has a natural isomorphism Mode ◦
Φop →Mod. Thus:

Proposition 4. A cocone in CASLsign is amalgamable in SubPCFOL iff its
image under Φ is amalgamable w.r.t. Mode.

Thanks to the way models are defined, amalgamation for enriched signatures
comes almost for free: models are given by a representable functor (namely,
hom( ,Setp)), which automatically preserves limits; little more consideration
has to be given to model morphisms. Explicitly:

Proposition 5. Mode has the amalgamation property.

Moreover, the ‘converse’ of amalgamation holds as well:

Theorem 6. Mode reflects isomorphisms.

Since Mode preserves limits and enrCASLsignop is complete, it follows that
Mode reflects limits. Explicitly, a cocone in enrCASLsign is amalgamable
iff it is a colimit. This is essentially what is meant by the ‘optimal degree of
completeness’ statement in Section 4: a cocone in CASLsign is amalgamable
iff it is mapped to a colimit under Φ.

6 Static Analysis via Enriched Signatures

We are now ready to translate the amalgamation conditions that appear in
the rules for unit application and amalgamation in the extended static se-
mantics to entirely static conditions. To this end, we assume that we have
a cocomplete category EnrSign of enriched signatures with a model functor
Mode : EnrSignop → CAT which has the amalgamation property and reflects
isomorphisms (limits) and a functor Φ : Sign→ EnrSign such that Mode ◦Φop
and Mod : Signop → CAT are naturally isomorphic. For the Casl institution
SubPCFOL, these data have been constructed above.
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Recall that the said amalgamation conditions required diagrams to ensure
amalgamability for certain extensions, which was defined as unique extendability
of consistent families of models. By the assumption on the model functors, this
requirement is equivalent to the corresponding statement for the translations
of the diagrams via Φ. By the amalgamation property, a consistent family of
models for a diagram D in EnrSign is essentially the same as a model of the
colimit signature colimD. Thus we have

Proposition 7. Let D′ be a diagram in EnrSign that extends D. D ensures
amalgamation for D′ iff the induced morphism colimD → colimD′ is an iso-
morphism.

This condition can be checked by means of a factorization property in the
cases of interest here:

Definition 8. Let A be a category, and let D′ : I′ → A be a diagram that
extends D : I → A. Then D covers D′ if, for each j ∈ Ob I′, the sink of all
D′(m) : D(i)→ D′(j), where i ∈ Ob I and m : i→ j in I′, is an episink.

Proposition 9. Let D and D′ be diagrams in a cocomplete category, where D′

extends D. If D covers D′, then the induced morphism colimD → colimD′ is
an isomorphism iff the colimit cocone for D extends to a cocone for D′.

In the two cases where amalgamation is required in the rules of the extended
static semantics, the covering condition is satisfied. Thus we have essentially
reduced the amalgamation problem to proving the existence of the factorizations
required in the above proposition. In both cases, the factorization condition
concerns a sink (τ1, τ2) in Sign (in the case of amalgamation, the two injections
into the union, and in the case of application, the pushout cocone):

Φ(D(i1))
Φ(τ1)- Φ(Σ) �

Φ(τ2)
Φ(D(i2))

@
@µi1R 	�

�
µi2

colimΦ ◦D

θ

?

........

(D denotes the original diagram, and the µi denote the colimit injections).

Example 10. The simple union of sort preorders presented in Example 3, Dia-
gram (1), fails to admit a factorization as above, since the colimit will have two
different sort embeddings s→ v as depicted in Diagram (2).

In order to provide a construction for the factorization θ in the concrete
case of enrCASLsign, we have to require additionally that (Φ(τ1), Φ(τ2)) is an
extremal episink, i.e. that the images of Φ(τ1) and Φ(τ2) jointly generate Φ(Σ).
This is the case for pushouts and unions in CASLsign (although unions need
not be extremal in CASLsign!).

Under this additional condition, it is clear how θ has to be defined if it exists,
namely by extending the effect of the µi to terms formed from the generators. The
task that remains is to check if this results in a well-defined signature morphism.
This requires a calculus for proving equality of morphisms and symbols in the
colimit; such a calculus is discussed in [KHT+].
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Remark 11. In the construction of a non-generative semantics for unit applica-
tion (cf. Section 4), the amalgamation property provides an easy criterion for the
equivalence of two instantiations: let U be a parametrized unit over the signa-
ture τ : Σ1 → Σ2. Two actual argument models are considered to be (partially)
equivalent if they reduce (via fitting morphisms σi : Σ1 → D(ji), i = 1, 2, where
D denotes the present context diagram) to the same model of the parameter sig-
nature Σ1. This will be the case for all pairs of models that appear in consistent
families for D if

µj1 ◦ Φ(σ1) = µj2 ◦ Φ(σ2),

where µ is the colimit cocone for Φ ◦D. In this case, we can use the same edge
of the diagram scheme to represent τ in both applications of U ; this has the
effect that the two results with signatures Σ1

R and Σ2
R share to exactly the right

degree via the maps Σ2 → Σi
R, i = 1, 2, that appear in the defining pushouts.

7 Conclusions and Future Work

We have presented and discussed the semantics of a small and modified but
quite representative subset of Casl architectural specifications in an institution-
independent way. Besides the basic static and model semantics, we have laid
out an extended static analysis, where sharing information between models is
stored as a diagram of signatures. This has allowed us to formulate the required
amalgamability conditions ‘almost’ statically, i.e. without referring to particular
models constructed. In institutions with amalgamation, these conditions can be
replaced by literally static ones; this may require representing the given institu-
tion in one that has the amalgamation property.

We have demonstrated how such a representation can be defined for the stan-
dard Casl institution; the main point here was that one has to admit categories
of subsort embeddings instead of just preorders in the signatures. Computa-
tional aspects of the amalgamability conditions for this specific institution are
discussed separately [KHT+]. It is known that these conditions are in general
undecidable. However, decision procedures can be developed for important spe-
cial cases; for instance, orders (rather than preorders) of sorts admit deciding
the amalgamability conditions by a polynomial algorithm [Kli00]. For the gen-
eral case, it seems that an approximative algorithm that restricts the length of
‘cells’ involved in the proofs will suffice in practically relevant cases.

The technique for the extended static analysis with colimits of enriched sig-
natures providing a way to statically reformulate amalgamability conditions is
general enough to be readily available for other design specification frameworks
where amalgamation causes problems. In fact, we conjecture that any institution
can be canonically extended to an institution with the amalgamation property
by adding formal colimits of signatures.

The work presented here is independent of the logical structure of institu-
tions — sentences and satisfaction do not play any explicit role here (except for
being used implicitly in basic specifications, of course). However, the sentences
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become relevant as soon as we discuss further issues of verification in architec-
tural specifications (represented here by the remaining fitting condition in the
semantics of unit applications). As proposed in [Hof00], formal proof obligations
can be extracted from such conditions using colimits of specification diagrams,
but only if the underlying institution has the amalgamation property. The tech-
nique proposed here should allow us to circumvent this requirement: specification
diagrams can be translated to the enriched signature category and put together
there, opening a way also for the development of tools supporting validation and
verification of Casl (architectural) specifications.
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