
Structural Operational Semantics for Stochastic Process Calculi

Bartek Klin1 and Vladimiro Sassone2

1 Warsaw University, University of Edinburgh
2 ECS, University of Southampton

Abstract. A syntactic framework called SGSOS, for defining well-behaved Mar-
kovian stochastic transition systems, is introduced by analogy to the GSOS con-
gruence format for nondeterministic processes. Stochastic bisimilarity is guaran-
teed a congruence for systems defined by SGSOS rules. Associativity of parallel
composition in stochastic process algebras is also studied within the framework.

1 Introduction

Process algebras such as CCS [18] or CSP [5] are widely accepted as useful tools
for compositional modeling of nondeterministic, communicating processes. Their se-
mantics is usually described within the framework of Structural Operational Semantics
(SOS) [19], where labelled nondeterministic transition systems (LTSs) are defined by
induction on the syntactic structure of processes. Formalisms for SOS decriptions of
nondeterministic systems have been widely studied and precisely defined (see [1] for
a survey). In particular, several syntactic formats have been developed that guarantee
certain desirable properties of the induced systems, most importantly that bisimulation
is a congruence on them.

Stochastic process algebras have been deployed for applications in performance
evaluation, and more recently in systems biology, where the underpinning of labelled
continuous time Markov chains (CTMCs), and more generally stochastic processes,
is required rather than simple LTSs. Examples of such algebras include TIPP [11],
PEPA [15], EMPA [3], and stochastic π-calculus [20]. Semantics of these calculi have
been given by variants of the SOS approach. However, in contrast with the case of non-
deterministic processes, SOS formalisms used here are not based on any general frame-
work for operational descriptions of stochastic processes, and indeed differ substantially
from one another. This is unfortunate, as such a framework would make languages eas-
ier to understand, compare, and extend. Specifically, a format for SOS descriptions
which guarantees the compositionality of stochastic bisimilarity, would make extend-
ing process algebras with new operators a much simpler task, liberating the designer
from the challenging and time-consuming task of proving congruence results.

In this paper we define such a congruence format, which we call SGSOS. First we
review existing approaches to the operational semantics of process algebras, concentrat-
ing on the examples of PEPA [15] and the stochastic π-calculus [20]. As the operational
techniques used there seem hard to extend to a general format for well-behaved stochas-
tic specifications, we resolve to adapt a general theory of well-behaved SOS, based on
category theory and developed by Turi and Plotkin [24]. The inspiration for our ap-
proach comes directly from the work of F. Bartels [2], who used Turi and Plotkin’s
results to design a congruence format for probabilistic transition systems.

Standard operations of stochastic process algebras, as well as plenty of non-standard
but potentially useful ones, fall within our format. Exceptions are recursive definitions
and name-passing features of stochastic π-calculus, which we leave for future work.

Within the SGSOS framework, we also investigate the issue of associativity of par-
allel composition in stochastic process algebras, a design issue that, to our knowledge,
has been overlooked in the literature. We notice in fact that in the original definition of
stochastic π-calculus, parallel composition fails to be associative up to stochastic bisim-
ilarity, and study conditions under which two forms of parallel composition, CSP-style
synchronization and CCS-style communication, are associative.

The structure of the paper is as follows. In §2 we recall previously studied ap-
proaches to operational semantics of nondeterministic and stochastic systems. In §3
the bialgebraic theory of well-behaved SOS is recalled. In §4 we adapt the theory to
obtain the SGSOS congruence format, with simple examples of GSOS specifications
following in §5. The associativity of parallel composition is studied in §6, and in §7 we
mention some directions of future work. Due to lack of space, all proofs are omitted in
this extended abstract.

2 Transition systems and process calculi

We begin our development by comparing two previously studied approaches to defining
SOS for Markovian process algebras with the well-known world of SOS for nondeter-
ministic systems such as CCS.

2.1 Nondeterministic systems and GSOS

A labelled transition system (LTS) is a triple
(
X, A,−→

)
, with X a set of states, A a set

of labels and −→ ⊆ X × A × X a labelled transition relation, typically written x
a
−→ y

for (x, a, y) ∈ −→. An LTS is image-finite if for every x ∈ X and a ∈ A there are
only finitely many y ∈ X such that x

a
−→ y. In the context of Structural Operational

Semantics (SOS), LTS states are terms, and transition relations are defined inductively,
by means of inference rules. For example, in a fragment of CCS [18], processes are
terms over the grammar P ::= nil | a.P | P + P | P ‖ P, and the LTS is induced from
the following rules:

a.x a . x

x1
a . y

x1+x2
a . y

x2
a . y

x1+x2
a . y

x1
a . y

x1‖x2
a . y‖x2

x2
a . y

x1‖x2
a . x1‖y

x1
a . y1 x2

ā . y2

x1‖x2
τ . y1‖y2

(1)

Plenty of operators can be defined formally by rules like these. Indeed, the above speci-
fication is an instance of a general framework for SOS definitions of LTSs (see e.g., [1]),
called GSOS and defined formally as follows.

An algebraic signature is a set Σ 3 f, g, . . . of operation symbols with an arity
function ar : Σ → N, usually left implicit. The set of all terms over Σ with variables
from set X is denoted TΣX. In particular, TΣ0 is the set of closed Σ-terms.

2

Fix a countably infinite set Ξ 3 x, y, z, . . . of variables. A GSOS inference rule [4]
over a signature Σ and a set of labels A is an expression of the form{

xi j

a j
. y j

}
1≤ j≤k

{
xil

bl/.
}
1≤i≤m

f(x1, . . . , xn) c . t
(2)

where f ∈ Σ, n = ar(f), k,m ∈ N, i j, il ∈ {1, . . . , n}, a j, bl, c ∈ A, t ∈ TΣΞ, xi and
y j ∈ Ξ are all distinct and no other variables occur in the term t. Expressions above the
horizontal line in a GSOS rule are called its premises, and the expression below it is the
conclusion. A GSOS specification is a set of GSOS rules; it is image-finite if it contains
only finitely many rules for each f and c.

Every GSOS specification Λ induces an LTS
(
TΣ0, A,−→

)
, with the transition rela-

tion −→ defined by induction of the syntactic structure of the source states. For a term
s = f(s1, . . . , sn) ∈ TΣ0, one adds a transition s

c
−→ t for each substitution σ : Ξ → TΣ0

such that for some rule r ∈ Λ as in (2), there is σxi = si, σt = t, and σ satisfies all
premises of r, meaning that for each premise x a . y there is σx

a
−→ σy, and for each

premise x a /. there is no t ∈ TΣ0 for which σx
a
−→ t.

An important property of the LTS induced by Λ is that bisimilarity on it is guaran-
teed to be a congruence with respect to the syntactic structure of states. This means that
GSOS is a congruence format for bisimilarity on LTSs. Moreover, it is easy to prove by
induction that the LTS induced by an image-finite GSOS specification is image-finite.

2.2 Stochastic systems

Just as nondeterministic process algebras are defined using labelled transition systems,
the semantics of stochastic processes is often provided by labelled continuous time
Markov chains (CTMCs). These are conveniently presented in terms of what we shall
call rated transition systems (RTSs), i.e., triples (X, A, ρ), where X is a set of states, A
a set of labels and ρ : X × A × X → R+0 is a rate function, equivalently presented as
an A-indexed family of R+0 -valued matrices. The number ρ(x, a, y) is the parameter of
an exponential probability distribution governing the duration of the transition of x to
y with label a (for more information and intuition on CTMCs and their presentation by
transition rates see e.g. [12, 15, 20]). For the sake of readability we will write ρ(x

a
−→ y)

instead of ρ(x, a, y), and x
a,r
−→ y will indicate that ρ(x

a
−→ y) = r. The latter notation

suggests that RTSs can be seen as a special kind of A × R+0 -labelled nondeterministic
transition systems; more specifically, exactly those that are “rate-deterministic,” i.e.,
such that for each x, y ∈ X and a ∈ A there exists exactly one r ∈ R+0 for which x

a,r
−→ y.

In the following we will consider image-finite processes, i.e. such that for each x ∈ X
and a ∈ A there are only finitely many y ∈ X such that ρ(x, a, y) > 0. For such processes,
the sum

ρa(x) =
∑
y∈X

ρ(x
a
−→ y) (3)

exists for each x ∈ X and a ∈ A; it will be called the apparent rate of label a in state x.
Further, ρ(x

a
−→ y)/ρa(x) is called the conditional probability of the transition x

a
−→ y.

It is the probability that x makes the transition provided that it makes some a-transition.

3

Various equivalence relations on states in RTSs have been considered. Of those,
the most significant is stochastic bisimilarity (called strong equivalence in [14], and
inspired by the notion of probabilistic bisimilarity from [17]), defined as follows. Given
an RTS with state space X, a stochastic bisimulation is an equivalence relation R on X
such that whenever x R y then for each a ∈ A, and for each equivalence class C with
respect to R, ∑

z∈C

ρ(x
a
−→ z) =

∑
z∈C

ρ(y
a
−→ z).

Two states are bisimilar if they are related by some bisimulation. It is easy to check that
bisimilarity is itself an equivalence relation and indeed the largest bisimulation.

Due to the additional rate component present in transitions, the traditional approach
to SOS recalled in §2.1 is inadequate for modeling stochastic process calculi. Instead,
other variants of SOS have been used for this purpose. For a comparison with the fol-
lowing development, we recall two of these variants: the multi-transition system ap-
proach used for the stochastic calculus PEPA [14, 15], and the proved SOS approach of
stochastic π-calculus [20–22].

In (a fragment of) PEPA, processes are terms over the grammar:

P ::= nil | (a, r).P | P + P | P BC
L

P

where a ranges over a fixed set A of labels, L over subsets of A, and r over R+. Their
semantics is defined by inference rules:

(a, r).x a,r
. x

x1
a,r
. y

x1+x2
a,r
. y

x2
a,r
. y

x1+x2
a,r
. y

x1
a,r
. y

x1 BC
L
x2

a,r
. y BC

L
x2

x2
a,r
. y

x1 BC
L
x2

a,r
. x1 BC

L
y

(a < L)

x1
a,r1 . y1 x2

a,r2 . y2

x1 BC
L
x2

a,R
. y1 BC

L
y2

(a ∈ L)

(4)

where a ∈ A and r, r1, r2,R ∈ R+ with R depending on r1, r2 according to an application-
specific formula (see below). Note that instead of a single parallel composition operator,
PEPA provides a cooperation operator BC

L
for each set L of labels. These operators are

based on CSP-style synchronisation [5] rather than CCS-style communication [18].
It turns out that the standard interpretation of the above rules as described in §2.1

would (among other things) contradict the intended meaning of the operator + as a
stochastic choice, where a process P + P can perform the same transitions as P, with
twice the rates. In particular, the processes P and P + P should not be stochastic bisim-
ilar. This is why the semantics of PEPA is given as a multi-transition system labeled
with pairs (a, r) ∈ A × R+, which is a transition system whose transition relation is a
multiset of triples (x, (a, r), y). To define such a semantics for PEPA, the rules in (4) are
interpreted similarly as the GSOS rules in §2.1, where the multiplicity of a transition is
determined by counting all its different derivations. To obtain an RTS from the induced

4

multi-transition system, one then discards multiplicities by summing up all their rates
in single rated transitions. Thus, for example, the process (a, 3).nil + (a, 3).nil in the
induced multi-transition systems has two identical transitions to nil with label (a, 3),
whilst in the final RTS it can make a single transition to nil with label a and rate 6. For
more details of this construction, see [14].

The formula for calculating R based on r1 and r2 in the last rule of (4) depends on the
intended meaning of synchronisation. In applications to performance evaluation [14],
the formula

R = min(ρa(x1), ρa(x2)) ·
r1

ρa(x1)
·

r2

ρa(x2)
(5)

is a natural choice. We shall call it the minimal rate law, since in the resulting RTS, the
apparent rate of a in P BC

L
Q (with a ∈ L) is the least of the apparent rates of P and Q.

For applications to systems biology, where rates model concentrations of molecules, a
more convenient choice is

R = r1 · r2, (6)

which following [6] we call the mass action law. The apparent rate of a in P BC
L

Q
(with a ∈ L) here is the product of the corresponding apparent rates of P and Q. For an
intuitive motivation for these and other similar formulae, see [13].

A different approach was used to define semantics of stochastic π-calculus [20].
Since stochastic features of the calculus are independent from its name-passing aspects,
for simplicity we discuss it here on a fragment of the calculus that corresponds to a
stochastic version of CCS (see §2.1). Thus we consider, as processes, terms over the
grammar:

P ::= nil | (a, r).P | P + P | P‖P

where a ranges over a fixed set A of labels, and r over R+. For the semantics, the au-
thors of [20] decided to avoid multi-transition systems and rely on the standard process
of LTS induction from inference rules. For this, to model stochastic choice and commu-
nication accurately, they enriched transition labels substantially, equipping them with
encodings of derivations that lead to them. In this proved operational semantics, our
“stochastic CCS” fragment of stochastic π-calculus would be defined by:

(a, r).x (a,r)
. x

x1
θ . y

x1+x2
+1θ . y

x2
θ . y

x1+x2
+2θ . y

(7)

x1
θ . y

x1‖x2
‖1θ . y‖x2

x2
θ . y

x1‖x2
‖2θ . x1‖y

x1
θ1(a,r1)

. y1 x2
θ2(ā,r2)

. y2

x1‖x2
〈‖1θ1(a,r1),‖1θ2(ā,r2)〉,R

. y1‖y2

where θ ranges over derivation proofs, e.g. represented by terms of the grammar:

θ = (a, r) | +1θ | +2θ | ‖1θ | ‖2θ | 〈‖1θ, ‖2θ〉,

and where R depends on r1 and r2 according to the minimal rate law [20] or the mass
action law [22], as in PEPA.

These rules are then used to induce an LTS, which results in relatively complex
labels. To obtain an RTS, one then extracts more familiar labels a ∈ A from proofs

5

in the obvious way, by adding up rates of identical transitions. Thus, for example, the
process P = (a, 3).nil+ (a, 3).nil in the induced LTS can make two distinct transitions

P
+1(a,3)
−→ nil and P

+2(a,3)
−→ nil, and in the final RTS it can make a transition to nil with

label a and rate 6.
Although both the multi- and the proved-transition approaches work fine for the spe-

cific examples described above, it appears difficult to extend any of them to a general
framework for defining operational semantics for stochastic transition systems. Con-
sider for example the proved SOS approach of stochastic π-calculus. As in the case of
GSOS for nondeterministic systems, a well-behaved semantic framework should guar-
antee that stochastic bisimilarity is a congruence for the induced RTS. This is the case
for our CCS example above, but it is easy to write examples where it fails; for example,
extend the CCS language with a unary operator f with semantics defined by a rule:

x
+1θ . y

f(x) f+1θ . y

and see that, although (a, 2).nil+nil and nil+(a, 2).nil are stochastic bisimilar, they
are not so when put in context f(−), since only the former process can make a step in
this context. Clearly, this is because the structure of a proof is inspected in the premise
of the rule. However, it would be wrong to forbid such inspection altogether, as it is
needed, e.g. in the communication rule for stochastic π-calculus.

The source of the problem is the richness of labels in the proved approach to SOS.
In [8], it is claimed that proofs as transition labels carry almost all information about
processes that is ever needed. Indeed, it appears they may sometimes carry excessive
information; in a well-behaved SOS framework they should only carry as much data as
required for the derivation of the intended semantics (here, an RTS), not a bit more.

The same criticism, though perhaps to a lesser extent, can be moved to the multi-
transition systems approach used in the semantics of PEPA, where transition multiplic-
ities are the superfluous data. In the process of multi-transition system induction, two
identical transitions of rate 3 are distinguished from a single transition of rate 6. As a
result, one can write specifications such as

x
a,r
. y

f(x) a,max(r,5)
. y

and see that, although processes (a, 3).nil + (a, 3).nil and (a, 6).nil are stochastic
bisimilar, they are not so in the context f(−). On the other hand, forbidding arbitrary
dependency of transition rates on subprocesses rates is hard to contemplate, since that
forms the very core of PEPA.

It may be possible to determine the exact range of constructs and formulas that must
be forbidden in the proved- or in the multi-transition approach in order to guarantee
that stochastic bisimilarity is compositional. Indeed, this approach has been used with
success in the related framework of probabilistic processes [16], where a well-behaved
version of the proved semantics is developed. In this paper, however, we take a more
principled approach and derive a formalism for stochastic operational semantics from
an abstract theory of congruence formats developed in [24] and applied to the case of
probabilistic transition systems in [2].

6

3 An abstract approach to SOS

Our approach to a stochastic counterpart of the GSOS framework of §2.1 is based on
a categorical generalisation of GSOS, developed by Plotkin and Turi in [24]. In this
section we briefly recall that work; in the rest of the paper we develop a syntactic format
for stochastic SOS as an instance of the general framework.

3.1 Transition systems as coalgebras

The abstract study of well-behaved structural operational semantics is based on model-
ing the behaviour of processes via coalgebras, and their syntax via algebras. The orig-
inal motivating example is that of LTSs: for a fixed set A of labels, image-finite LTSs
can be seen as functions h : X → (PωX)A (here, Pω is the finite powerset construction),
along the correspondence y ∈ h(x)(a) if and only if x

a
−→ y. More generally, for any

covariant functor B on the category Set of sets and functions, a B-coalgebra is a set X
(the carrier) and a function h : X → BX (the structure). Thus image-finite LTSs are
coalgebras for the functor (Pω−)A.

A B-coalgebra morphism from a h : X → BX to g : Y → BY is a function f : X → Y
such that the equation g ◦ f = B f ◦ h holds. This notion provides a general coalgebraic
treatment of process equivalences: a bisimulation on a coalgebra h : X → BX is a
binary relation Q ⊆ X × X such that for some coalgebra structure q : Q → BQ the
projections π1, π2 : Q → X extend to a span of coalgebra morphisms from q to h.
For example, for B = (Pω−)A, this span bisimulation specializes to the well-known
notion of LTS bisimulation [18]. For more information about the coalgebraic approach
to process theory, see [23].

We now show how to view RTSs as coalgebras for a suitable functor on Set. Call a
function f : X → R+0 finitely supported if the set {x ∈ X | f (x) > 0} is finite. For any set
X, let RωX be the set of all finitely supported functions from X to R+0 . This extends to a
functor Rω on Set, with the action Rω f on function f : X → Y defined by

Rω f (g)(y) =
∑

f (x)=y

g(x),

for g ∈ RωX and y ∈ Y . Since g is finitely supported the sum exists and Rω f (g) is
finitely supported too. Functoriality of Rω is then easy to check.

Fix an arbitrary set A of labels. Coalgebras for the functor

BX = (RωX)A

are exactly image-finite rated transition systems as defined in §2.2. Indeed, a coalgebra
h : X → BX is an image-finite RTS with states X along the correspondence:

x
a,r
−→ y if and only if r = h(x)(a)(y).

This coalgebraic treatment of RTSs is justified by the following statement.

Proposition 1. Span bisimulations on (Rω−)A-coalgebras, when restricted to equiva-
lence relations, are exactly stochastic bisimulations as defined in §2.2.

7

In the following, a technical property of the functor (Rω−)A will be useful:

Proposition 2. (Rω−)A preserves weak pullbacks.

To prove the above two results, proceed exactly as in [7] for the case of probabilistic
bisimulation and the corresponding behaviour functor.

3.2 Process syntax via algebras

In the context of SOS, processes typically are closed terms over some algebraic signa-
ture, i.e., a set Σ 3 f, g, . . . of operation symbols with an arity function ar : Σ → N.
Such a signature corresponds to a functor ΣX =

∐
f∈Σ Xar(f) on Set, in the sense that a

model for the signature is exactly an algebra for the functor, i.e., a set X (the carrier)
and a function g : ΣX → X (the structure).

The set of terms over a signature Σ and a set X of variables is denoted by TΣX;
in particular, TΣ0 is the set of closed terms over Σ and it admits an obvious algebra
structure a : ΣTΣ0 → TΣ0 for the functor Σ corresponding to the signature. This is the
initial Σ-algebra. The construction TΣ is also a functor, called the free monad over Σ.

3.3 SOS rules, distributive laws, bialgebras

In [24], Turi and Plotkin proposed an elegant treatment of well-behaved SOS at the level
of algebras and coalgebras. Their main motivating application was GSOS (see §2.1).
Turi and Plotkin observed (full proof provided later by Bartels [2]), that image finite
GSOS specifications are in an essentially one-to-one correspondence with distributive
laws, i.e., natural transformations of the type

λ : Σ(Id × B) =⇒ BTΣ (8)

where B = (Pω−)A is the behaviour functor used for modeling LTSs, Σ is the functor
corresponding to the given signature, and TΣ is the free monad over Σ. Informally, (8)
says that ‘structural’ combinations (Σ) of behaviours (B) are mapped to the behaviour
of terms (BTΣ), which is the essence of a SOS rule, with Id accounting for subterms that
stay idle in a transition. Moreover, any λ as above gives rise to a B-coalgebra structure
hλ on TΣ0, defined by a “structural recursion theorem” (see [24] for details) as the only
function hλ : TΣ0→ BTΣ0 such that:

hλ ◦ a = Ba] ◦ λX ◦ Σ〈id, hλ〉. (9)

The fact that bisimilarity on LTSs induced from GSOS specifications is guaranteed to
be a congruence, can be proved at the level of coalgebras and distributive laws:

Theorem 1 ([24], Cor. 7.5). If a functor B on Set preserves weak pullbacks, then for
any λ as in (8), span bisimilarity on hλ : TΣ0→ BTΣ0 is a congruence on TΣ0.

This result, together with Propositions 1 and 2, is the basis of our search for a
congruence format for stochastic systems.

8

4 Stochastic GSOS

We now proceed to the main technical contribution of this paper: a complete characteri-
sation of distributive laws (8) for stochastic systems in terms of inference rules. To find
the characterisation, we closely follow the technique used by Bartels [2] for the case of
probabilistic transition systems.

Definition 1. An SGSOS rule for a signature Σ and a set A of labels is an expression of
the form: {

xi
a@rai .

}
a∈Di,1≤i≤n

{
xi j

b j
. y j

}
1≤ j≤k

f(x1, . . . , xn) c@W . t
(10)

where

– f ∈ Σ and ar(f) = n, with n, k ∈ N, and {i1, . . . , ik} ⊆ {1, . . . , n};
– xi and y j are all distinct variables and no other variables appear in t ∈ TΣΞ;

moreover, all variables y j appear in t;
– Di ⊆ A, c ∈ A and b j ∈ Di j ,
– W ∈ R+, rai ∈ R

+
0 , and moreover rb ji j > 0, for j = 1, . . . , k.

A rule is triggered by a tuple of real values (vai)a∈A,1≤i≤n if vai = rai for all 1 ≤ i ≤ n
and all a ∈ Di. A collection of rules is called an SGSOS specification if for every f ∈ Σ,
c ∈ A, every tuple (vai) triggers only finitely many rules with f and c in the conclusion.

In order to complete the definition of SGSOS we need describe how to derive an
RTS from an SGSOS specification. Intuitively, a rule as in (10) contributes to the rate
of a c-labeled transition from f(s1, . . . , sn) if the apparent a-rates (see Eqn. (3)) of
the si match the corresponding rai; its contribution depends on W and on conditional
probabilities of a selection si j

b j
. u j of transitions from the si. Formally:

Definition 2. Every SGSOS specificationΛ induces a rated transition system (TΣ0, A, ρ),
with the rate function ρ defined by induction on the first argument as follows. For a term
s = f(s1, . . . , sn) ∈ TΣ0, assume that ρ(si

a
−→ u) has been defined for all i = 1, . . . , n,

all a ∈ A and all u ∈ TΣ0; then, for any c ∈ A and t ∈ TΣ0, define ρ(s
c
−→ t) as below.

Let Λc ⊆ Λ be the set of all those rules with f and c in the conclusion that are
triggered by the tuple of apparent rates vai = ρa(si) – cf. (3). Note that Λc is finite. To
calculate the value of ρ(s

c
−→ t), look at each rule L ∈ Λc in turn and check whether

there exists a substitution σ : Ξ → TΣ0 such that σt = t and σxi = si for i = 1, . . . , n.
Note that although many such σmay exist, their values on each y j coincide, since all y j

appear in t. If σ exists, calculate the contribution γL ∈ R
+
0 of L to ρ(s

c
−→ t) according

to the formula:

γL = W ·
k∏

j=1

ρ(si j

b j
−→ σy j)
ρb j (si j)

where W, k, i j, b j and y j are determined by the shape of rule L – cf. rule format (10).
Note that the quotient is well defined since ρb j (si j) = rb ji j > 0. If no suitable σ exist,

take γL = 0. Finally, define ρ(s
c
−→ t) =

∑
L∈Λc
γL; the sum exists since Λc is finite.

9

Notation 1. If in a rule as in (10), for some xi and a ∈ Di there is exactly one j for
which i j = i and b j = a, instead of the two premises xi

a@rai . and xi
a . y j we shall

write simply xi
a@rai . y j. Note that, unlike in the frameworks recalled in §2.2, such a

premise does not require that a transition xi
a
−→ y j has rate rai; instead, rai refers to the

apparent rate ρa(xi). To avoid this confusion, @ is used in (10) instead of a comma.

It turns out that SGSOS specifications correspond to distributive laws (8) for the
behaviour functor used for modeling stochastic systems:

Theorem 2. For all signatures Σ and label sets A, every SGSOS specification Λ for
Σ and A determines a distributive law λ : Σ(Id × (Rω)A) =⇒ (RωTΣ)A such that hλ :
TΣ0 → (RωTΣ0)A defined as in (9) coincides with the RTS induced by Λ. Moreover,
every such distributive law Λ is defined by an SGSOS specification.

Corollary 1. Stochastic bisimilarity on RTSs induced by SGSOS specifications is al-
ways a congruence. (Proof: Combine Theorems 2 and 1 with Propositions 1 and 2.)

Although technically more involved, the correspondence between SGSOS and RTSs
is a perfect match for that for GSOS and LTSs, and lifts the benefits of congruence
formats to the equally more involved semantics of stochastic models. In §5 below we
shall illustrate that the format affords expressiveness, conciseness and elegance.

5 Examples of SGSOS

To illustrate the form of SGSOS specifications, we now present a few simple examples,
including operators present in stochastic π-calculus or in PEPA, as well as some other
operators of potential interest.

Example 1 (atomic actions). A basic ingredient of most process calculi is prefixing
composition with atomic actions. To model stochastic systems, these actions are equip-
ped with basic rates. For the simplest nontrivial example of SGSOS, fix a set A of labels
and consider a language with syntax defined by the grammar:

P ::= nil | (a, r).P

where a ranges over A and r over R+. The semantics of nil is defined by the empty set
of rules, and the semantics of a unary operator (a, r). is defined by a single rule:

(a, r).x a@r . x

Thus, according to Definition 2, the process P = (a, 2).(b, 3).nil can make a unique

transition P
a,2
−→ (b, 3).nil in the transition system induced by the rules.

Example 2 (stochastic choice). Consider an extension of the language from Example 1
with a binary operator P + P with semantics defined by rules:

x1
a@r . y

x1+x2
a@r . y

x2
a@r . y

x1+x2
a@r . y

10

(note the use of Notation 1), for each a ∈ A and r ∈ R+. Note that this is a well-defined
SGSOS specification. Although it contains uncountably many rules, for every a ∈ A
exactly two rules are triggered by every tuple of apparent rates. The rules define + to
be the stochastic choice operator, as present e.g. in PEPA and stochastic π-calculus.
In particular, according to Definition 2, in the stochastic transition system induced by
the rules, the process P = ((a, 2).nil + (a, 2).(b, 1).nil) + (c, 3).nil can make three

transitions P
a,2
−→ nil, P

a,2
−→ (b, 1).nil and P

c,3
−→ nil. Note, however, that the process

Q = (a, 2).nil + (a, 3).nil can only make one transition Q
a,5
−→ nil. In particular,

processes (a, 2).nil+ (a, 3).nil and (a, 5).nil are not only stochastic bisimilar, but can
actually make exactly the same outgoing transitions.

We remark that when compared to the existing literature, in all our examples the
expected semantics of the operators arises naturally from intuitive and elementary spec-
ifications, witness of the flexibility of the SGSOS format.

Example 3 (PEPA-style synchronisation). Extend the language from Example 2 with a
binary synchronisation operator BC

L
for each L ⊆ A, with semantics defined by a family

of rules:

x1
a@r . y

x1 BC
L
x2

a@r . y BC
L
x2

x2
a@r . y

x1 BC
L
x2

a@r . x1 BC
L
y

(11)

x1
b@r1 . y1 x2

b@r2 . y2

x1 BC
L
x2

b@W . y1 BC
L
y2

(12)

for each a ∈ A \ L, b ∈ L, and r, r1, r2,W ∈ R+ such that W = min(r1, r2). It is not
difficult to see that this, according to Definition 2, is the synchronisation operator of
PEPA where the minimal rate law (5) is used. As an example, consider processes:

P = (a, 1).P1 + (a, 3).P2 Q = (a, 2).Q1 (13)

where P1 , P2. Then the process P BC
{b}

Q, where b , a, can make the transitions:

P BC
{b}

Q
a,1
−→ P1 BC

{b}
Q P BC

{b}
Q

a,3
−→ P2 BC

{b}
Q P BC

{b}
Q

a,2
−→ P BC

{b}
Q1.

On the other hand, the outgoing transitions from P BC
{a}

Q are:

P BC
{a}

Q
a, 12
−→ P1 BC

{a}
Q1 P BC

{a}
Q

a, 32
−→ P2 BC

{a}
Q1.

Example 4 (CCS-style communication). Similarly, one can extend the language from
Example 2 with a CCS-style communication operator. Assume A = A0 ∪ {ā | a ∈
A0} ∪ {τ} (denote ¯̄a = a) and extend the language with a single binary operator ‖, with
semantics defined by rules:

x1
a@r . y

x1 ‖ x2
a@r . y ‖ x2

x2
a@r . y

x1 ‖ x2
a@r . x1 ‖ y

(14)

x1
a@r1 . y1 x2

ā@r2 . y2

x1 ‖ x2
τ@W . y1 ‖ y2

(15)

11

for each a ∈ A and for each r, r1, r2,W ∈ R+ such that W = min(r1, r2). This, according
to Definition 2, is the communication operator of the original definition of stochastic
π-calculus [20], with the minimal rate law (5) used. For example, consider processes P,
Q as in (13). The process P ‖ Q can make the following transitions:

P ‖ Q
a,1
−→ P1 ‖ Q P ‖ Q

a,3
−→ P2 ‖ Q P ‖ Q

ā,2
−→ P ‖ Q1

P ‖ Q
τ, 12
−→ P1 ‖ Q1 P ‖ Q

τ, 32
−→ P2 ‖ Q1.

Alternatively, one could use the same rules with W = r1 · r2. This would correspond
to the semantics of parallel composition in the biological stochastic π-calculus [22],
with the mass action law (6) used. For example, the process P ‖ Q above can then make
the following transitions:

P ‖ Q
a,1
−→ P1 ‖ Q P ‖ Q

a,3
−→ P2 ‖ Q P ‖ Q

ā,2
−→ P ‖ Q1

P ‖ Q
τ,2
−→ P1 ‖ Q1 P ‖ Q

τ,6
−→ P2 ‖ Q1.

Example 5. Several non-standard, yet meaningful stochastic operators can be defined
within the SGSOS format. For example, consider unary “catalyst” and “inhibitor” op-
erators cata and inha for each a ∈ A, which influence rates of process transitions;
they can be seen as stochastic counterparts of the restriction operator of CCS. Their
semantics is defined by the rules:

x
a@r . y

cata(x) a@2r . cata(y)

x
a@r . y

inha(x) a@r/2
. inha(y)

x
b@r . y

cata(x) b@r . cata(y)

x
b@r . y

inha(x) b@r . inha(y)

for each r ∈ R+ and a, b ∈ A such that b , a. For example, in the derived stochas-

tic transition system we find the transition cata((a, 2).nil)
a,4
−→ cata(nil). Since the

above rules conform to the SGSOS format, it is immediate that operators cata and inha

preserve stochastic bisimilarity.
Another example is a binary operator !! of “unfair race parallel composition,” which

only allows transitions from processes with higher apparent rates than their competitors.
Formally, its semantics is defined by rules

x1
a@r1 . y x2

a@r2 .

x1!!x2
a@r1 . y!!x2

x1
a@r2 . x2

a@r1 . y

x1!!x2
a@r1 . x1!!y

for each a ∈ A and r1, r2 ∈ R
+
0 such that r1 > r2. For example, the process P =

((a, 2).Q) !! ((a, 3).T) has only one outgoing transition P
a,3
−→ ((a, 2).Q) !! T . Again,

stochastic bisimilarity is immediately compositional with respect to !!. This example
illustrates the fact that in the semantics of SGSOS operators, apparent rates (3) of sub-
processes can be tested, compared and used in an arbitrary fashion. This is in contrast

12

with formats defined for probabilistic systems [2, 16], where probabilities of transitions
can be used in a very restricted manner. Note however that in SGSOS rates of single
transitions of subprocesses cannot be used entirely freely. For example, it is not pos-
sible to write SGSOS semantics of a hypothetical unary operator even() that would
propagate transitions with even rates and suppress those with odd rates. Indeed, such an
operator would not preserve stochastic bisimilarity. However, one can define an SGSOS
operator that propagates only transitions with labels whose apparent rates are even.

6 Associative parallel composition for stochastic systems

In this section we address an issue in the original design of the stochastic π-calculus [20],
which to our knowledge has not yet been addressed in the literature. Namely, if the
minimal rate law (5) is used in the definition (7), then the CCS-style communication
operator ‖ is not associative up to stochastic bisimilarity. Indeed, consider processes

P1 = (a, r).nil P2 = (ā, r).nil
Q1 = (P1 ‖ P1) ‖ P2 Q2 = P1 ‖ (P1 ‖ P2).

Note that ra(P1) = r, ra(P1 ‖ P1) = 2r, and rā(P2) = rā(P1 ‖ P2) = r. This means
that, in the derived proved-transitions

Q1
〈‖1(a,r),(ā,r)〉,R1→ (nil ‖ P1) ‖ nil

Q2
〈(a,r),‖2(ā,r)〉,R2→ nil ‖ (P1 ‖ nil),

one has R1 = min(2r, r) · r
2r ·

r
r =

r
2 and R2 = min(r, r) · r

r ·
r
r = r, hence in the resulting

RTS, processes Q1 and Q2 do the corresponding τ-transitions respectively with rates r/2
and r. As a result, they are not stochastic bisimilar. On the other hand, the same operator
‖ with the rate calculation formula changed to the law of mass action (6), as in [22], is
associative. Moreover, CSP-style synchronisation as used in PEPA is associative for
both minimal rate and mass action laws.

In the following, we consider parallel composition within the framework of SGSOS
and characterise those rate formulas for which CCS-style communication and CSP-style
synchronisation operators are associative up to stochastic bisimilarity. It turns out that
the CSP-style composition gives much more freedom in the choice of rate formula.

6.1 CCS-style communication

Consider the language of Example 4, extending those of Examples 1 and 2. Two ver-
sions of the language were mentioned there, depending on the choice of the family of
rules of type (15) used in the semantics: one where W = min(r1, r2) (the minimal rate
law) and one where W = r1 · r2 (the mass action law). We will now characterise those
“laws” that give rise to an associative operator ‖. More formally, we assume that for
each pair r1, r2 ∈ R

+
0 there is exactly one rule of the type (15) in our semantics for each

label a, and that, moreover, the number W in the conclusion of the rules does not depend
on a; we can thus treat the W’s as a function W : R+0 ×R

+
0 → R

+
0 . We then look for those

rate functions W for which the operator || is associative up to stochastic bisimilarity.

13

As the following theorem shows, the choice of W is severely limited: the mass action
law is essentially the only choice that makes ‖ associative.

Theorem 3. In the situation described above, || is associative up to stochastic bisimi-
larity if and only if W(r1, r2) = c · r1 · r2 for some constant c ∈ R+.

6.2 CSP-style synchronisation

Consider now the language of Example 3, extending those of Examples 1 and 2. Again,
assume that for each pair r1, r2 ∈ R

+
0 there is exactly one rule of the type (12) for each

label a, and that the number W in the conclusion of the rules does not depend on a; thus,
as before, we have a function W : R+0 × R

+
0 → R

+
0 . It turns out that, compared to §6.1,

one has considerably more freedom in choosing W so that each of the synchronisation
operators BC

L
is associative:

Theorem 4. In the situation described above, each BC
L

is associative up to stochastic
bisimilarity if and only if W is associative, i.e., W(r1,W(r2, r3)) = W(W(r1, r2), r3) for
all r1, r2, r3 ∈ R

+.

7 Conclusions and future work

We have defined SGSOS, a congruence format for structural operational descriptions of
discrete space, continuous time Markov chains. Stochastic bisimilarity is guaranteed to
be compositional on languages defined by SGSOS rules. Standard operators of Marko-
vian process algebras, such as prefixing, choice and various forms of synchronization,
as well as plenty of non-standard, yet potentially useful operators, are definable in SG-
SOS. The format arises naturally from the abstract theory of well-behaved operational
semantics, based on bialgebras and distributive law.

SGSOS is similar to formats for reactive probabilistic systems developed in [2, 16].
Apart from syntactic sugar, the most important difference is the treatment of apparent
rates, absent in the probabilistic setting. Rates of single transitions (and their condi-
tional probabilities) are treated in SGSOS just as probabilities of transitions are in [2,
16]. In [16], additional complication is necessary to cater for generative probabilistic
systems. The notions of reactive and generative RTSs coincide, and the additional com-
plexity is not needed in SGSOS.

This is only an initial study of a theory of well-behaved stochastic operational se-
mantics, and several research directions are left open. Look-ahead premises are not
allowed in SGSOS, unlike in the probabilistic formats of [16]. Recursive definitions or
the name-binding features of stochastic π-calculus are not currently supported; to treat
the latter correctly, one should combine SGSOS with techniques from [10]. Also, non-
Markovian processes are not treated here, as a coalgebraic treatment of them is missing.
Process algebra for continuous-space Markov chains [9] is another possible direction.

14

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier,
2002.

2. F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD dis-
sertation, CWI, Amsterdam, 2004.

3. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time. Theor. Comp. Sci., 202(1-2):1–54, 1998.

4. B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42:232–268, 1995.

5. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31:560–599, 1995.

6. M. Calder, S. Gilmore, and J. Hillston. Automatically deriving ODEs from process algebra
models of signalling pathways. In Procs. CMSB’05, pages 204–215, 2005.

7. E. P. de Vink and J. J. M. M. Rutten. Bisimulation for probabilistic transition systems: A
coalgebraic approach. Theoretical Computer Science, 221(1-2):271–293, 1999.

8. P. Degano and C. Priami. Enhanced operational semantics. ACM Comput. Surv., 28(2):352–
354, 1996.

9. J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov processes.
Information and Computation, 179:163–193, 2002.

10. M. Fiore and S. Staton. A congruence rule format for name-passing process calculi from
mathematical structural operational semantics. In Proc. LICS’06, pages 49–58. IEEE Com-
puter Society Press, 2006.

11. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The
integration of functional specification and performance analysis using stochastic process al-
gebras. In Performance/SIGMETRICS Tutorials, pages 121–146, 1993.

12. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation.
Theoretical Computer Science, 274(1-2):43–87, 2002.

13. J. Hillston. On the nature of synchronisation. In Procs. PAPM’94, pages 51–70, 1994.
14. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University

Press, 1996.
15. J. Hillston. Process algebras for quantitative analysis. In Procs. LiCS’05, pages 239–248.

IEEE Computer Society Press, 2005.
16. R. Lanotte and S. Tini. Probabilistic bisimulation as a congruence. ACM Trans. Comp. Logic,

to appear, 2008.
17. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and

Computation, 94:1–28, 1991.
18. R. Milner. A calculus of communicating systems. Journal of the ACM, 1980.
19. G. D. Plotkin. A structural approach to operational semantics. DAIMI Report FN-19, Com-

puter Science Department, Aarhus University, 1981.
20. Corrado Priami. Stochastic π-calculus. Computer Journal, 38(7):578–589, 1995.
21. Corrado Priami. Language-based performance prediction for distributed and mobile systems.

Information and Computation, 175(2):119–145, 2002.
22. A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical

processes using the π-calculus process algebra. In Proc. Pacific Symp. Biocomp., 2001.
23. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,

249:3–80, 2000.
24. D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS’97,

pages 280–291. IEEE Computer Society Press, 1997.

15

