
Coalgebraic trace semantics via forgetful logics

Bartek Klin1,? and Jurriaan Rot2,??

1 University of Warsaw
2 Leiden University

Abstract. We use modal logic as a framework for coalgebraic trace
semantics, and show the flexibility of the approach with concrete ex-
amples such as the language semantics of weighted, alternating and tree
automata. We provide a sufficient condition under which a logical seman-
tics coincides with the trace semantics obtained via a given determiniza-
tion construction. Finally, we consider a condition that guarantees the
existence of a canonical determinization procedure that is correct with
respect to a given logical semantics. That procedure is closely related to
Brzozowski’s minimization algorithm.

1 Introduction

Coalgebraic methods [23, 12] have been rather successful in modeling branching
time behaviour of various kinds of transition systems, with a general notion of
bisimulation and final semantics as the main contributions. Coalgebraic modeling
of linear time behaviour such as trace semantics of transition systems or language
semantics of automata, has also attracted significant attention. However, the
emerging picture is considerably more complex: a few approaches have been
developed whose scopes and connections are not yet fully understood. Here, we
exacerbate the situation by suggesting yet another approach.

To study trace semantics coalgebraically, one usually considers systems whose
behaviour type is a composite functor of the form TB or BT , where T represents
a branching aspect of behaviour that trace semantics is supposed to “resolve”,
and B represents the transition aspect that should be recorded in system traces.
Typically it is assumed that T is a monad, and its multiplication structure
is used to resolve branching. For example, in [22, 10], a distributive law of B
over T is used to lift B to the Kleisli category of T , and trace semantics is
obtained as final semantics for the lifted functor. Additional assumptions on
T are needed for this, so this approach does not work for coalgebras such as
weighted automata. On the other hand, in [13, 25] a distributive law of T over B
is used to lift B to the Eilenberg-Moore category of T , with trace semantics again
obtained as final semantics for the lifted functor. This can be seen as a coalgebraic
generalization of the powerset determinization procedure for non-deterministic

? Supported by the Polish National Science Centre (NCN) grant
2012/07/E/ST6/03026.

?? Supported by NWO project 612.063.920. This research was carried out during the
second author’s stay at University of Warsaw, partially supported by WCMCS.

automata. While it applies to many examples, that approach does not work for
systems that do not determinize, such as tree automata. A detailed comparison
of these two approaches is in [13]. In the recent [18], the entire functor TB (or
BT) is embedded in a single monad, which provides some more flexibility. In [9],
it is embedded in a more complex functor with a so-called observer.

In this paper, we study trace semantics in terms of modal logic. The basic
idea is very simple: we view traces as formulas in suitable modal logics, and
trace semantics of a state arises from all formulas that hold for it. A coalgebraic
approach to modal logic based on dual adjunctions is by now well developed [21,
16, 14, 17], and we apply it to speak of traces generally. Obviously not every logic
counts as a trace logic: assuming a behaviour type of the form BT or TB, we
construct logics from arbitrary (but usually expressive) logics for B and special
logics for T whose purpose is to resolve branching. We call such logics forgetful.

Our approach differs from previous studies in a few ways:

– We do not assume that T is a monad, unless we want to relate our logical
approach to ones that do, in particular to determinization constructions.

– Instead of using monad multiplication µ : TT ⇒ T to resolve branching, we
use a natural transformation α : TG⇒ G, where G is a contravariant functor
that provides the basic infrastructure of logics. In case of nondeterministic
systems, T is the covariant powerset functor and G the contravariant pow-
erset, so TT and TG act the same on objects, but they carry significantly
different intuitions.

– Trace semantics is obtained not as final semantics of coalgebras, but by
initial semantics of algebras. Fundamentally, we view trace semantics as an
inductive concept and not a coinductive one akin to bisimulation, although
in some well-behaved cases the inductive and coinductive views coincide.

– Thanks to the flexibility of modal logics, we are able to cover examples such
as the language semantics of weighted tree automata, that does not quite fit
into previously studied approaches, or alternating automata.

The idea of using modal logics for coalgebraic trace semantics is not new; it is
visible already in [21]. In [10] it is related to behavioural equivalence, and applied
to non-deterministic systems. A generalized notion of relation lifting is used
in [5] to obtain infinite trace semantics, and applied in [6] to get canonical linear
time logics. In [15], coalgebraic modal logic is combined with the idea of lifting
behaviours to Eilenberg-Moore categories, with trace semantics in mind. In [13],
a connection to modal logics is sketched from the perspective of coalgebraic
determinization procedures. In a sense, this paper describes the same connection
from the perspective of logic.

Our main new contribution is the notion of forgetful logic and its ramifi-
cations. The basic definitions are provided in Section 3 and some illustrative
examples in Section 4. We introduce a systematic way of relating trace seman-
tics to determinization, by giving sufficient conditions for a given determinization
procedure, understood in a slightly more general way than in [13], to be correct
with respect to a given forgetful logic (Section 6). For instance, this allows show-

ing in a coalgebraic setting that the determinization of alternating automata into
non-deterministic automata preserves language semantics.

A correct determinization procedure may not exist in general. In Section 7
we study a situation where a canonical correct determinization procedure exists.
It turns out that even in the simple case of non-deterministic automata that
procedure is not the classical powerset construction; instead, it relies on a double
application of contravariant powerset construction. Interestingly, this is what
also happens in Brzozowski’s algorithm for automata minimization [4], so as
a by-product, we get a new perspective on that algorithm which has recently
attracted much attention in the coalgebraic community [1–3].

Acknowledgments. We are grateful to Marcello Bonsangue, Helle Hvid Hansen,
Ichiro Hasuo and Jan Rutten for discussions and suggestions, and to anonymous
referees for their insightful comments.

2 Preliminaries

We assume familiarity with basic notions of category theory (see, e.g., [20]). A
coalgebra for a functorB : C → C consists of an objectX and a map f : X → BX.
A homomorphism from f : X → BX to g : Y → BY is a map h : X → Y
such that g ◦ h = Bh ◦ f . The category of B-coalgebras is denoted Coalg(B).
Algebras for a functor L are defined dually; the category of L-algebras and
homomorphisms is denoted Alg(L).

We list a few examples, where C = Set, the category of sets and functions.
Consider the functor Pω(A×−), where Pω is the finite powerset functor and A
is a fixed set. A coalgebra f : X → Pω(A × X) is a finitely branching labelled
transition system: it maps every state to a finite set of next states. Coalgebras
for the functor (Pω−)A are image-finite labelled transition systems, i.e., the set
of next states for every label is finite. When A is finite the two notions coincide.
A coalgebra f : X → Pω(A × X + 1), where 1 = {∗} is a singleton, is a non-
deterministic automaton; a state x is accepting whenever ∗ ∈ f(x).

Consider the functor BX = 2 × XA, where 2 is a two-element set of truth
values. A coalgebra 〈o, f〉 : X → BX is a deterministic automaton; a state x
is accepting if o(x) = tt, and f(x) is the transition function. The composition
BPω yields non-deterministic automata, presented in a different way than above.
We shall also consider BPωPω-coalgebras, which represent a general version of
alternating automata.

Let S be a semiring. Define MX = {ϕ ∈ SX | supp(ϕ) is finite} where
supp(ϕ) = {x | ϕ(x) 6= 0}, and M(f : X → Y)(ϕ)(y) =

∑
x∈f−1(y) ϕ(x). A

weighted automaton is a coalgebra for the functor M(A × − + 1). Let Σ be a
polynomial functor corresponding to an algebraic signature. A top-down weighted
tree automaton is a coalgebra for the functor MΣ. For S the Boolean semir-
ing these are non-deterministic tree automata. Similar to non-deterministic au-
tomata above, one can present weighted automata as coalgebras for S× (M−)A.

We note that Pω is a monad, by taking ηX(x) = {x} and µ to be union.
More generally, the functor M extends to a monad, by taking µX(ϕ)(x) =

∑
ψ∈SX ϕ(ψ) ·ψ(x). The case of Pω is obtained by taking the Boolean semiring.

Notice that the finite support condition is required for µ to be well-defined.

2.1 Contravariant adjunctions

The basic framework of coalgebraic logic is formed of two categories C, D con-
nected by functors F : Cop → D and G : Dop → C that form an adjunction
F op a G. For example, one may take C = D = Set and F = G = 2−, for 2 a
two-element set of logical values. The intuition is that objects of C are collections
of processes, or states, and objects of D are logical theories.

To avoid cluttering the presentation with too much of the (−)op notation,
we opt to treat F and G as contravariant functors, i.e., ones that reverse the
direction of all arrows (maps), between C and D. The adjunction then becomes a
contravariant adjunction “on the right”, meaning that there is a natural bijection

C(X,GΦ) ∼= D(Φ,FX) for X ∈ C, Φ ∈ D.

Slightly abusing the notation, we shall denote both sides of this bijection by
(−)[. Applying the bijection to a map is referred to as transposing the map.

In such an adjunction, GF is a monad on C, whose unit we denote by ι : Id⇒
GF , and FG is a monad on D, with unit denoted by ε : Id ⇒ FG. Both F and
G map colimits to limits, by standard preservation results for adjoint functors.

In what follows, the reader need only remember that F and G are contravari-
ant, i.e., they reverse maps and natural transformations. All other functors, ex-
cept a few that lift F and G to other categories, are standard covariant functors.

3 Forgetful logics

We begin by recalling an approach to coalgebraic modal logic based on con-
travariant adjunctions, see, e.g., [16, 14]. Consider categories C, D and functors
F , G as in Section 2.1. Given an endofunctor B : C → C, a coalgebraic logic to be
interpreted on B-coalgebras is built of syntax, i.e., an endofunctor L : D → D,
and semantics, a natural transformation ρ : LF ⇒ FB. We will usually refer
to ρ simply as a logic. If an initial L-algebra a : LΦ → Φ exists then, for any
B-coalgebra h : X → BX, the logical semantics of ρ on h is a map s[: X → GΦ
obtained by transposing the map defined by initiality of a as on the left:

LΦ

a

��

Ls // LFX

ρX

��
FBX

Fh

��
Φ s

// FX

Coalg(B)

��

F̂ // Alg(L)

��
C

F
// D

(1)

The mapping of a B-coalgebra h : X → BX to an L-algebra Fh ◦ ρX : LFX →
FX determines a contravariant functor F̂ that lifts F , i.e., acts as F on carriers,

depicted on the right above. This functor has no (contravariant) adjoint in gen-
eral; later in Section 7 we shall study well-behaved situations when it does. Notice
that F̂ maps coalgebra homomorphisms to algebra homomorphisms, and indeed
the logical semantics factors through coalgebra homomorphisms, i.e., behavioural
equivalence implies logical equivalence. The converse holds if ρ is expressive,
meaning that the logical semantics decomposes as a coalgebra homomorphism
followed by a mono.

Example 1. Let C = D = Set, F = G = 2−, B = 2×−A and L = A×−+1. The
initial algebra of L is the set A∗ of words over A. We define a logic ρ : LF ⇒
FB as follows: ρX(∗)(o, t) = o and ρX(a, ϕ)(o, t) = ϕ(t(a)). For a coalgebra
〈o, f〉 : X → 2 × XA the logical semantics is a map s[: X → 2A

∗
, yielding the

usual language semantics of the automaton: s[(x)(ε) = o(x) for the empty word
ε, and s[(x)(aw) = s[(f(x)(a))(w) for any a ∈ A,w ∈ A∗.

Note that logical equivalences, understood as kernel relations of logical se-
mantics, are conceptually different from behavioural equivalences typically con-
sidered in coalgebra theory, in that they do not arise from finality of coalgebras,
but rather from initiality of algebras (albeit in a different category). Fundamen-
tally, logical semantics for coalgebras is defined by induction rather than coin-
duction. In some particularly well-behaved cases the inductive and coinductive
views coincide; we shall study such situations in Section 7.

A logic ρ : LF ⇒ FB gives rise to its mate ρ[: BG⇒ GL, defined by

BG
ιBG +3 GFBG

GρG +3 GLFG
GLε +3 GL, (2)

where ι and ε are as in Section 2.1. A routine calculation shows that ρ in turn
is the mate of ρ[(with the roles of F , G, ι and ε swapped), giving a bijective
correspondence between logics and their mates. Some important properties of
logics are conveniently stated in terms of their mates; e.g., under mild additional
assumptions (see [16]), if the mate is pointwise monic then the logic is expressive.

There is a direct characterization of logical semantic maps in terms of mates,
first formulated in [21]. Indeed, by transposing (1) it is easy to check that

BX
Bs[// BGΦ

ρ[Φ
��

GLΦ

X

h

OO

s[
// GΦ.

Ga

OO (3)

the logical semantics s[: X → GΦ on a coal-
gebra h : X → BX is a unique map that
makes the “twisted coalgebra morphism” dia-
gram in (3) commute.

Logics for composite functors can often
be obtained from logics of their components.
Consider functors B, T : C → C and logics for
them ρ : LF ⇒ FB and α : NF ⇒ FT , for
some functors L,N : D → D. One can then
define logics for the functors TB and BT :

α} ρ = αB ◦Nρ : NLF ⇒ FTB, ρ} α = ρT ◦ Lα : LNF ⇒ FBT.

It is easy to see that taking the mate of a logic respects this composition operator,
i.e., that (α} ρ)[= α[} ρ[. Such compositions of logics appear in [12] and were
studied in a slightly more concrete setting in [7, 24].

We shall be interested in the case where the logic for T has a trivial syntax;
in other words, where N = Id. Intuitively speaking, we require a logic for T that
consists of a single unary operator, which could therefore be elided in a syntactic
presentation of logical formulas. The semantics of such an operator is defined by
a natural transformation α : F ⇒ FT or equivalently by its mate α[: TG⇒ G.
Intuitively, the composite logics α} ρ and ρ} α, when interpreted on TB- and
BT -coalgebras respectively disregard, or forget, the aspect of their behaviour
related to the functor T , in a manner prescribed by α. We call logics obtained
in this fashion forgetful logics.

4 Examples

We instantiate the setting of Section 3 and use forgetful logics to obtain trace
semantics for several concrete types of coalgebras: non-deterministic automata,
transition systems, alternating automata and weighted tree automata.

In the first few examples we let C = D = Set and F = G = 2−, and consider
TB or BT -coalgebras, where T = Pω is the finite powerset functor. Our examples
involve the logic α : 2− ⇒ 2Pω defined by:

αX(ϕ)(S) = tt iff ∃x ∈ S.ϕ(x) = tt. (4)

This choice of F and G has been studied thoroughly in the field of coalgebraic
logic, and our α is an example of the standard notion of predicate lifting [12, 17]
corresponding to the so-called diamond modality. Its mate α[: Pω2− ⇒ 2− is as
follows: α[Φ(S)(w) = tt iff ∃ϕ ∈ S.S(w) = tt. In all examples below, Pω could be
replaced by the full powerset P without any problems.

Example 2. We define a forgetful logic α}ρ for PωB, where BX = A×X+1; α
is as above and ρ is given below in terms of its mate ρ[: BG⇒ GL, in such a way
that the logical semantics yields the usual language semantics. We let L = B,
hence A∗ carries the structure of an initial L-algebra. As a result, the logical
semantics on an automaton will be a map from states to languages (elements of
2A
∗
). Define ρ[: A× 2− + 1⇒ 2A×−+1 by

ρ[Φ(∗)(t) = tt iff t = ∗ ρ[Φ(a, ϕ)(t) = tt iff t = (a,w) and ϕ(w) = tt,

for any set Φ. The semantics of the logic α}ρ on an automaton f : X → PωBX
is the map s[from (3), and it is easy to calculate that for any x ∈ X:

s[(x)(ε) = tt iff ∗ ∈ f(x),

s[(x)(aw) = tt iff ∃y ∈ X.(a, y) ∈ f(x) and s[(y)(w) = tt,

for ε the empty word, and for all a ∈ A and w ∈ A∗.

Note that the logic ρ in the above example is expressive. One may expect that
given a different expressive logic θ involving the same functors, the forgetful logics

α} ρ and α} θ yield the same logical equivalences, but this is not the case. For
instance, define θ[: BG⇒ GL as θ[Φ(∗)(t) = tt for all t, and θ[Φ(a, ϕ) = ρ[Φ(a, ϕ).
This logic is expressive as well (since θ[is componentwise monic) but in the
semantics of the forgetful logic α} θ, information on final states is discarded.

Example 3 (Length of words). The initial algebra of LX = X + 1 is N, the set
of natural numbers. Define a logic for BX = A × X + 1 by its mate ρ[: A ×
2− + 1 ⇒ 2−+1 as follows: ρ[Φ(∗)(t) = tt iff t = ∗, and ρ[Φ(a, ϕ)(t) = tt iff
t = w and ϕ(w) = tt. Note that this logic is not expressive. With the above α, we
have a logic α}ρ, and given any f : X → Pω(A×X+1), this yields s[: X → 2N

so that s[(x)(0) = tt iff ∗ ∈ f(x) and s[(x)(n + 1) = tt iff ∃a ∈ A, y ∈ X s.t.
(a, y) ∈ f(x) and s[(y)(n) = tt. Thus, s[(x) is the binary sequence which is tt at
position n iff the automaton f accepts a word of length n, starting in state x.

Example 4 (Non-deterministic automata as BT -coalgebras). Consider the func-
tor BX = 2 ×XA. Let LX = A ×X + 1, let ρ[: 2 × (2−)A ⇒ 2A×−+1 be the
mate of the logic ρ given in Example 1; explicitly, it is the obvious isomorphism
given by manipulating exponents:

ρ[Φ(o, ϕ)(∗) = o ρ[Φ(o, ϕ)(a,w) = ϕ(a)(w) (5)

The logical semantics s[: X → 2A
∗

of ρ } α on a coalgebra 〈o, f〉 : X → 2 ×
Pω(X)A is the usual language semantics: for any x ∈ X we have s[(x)(ε) = o(x),
and s[(x)(aw) = tt iff s[(y)(w) = tt for some y ∈ f(x)(a).

A minor variation on the above, taking BX = XA and adapting ρ[appro-
priately so that ρ[(t)(∗) = tt for any t, yields finite traces of transition systems.

Non-determinism can be resolved differently: in contrast to (4), consider
β[: Pω2− ⇒ 2− given by β[Φ(S)(x) = tt iff ∀ϕ ∈ S.S(x) = tt. Similarly to (4),
β is a predicate lifting that corresponds to the so-called box modality. The se-
mantics s[induced by the forgetful logic ρ } β accepts a word if all paths end
in an accepting state: s[(x)(ε) = o(x), and s[(x)(aw) = tt iff s[(y)(w) = tt for
all y ∈ f(x)(a). We call this the conjunctive semantics. In automata-theoretic
terms, this is the language semantics for (BPω-coalgebras understood as) co-
nondeterministic automata, i.e., alternating automata with only universal states.

Some non-examples. It is not clear how to use forgetful logics to give a conjunc-
tive semantics to coalgebras for Pω(A×X +−); simply using β together with ρ
from Example 2 does not yield the expected logical semantics. Also, transition
systems as Pω(A×−)-coalgebras do not work well; with α as in (4) the logical
semantics of a state with no successors is always empty, while it should contain
the empty trace.

Example 5 (Alternating automata). Consider BPωPω-coalgebras with B = 2 ×
−A. We give a forgetful logic by combining ρ, α, and β from the previous example
(more precisely, the logic is (ρ } α) } β); recall that α and β resolve the non-
determinism by disjunction and conjunction respectively. Spelling out the details
for a coalgebra 〈o, f〉 : X → 2×(PωPωX)A yields, for any x ∈ X: s[(x)(ε) = o(x)
and for any a ∈ A and w ∈ A∗: s[(x)(aw) = tt iff there is S ∈ f(x)(a) such that
s[(y)(w) = tt for all y ∈ S.

Example 6 (Weighted tree automata). In this example we let C = D = Set and
F = G = S− for a semiring S. We consider coalgebras forMΣ (Section 2), where
Σ is a polynomial functor corresponding to a signature. The initial algebra of Σ
is carried by the set of finite Σ-trees, denoted by Σ∗∅. Define ρ : ΣF ⇒ FΣ by
cases on the operators σ in the signature:

ρX(σ(ϕ1, . . . , ϕn))(τ(x1, . . . , xm)) =

{∏
i=1..n ϕi(xi) if σ = τ

0 otherwise

where n is the arity of σ. Define α : S− ⇒ SM by its mate: α[Φ(ϕ)(w) =∑
ψ∈SΦ ϕ(ψ) · ψ(w). Notice that α and ρ generalize the logics of Example 2.

Let s[be the logical semantics of α}ρ on a weighted tree automaton f : X →
MΣX. For any tree σ(t1, . . . tn) and any x ∈ X we have:

s[(x)(σ(t1, . . . , tn)) =
∑

x1,...,xn∈X
f(x)(σ(x1, . . . , xn)) ·

∏
i=1..n

s[(xi)(ti)

As a special case, we obtain for any weighted automaton f : X →M(A×X+ 1)
a unique map s[: X → SA∗ so that for any x ∈ X, a ∈ A and w ∈ A∗: s[(x)(ε) =
f(x)(∗) and s[(x)(aw) =

∑
y∈X f(x)(a, y) ·s[(y)(w). For S the Boolean semiring

we get the usual semantics of tree automata: s[(x)(σ(t1, . . . , tn)) = tt iff there
are x1, . . . , xn such that σ(x1, . . . , xn) ∈ f(x) and for all i ≤ n : s[(xi)(ti) = tt.

Notice that the Σ-algebra F̂ (X, f) (see (1)) is a deterministic bottom-up tree
automaton. It corresponds to the top-down automaton f , in the sense that the
semantics s[of f is the transpose of the unique homomorphism s : Σ∗∅ → SX
arising by initiality; the latter is the usual semantics of bottom-up tree automata.

5 Forgetful logics for monads

In most coalgebraic attempts to trace semantics [5, 9, 13, 15, 18, 22], the functor
T , which models the branching aspect of system behaviour, is assumed to be a
monad. The basic definition of a forgetful logic is more relaxed in that it allows
an arbitrary functor T but one may notice that in all examples in Section 4, T
is a monad.

In coalgebraic approaches cited above, the structure of T is resolved using
monad multiplication µ : TT ⇒ T . Forgetful logics use transformations α : F ⇒
FT with their mates α[: TG⇒ T for the same purpose. If T is a monad, it will be
useful to assume a few basic axioms analogous to those of monad multiplication:

Definition 1. Let (T, η, µ) be a monad. A natural transformation α[: TG⇒ G
is a (T)-action (on G) if α[◦ ηG = id and α[◦ Tα[= α[◦ µG, i.e., if each
component of α[is an Eilenberg-Moore algebra for T .

Just as monads generalize monoids, monad actions on functors generalize
monoid actions on sets. We shall use properties of monad actions to relate for-
getful logics to the determinization constructions of [13] in Section 6. It is easy

to check by hand that in all examples in Section 4, α[is an action, but it also
follows from the following considerations.

In some well-structured cases, one can search for a suitable α by looking at
T -algebras in C. We mention it only briefly and not explain the details, as it will
not be directly used in the following.

If C has products, then for any object V ∈ C there is a contravariant ad-
junction as in Section 2.1, where: D = Set, F = C(−, V) and G = V −, where
V X denotes the X-fold product of V in C. (This adjunction was studied in [19]
for the purpose of combining distributive laws.) By the Yoneda Lemma, natu-
ral transformations α : F ⇒ FT are in bijective correspondence with algebras
g : TV → V . Routine calculation shows that the mate α[is a T -action if and
only if the corresponding g is an Eilenberg-Moore algebra for T .

Alternatively, one may assume that C = D is a symmetric monoidal closed
category and F = G = V − is the internal hom-functor based on an object V ∈ C.
(This adjunction was studied in [16] in the context of coalgebraic modal logic.)
If, additionally, the functor T is strong, then every algebra g : TV → V gives rise
to α : F ⇒ FT , whose components αX : V X → V TX are given by transposing:

TX ⊗ V X
strength // T (X ⊗ V X)

T (application) // TV
g // V

If T is a strong monad and g is an E-M algebra for T then α[is a T -action.
If C = D = Set then both these constructions apply (and coincide). All

examples in Section 4 fit in this special case. In this situation more can be
said [13, 12]: the resulting contravariant adjunction can be factored through the
category of Eilenberg-Moore algebras for T .

6 Determinization

The classical powerset construction turns a non-deterministic automaton into
a deterministic one, with states of the former interpreted as singleton states in
the latter. More generally, a determinization procedure of coalgebras involves a
change of state space. We define it as follows:

Definition 2. For a functor T , a (T)-determinization procedure of H-coalgebras
consists of a natural transformation η : Id⇒ T , a functor K and a lifting of T :

Coalg(H)

��

T̄ // Coalg(K)

��
C T // C

We will mostly focus on cases where H = TB or H = BT , but in Section 7 we
will consider situations where T is not directly related to H.

The classical powerset construction is correct, in the sense that the language
semantics of a state x in a non-deterministic automaton coincides with the fi-
nal semantics (the accepted language) of the singleton of x in the determinized

automaton. At the coalgebraic level, we capture trace semantics by a forget-
ful logic. Then, a determinization procedure is correct if logical equivalence on
the original system coincides with behavioural equivalence on the determinized
system along η:

Definition 3. A determinization procedure (T̄ , η) of H-coalgebras is correct
wrt. a logic for H if for any H-coalgebra (X, f) with logical semantics s[:

1. s[factors through h◦ηX , for any K-coalgebra homomorphism h from T̄ (X, f).
2. there exists a K-coalgebra homomorphism h from T̄ (X, f) and a mono m so

that s[= m ◦ h ◦ ηX .

The first condition states that behavioural equivalence on the determinized sys-
tem implies logical equivalence on the original system; the second condition
states the converse.

In [13] a more specific kind of determinization was studied, arising from a
natural transformation κ : TB ⇒ KT and a monad (T, η, µ). A determinization
procedure Tκ for TB-coalgebras maps any f : X → TBX to

Tκ(X, f) = (TX
Tf // TTBX

µBX // TBX
κX // KTX) (6)

It is easy to see that this construction respects homomorphisms, so that this
indeed yields a lifting. For examples see, e.g., [13] and the end of this section.

The same type of natural transformation can be used to determinize BT -
coalgebras, by mapping any f : X → BTX to

Tκ(X, f) = (TX
Tf // TBTX

κTX // KTTX
KµX // KTX) (7)

This is considered in [25, 13] for the case where B = K and κ is a distributive
law of monad over functor. Again, this conforms to Definition 2.

The following gives a sufficient condition for the logical semantics on TB or
BT -coalgebras to coincide with a logical semantics on determinizedK-coalgebras.

Theorem 1. Suppose (T, η, µ) is a monad and there are α, ρ, κ as above and
θ : LF ⇒ FK so that α[is an action and the following diagram commutes:

TBG
Tρ[+3

κG

��

TGL
α[L +3 GL

KTG
Kα[+3 KG

θ[+3 GL.

Let s[be the semantics of α} ρ on some coalgebra f : X → TBX, and let s[θ be
the semantics of θ on Tκ(X, f) (see (6)). Then s[= s[θ ◦ ηX .

The same holds for the determinization procedure Tκ (see (7)) for BT -
coalgebras and the logic ρ} α.

This can be connected to behavioural equivalence if θ is expressive:

Corollary 1. Let (T, η, µ), α, ρ, θ and κ be as in Theorem 1, and suppose that θ
is an expressive logic. Then the determinization procedure Tκ of TB-coalgebras
(6) is correct with respect to α } ρ, and the determinization procedure Tκ of
BT -coalgebras (7) is correct with respect to ρ} α.

To illustrate all this, we show that the determinization of weighted automata
as given in [13] is correct with respect to weighted language equivalence. (There
is no such result for tree automata, as they do not determinize [8].)

Example 7. Fix a semiring S, let B = A × − + 1 and K = S × −A. Consider
κ : MB ⇒ KM defined as follows [13]: κX(ϕ) = (ϕ(∗), λa.λx.ϕ(a, x)). This
induces a determinization procedure Mκ as in (6), for weighted automata. Let
α}ρ be the forgetful logic for weighted automata introduced in Example 6, and
recall that the logical semantics on a weighted automaton is the usual notion of
acceptance of weighted languages. We use Corollary 1 to prove that the deter-
minization procedureMκ is correct with respect to α} ρ. To this end, consider
the logic θ[: S×(S−)A ⇒ SA×−+1 given by the isomorphism, similar to the logic
in Example 4. Since θ[is componentwise injective, θ is expressive. Moreover, α[

is an action (see Section 5). The only remaining condition is commutativity of
the diagram in Theorem 1, which is a straightforward calculation. This proves
correctness of the determinization Mκ with respect to the semantics of α} ρ.

Example 8. In [25] it is shown how to determinize non-deterministic automata
of the form BPω, where BX = 2 ×XA, based on κ = 〈κo, κt〉 : Pω(2 × −A) ⇒
2×(Pω−)A (note that B = K in this example) where κoX(S) = tt iff ∃t.(tt, t) ∈ S,
and κtX(a) = {x | x ∈ t(a) for some (o, t) ∈ S}. In Example 4 we have seen an
expressive logic ρ and an α so that the logical semantics of ρ}α yields the usual
language semantics. It is now straightforward to check that the determinization
κ together with the logics ρ, α above satisfies the condition of Theorem 1, where
θ = ρ. By Corollary 1 this shows the expected result that determinization of
non-deterministic automata is correct with respect to language semantics.

Moreover, recall that the logic ρ } β, where β is as defined in Example 4,
yields a conjunctive semantics. Take the natural transformation τ = 〈τo, τ t〉 of
the same type as κ, where τo(S) = tt iff o = tt for every (o, t) ∈ S, and τ t = κt.
Using Corollary 1 we can verify that this determinization procedure is correct.

One can also get the finite trace semantics of transition systems (Example 4) by
turning them into non-deterministic automata (then, B and K are different).

Example 9. Alternating automata (Example 5) can be determinized into non-
deterministic automata; we show that this determinization preserves language
semantics, using Theorem 1. Notice that this does not involve final semantics.

Let ρ, α, β and τ be as in Example 8, and let χ : PωPω ⇒ PωPω be as
follows: χX(S) = {−→g (S) | g : S → X s.t. g(U) ∈ U for each U ∈ S}, that is,
given a family of sets S, it returns all possible sets obtained by choosing one
element from each set in S. Now the composition Bχ◦ τPω : PωBPω ⇒ BPωPω
yields a determinization procedure, turning an alternating automaton into a
non-deterministic one over sets of states (to be interpreted as conjunctions). We

instantiate Theorem 1 by T = Pω, the functor B from the theorem is BT =
2 × TA, the logics ρ and θ are instantiated respectively to ρ and ρ } α from
above. Then commutativity of the diagram in Theorem 1 boils down to the
similar diagram for τ given in Example 8, and that χ distributes conjunction
over disjunction. Finally, β[is an action of the powerset monad (Section 5).
By Theorem 1 we obtain that for any alternating automaton: s[= s[ρ}α ◦ ηX
where X is the set of states, s[is the semantics and s[ρ}α is the usual language
semantics on the non-deterministic automaton obtained by determinization.

7 Logics whose mates are isomorphisms

Corollary 1 provides a sufficient condition for a given determinization procedure
to be correct with respect to a forgetful logic. However, in general there is no
guarantee that a correct determinization procedure for a given logic exists. In-
deed it would be quite surprising if it did: the language semantics of (weighted)
tree automata (see Example 6) is an example of a forgetful logic, and such au-
tomata are well known not to determinize in a classical setting.

In this section we provide a sufficient condition for a correct determinization
procedure to exist. Specifically, for an endofunctor B, we assume a logic ρ whose
mate ρ[: BG⇒ GL is a natural isomorphism. This condition holds, for instance,
for ρ in Example 4 and for θ in Example 7. It has been studied before in the
context of determinization constructions [13]. Its important consequence is that
s[in (3) from Section 3 can be seen as a B-coalgebra morphism from (X,h)
to (GΦ, (ρ[Φ)−1 ◦ Ga). Moreover, as shown in [13, Lemma 6] (see also [11]), the
construction mapping any g : LA → A to (ρ[A)−1 ◦ Gg : GA → BGA defines a

functor Ĝ : Alg(L)→ Coalg(B), which is a contravariant adjoint to F̂ (see (1) in
Section 3). As a result, Ĝ maps initial objects to final ones, hence (GΦ, (ρ[Φ)−1 ◦
Ga) is a final B-coalgebra, therefore s[is a final coalgebra morphism from (X,h).

In the remainder of this section, due to space limitations we only deal with
TB-coalgebras. However, a completely analogous development can be made for
BT -coalgebras with little effort.

7.1 Canonical determinization

The setting of a forgetful logic α}ρ where the mate of ρ is a natural isomorphism
gives rise to the following diagram:

Coalg(TB)
F̃ //

��

Alg(L)
Ĝ --

��

Coalg(B)

��

F̂

mm

C F // D
G

,, C
F

ll

The functor F̃ arises from the logic α } ρ, the functor F̂ arises from ρ and
its contravariant adjoint Ĝ from the fact that ρ[is iso. Note that we make no
assumptions on α; in particular, α[need not be an action.

The composition ĜF̃ is a determinization procedure, turning a coalgebra
f : X → TBX into a B-coalgebra with carrier GFX. Explicitly, ĜF̃ (X, f) is

GFX
GFf // GFTBX

GαBX // GFBX
GρX // GLFX

(ρ[)−1
FX// BGFX (8)

This determinization procedure is correct with respect to α} ρ in the following
sense, much stronger then required by Definition 3:

Theorem 2. For any TB-coalgebra (X, f), the logical semantics s[of α} ρ on
(X, f) coincides with the final semantics of the B-coalgebra ĜF̃ (X, f) precom-
posed with ι : Id⇒ GF .

Strictly speaking, this is not an example of a determinization procedure as
understood in [13]: the functor ĜF̃ lifts GF rather than T , and the lifting does
not arise from a distributive law κ as described in Section 6. However, it is
almost an example: after an encoding of TB-coalgebras as GFB-coalgebras, it
arises from a distributive law κ : GFB ⇒ BGF .

Indeed, define Γ : Coalg(TB)→ Coalg(GFB) by:

Γ (X, f) = (X, γBX ◦ f) where γ = α[F ◦ Tι : T ⇒ GF. (9)

GFB-coalgebras have a forgetful logic ᾱ} ρ, where

ᾱ = εF : F ⇒ FGF, equivalently, ᾱ[= Gε : GFG⇒ G.

(Note that ᾱ[is always a GF -action on G.) It is not difficult to calculate that
for any TB-coalgebra (X, f), the logical semantics of ᾱ}ρ on Γ (X, f) coincides
with the logical semantics of α} ρ on (X, f). Thus, encoding TB-coalgebras as
GFB-coalgebras does not change their logical semantics.

Thanks to the mate ρ[: BG ⇒ GL being an isomorphism, the monad GF
has a distributive law over B, denoted κ : GFB ⇒ BGF and defined by:

GFB
Gρ +3 GLF

(ρ[)−1F +3 BGF (10)

Using κ we can apply the determinization construction from [13] as described in
Section 6, putting K = B. Straightforward diagram chasing using Corollary 1
shows that the determinization procedure (GF)κ defined as in (6) is correct with
respect to ᾱ} ρ. Altogether, a two-step determinization procedure arises:

Coalg(TB)

��

Γ // Coalg(GFB)

��

(GF)κ // Coalg(B)

��
C Id // C GF // C

and it is correct with respect to α } ρ. Correctness can also be proved without
Corollary 1, since the procedure coincides with the construction from (8):

Theorem 3. (GF)κ ◦ Γ = Ĝ ◦ F̃ .

7.2 A connection to Brzozowski’s algorithm

Call a B-coalgebra observable if the morphism into a final coalgebra (assuming
it exists) is mono [3]. The above canonical determinization procedure can be
adapted to construct, for any TB-coalgebra, an observable B-coalgebra whose
final semantics coincides with the logical semantics on the original one.

Indeed, suppose Alg(L) has an (epi,mono)-factorization system. Given a coal-
gebra f : X → TBX, the algebra homomorphism s : (Φ, a) → F̃ (X, f) then de-
composes as s = m ◦ e, where m and e are mono and epi respectively; call the
L-algebra in the middle (R, r). Recall that Gs is a coalgebra homomorphism
into the final coalgebra. In the present situation it decomposes as follows:

ĜF̃ (X, f)
Gm

//

Gs

''
Ĝ(R, r)

Ge
// Ĝ(Φ, a)

and recall that Ĝ(Φ, a) is a final coalgebra. Because G is a right adjoint, it maps
epis to monos, therefore Ge is mono and Ĝ(R, r) is observable. Moreover, thanks
to Theorem 2 we have s[= Ge◦Gm◦ιX , hence the final semantics Ge of Ĝ(R, r)
coincides with the logical semantics on (X, f) along the mapping Gm ◦ ιX .

Note that the construction of Ĝ(R, r) from (X, f) is not a determinization
procedure itself according to Definition 2, as it does not lift any functor on C.

The above refers to TB-coalgebras, but as everything else in this section,
analogous reasoning works also for BT -coalgebras. For T = Id and B = 2×−A,
that (almost) corresponds to Brzozowski’s algorithm for minimization of deter-
ministic automata [4]. Applying F̃ to the given automaton corresponds to revers-
ing transitions and turning final states into initial ones. Epi-mono factorization
corresponds to taking the reachable part of this automaton. Then, applying Ĝ
reverses transitions again, and turns initial states into final ones. Our abstract
approach stops here; the original algorithm concludes by taking the reachable
part again, which ensures minimality.

For a more detailed coalgebraic presentation of several concrete examples
see [3]. Another approach, based on duality theory, is presented in [2]; this is
related to the present development, but it uses dual equivalences rather than
plain contravariant adjunctions. Another coalgebraic approach to minimization,
based on factorization structures, is in [1]. A precise connection of these works
to the present development is yet to be understood.

Notice that we only assume the mate of ρ to be iso; there are no requirements
on α. The mate of ρ is iso for the logic from Example 4. Thus, we can instantiate
α to obtain observable deterministic automata from non-deterministic automata
or even alternating automata (by taking T = PωPω and, for α, the composition
of α and β from Example 5). The logic θ from Example 7 is covered as well, so
one can treat Moore automata and weighted automata. However, the abstract
construction of an observable automaton does not necessarily yield a concrete
algorithm, as discussed for the case of weighted automata in [3].

References

1. J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius, and A. Silva. A coalge-
braic perspective on minimization and determinization. In Procs. FOSSACS 2012,
volume 7213 of LNCS, pages 58–73, 2012.

2. N. Bezhanishvili, C. Kupke, and P. Panangaden. Minimization via duality. In
Procs. WoLLIC 2012, volume 7456 of LNCS, pages 191–205, 2012.

3. F. Bonchi, M. M. Bonsangue, H. H. Hansen, P. Panangaden, J. J. M. M. Rutten,
and A. Silva. Algebra-coalgebra duality in Brzozowski’s minimization algorithm.
ACM Trans. Comput. Log., 15(1):3, 2014.

4. J. Brzozowski. Canonical regular expressions and minimal state graphs for definite
events. Mathematical Theory of Automata, 12:529–561, 1962.

5. C. Ĉırstea. From branching to linear time, coalgebraically. In Procs. FICS 2013,
volume 126 of EPTCS, pages 11–27, 2013.

6. C. Ĉırstea. A coalgebraic approach to linear-time logics. In Procs. FOSSACS 2014,
volume 8412 of LNCS, pages 426–440, 2014.

7. C. Ĉırstea and D. Pattinson. Modular construction of modal logics. In Procs.
CONCUR 2004, volume 3170 of LNCS, pages 258–275, 2004.

8. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

9. S. Goncharov. Trace semantics via generic observations. In Procs. CALCO 2013,
volume 8089 of LNCS, pages 158–174, 2013.

10. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.
Log. Meth. Comp. Sci., 3(4), 2007.

11. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. and Comp., 145:107–152, 1997.

12. B. Jacobs. Introduction to coalgebra. Towards mathematics of states and obser-
vations, 2014. Draft.

13. B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. J.
Comp. and Sys. Sci., 2014. To appear.

14. B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. J. Log. and
Comput., 20(5):1041–1068, 2010.

15. C. Kissig and A. Kurz. Generic trace logics. CoRR, abs/1103.3239, 2011.

16. B. Klin. Coalgebraic modal logic beyond sets. ENTCS, 173:177–201, 2007.

17. C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: An overview.
Theor. Comput. Sci., 412(38):5070–5094, 2011.

18. A. Kurz, S. Milius, D. Pattinson, and L. Schröder. Simplified coalgebraic trace
equivalence. CoRR, abs/1410.2463, 2014.

19. M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics.
Theor. Comput. Sci., 327(1-2):135–154, 2004.

20. S. Mac Lane. Categories for the working mathematician, volume 5. Springer, 1998.

21. D. Pavlovic, M. Mislove, and J. Worrell. Testing semantics: Connecting processes
and process logics. In Procs. AMAST 2006, volume 4019 of LNCS, pages 308–322,
2006.

22. J. Power and D. Turi. A coalgebraic foundation for linear time semantics. ENTCS,
29:259–274, 1999.

23. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sci., 249(1):3–80, 2000.

24. L. Schröder and D. Pattinson. Modular algorithms for heterogeneous modal logics
via multi-sorted coalgebra. Math. Struct. in Comp. Sci., 21(2):235–266, 2011.

25. A. Silva, F. Bonchi, M. M. Bonsangue, and J. J. M. M. Rutten. Generalizing
determinization from automata to coalgebras. Log. Meth. Comp. Sci., 9(1), 2013.

A A useful lemma about mates

Note that standard counit-unit equations for adjunctions amount to:

F
εF +3

EEEEEEEEE

EEEEEEEEE FGF

Fι

��
F

G
ιG +3

EEEEEEEEE

EEEEEEEEE GFG

Gε

��
G

(11)

Two simple but useful diagrams show how logics relate to their mates along
the basic adjunction:

Lemma 1. For any logic ρ : LF ⇒ FB, the following diagrams commute:

B
ιB +3

Bι

��

GFB

Gρ

��
BGF

ρ[F

+3 GLF

L
εL +3

Lε

��

FGL

Fρ[

��
LFG

ρG
+3 FBG.

Proof. For the first diagram, chase:

B
ιB +3

Bι

��

GFB
GFBι

px hhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

Gρ

��
BGF

ιBGF +3

ρ[F +3

GFBGF
GρGF

+3 GLFGF

GLεF !)LLLLLLLLL

LLLLLLLLL GLF
GLFιks

GLF

where everything commutes, clockwise starting from top-left: by naturality of ι,
by naturality of ρ, by (11) above, and by definition of ρ[.

The other diagram is similar. ut

B Details of Section 4

In this section we expand on some of the examples considered in Section 4.

Example 2. The semantics of the logic α } ρ on an automaton f : X → PωBX
is the unique map s[making the following diagram commute (see (3)):

X

f

��

s[// 2A
∗

��
Pω(A×X + 1)

PωBs[// Pω(A× 2A
∗

+ 1)
Pωρ[A∗ // Pω(2A×A

∗+1)
α[LA∗ // 2A×A

∗+1

and we spell out the details:

s[(x)(ε) = tt iff (α[LA∗ ◦ Pωρ[A∗ ◦ PωBs[◦ f(x))(∗) = tt

iff ∃ϕ ∈ (Pωρ[A∗ ◦ PωBs[◦ f(x)).ϕ(∗) = tt

iff ∃t ∈ f(x).(ρ[A∗ ◦Bs[(t))(∗) = tt

iff ∗ ∈ f(x)

where ε is the empty word, and for all a ∈ A and w ∈ A∗:

s[(x)(aw) = tt iff ∃t ∈ f(x).(ρ[A∗ ◦Bs[(t))(a,w) = tt

iff ∃t ∈ f(x).Bs[(t) = (a, ϕ) and ϕ(w) = tt

iff ∃y ∈ X.(a, y) ∈ f(x) and s[(y)(w) = tt

Example 5. The semantics of ρ}α} β on a coalgebra 〈o, f〉 : X → BPωPωX is
as follows (see (3)):

X

〈o,f〉
��

s[// 2A
∗

��
BPωPωX

BPωPωs[// BPωPω2A
∗BPωβ

[
A∗// BPω2A

∗ Bα[A∗ // B2A
∗ ρ[A∗ // 2LA

∗

(12)

Spelling this out yields s[(x)(ε) = o(x), and

s[(x)(aw) = tt iff (α[A∗ ◦ Pωβ[A∗ ◦ (PωPωs[)(f(x)(a)))(w) = tt

iff ∃ϕ ∈ Pωβ[A∗ ◦ (PωPωs[)(f(x)(a)) s.t. ϕ(w) = tt

iff ∃U ∈ (PωPωs[)(f(x)(a)) s.t. ϕ(w) = tt for all ϕ ∈ U
iff ∃S ∈ f(x)(a) s.t. s[(y)(w) = tt for all y ∈ f(x)(a)

Example 6. The logical semantics of this forgetful logic on a weighted tree au-
tomaton f : X →MΣX is the unique map s[: X → SΣ∗∅ making the following
diagram commute:

X

f

��

s[// SΣ∗∅

��
MΣX

MΣs[//MΣSΣ∗∅
Mρ[Σ∗∅//MSΣΣ∗∅

α[ΣΣ∗∅ // SΣΣ∗∅

(13)

In order to understand this semantics, we first compute the composite logic
α[Σ ◦Mρ[: MΣS− ⇒ SΣ :

(α[ΣΦ ◦Mρ[Φ(ϕ))(σ(w1, . . . , wn)) =
∑

ψ∈SΣΦ
(Mρ[Φ(ϕ))(ψ) · ψ(σ(w1, . . . , wn))

=
∑

ψ∈SΣΦ

∑
γ∈ρ[Φ

−1
(ψ)

ϕ(γ) · ψ(σ(w1, . . . , wn))

=
∑

ϕ1,...,ϕn∈SΦ
ϕ(σ(ϕ1, . . . , ϕn)) ·

∏
i=1..n

ϕi(wi)

The next step is to instantiate this to Σ∗∅ and precompose with MΣs[:

(α[ΣΣ∗∅ ◦Mρ[◦MΣs[(ψ))(σ(t1, . . . , tn))

=
∑

ϕ1,...,ϕn∈SΣ∗∅
(MΣs[(ψ))(σ(ϕ1, . . . , ϕn)) ·

∏
i=1..n

ϕi(ti)

=
∑

ϕ1,...,ϕn∈SΣ∗∅

∑
x1∈s[

−1
(ϕ1)

...
xn∈s[

−1
(ϕn)

ψ(σ(x1, . . . , xn)) ·
∏
i=1..n

ϕi(ti)

=
∑

x1,...,xn∈X
ψ(σ(x1, . . . , xn)) ·

∏
i=1..n

s[(xi)(ti)

It follows that the diagram (13) commutes if and only if for all σ(t1, . . . tn) and
all x ∈ X:

s[(x)(σ(t1, . . . , tn)) =
∑

x1,...,xn∈X
f(x)(σ(x1, . . . , xn)) ·

∏
i=1..n

s[(xi)(ti)

which is the semantics presented in Example 6.

The map s[is computed by induction; this is done by turning a weighted tree
automaton f into the Σ-algebra F̂ (f), which can be viewed as a deterministic
weighted bottom-up tree automaton. We spell out the details. Given a coalgebra
f : X →MΣX the computed Σ-algebra looks as follows:

Σ(SX)
ρX // SΣX

αΣX // SMΣX
Sf // SX

We have

αX(ϕ)(ψ) =
∑
x∈X

ϕ(x) · ψ(x)

and ρ = ρ[:

(SΣηX ◦ Sρ
[
SX ◦ ηΣSX (σ(ϕ1, . . . , ϕn)))(τ(x1, . . . , xm))

= (Sρ
[
SX ◦ΣηX ◦ λψ.ψ(σ(ϕ1, . . . , ϕn)))(τ(x1, . . . , xm))

= (ρ[SX ◦ΣηX(τ(x1, . . . , xm)))(σ(ϕ1, . . . , ϕn))

= ρ[SX (τ(λϕ.ϕ(x1), . . . , λϕ.ϕ(xm)))(σ(ϕ1, . . . , ϕn))

=

{∏
i=1..n ϕi(xi) if σ = τ

0 otherwise

The algebra is as follows:

F̂ (X, f)(σ(ϕ1, . . . , ϕn))(x) = (Sf ◦ αΣX ◦ ρX(σ(ϕ1, . . . , ϕn)))(x)

= (αΣX ◦ ρX(σ(ϕ1, . . . , ϕn)))(f(x))

=
∑
t∈ΣX

f(x)(t) · ρX(σ(ϕ1, . . . , ϕn))(t)

=
∑

x1,...,xn∈X
f(x)(σ(x1, . . . , xn)) ·

∏
i=1..n

ϕi(xi)

C Proof of Theorem 1

Proof. For TB-coalgebras, consider the following diagram.

TX
Ts[//

Tf

��

TGΦ
α[Φ //

TGa

��

GΦ

Ga

��															

TTBX
TTBs[//

µBX

��

TTBGΦ
TTρ[Φ //

µBGΦ

��

TTGLΦ
Tα[LΦ //

µGLΦ

��
(a)

TGLΦ

α[LΦ
��

TBX
TBs[//

κX

��

TBGΦ
Tρ[Φ //

κGΦ

��
(b)

TGLΦ
α[LΦ // GLΦ

KTX
KTs[// KTGΦ

Kα[Φ // KGΦ
θ[Φ

88rrrrrrrrrr

where a : LΦ → Φ is the initial L-algebra and the rest is from the statement of
the theorem. Everything commutes: (a) since α[is an action, (b) by assumption,
the upper left rectangle since s[is the logical semantics, and the rest by natu-
rality. Commutativity of the outside means that α[Φ ◦ Ts[is the (unique) logical
semantics of θ on Tκ(X, f). Now α[Φ ◦Ts[◦ηX = α[Φ ◦ηGΦ ◦s[= s[by naturality
and the fact that α[is an action.

For BT -coalgebras, we have the following diagram.

TX
Ts[//

Tf

��

TGΦ
α[Φ //

TGa

��

GΦ

Ga

��
TBTX

TBTs[//

κTX

��

TBTGΦ
TBα[Φ //

κTGΦ

��

TBGΦ

(b)

Tρ[Φ //

κGΦ

��

TGLΦ
α[LΦ // GLΦ

KTTX
KTTs[//

KµX

��

KTTGΦ

(a)

KTα[Φ //

KµGΦ

��

KTGΦ
Kα[Φ // KGΦ

θ[Φ

::ttttttttt

KTX
KTs[// KTGΦ

Kα[Φ

44hhhhhhhhhhhhhhhhhhh

where commutativity of (a) and (b) is as above, the rectangle commutes since s[

is the logical semantics, and the rest commutes by naturality. Thus α[Φ ◦ Ts[is
the logical semantics of θ on Tκ(X, f), and precomposition with ηX again yields
the desired result.

D Proof of Corollary 1

Proof. Let T̄ be either Tκ or Tκ, let (X, f) be a TB-coalgebra or a BT -coalgebra
respectively, and s[the semantics of the forgetful logic on f . Under the above
assumptions, by Theorem 1 we have s[= s[θ ◦ ηX , where s[θ is the logical se-
mantics of θ on T̄ (X, f). Since s[θ is a logical semantics it factors through any
coalgebra homomorphism, yielding condition (1) of correctness, and since it is
expressive it decomposes as a coalgebra homomorphism followed by a mono,
yielding condition (2).

E Proof of Theorem 2

Proof. Recall that s[is computed by transposing the unique morphism s from
the initial L-algebra to F̃ (X, f), which means that s[= Gs ◦ ιX . Applying Ĝ
to the initial algebra yields a final coalgebra, and therefore Gs is the morphism
from ĜF̃ (X, f) into the final coalgebra.

F Details of examples in Section 6

Example 7. The condition from Theorem 1 is commutativity of the following
diagram:

M(A× S− + 1)
Mρ[+3

κS−

��

M(SA×−+1)
α[A×−+1+3 SA×−+1

S× (MS−)A
id×(α[)A +3 S× (S−)A

θ[+3 SA×−+1

Indeed, we have

Kα[Φ ◦ κSΦ(ϕ) = (ϕ(∗), λa.α[(λψ.ϕ(a, ψ))) = (ϕ(∗), λa.λw.
∑
ψ∈SΦ

ϕ(a, ψ) · ψ(w))

and thus

(θ[Φ ◦Kα[Φ ◦ κSΦ(ϕ))(∗) = ϕ(∗)

(θ[Φ ◦Kα[Φ ◦ κSΦ(ϕ))(a,w) =
∑
ψ∈SΦ

ϕ(a, ψ) · ψ(w)

which coincides with α[A×Φ+1 ◦Mδ[Φ as computed (in a more general setting) in
Appendix B.

Example 8. We treat the determinization 〈τo, τ t〉 described in the example. The
relevant condition of Theorem 1 instantiates to commutativity of:

Pω(2× (2−)A)
Pωρ[+3

〈τo
2− ,τ

t
2− 〉

��

Pω(2A×−+1)
β[L +3 2A×−+1

2× (Pω(2−))A
id×(β[)A+3 2× (2−)A

ρ[+3 2A×−+1

We have, for any set Φ:

(β[LΦ ◦ Pωρ[Φ)(S)(∗) = tt iff ∀ϕ ∈ (Pωρ[Φ)(S).ϕ(∗) = tt

iff ∀(o, t) ∈ S.o = tt

iff τo2Φ(S) = tt

iff (ρ[Φ ◦Bβ[Φ ◦ 〈τo2Φ , τ
t
2Φ〉)(S)(∗) = tt

and for any a ∈ A, w ∈ Φ:

(β[LΦ ◦ Pωρ[Φ)(S)(a,w) = tt iff ∀ϕ ∈ (Pωρ[Φ)(S).ϕ(a,w) = tt

iff ∀(o, t) ∈ S.t(a)(w) = tt

iff ∀ϕ ∈ τ t2Φ(S)(a).ϕ(w) = tt

iff β[Φ(τ t2Φ(S)(a))(w) = tt

iff ((β[Φ)A ◦ τ t2Φ)(S)(a)(w) = tt

iff (ρ[Φ ◦Bβ[Φ ◦ 〈τo2Φ , τ
t
2Φ〉)(S)(a,w) = tt

which proves commutativity of the diagram.

Example 9. The condition of Theorem 1 in this case is that the following com-
mutes:

TBTG
TBα[//

τTG

��

TBG
Tρ[//

τG

��

TGL
β[L // GL

BTTG
BTα[//

BχG

��

BTG
Bβ[// BG

ρ[
;;wwwwwwww

BTTG
BTβ[// BTG

Bα[
::uuuuuuuuu

The square commutes by naturality, and the upper right shape is diagram for
proving correctness of the determinization procedure τ , considered in Example 8
(commutativity is proved above). The lower shape expresses that χ distributes
conjunction over disjunction, which is the case indeed.

G Details of Section 7.1

Lemma 2. For any h : X → TBX, the semantics of ᾱ} ρ on Γ (h) = γBX ◦ h
coincides with the semantics of α} ρ on h.

Proof. For any coalgebra h : X → TBX, consider the diagram:

GFBX
GFBs[// GFBGΦ

GFρ[Φ
��

TGFBX

α[FBX

OO

TGFBs[// TGFBGΦ

α[FBGΦ

00

TGFρ[Φ // TGFGLΦ
α[FGLΦ //

TGεLΦ

��

GFGLΦ

GεLΦ

��
TBX

TιBX

OO

TBs[
// TBGΦ

Tρ[Φ

// TGLΦ

TιGLΦ

88qqqqqqqqqq
TGLΦ

α[LΦ

// GLΦ

X

h

OO

s[
// GΦ.

Ga

OO

Here the top row commutes by naturality of α[, and the middle row by naturality
of ι, by (11), and by naturality of α[. As a result, the outer shape commutes
if and only if the bottom row does. The bottom row defines s[as the logical
semantics of α} ρ on h (see (3) in Section 3). Similarly, the outer shape defines
s[as the logical semantics of ᾱ } ρ on γBX ◦ h. Since both diagrams define s[

uniquely, the two logical semantics must coincide. ut

Lemma 3. The determinization procedure (GF)κ defined as in (6) is correct
with respect to ᾱ} ρ.

Proof. We use Corollary 1, where we put T = GF , α = ᾱ defined above, K = B,
and θ = ρ. Obviously then θ is expressive, and it is easy to check that ᾱ = Gε is

an action. The only remaining condition is the diagram from Theorem 1, which
is the outer shape of:

GFBG
GFρ[+3

GρG

��

GFGL

GεL

��
GLFG

(ρ[)−1FG

��

GLε +3 GL

(ρ[)−1

��

id

IIIIIIIII

IIIIIIIII

BGFG
BGε

+3 BG
ρ[

+3 GL.

Here, the top square commutes by Lemma 1 and the bottom square by naturality
of (ρ[)−1.

H Proof of Theorem 3

Consider any coalgebra f : X → TBX. The B-coalgebra ĜF̃ (X, f) is defined
as in (8). Recall that Γ (X, f) = γBX ◦ f , for γ defined by (9). Recall also that
(GF)κ is defined as in (6), for κ as in (10). Combining all this, (GF)κ ◦Γ (X, f)
is the coalgebra:

GFX
GFf // GFTBX

GFTιBX

��

GFBX
GρX // GLFX

(ρ[)−1
FX// BGFX.

GFTGFBX
GFα[FBX// GFGFBX

GεFBX

OO

The first and the last two components of it are identical to those of (8). To show
the remaining components equal, instantiate the following diagram at BX and
mapped along G:

F
α +3

εF

��

FT

FGF
Fα[F

+3 FTGF.

FTι

KS

It is easy to check that this commutes, from the definition of α[from α as in (2).

