
Nondeterministic and co-Nondeterministic
Implies Deterministic, for Data Languages

Bartek Klin†, S lawomir Lasota‡, and Szymon Toruńczyk§(B)

University of Warsaw, Warsaw, Poland
{klin,sl,szymtor}@mimuw.edu.pl

Abstract. We prove that if a data language and its complement are
both recognized by nondeterministic register automata (without guess-
ing), then they are also recognized by deterministic ones.

Keywords: Data languages, register automata, determinizability, de-
terministic separability, sets with atoms, orbit-finite sets, nominal sets

1 Introduction

Register automata are finite-state automata equipped with a finite number of
registers that can store values from an infinite data domain. When processing an
input string, an automaton compares the current input data value to its registers
and, based on this comparison and on the current control state, it chooses its
next control state and possibly stores the input value in one of its registers. In
the original model, introduced over 25 year ago by Francez and Kaminski [15],
data values can only be compared for equality and not for any other property.
Subsequent extensions of the model allow for comparing data values with respect
to some fixed relations such as a total order, or introduce alternation, variations
on the allowed form of nondeterminism, etc.

It appears that register automata lack most of the good properties known
from the classical theory of finite automata. For example, while languages of
nondeterministic register automata are closed under unions and intersections,
they are not closed under complement, and they do not determinize. Moreover,
the expressivity of register automata is very sensitive to natural variants and
extensions. Any of the following relaxations of the model leads to a strict increase
of expressive power (see [15, 23, 1] for details):

– increasing the number of registers (when this number is bounded),
– extension from one-way to two-way automata,
– extension from deterministic to unambiguous, nondeterministic or alternat-

ing ones,

† Supported by the European Research Council (ERC) under the EU Horizon 2020
programme (ERC consolidator grant LIPA, agreement no. 683080).

‡ Supported by the NCN grant 2019/35/B/ST6/02322.
§ Supported by the NCN grant 2017/26/D/ST6/00201.

2 B. Klin, S. Lasota, and S. Toruńczyk

– adding the capability to nondeterministically guess data values.

In fact, almost every combination of these extensions leads to a different class
of recognized languages. Furthermore, no satisfactory characterizations of lan-
guages of register automata in terms of regular expressions [17, 20] or logic [23,
12] are known. There are a few positive results: a simulation of two-way non-
deterministic automata by one-way alternating automata with guessing [1], a
Myhill-Nerode characterization of languages of deterministic automata [16, 4, 5],
and the well-behaved class of languages definable by orbit-finite monoids [2],
which admits equivalent characterisations in terms of logic [11] and a syntactic
subclass of deterministic automata [7]. Nevertheless, register automata satisfy
almost no semantic equivalences that hold for classical finite automata.

Contribution. Our primary contribution is a collapse result: if a language and its
complement are both recognized by nondeterministic register automata (NRA),
then they are both recognized by deterministic ones (DRA). In symbols, we prove
the following equality of language classes:

NRA ∩ co-NRA = DRA.

This result is shown under the assumption that the data values can be compared
only for equality, and it turns out to be quite fragile. For instance, it fails if the
automata can compare data values using a total order relation. It also fails if
NRA are additionally equipped with the capability of guessing fresh data values,
even when data values can only be compared for equality.

Our secondary contribution is a collapse result for NRA with 1 register only
(1-NRA), but over an arbitrary data domain that admits well quasi-order (wqo),
meaning roughly that finite induced substructures of the data domain, ordered by
embeddings, form a wqo. This includes both equality and ordered data domains.
In short, we prove the following inclusion of language classes:

1-NRA ∩ co-1-NRA ⊆ DRA.

The inclusion is strict, as some DRA languages are not recognizable by 1-NRA.

Our proofs are mostly self-contained, but use basic notions and results about
sets with atoms [1], also known as nominal sets [24]. In particular, automorphisms
of the data domain play a central role in our arguments, and we extensively use
notions such as finite support and orbit-finiteness of sets. In both results, we
prove that for every data language L ∈ NRA ∩ co-NRA the set of derivative
languages w−1L is orbit-finite, i.e., finite up to automorphism of data values. The
collapse then follows from an orbit-finite version of the Myhill-Nerode theorem.

In our primary contribution, orbit-finiteness of the set of derivative languages
is a consequence of a key technical result (Lem. 1), an abstract observation about
orbit-finite families of sets, which we believe may be of independent interest. As
another example application of this lemma, we give a new proof of decidability
of universality for unambiguous register automata (URA).

Nondet. and co-Nondet. Implies Det., for Data Languages 3

Relation to other work. Our primary result partially confirms a conjecture of
Thomas Colcombet [10], according to which every two disjoint languages of NRA
with guessing are separable by a language recognized by an URA. Working in the
special case when the NRA are complementing and have no guessing, we show
more: both languages are then recognized not only by an URA but by a DRA.

NRA do not have good algorithmic properties: while the emptiness problem is
PSpace-complete [14], the universality problem (does a given automaton accept
all data words?) is undecidable [15] (it is decidable only for 1-NRA [14]). Univer-
sality becomes decidable for URA, as shown recently in [22] (2-ExpSpace upper
bound, improved to 2-ExpTime upper bound in [8]), and language containment
and equality for URA reduce polynomially to universality (see [8, Lemma 8]). As
mentioned above, our results allow us to re-prove this decidability result.

Register automata have been intensively investigated, with respect both to
their foundational properties [15, 25, 17, 23] and to their applications to XML
databases and logics [14] (see [26] for a survey). There are several other ways to
extend finite-state machines with a capability to recognize languages over infinite
alphabets. These include, apart from register automata: their abstract version
– nominal automata or automata over atoms [4, 5, 1]; symbolic automata [13];
pebble automata [21]; and data automata [3, 6].

Acknowledgments. We thank Lorenzo Clemente for posing the collapse question
studied in this paper, and Joanna Ochremiak and Radek Piórkowski for valuable
discussions.

2 Data languages and register automata

The model of register automata, as considered in this paper, is parametrized
by an underlying relational structure Atoms over a finite vocabulary Σ. This
structure constitutes a data domain; its elements are called atoms. A register au-
tomaton processes sequences of atoms, possibly coupled with labels from a fixed
finite set. It may store atoms read from the input in its registers, and compare
them with previously stored atoms using relations in Σ (equality included).

Here are some example data domains:

– Equality atoms: natural numbers with equality (N,=). Since equality is the
only available relation, any other countably infinite set could be used instead.

– Dense order atoms: rational numbers with the standard order (Q,6). Again,
any countably infinite dense order without endpoints could be used instead.

– Nested equality atoms (universal equivalence relation): (N2,=1,=) where =1

is the equality on the first coordinate: (n1, n2) =1 (m1,m2) if n1 = m1.

In the following we consider input alphabets of the form S ×Atoms, where
S is a finite set of labels. A data word is a finite sequence w ∈ (S × Atoms)∗,
and a data language is a set of data words.

A nondeterministic register automaton (NRA) A consists of:

– an input alphabet of the form S ×Atoms, for some finite set S,

4 B. Klin, S. Lasota, and S. Toruńczyk

– a positive integer r ∈ N (the number of registers),
– a finite set of control states (locations) Q,
– subsets I, F ⊆ Q of initial resp. accepting states,
– a finite set ∆ of transition rules of the form

(p, s, ϕ, st, q) ∈ ∆, (1)

where p, q ∈ Q, s ∈ S, ϕ(x1, . . . , xr, x) is a quantifier-free Σ-formula with
free variables in {x1, . . . , xr, x}, and st ∈ {1, . . . , r,none}.

Intuitively, ϕ defines a condition which needs to be satisfied by the register
contents (x1, . . . , xr) and by the current atom (x) for a transition to happen,
and st specifies the register in which the input atom is stored after the transition,
st = none meaning that it is not to be stored in any register.

An NRA A is deterministic (DRA) if it has exactly one initial state and if for
every two transition rules

(p, s, ϕ1, st1, q1), (p, s, ϕ2, st2, q2) ∈ ∆,

such that ϕ1 ∧ ϕ2 is satisfiable in Atoms, we have st1 = st2 and q1 = q2. We
write r-NRA, resp. r-DRA, when the number of registers r is fixed.

A configuration q(a) ∈ Q× (Atoms ∪ {⊥})r of A consists of a control state
q ∈ Q and a content of registers a ∈ (Atoms ∪ {⊥})r, where ⊥ means that the
content of a register is undefined (i.e., the register is empty). A rule (1) induces

a transition p(a)
(s,a)−→ q(b) from a configuration p(a) to a configuration q(b) if:

– Atoms, (a, a) |= ϕ (by definition, this fails if ϕ refers to any variable that
has the undefined value ⊥ in a), and

– b is obtained from a by placing a on coordinate st if st 6= none, and b = a
otherwise.

A run of A on a data word w = (s1, a1) · · · (sn, an) is a sequence

q0(a0)
(s1,a1)−→ q1(a1)

(s2,a2)−→ . . .
(sn,an)−→ qn(an),

where q0 is an initial state and a0 is a tuple where the content of all registers is
undefined. We then say that the configuration qn(an) is reachable along w. The
finite set of all configurations reachable along w is finite, and it is denoted A(w).

A run is accepting if it ends in a configuration with an accepting state. A
data word w is accepted by A if there is an accepting run of A on w. A NRA is
unambiguous (URA) if every word has at most one accepting run.

The language of A, denoted L(A), is the set of all data words accepted by A.

3 Examples

In all our examples, the finite component S of data alphabets will be a singleton
set. We will therefore omit S when describing automata, so (1) will simplify to

(p, ϕ, st, q) ∈ ∆.

Nondet. and co-Nondet. Implies Det., for Data Languages 5

Graphically, a transition rule like this will be presented as

p
ϕ ↓n

** q if st = n, and p
ϕ

** q if st = none.

Furthermore, // p means that p is initial and q means that q is accepting.

Example 1. For the equality atoms, consider the language L ⊆ Atoms∗ of those
words where the first letter appears at some later position:

L = {a1 . . . an | n > 1, a1 = ai for some i > 1}.

This language is recognized by a DRA with one register and three control states:

// p
> ↓1

** q
x=x1

**

x 6=x1

EE r
>

ff

This automaton stores the first letter in its only register and then remains in
the (non-accepting) state q until the letter is encountered again; then it moves
to the accepting state r and stays there.

Example 2. Still for the equality atoms, consider the reverse of the language
from Example 1, i.e., the language of those words where the last letter appears
at some earlier position. This language is not recognized by any DRA, but it is
recognized by a NRA with one register and three control states:

// p
> ↓1

**

>
EE q

x=x1
**

x 6=x1

EE r

x=x1

ff
x6=x1

jj

This automaton nondeterministically decides to store a letter in its register and
then checks that the last letter is equal to the stored one.

Example 3. Still for the equality atoms, consider the complement of the language
from Example 2, i.e., the language L of those words where the last letter does
not appear at any earlier position. (In particular, we consider the empty word
and all length-one words to be in this language.)

The language L is not recognized by any NRA. However, it becomes recogniz-
able if automata are additionally equipped with the ability of guessing, that is,
of updating the contents of their registers with arbitrary atoms, possibly differ-
ent from the one that comes with the current input letter. Unlike NRA without
guessing, those with guessing are closed under reversal [18, Def. 3 and Corollary
31], and the reversal of the language L is even recognized by a DRA.

Example 4. Automata from Ex. 1-3 work just as well over the dense order do-
main: the formulas in their transition rules simply do not use the order relation.
However, over densely ordered atoms something more happens: the language
from Ex. 3 is recognizable by a NRA without guessing.

The automaton has two registers. The idea is that, at any moment in an
accepting run where these registers store atoms a1 < a2:

6 B. Klin, S. Lasota, and S. Toruńczyk

(a) in the part of the word read so far, no letter is in the open interval (a1, a2),
(b) the last letter of the word will belong to that open interval.

Condition (a) can be ensured easily: upon reading a letter a that belongs to
the open interval (a1, a2), the automaton will (enter an accepting state for the
moment and) put a in one of the two registers. The register is chosen nondeter-
ministically so that condition (b) remains true. If the currently input letter is not
in the interval (a1, a2), the automaton enters a rejecting state for the moment,
with the registers kept unchanged.

Special treatment is needed to deal with situations where the last letter of
the word will be larger than (or smaller than) all the letters encountered so far.
These are taken care of by introducing special control states where one of the
two registers remains undefined.

Example 5. Fix k > 2. Over equality atoms, consider the language Lk of all
words w of length at least k whose kth last letter is equal to the last letter. Then
Lk is recognised by a NRA with one register and k + 1 states, depicted below:

// 0
> ↓1

**

>
EE 1

> ++ . . .
> ,,

k − 1
x=x1 ++

k

The complement of Lk is also recognised by an NRA, similar to the one above,
but with x 6= x1 in place of x = x1 in the last transition, and with an additional
component for accepting words of length smaller than k. The language Lk is also
recognised by a DRA with k registers, where register number i stores the letter
which appeared on the latest seen position with index congruent to i, mod k. It
has k states, for counting the index of the current position, mod k.

4 Main results

Our primary contribution is:

Theorem 1. Over equality atoms, if a data language and its complement are
both recognizable by nondeterministic register automata, then they are both rec-
ognizable by deterministic register automata.

Note that this result fails if automata with guessing are considered (see Ex. 3).
Indeed, the language from Ex. 2 is recognized by a 1-NRA, and its complement in
Ex. 3 is recognized by a 1-NRA with guessing, but they are not deterministically
recognizable.

Moreover, the result fails (even without guessing) for densely ordered atoms.
The counterexample is the same: the language from Ex. 2 is recognized by a 1-
NRA, and its complement is recognized by a 2-NRA over densely ordered atoms
as explained in Ex. 4, but they are not deterministically recognizable. Here the
use of two registers in NRA is necessary, due to our secondary contribution: for
a wide range of data domains, if a data language and its complement are both
recognized by 1-NRA, then they are recognized by DRA.

Nondet. and co-Nondet. Implies Det., for Data Languages 7

We prove this for any data domain Atoms which admits wqo in the following
sense. A well quasi-order (wqo) is a quasi-order (Z,6) such that for every
infinite sequence z1, z2, . . . ∈ Z there are 1 6 i < j with zi 6 zj . For a finite
set X, an X-labeled substructure of Atoms is a set B ⊆ Atoms together with
a labelling `B : B → X. For two X-labeled substructures B and C of Atoms,
we say that B embeds into C (written B � C) if some automorphism π of
Atoms, restricted to B, yields a label-preserving injection from B to C, so that
`B = `C ◦ π �B. Let ageX(Atoms) be the set of all finite labeled substructures
of Atoms, partially ordered by �. We say that Atoms admits wqo if for every
finite set X, the quasi-order (ageX(Atoms),�) is a wqo. All data domains
listed in Section 2 admit wqo [19]. They are also oligomorphic (see Sec. 5 below).

Theorem 2. Over any oligomorphic atoms that admit wqo, if a data language
and its complement are both recognizable by nondeterministic register automataa
with one register, then they are recognizable by deterministic register automata.

The rest of the paper consists of the proofs of Thms. 1 and 2, in Sec. 6 and 8,
respectively, preceded by Sec. 5 that recalls basic definitions of the setting of sets
with atoms which are used in the proofs. Our main technical lemma is proved in
Sec. 6. Besides proving Thm. 1, in Sec. 7 we explain how it implies decidability
of universality for unambiguous register automata.

5 Orbit-finite automata

Our proofs rely on some basic notions and results of the theory of sets with
atoms [1], also known as nominal sets [24]. In this section we recall what is
necessary to follow our arguments; this is part of a uniform abstract approach
to register automata developed in [4, 5, 1].

Let Aut(Atoms) denote the group of all automorphisms of a relational struc-
ture Atoms. (For the equality atoms (N,=) this means the group of all bijec-
tions; for the densely ordered atoms (Q,6), the group of monotone bijections.)
We consider sets equipped with an action of this group, typically, Atomsn for
some n > 0 or Atoms∗ with the componentwise action.

Group actions. A (left) action of a group G on a set X is a mapping · :
G×X → X such that 1 ·x = x and σπ ·x = σ · (π ·x) for all σ, π ∈ G and x ∈ X.
We then say that G acts on X, or that X is a G-set. For x ∈ X, we call the
set {π · x | π ∈ G} the orbit of x; or an orbit in X. The orbits in X partition X
into disjoint sets. We call X orbit-finite if it has finitely many orbits.

Group actions canonically extend along familiar set-theoretic constructions:
if X and Y are G-sets then the cartesian product X×Y , the disjoint union X]Y ,
the set of sequences X∗, the powerset P(X) etc. are all G-sets, in the expected
way. For example, G acts componentwise on X × Y via π · (x, y) = (π · x, π · y).

Oligomorphicity. A structure Atoms is oligomorphic if for every n ∈ N, the
componentwise action of Aut(Atoms) on Atomsn induces finitely many orbits.
All structures considered in this paper are oligomorphic; an example of a non-
oligomorphic structure is the total order of integers.

8 B. Klin, S. Lasota, and S. Toruńczyk

Supports. Let Aut(Atoms) act on a setX and let x ∈ X. A support of x is any set
S ⊆ Atoms such that the following implication holds for all π ∈ Aut(Atoms):

if π(s) = s for all s ∈ S then π · x = x.

An element x ∈ X is finitely supported if it has some finite support.
For many structures Atoms, finite supports of a fixed element are always

closed under intersections. Then every finitely supported x has the least support,
denoted sup(x). This happens in particular for the equality atoms (as proved
in [24, Prop. 2.3] or in [5, Cor. 9.4]) and for the dense order atoms (as proved
in [5, Prop. 9.5]). It is easy to prove that taking least supports commutes with
group actions: π · sup(x) = sup(π · x) for every x ∈ X and π ∈ Aut(Atoms).

Equivariance. An element (or a subset, relation, function. . .) of an Aut(Atoms)-
set is called equivariant if it is supported by the empty set; equivalently, it is
fixed by every automorphism of Atoms. For example:

– a subset Z of an Aut(Atoms)-set X is equivariant if and only if it is a union
of orbits in X (indeed, it is then equivariant as an element of P(X));

– a relation R ⊆ X × Y is equivariant if and only if xRy ↔ (π · x)R(π · y)
for all x ∈ X, y ∈ Y and π ∈ Aut(Atoms). An equivariant function is a
function whose graph is an equivariant relation.

Standard set-theoretic relations such as set membership, or set containment, are
equivariant. Indeed, x ∈ Z ↔ (π · x) ∈ (π · Z), etc.

If ∼ is an equivariant equivalence relation on X then Aut(Atoms) acts on
the set X/∼, by π · C = {π · x | x ∈ C} for each ∼-equivalence class C ⊆ X.

Register automata. Fix a structure Atoms and let R be an NRA with in-
put alphabet S × Atoms, control states Q, and with r registers. The group
Aut(Atoms) acts on all the components of R:

– on the input alphabet A := S ×Atoms, via π · (s, a) = (s, π(a));
– on the set C := Q× (Atoms] {⊥})r of all configurations of R, via

π · q(a1, . . . , ar) = q(π(a1), . . . , π(ar)) (where π(⊥) = ⊥);

– the set of initial configurations and the set of accepting configurations are
both equivariant subsets of C;

– the set of transitions of R is an equivariant relation: if p(a)
(s,a)−→ q(a′) is a

transition of R, then so is π · p(a)
(s,π(a))−→ π · q(a′).

Furthermore, each of these components is orbit-finite, and each of its elements
has a finite support. Using the terminology of [5], this means that register au-
tomata are a special case of orbit-finite automata.

By equivariance of all the components above, the language L(R) of a register
automaton is an equivariant subset of A∗ = (S ×Atoms)∗, considered with the
componentwise action of Aut(Atoms) on A∗, i.e.

π · ((s1, a1), . . . , (sn, an)) = ((s1, π · a1), . . . , (sn, π · an)).

Nondet. and co-Nondet. Implies Det., for Data Languages 9

Myhill-Nerode theorem. In order to prove that a language is deterministically
recognizable, we use the following Myhill-Nerode characterization.

For an alphabet A = S × Atoms and data language L ⊆ A∗, consider its
Myhill-Nerode equivalence ∼L ⊆ A∗ ×A∗, defined by

u ∼L v if and only if uw ∈ L↔ vw ∈ L for all w ∈ A∗.

Theorem 3. [5, Thm. 3.8 and Thm. 6.4] Let Atoms be oligomorphic and
L ⊆ (S × Atoms)∗ be an equivariant language. Then L is deterministically
recognizable if and only if (S ×Atoms)∗/∼L

is orbit-finite.

Among other things, this theorem immediately implies that the language from
Ex. 2 is not deterministically recognizable, neither for the equality atoms nor
for the total order atoms. Indeed, two words are Myhill-Nerode equivalent with
respect to that language if and only if they contain the same set of letters. There-
fore, the language cannot be deterministically recognizable, since automorphisms
of Atoms preserve the number of distinct letters in a word.

6 Proof of Theorem 1

In the proof, we will make use of an abstract notion of a split of a family of sets.
For any family F of subsets of a set X, a split of F is a pair (U, V) of sets

which partition X: X = U] V , such that both U and V are finite unions of
elements of F. Obviously, for any splits to exist, X =

⋃
F must hold.

In the following lemma, Atoms is the equality atoms.

Lemma 1. For any Aut(Atoms)-set X with finitely supported elements, and
any equivariant, orbit-finite family F of finitely supported subsets of X, the set
G of splits of F is orbit-finite. Moreover, a bound on the number of orbits of G

and the maximal size of the support of an element in G are computable from the
analogous bounds for F.

As should be clear after reading Sec. 5, the set of splits of F is considered with
the natural action of Aut(Atoms): π · (U, V) = (π · U, π · V), where π ·W =
{π · x | x ∈W} for W ⊆ X.

We will prove Lem. 1 in Sec. 6.2. For now, let us show how the lemma implies
Thm. 1.

Let A and B be two NRA over an alphabet A = S ×Atoms such that L(A)
and L(B) partition A∗. We will show that the Myhill-Nerode equivalence of
L = L(A) has orbit-finitely many classes. Together with Thm. 3, this will prove
that L is deterministically recognizable.

Let C be the set of configurations of A]B (the disjoint union of A and B.)
Hence, C consists of tuples of the form q(a) where q is either a state of A or
a state of B (but not both), and a is a tuple of elements of Atoms] {⊥} of
appropriate length. For c ∈ C denote

Lc := {w ∈ A∗ | A]B accepts w from configuration c} ,

10 B. Klin, S. Lasota, and S. Toruńczyk

and let F = {Lc | c ∈ C}. Since C is equivariant and orbit-finite, so is F. More-
over, if c = q(a) then Lc is finitely supported by the atoms in a. Clearly, every
word (s1, a1) · · · (sn, an) ∈ A∗ is supported by {a1, . . . , an}. This means that F

and X = A∗ satisfy the assumptions of Lem. 1, therefore F has only orbit-finitely
many splits.

Every word v ∈ A∗ induces a partition of A∗ into two disjoint sets:

Uv = {w ∈ A∗ | vw ∈ L} and Vv = {w ∈ A∗ | vw /∈ L} .

Moreover, the sets Uv and Vv are finite unions of sets from F, namely

Uv =
⋃

c∈A(v)

Lc and Vv =
⋃

c∈B(v)

Lc.

These unions are finite because automata A and B allow no guessing and so
A(v) and B(v), the sets of configurations reachable in A resp. B by reading the
word v, are finite. Therefore, (Uv, Vv) is a split of F, for any word v.

By definition, u ∼L v if and only if Uu = Uv. Consider any two words
v, w ∈ A∗ such that the splits (Uv, Vv) and (Uw, Vw) are in the same orbit, i.e.,
Uw = π · Uv (and therefore also Vw = π · Vv) for some automorphism π. Since L
is an equivariant language, we have π ·Uv = Uπ·v and so w ∼L π · v. Theorem 1
now follows from Thm. 3.

6.1 Examples

Before proving Lem. 1, we give some examples of families of splits, which may
be helpful in developing some intuitions.

The first example shows that the number of orbits of splits may grow as fast
as double-exponentially, relative to the least supports of elements of F.

Example 6. For the equality atoms, fix k > 1 and let X be the set of all k-tuples
of pairwise distinct atoms. For each S ⊆ Atoms with |S| = k, let S(k) = Sk ∩X
and let MS = X \ S(k). Note that S(k) is finite, with k! elements.

The family F ⊆ P(X) of all singletons in X and all sets MS as above is
equivariant and has two orbits. Each set in F has a support of size k.

For any K ⊆ S(k), consider the partition of X into K and X \ K. Then
(K,X \K) is a split of F, as K =

⋃
v∈K {v} and X \K = MS ∪

⋃
v∈S(k)\K {v}.

Moreover, every split (U, V) of F is of the form (K,X \ K) or (X \ K,K)
for some S and K as above. Indeed, suppose U =

⋃
U and V =

⋃
V for some

finite U,V ⊆ F. As U ∪ V = X is infinite, U ∪ V must contain MS for some set
S of k atoms. Suppose without loss of generality that MS ∈ U. By disjointness
of U and V , the set V ⊆ F may only contain singletons {v}, for v ∈ S(k). Then
(U, V) = (X \K,K), where K =

⋃
V.

For K,K ′ ⊆ S(k), the splits defined by K and K ′ are in the same orbit only
if there is an automorphism π that fixes S as a set, such that π ·K = K ′. Since

there are only k! bijections on S, the set of splits of F has at least 2k!

k! orbits. ut

Nondet. and co-Nondet. Implies Det., for Data Languages 11

The next example shows the difference between splits and the finite subfam-
ilies of F that define those splits: the set of those families may be orbit-infinite.

Example 7. Let X be the set of all finite sets of equality atoms. For any distinct
atoms a, b, define Ea,b, Da,b ⊆ X by:

Ea,b = {F ∈ X | a ∈ F ↔ b ∈ F} Da,b = X \ Ea,b

And let F contain all sets Ea,b and Da,b. This F has two orbits.
Obviously, (U, V) = (X, ∅) is a split of F; it is enough to take U = {Da,b, Ea,b}

and V = ∅ for any fixed a, b. However, there are many more minimal families
U and V that achieve the same effect. Indeed, for any number n, and for any
pairwise distinct atoms a1, . . . , an, consider:

U = {Da1,a2 , Da2,a3 , . . . , Dan−1,an , Ea1,an} V = ∅

It is easy to check that
⋃
U = X. All such families are minimal (in fact, removing

any element from U would prevent it from being the part of any split of F), and
for each n these families form a separate orbit. ut

The following example shows that the statement of Lem. 1 fails if the atoms
are (Q,6). It is obtained from Ex. 4 via the translation given in the proof of
Thm. 1, and a simplification replacing each word by its last letter.

Example 8. The atoms are (Q,6). Let X = Q and let F ⊆ P(X) consist of:

– singletons {q} ⊆ X, for q ∈ Q;
– open intervals (p, q) ⊆ X, for p < q in Q ∪ {−∞,+∞}.

Then F has five orbits (here ±∞ are fixed under the action of Aut(Atoms)).
For any finite set K ⊆ X, consider the partition of X into K and X \K. Then
K =

⋃
q∈K {q} whereas X \ K is the union of all intervals (p, q), where p < q

are consecutive elements in K ∪ {−∞,+∞}. Hence, (K,X \K) is a split of F.
In particular, the set of all splits of F has infinitely many orbits, because the set
of finite subsets of X has infinitely many orbits. ut

6.2 Proof of Lemma 1

We prove by induction a stronger statement, where the atoms are assumed to
be an expansion of (N,=) by finitely many constants. In other words, in this
section we will assume that Atoms is a structure over a vocabulary that consists
of (equality and) a finite number of constant symbols; the universe of Atoms is
N, with the constants interpreted as some pairwise distinct numbers. The group
Aut(Atoms) then consists of all bijections of Atoms which fix every constant.

If Atoms is such a structure and T is a finite set of atoms all different
from the constants, then by AtomsT we denote the structure, over an extended
vocabulary, that arises from Atoms by interpreting all the atoms in T as ad-
ditional constants. Obviously, Aut(AtomsT) is a subgroup of Aut(Atoms), so
every action of Aut(Atoms) on a set X restricts to an action of Aut(AtomsT).

12 B. Klin, S. Lasota, and S. Toruńczyk

This restriction preserves and reflects the existence of finite supports: an element
x ∈ X is supported by some S in the action of Aut(Atoms) if and only if it is
supported by S \ T in the restricted action of Aut(AtomsT). In particular, if
Atoms is an expansion of (N,=) by finitely many constants, then every finitely
supported element x has a least support sup(x). Note that sup(x) never contains
any constants, since those can always be safely removed from any support.

For a subset U of an orbit-finite equivariant set F, its dimension dim(U) is
the maximum size of the least support of an element of U. This makes sense
even if U is infinite, because F is orbit-finite and sets from the same orbit have
least supports of the same size. In particular, dim(F) is well defined.

The following lemma says that adding constants to atoms preserves orbit-
finiteness. It is a standard result in the theory of sets with atoms, see e.g. [1,
Lem. 3.19] or [24, Lem. 5.22], indeed it is a fundamental property of oligomorphic
structures, but we re-prove it here to extract explicit bounds:

Lemma 2. Fix a finite set T ⊆ Atoms. For any orbit-finite Aut(Atoms)-set F
with l orbits, the corresponding action of Aut(AtomsT) on F is also orbit-finite,
with at most l · (|T |+ 1)dim(F) orbits.

Proof. Assume first that F has only one orbit in the Aut(Atoms)-action, i.e.,
that l = 1. Let d = dim(F). Let Y denote the set of d-tuples of pairwise distinct
atoms different from the constants in Atoms. This is a single-orbit set under the
componentwise action of Aut(Atoms). Pick any x0 ∈ F. Let y0 = (a1, . . . , ad) ∈
Y be an enumeration of sup(x0). There is a unique equivariant surjection f : Y →
X such that f(π · y0) = π · x0 for all π ∈ Aut(Atoms). (The function f is total
since Y has one orbit; it is well defined because y0 enumerates a support of
x0, and it is surjective since X has one orbit.) Two tuples in Y are in the
same orbit in the action of Aut(AtomsT) if and only if they contain the same
arrangement of atoms from T at the same positions. There are at most (|T |+1)d

such arrangements, (in fact fewer than this if d > 1, because tuples in Y are
pairwise distinct), so Y has at most (|T |+ 1)d such orbits. X is an image of the
equivariant function f : Y → X, so the same bound applies to X. For a set F

with l orbits, each of dimension at most d, the bound simply multiplies by l. ut

From now on consider Atoms as described above, and let X and F be as in
the statement of Lem. 1. The following key lemma says that every split of F has
a support of a bounded size.

Lemma 3. Let U] V be a split of F and let U,V be finite subfamilies of F

such that
⋃
U = U and

⋃
V = V . Then U and V each have a support of size at

most N , for some bound N computable only from dim(U),dim(V),dim(F) and
the number of orbits in F.

The crux of this lemma is that the number N does not depend on the split
U] V . It only depends on the number of orbits in F, its dimension dim(F), and
on dim(U) and dim(V) (which, anyway, are bounded from above by dim(F)).

Nondet. and co-Nondet. Implies Det., for Data Languages 13

Proof (of Lem. 3). We proceed by induction on k = dim(U)+dim(V). Fix k > 0
and assume that the statement of the lemma holds for all smaller values of k.
Without loss of generality, we may assume that ∅ does not belong to U nor V

(as it can be safely removed from each of them).

For a finitely supported set F ⊆ X define

F] := {π · y | π ∈ Aut(Atoms), y ∈ F, sup(y) ∩ sup(F) = ∅} .

Intuitively, F] arises by taking all elements of F that are “fresh for F”, i.e., ones
whose supports share no atoms with the support of F , and then by applying ar-
bitrary atom automorphisms to those elements. Note that that F] is equivariant
and F] = (π · F)] for any automorphism π.

Claim 1 X =
⋃
F∈U∪V F

].

Proof. Take any x ∈ X. Let S =
⋃
F∈U∪V sup(F). Since U and V are finite, S is

a finite set. Pick an automorphism π such that its inverse π−1 maps sup(x) to
a set disjoint with S. Consider the element y = π−1 · x ∈ X. Since U ∪ V = X,
there must be some F ∈ U ∪ V such that y ∈ F . Then x ∈ F]. ut

Let us first prove the lemma for the special case where X = F] for some
F ∈ U∪V. Suppose that X = F] for some F ∈ U (the case F ∈ V is symmetric).

Claim 2 Every y ∈ X with sup(y) ∩ sup(F) = ∅ belongs to F .

Proof. Take any y as above. As X = F], there is some π and x ∈ F such that
y = π · x and sup(x) ∩ sup(F) = ∅. Pick an automorphism θ such that:

– θ agrees with π on sup(x), mapping it bijectively to sup(y),
– θ fixes sup(F) pointwise.

Such a θ exists since sup(x) and sup(y) are both disjoint from F . Then θ · x =
π ·x = y by the first property above, and θ ·x ∈ θ ·F = F by the second property.
Altogether, y ∈ F . ut

Claim 3 For every G ∈ V, sup(F) ∩ sup(G) 6= ∅.

Proof. We show that if sup(G) is disjoint from sup(F) then G must be empty,
contradicting our previous assumption.

Suppose x ∈ G. Pick an automorphism π which fixes sup(G) pointwise and
maps sup(x) to a set disjoint with sup(F). Such a π exists because sup(G) and
sup(F) are disjoint. Letting y := π · x, we have y ∈ F by Claim 2, and moreover
y = π ·x ∈ π ·G = G. Then y ∈ F ∩G ⊆ U ∩V = ∅, a contradiction. This proves
G = ∅, which in turn contradicts the assumption that ∅ 6∈ V. ut

Denote T = sup(F). If T = ∅ then by Claim 3, V has dimension 0 and
therefore V is supported by the empty set. So we may assume that T 6= ∅. For
the same reason we may assume that the family V is not empty.

14 B. Klin, S. Lasota, and S. Toruńczyk

Let AtomsT be obtained from Atoms by including the elements of T as
new constants. Hence, AtomsT extends Atoms by at most r constants, where
r := dim(F).

Let l be the number of orbits in F. By Lem. 2, the family F, treated as a
family of sets over the atoms AtomsT , is still orbit-finite, with the number of
orbits l′ depending only on l and r. Clearly, U] V remains a split of F. Note
that if F ∈ F is supported by some set S over Atoms, then F is supported by S,
indeed even by S \ T , over AtomsT . In particular, the dimension of F does not
increase by moving from Atoms to AtomsT . More interestingly, by Claim 3,
the least supports of all the elements in V actually decrease when considering
AtomsT as atoms. Since V is not empty, the dimension of V strictly decreases
and it follows that dim(U) + dim(V) < k over AtomsT . Applying the inductive
assumption yields a set T ′ of size N ′, depending on k − 1 and l′, such that
T ′ supports V over AtomsT . By construction, V is supported by T ∪ T ′ over
Atoms. Note that

|T ∪ T ′| 6 N ′′ := N ′ + r.

This concludes the proof in the special case when X = F] for some F ∈ U ∪ V.
In the general case, for each F ∈ U ∪ V define:

FF :=
{
G ∩ F]

∣∣ G ∈ F
}

UF :=
{
G ∩ F]

∣∣ G ∈ U
}

VF :=
{
G ∩ F]

∣∣ G ∈ V
}

UF := U ∩ F] =
⋃

UF VF := V ∩ F] =
⋃

VF .

Then
⋃
FF = F] and (UF , VF) is a split of FF which falls into the special

case considered above. Hence, UF has some support SF of size at most N ′′.
Then U is supported by S :=

⋃
F∈U∪V SF . Note that SF only depends on the

orbit of F , as F] = (π · F)] for any automorphism π. As there are l such orbits
contained in F, it follows that S has size at most N := N ′′l. This concludes the
inductive step, and the proof of Lem. 3. ut

Using Lem. 3, we now proceed to prove Lem. 1.

Proof (of Lemma 1). Consider an equivariant set X and an equivariant, orbit
finite family F of finitely supported subsets of X. Let ((Ui, Vi))i∈I be a family
of splits of F. By Lem. 3, each one of these splits is supported by some set of a
bounded size. Applying suitable automorphisms to each of these splits, we can
obtain a family of splits ((U ′i , V

′
i))i∈I such that, for all i ∈ I:

– U ′i and Ui are in the same orbit, and
– each U ′i is supported by the same set S.

It is now enough to show that there are only finitely many subsets U ⊆ X
supported by a fixed set S, which are unions of elements of F.

By Lem. 2 it follows that F has finitely many orbits under the action of
the group Aut(AtomsS) of all automorphisms which fix S pointwise. (Here, as

Nondet. and co-Nondet. Implies Det., for Data Languages 15

in the statement of Lem. 1, Atoms are the pure equality atoms without any
constants.) If a set U ⊆ X supported by S contains some F ∈ F as a subset,
then it contains π · F for every π ∈ Aut(AtomsS). In other words, U contains
(the union of) the entire orbit in F under the action of Aut(AtomsS). Since we
assume that U is a union of elements of F, it is a union of (the unions of) orbits
in F, and there are only finitely many of these.

This completes the proof of Lem. 1. ut

7 Application to Unambiguous Register Automata

Lemma 1 is interesting in its own right and its applications are not limited to
the ones mentioned in Sec. 4. We shall now show how it can be used to decide
universality (and hence also language containment and equality, cf. [8, Lem. 8])
of URA over the pure equality atoms Atoms.

Theorem 4. [22, Thm. 14] The language containment and equality problems
are decidable for unambiguous register automata.

As an application of Lem. 1, we give an alternative decidability proof for the
universality problem of URA. First, we prove a consequence of Lem. 1.

Lemma 4. Let X be an equivariant set over equality atoms, and let F be an
equivariant, orbit-finite family of finitely supported subsets of X. There is a
bound M , computable from dim(F) and the number of orbits in F, such that
every P ⊆ F which is a partition of X has size at most M .

Proof. Let G = {U | (U, V) is a split of F}. By Lem. 1, G is orbit-finite. More-
over, its elements are finitely supported. Let P ⊆ F be a partition of X into
nonempty subsets. For each U ⊆ P, the union

⋃
U belongs to G; in particular,

we have 2|P| elements of G, each containing different sets in P. The proof is
completed by the following counting argument.1

Let S =
⋃
F∈P sup(F). An S-orbit in G is an orbit in G with respect to the

action of those atom permutations which fix S pointwise. Equivalently, it is an
orbit in G viewed as a Aut(AtomsS)-set. By Lem. 2, for any finite S ⊆ Atoms,
the number of S-orbits in G is bounded by l · (|S| + 1)k, where k and l are
computable from dim(F) and the number of orbits of F.

Two splits G,G′ ∈ G in the same S-orbit contain the same elements of P: if
G′ = π · G then by equivariance of F and G, for each F ∈ P we have F ⊆ G if
and only if π ·F ⊆ π ·G, but π ·F = F when π fixes S pointwise. Hence, for any
two distinct U,U′ ⊆ P, their unions

⋃
U and

⋃
U′ belong to different S-orbits

in G, so there are least 2|P| such orbits. As |S| 6 dim(F) · |P|, we get:

2|P| 6 l · (|S|+ 1)k 6 l · (dim(F) · |P|+ 1)k.

It follows that |P| is bounded by some M computable from k, l, and dim(F). ut
1 It exhibits the well-known fact that equality atoms have the NIP property studied

in model theory.

16 B. Klin, S. Lasota, and S. Toruńczyk

Lemma 4 has the following corollary, which is a strong restriction on the
structure of universal URA and easily yields Thm. 4.

Call a configuration c of a NRA A nonempty if the NRA accepts some word
from this configuration, i.e., the following language is nonempty:

Lc := {w ∈ A∗ | A accepts w from c}

Since NRA emptiness is decidable, it is not difficult to modify any given NRA to
one with only nonempty configurations. This transformation preserves URA, so
we may safely assume that we only consider URA with this property.

Corollary 1. Let A be a URA with nonempty configurations and which accepts
every input word. Then there is a computable bound M such that A may reach
at most M different configurations when reading any given input word.

Proof. Let A be an URA over an input alphabet A = S ×Atoms. Let C be the
set of configurations of A and let F := {Lc | c ∈ C} . Note that dim(F) is not
larger than the number of registers r of A, and the number of orbits in F is not
larger than the number of orbits of configurations in A, which in turn is equal to
the number of control states in A times the number of orbits in (Atoms]{⊥})r
(equal to the r + 1-st Bell number).

For each w ∈ A∗, the set A(w) ⊆ C of configurations reachable when reading
w is finite, since A has no guessing. Unambiguity of A implies that the family

Pw := {Lc | c ∈ A(w)} ⊆ F

consists of pairwise disjoint sets. If additionally L(A) = A∗, then Pw forms
a partition of A∗, so |Pw| 6 M where M is the bound from Lemma 4. As
|A(w)| 6 |Pw|, this yields the corollary. ut

Decidability of universality of URA now follows using standard ideas.

Proof (of Thm. 4, sketch). We use the notation of the proof of Cor. 1. The idea
is to construct the truncated powerset automaton whose states are sets of at
most M states of A.

Let C ′ denote the family of subsets of C of size at most M ; then C ′ is orbit-
finite. We define a deterministic automaton A′ with an infinite, but orbit-finite
state space C ′. Its transitions are X

a−→ Y, for X,Y ∈ C ′ such that

Y =
{
y ∈ C

∣∣∣ x a−→ y in A, x ∈ X
}
.

The initial state of A′ is the set C0 ⊆ C of initial configurations of A (unless
|C0| > M , but then L(A) 6= A∗ by the corollary). Accepting states are all states
X ∈ C ′ which contain an accepting configuration of A. All the ingredients of A′

are equivariant, orbit-finite sets, so A′ is an orbit-finite deterministic automaton,
and can be effectively constructed given A and M . Its language L(A′) is defined
as usual. By construction,

– L(A′) ⊆ L(A) ⊆ A∗;

Nondet. and co-Nondet. Implies Det., for Data Languages 17

– if L(A) = A∗ then L(A′) = A∗, by Cor. 1.

Hence, A′ is universal if and only if A is universal. Since A′ is orbit-finite,
universality of A′ can be effectively decided, using standard techniques for orbit-
finite automata [1, 5]: by first complementing and then testing emptiness. ut

8 Proof of Theorem 2

Towards proving Thm. 2, assume A and B are two complementing 1-NRA over
an alphabet A = S ×Atoms and that Atoms admit wqo.

Recall that configurations of a 1-NRA are either of the form q(a) where q is
a control state and a ∈ Atoms is the register value, or of the form q(⊥) when
the register value is still undefined. We assume, without losing generality, that
both register automata A and B immediately update their register, i.e., every
transition rule outgoing from an initial state updates the register.

Let Q and Q′ denote sets of control states of A and B, respectively, and
assume without losing generality that Q and Q′ are disjoint.

For every nonempty data word w ∈ A+, the set A(w) ∪ B(w) of configura-
tions of A and B reachable along w is finite, since NRA have no guessing, and
contains no undefined configurations of the form q(⊥) due to the immediate up-
date assumption. For every w ∈ A+ define a finite induced substructure Cw of
Atoms, labeled with the finite set P = P(Q ∪ Q′), as follows. The elements of
Cw are the atoms that appear in configurations in A(w) ∪B(w):

Cw = {a ∈ Atoms | (q, a) ∈ A(w) ∪B(w) for some state q.}

The labeling `w : Cw → P of Cw maps a ∈ Cw to the set of all control states
which appear in A(w) ∪B(w) together with a:

`w(a) = {q ∈ Q | (q, a) ∈ A(w)} ∪ {q ∈ Q′ | (q, a) ∈ B(w)} .

Let L = L(A). For each v ∈ A∗ define the partition of A∗ into:

Uv = {w ∈ A∗ | vw ∈ L} and Vv = {w ∈ A∗ | vw /∈ L} .

Recall that u ∼L v if and only if Uu = Uv.

Claim. Let u, v ∈ A+. If Cu � Cv then π · u ∼L v for some automorphism π.

Proof. By definition of �, there is some π ∈ Aut(Atoms) which maps Cu to a
substructure of Cv, so that π · Cu ⊆ Cv and

`u(a) = `v(π(a)) for a ∈ Cu. (2)

Let u′ = π · u. By equivariance of register automata, if A reaches a config-
uration (q, a) when reading u, then it reaches the configuration (q, π(a)) when
reading u′ = π · u. Hence, Cu′ ⊆ Cv and `u(a) = `u′(π(a)) for a ∈ Cu. Together
with (2) we get `u′(a) = `v(a) for all a ∈ Cu′ .

18 B. Klin, S. Lasota, and S. Toruńczyk

We show that this implies Uu′ = Uv, which will yield the claim as u′ = π · u.
Towards proving Uu′ ⊆ Uv take any w ∈ Uu′ ; then u′w ∈ L. Pick an accepting
run of A on u′w. Let q(a) be the configuration of A in this run reached after
reading the (nonempty) prefix u′. In particular, A accepts w starting from the
configuration q(a). Moreover, a ∈ Cu′ and q ∈ `u(a). As Cu′ ⊆ Cv and `u′(a) =
`v(a), it follows that A may reach the configuration q(a) after reading v. As w is
accepted by A from this configuration, it follows that A accepts vw, so w ∈ Uv.

The inclusion Vu′ ⊆ Vv is proved by a similar argument, using B instead of
A, since L(B) = A∗ \ L(A) = A∗ \ L. As Uu′ = A∗ \ Vu′ and Vv = A∗ \ Uv, the
inclusion Vu′ ⊆ Vv implies Uu′ ⊇ Uv. Altogether, Uu′ = Uv, so u′ ∼L v, yielding
the claim. ut

Theorem 2 now follows easily: assume towards a contradiction that A∗/∼L

is not orbit-finite. Then there is an infinite set X ⊆ A+ such that π(u) 6∼L v for
all distinct u, v ∈ X and π ∈ Aut(Atoms). As Atoms admits wqo, there are
distinct u, v ∈ X such that Cu � Cv. The claim above yields a contradiction. ut

9 Final remarks

We have studied a deterministic collapse for NRA: if a language and its comple-
ment are both recognized by NRA then they are also recognized by DRA. We
have proved this for register automata over equality atoms; and for automata
with one register only, over any atoms that admit wqo. We have also applied
our key technical observation, namely orbit-finiteness of the set of splits of an
orbit-finite family of sets, in order to re-prove decidability of universality of URA.

The assumed form A = S ×Atoms of the input alphabets is not important;
the results apply to arbitrary orbit-finite input alphabets A.

The proof of our main result (also of decidability of universality of URA) is
effective, with elementary bounds. In particular, given two NRA with comple-
menting languages the equivalent DRA from Thm. 1 has an exponential num-
ber of registers and a doubly-exponential number of orbits of states. The same
bounds apply to a DRA constructed in our proof of Thm. 4. Moreover, assum-
ing Atoms satisfy standard effectiveness assumptions, like decidability of their
first-order theory, one can also compute an equivalent DRA from Thm. 2.

Concerning possible generalisations of our results, we believe that Thm. 1
holds not only for equality atoms, but for arbitrary oligomorphic ω-stable atoms.
These include e.g. the nested equality atoms mentioned in Sec. 2. On the other
hand Thm. 1 does not extend to disjoint but non-complementing NRA languages:
it is not true that for every two disjoint NRA languages there is a DRA language
that separates them, i.e., includes one of them and is disjoint from the other.
The corresponding decision problem (given two disjoint NRA, does a separating
DRA exist?) is decidable when the number of registers of a separating automaton
is fixed [9], and open in general.

An intriguing open question (not unlike the wqo Dichotomy Conjecture [19])
is whether it is necessary for Atoms to admit wqo for Thm. 2 to hold.

Nondet. and co-Nondet. Implies Det., for Data Languages 19

References

1. M. Bojańczyk. Slightly infinite sets. A draft of a book available at
https://www.mimuw.edu.pl/∼bojan/paper/atom-book.

2. M. Bojanczyk. Data monoids. In Proc. STACS 2011, volume 9 of LIPIcs, pages
105–116. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

3. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011.

4. M. Bojańczyk, B. Klin, and S. Lasota. Automata with group actions. In Proc. LICS
2011, pages 355–364, 2011.

5. M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014.

6. M. Bojańczyk and S. Lasota. An extension of data automata that captures XPath.
Log. Methods Comput. Sci., 8(1), 2012.

7. M. Bojańczyk and R. Stefański. Single-use automata and transducers for infinite
alphabets. In Proc. ICALP 2020, volume 168 of LIPIcs, pages 113:1–113:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

8. L. Clemente and C. Barloy. Bidimensional linear recursive sequences and univer-
sality of unambiguous register automata. Submited for publication, 2020.

9. L. Clemente, S. Lasota, and R. Piórkowski. Timed games and deterministic sepa-
rability. In Proc. ICALP 2020, volume 168 of LIPIcs, pages 121:1–121:16, 2020.

10. T. Colcombet. Forms of Determinism for Automata. In STACS’12 (29th Sympo-
sium on Theoretical Aspects of Computer Science), volume 14, pages 1–23. LIPIcs,
2012.

11. T. Colcombet, C. Ley, and G. Puppis. Logics with rigidly guarded data tests. Log.
Methods Comput. Sci., 11(3), 2015.

12. T. Colcombet and A. Manuel. Generalized data automata and fixpoint logic.
In Proc. FSTTCS 2014, volume 29 of LIPIcs, pages 267–278. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2014.

13. L. D’Antoni and M. Veanes. Minimization of symbolic automata. In Proc. POPL
’14, pages 541–554. ACM, 2014.

14. S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009.

15. N. Francez and M. Kaminski. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

16. N. Francez and M. Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. Theor. Comput. Sci., 306(1-3):155–175, 2003.

17. M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets.
Fundam. Informaticae, 69(3):301–318, 2006.

18. M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic
reassignment. Int. J. Found. Comput. Sci., 21(5):741–760, 2010.

19. S. Lasota. Decidability border for Petri nets with data: WQO dichotomy conjec-
ture. In Proc. PETRI NETS 2016, volume 9698 of Lecture Notes in Computer
Science, pages 20–36. Springer, 2016.

20. L. Libkin, T. Tan, and D. Vrgoc. Regular expressions for data words. J. Comput.
Syst. Sci., 81(7):1278–1297, 2015.

21. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comput.
Syst. Sci., 66(1):66–97, 2003.

22. A. Mottet and K. Quaas. The containment problem for unambiguous register
automata. In Proc. STACS 2019, volume 126 of LIPIcs, pages 53:1–53:15, 2019.

20 B. Klin, S. Lasota, and S. Toruńczyk

23. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

24. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2013.

25. H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000.

26. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In
Proc. CSL 2006, volume 4207 of Lecture Notes in Computer Science, pages 41–57.
Springer, 2006.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

