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Abstract

Logical characterizations of probabilistic bisimulation and simulation for Labelled Markov Processes
were given by Desharnais et al. These results hold for systems defined on analytic state spaces and
assume countably many labels in the case of bisimulation and finitely many labels in the case of
simulation.

We revisit these results by giving simpler and more streamlined proofs. In particular, our proof
for simulation has the same structure as the one for bisimulation, relying on a new result of a
topological nature. We also propose a new notion of event simulation.

Our proofs assume countably many labels, and we show that the logical characterization of
bisimulation may fail when there are uncountably many labels. However, with a stronger assump-
tion on the transition functions (continuity instead of just measurability), we regain the logical
characterization result for arbitrarily many labels. These results arose from a game-theoretic un-
derstanding of probabilistic simulation and bisimulation.
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1. Introduction

Probabilistic modal logic (PML) was introduced by Larsen and Skou in [LS91] as a counterpart
of the classical Hennessy-Milner logic (HML) [HM85] for (reactive) probabilistic transition systems
(PTSs). In such systems, labelled transitions are assigned probabilities so that for every label a, if
a state has any a-labelled transitions then the probabilities of those transitions add up to 1. PML
extends classical propositional logic (with constants for true and false, negation, binary conjunction
and disjunction) with formulas of the form 〈a〉pφ, meaning that the probability of reaching a state
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that satisfies φ, after a transition labelled with a, is at least p. PML is expressive, i.e., its associated
logical equivalence coincides with probabilistic bisimilarity.

As it turns out, certain restricted fragments of PML are already expressive. In [LS91], expres-
siveness was proved for a fragment without negation but extended with a special formula to detect
the lack of transitions, on PTSs that satisfy the so-called minimal deviation assumption, i.e., ones
where there is a global non-zero lower bound on probabilities of transitions. It is easy to see that
this assumption implies that the PTS is finitely branching, i.e., that for every label a, every state
can make only finitely many a-labelled transitions. The expressiveness proof in [LS91] is similar
to the classical expressiveness proof for HML [HM85] in the case of (non-probabilistic) labelled
transition systems. The only difference is the observation, called a “duality lemma” in [LS91], that
under the minimal deviation assumption the relevant fragment of PML is essentially closed under
negation.

In [DEP02], PML was studied in the more general setting of labelled Markov processes, where
states form a measurable space rather than a discrete set. It was proved there, under the as-
sumption that the state space is analytic, that conjunctive PML, where propositional connectives
are restricted to truth and conjunction, is already expressive. This was surprising, as the anal-
ogous property fails for HML. The logical equivalence for conjunctive HML is simulation equiva-
lence [vG01], strictly coarser than bisimilarity. Moreover, the minimal deviation assumption, and
indeed the finite branching assumption, was dropped. That came at the price of a much more
complicated proof that relied on measure-theoretic results, even for discrete systems. The authors
of [DEP02] themselves noticed that “[t]he nature of the proof is quite different from proofs of other
Hennessy-Milner type results”.

These results were streamlined in [DDLP06], where an alternative definition of bisimulation,
called event bisimulation, eliminated the need for analytic spaces. It appeared that the crucial
measure-theoretic property relied on in the expressiveness proof was a version of Dynkin’s π-λ
theorem. An event bisimulation is not a relation between states but a σ-algebra, and to recover a
more intuitive relational presentation properties of analytic spaces were used again.

In [JS10], conjunctive PML was cast in the framework of coalgebraic modal logic, based on the
observation from [dVR99] that PTSs are coalgebras. Expressiveness of conjunctive PML was then
derived from abstract theorems about coalgebraic logics, both for discrete PTSs and continuous
space Markov processes. That was done in an unlabelled setting, but adding labels would not
change the picture in an essential way. The expressiveness proofs were formulated in the abstract
terminology of coalgebras and involved dual adjunctions between categories of sets (or measurable
spaces) and meet-semilattices.

More recently, in [BM16], it was noticed that disjunctive PML, where propositional connectives
are restricted to truth and disjunction, is also expressive. This is also surprising, as in the case of
non-probabilistic systems the logical equivalence for disjunctive HML is trace equivalence [vG01],
much coarser than bisimilarity. The expressiveness proof in [BM16] spanned several pages and was
coalgebraic in flavour; it relied on an explicit construction of a final coalgebra for the behaviour
functor of PTSs. It also restricted attention to finite branching, discrete systems. On the other
hand, it did not rely on the π-λ theorem or any other measure-theoretic principle. A similar proof
for conjunctive PML was also developed, based on coalgebras, but with no reliance on measure
theory.

The fact that the logical characterization result can be established with a purely positive logic
was a surprise at the time of [DEP02]. It opened the door to the possibility that there could be
a logical characterization of simulation. A clever example, due to Josée Desharnais [DGJP03],
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showed that this cannot be done with the same logic as the one used for bisimulation; one needs
to add disjunction to the logic. A logical characterization of simulation was proved [DGJP03] for
transition systems with finitely many labels. The main contribution of [DGJP03] was approximation
theory which included a domain-theoretic treatment; the logical characterization result fell out of
the domain theory results, and its proof was quite different from logical characterization results for
bisimulation listed above. Desharnais [Des99] in her thesis gave a proof that avoided domain theory
but it was restricted to the discrete case.

All this paints a complicated picture where essentially a single result (expressiveness of con-
junctive PML) and its simple variants (disjunctive PML, logical characterization of simulation)
are proved at various levels of generality (finitely branching, discrete, analytic state spaces) using
different techniques (measure theory, coalgebra, domain theory) and proof strategies (following the
classical HML argument as in [LS91], calculating system quotients as in [DEP02], or approxima-
tions as in [DGJP03]). Our first aim in this paper is to introduce some order into the story and
explain how a classical HML expressiveness proof gradually generalizes to probabilistic systems:
first to finitely branching PTS in Section 3, where the proof stays entirely elementary and does not
use any measure-theoretic tools, then to arbitrary discrete PTSs in Section 4, where Dynkin’s π-λ
theorem is a useful tool, finally to labelled Markov processes on analytic spaces in Section 5, where
additionally the Unique Structure Theorem becomes handy. The general structure of the proof
remains the same for all these scenarios, and applies to conjunctive as well as to disjunctive PML.
As a bonus, the same proof strategy applies to the logical characterization of simulation on labelled
Markov processes (Section 6), avoiding the need for domain-theoretic methods and allowing for
countably infinite sets of transition labels.

Technically speaking, the new results of this are: expressiveness of disjunctive PML beyond
discrete PTSs, and the logical characterization of simulation on labelled Markov processes with
infinitely many transition labels. But we believe that a far more important contribution is exposing
a common structure in several distinct proofs and explaining the gradually emerging need for
measure-theoretic technology as the generality of the setting increases.

As a by-product, techniques introduced in Section 6 naturally lead in Section 7 to a novel notion
of event simulation, which is to probabilistic simulation as event bisimulation of [DDLP06] is to
bisimulation. As it should, this notion is characterized by a suitable logic without assuming that
the measurable space of states be analytic.

In most results mentioned so far it is assumed that the set of transition labels is countable. This
assumption may seem a little strange, considering that it does not appear at all in the classical
HML expressiveness theorem for nondeterministic systems. In Section 8 we study what happens
when this assumption is dropped in the setting of labelled Markov processes. As it turns out, the
assumption cannot be dropped in general, but it can be dropped for processes whose transition
functions are continuous in the topological sense. An alternative approach to uncountable sets of
labels was recently developed in [Gbu18], relying on a measurable space structure imposed on the
set of labels.

Section 9 is essentially an extended side-remark, interesting in its own right. There we define
a new notion of a two-player game that characterizes probabilistic bisimulation, just as classical
bisimulation on nondeterministic systems is characterized by a well-known game. That final section
does not have a direct technical connection to other parts of the paper, but it gives a different per-
spective on probabilistic bisimulation, and indeed it guided us in the search for simple expressiveness
proofs for probabilistic logics.
Acknowledgments. We are very much indebted to Roman Pol, who showed us the proof of
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Theorem 6.5 which had eluded us for a long time.
We would like to thank the Simons Institute for hosting the program Logical Structures in

Computation during the Fall of 2016 where three of us were able to work together in a congenial
atmosphere. We are grateful to Martin Otto and Thomas Colcombet for stimulating conversations
in Berkeley.

2. Probabilistic systems and logics

We begin by formulating basic notions concerning probabilistic modal logics. For now we focus
on the simple case of discrete systems as introduced by [LS91]. Later in Section 5 we will introduce
the general setting of Labelled Markov Processes on analytic spaces.

Definition 2.1. A (reactive) probabilistic transition system (PTS) S with label set A is a structure
(X, {τa | a ∈ A}), where X is a set and, for each a ∈ A,

τa : X ×X → [0, 1]

is a function such that for each x ∈ X the function τa(x, ·) is a sub-probability distribution on X,
i.e., that ∑

y∈X
τa(x, y) ≤ 1.

In particular, we require the above sum to exist. Since an uncountable set of positive real numbers
cannot have a well-defined sum, this implies that every PTS is “countably branching”: for each
x ∈ X and a ∈ A the set of those y ∈ X where τa(x, y) > 0, is countable. If all these sets are in
fact finite, we say that the PTS is finitely branching.

For now, we do not assume anything about the cardinality of X or A; they may be infinite or
even uncountable.

For C ⊆ X, we write τa(x,C) to mean
∑
y∈C τa(x, y).

Definition 2.2 (Larsen-Skou). A probabilistic bisimulation on a PTS (X, τ) is an equivalence
relation R ⊆ X ×X such that for every xRy and every a ∈ A,

τa(x,C) = τa(y, C)

for every equivalence class C ∈ X/R.

It is easy to see that the union ≈ of all bisimulations on a given PTS is itself a bisimulation; it
is called the probabilistic bisimilarity relation.

Definition 2.3. Formulas of probabilistic modal logic (PML) are given by the grammar:

φ ::= > | ¬φ | φ ∨ φ | φ ∧ φ | 〈a〉pφ

where p ∈ [0, 1] ∩Q. PML formulas can be interpreted in any PTS (X, τ), with the modality 〈a〉p
interpreted as follows:

x |= 〈a〉pφ ⇐⇒ τa(x, {y ∈ X | y |= φ}) > p (1)
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and propositional connectives interpreted as expected (in particular, x |= > for every x ∈ X). The
set {y ∈ X | y |= φ} will be denoted [[φ]].

In the context of a PTS (X, τ), we write x ≡ y (and say that x and y are logically equivalent) if
for every PML formula φ, x |= φ iff y |= φ. We shall sometimes write C |= φ for some C ∈ X/≡,
meaning that x |= φ for some (equivalently, for each) x ∈ C.

The following easy result means that PML is sound for probabilistic bisimilarity:

Theorem 2.4. For any PTS (X, τ), and for any x, y ∈ X, if x ≈ y then x ≡ y.

Proof. Straightforward induction on the structure of φ.

The converse of Theorem 2.4 also holds, meaning that PML is expressive for probabilistic bisim-
ulation. In the next section we shall state and prove this result for two fragments of PML. The
conjunctive fragment, called PML∧, has formulas defined by:

φ ::= > | φ ∧ φ | 〈a〉pφ

Similarly, the disjunctive fragment PML∨ is defined by:

φ ::= > | φ ∨ φ | 〈a〉pφ

Both fragments are obviously sound by Theorem 2.4.
In the context of a PTS (X, τ) we write x �∧ y if for every PML∧ formula φ, x |= φ implies

y |= φ. (For the full PML this notation would make little sense, as that logic is closed under
negation.) We write x ≡∧ y if x �∧ y and y �∧ x. This is clearly an equivalence relation on X,
and �∧ defines a partial order on the set of equivalence classes X/≡∧.

Relations �∨ and ≡∨ are defined analogously for PML∨.

3. The case of finitely branching systems

Theorem 3.1. For any finitely branching PTS (X, τ), and for any x, y ∈ X, if x ≡∧ y then x ≈ y.

Proof. We show that ≡∧ is a probabilistic bisimulation on (X, τ). To this end, take some x, y ∈ X
and assume that there exists some a ∈ A such that τa(x,C) 6= τa(y, C) for some C ∈ X/≡∧. We
need to prove that x 6≡∧ y.

For brevity, denote δ = τa(x, ·) and γ = τa(y, ·). Among all C ∈ X/≡∧ such that δ(C) 6= γ(C),
pick one that is maximal with respect to �∧. This is possible since (X, τ) is finitely branching,
therefore there are only finitely many C ∈ X/≡∧ such that δ(C) 6= γ(C). Indeed, for all but finitely
many C there is δ(C) = γ(C) = 0.

For each class C ′ ∈ X/≡∧ such that δ(C ′) > 0 or γ(C ′) > 0 and such that C 6�∧ C ′, pick a
PML∧ formula φC′ such that C |= φC′ and C ′ 6|= φC′ . Then put φ to be the conjunction of all the
φC′ . Note that the conjunction is finite thanks to finite branching, hence φ is a well-formed PML∧
formula.

An element z ∈ [[φ]] cannot belong to any class C ′ as above, because z |= φC′ and C ′ 6|= φC′ . So
if z ∈ [[φ]] then z ∈ D for some D such that either δ(D) = γ(D) = 0, or C �∧ D. On the other
hand, if z ∈ D for some class D such that C �∧ D, then z ∈ [[φ]]. This is simply because C |= φC′

for each C ′, therefore C |= φ and D |= φ.
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Altogether this means that

δ ([[φ]]) = δ
(⋃
{D ∈ X/≡∧ | C �∧ D}

)
= δ(C) + δ

(⋃
{D ∈ X/≡∧ | C �∧ D, C 6= D}

)
and similarly for γ. Note that for each D such that C �∧ D but C 6= D, there is δ(D) = γ(D), by
maximality of C. On the other hand, we assumed that δ(C) 6= γ(C). Adding this up, we obtain
δ ([[φ]]) 6= γ ([[φ]]).

Without loss of generality, assume δ ([[φ]]) > γ ([[φ]]) and pick p ∈ Q such that δ ([[φ]]) > p ≥
γ ([[φ]]). We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ, hence x 6≡∧ y as requested.

The following expressiveness proof for PML∨ has essentially the same structure as the one
above. The similarity is intentionally made apparent but left unexplained, to make both proofs
self-contained. Proofs in Section 4 will exhibit more explicit symmetry.

Theorem 3.2. For any finite branching PTS (X, τ), and for any x, y ∈ X, if x ≡∨ y then x ≈ y.

Proof. We show that ≡∨ is a probabilistic bisimulation on (X, τ). To this end, take some x, y ∈ X
and assume that there exists some a ∈ A such that τa(x,C) 6= τa(y, C) for some C ∈ X/≡∨. We
need to prove that x 6≡∨ y.

For brevity, denote δ = τa(x, ·) and γ = τa(y, ·). If δ(X) > γ(X), then pick a rational number
p such that δ(X) > p ≥ γ(X); it is easy so see that x |= 〈a〉p> and y 6|= 〈a〉p>, therefore x 6≡∨ y.
The same formula distinguishes x and y if δ(X) < γ(X).

If δ(X) = γ(X), among all C ∈ X/ ≡∨ such that δ(C) 6= γ(C), pick one that is minimal
with respect to �∨. This is possible since (X, τ) is finitely branching, therefore there are only
finitely many C ∈ X/ ≡∨ such that δ(C) 6= γ(C). Indeed, for all but finitely many C there is
δ(C) = γ(C) = 0.

For each class C ′ ∈ X/≡∨ such that δ(C ′) > 0 or γ(C ′) > 0 and such that C ′ 6�∨ C, pick a
PML∨ formula φC′ such that C ′ |= φC′ and C 6|= φC′ . Then put φ to be the disjunction of all the
φC′ . Note that the disjunction is finite thanks to finite branching, hence φ is a well-formed PML∨
formula.

An element z ∈ [[φ]] cannot belong to C, because z |= φC′ for some C ′, and C 6|= φC′ . For the
same reason, it cannot belong to any class D such that D �∨ C. So if z ∈ [[φ]] then z ∈ C ′ for some
C ′ such that C ′ 6�∨ C.

On the other hand, if z ∈ C ′ for some class C ′ such that C ′ 6�∨ C, then either δ(C ′) = γ(C ′) = 0,
or z |= φC′ hence z ∈ [[φ]].

Altogether this means that

δ ([[φ]]) = δ
(⋃
{C ′ ∈ X/≡∨ | C ′ 6�∨ C}

)
= δ(X)− δ(C)− δ

(⋃
{D ∈ X/≡∨ | D �∨ C, D 6= C}

)
and similarly for γ. Note that for each D such that D �∨ C but D 6= C, there is δ(D) = γ(D),
by minimality of C. On the other hand, we assumed that δ(C) 6= γ(C) and δ(X) = γ(X). Adding
this up, we obtain δ ([[φ]]) 6= γ ([[φ]]).

Without loss of generality, assume δ ([[φ]]) > γ ([[φ]]) and pick p ∈ Q such that δ ([[φ]]) > p ≥
γ ([[φ]]). We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ, hence x 6≡∨ y as requested.

6



4. The case of discrete systems

So far we have only considered finitely branching PTSs. We shall drop this assumption now and
consider arbitrary discrete PTSs, still according to Defn. 2.1. Logics PML∧ and PML∨ remain as
before, with finitary conjunction and disjunction only. However, we assume that the set of labels
A is countable. This implies that there are only countably many formulas of PML∧ and PML∨.

Definition 2.2 makes sense for this infinitely branching setting, so it seems natural to keep it as
the definition of bisimulation. An alternative definition is:

Definition 4.1 (Desharnais-Edalat-Panangaden). Probabilistic bisimulation on a discrete PTS
(X, τ) is an equivalence relation R ⊆ X ×X such that for every xRy and every a ∈ A,

τa(x,M) = τa(y,M)

for every R-closed subset M of X.

Here we say that M ⊆ X is R-closed if x ∈M and xRy implies y ∈M , for all x, y ∈ X.
For now, this choice of definitions does not make much difference. The following fact is almost

trivial in this setting but it is worth stating, as it will fail in Section 5.

Fact 4.2. Definitions 2.2 and 4.1 are equivalent on discrete PTSs.

Proof. Since every C ∈ X/R is R-closed, clearly every bisimulation according to Definition 4.1
satisfies Definition 2.2. For the other direction, every R-closed set M is a disjoint union of classes
in X/R. Since the functions τa(x, ·) and τa(y, ·) take nonzero values in only countably many points,
in calculating τa(x,M) and τa(y,M) it is enough to consider a countable family of those classes,
and τa(x, ·) and τa(y, ·) are additive with respect to countable disjoint unions.

The definitions are equivalent, but it is useful to keep both of them in mind, as they both come
handy in proving properties of bisimulations. First, a largest bisimulation (called bisimilarity and
denoted ≈ as before) exists on any discrete PTS. Indeed, for any family (Ri)i∈I of bisimulations,
the transitive closure R of the union of all the Ri is a bisimulation. This is easy to see using
Definition 4.1, since then a set is R-closed if and only if it is Ri-closed for every i ∈ I.

Further, soundness Theorem 2.4 holds. To prove it, it is again convenient to use Definition 4.1
and proceed by induction on the structure of PML formulas, proving that for every formula φ the
set [[φ]] is ≈-closed.

Definition 2.2 is more convenient to prove expressiveness of PML∧ and PML∨, generalizing
Theorems 3.1 and 3.2. As it turns out, proofs of the generalized results become even more similar
than before. The generality and similarity comes at the price of using the well known Dynkin’s π-λ
theorem, which we now recall.

A π-system is a family of subsets of a set X closed under finite intersections. A λ-system is a
family that contains X and is closed under complement and countable disjoint unions. A σ-algebra
is a family closed under complement and arbitrary countable unions (and, therefore, arbitrary
countable intersections). For a family E , let σ(E) denote the least σ-algebra that contains E .

Theorem 4.3 (Dynkin’s π-λ theorem, [Dyn60, Bil95]). For any π-system Π and a λ-system Λ on
the same set X, if Π ⊆ Λ then σ(Π) ⊆ Λ.

We shall also need an easy corollary of this. Define a π-system to be a family of subsets closed
under finite unions. Then:
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Corollary 4.4. For any π-system
Π

and a λ-system Λ on the same set X, if
Π ⊆ Λ then σ(

Π
) ⊆

Λ.

Proof. Assume
Π ⊆ Λ, and let Π be the set of complements of the elements of

Π
. Clearly Π is a

π-system and, since Λ is closed under complement, Π ⊆ Λ. By Theorem 4.3, σ(Π) ⊆ Λ. Finally,
since σ-algebras are closed under complement, σ(

Π
) = σ(Π).

We are now ready to generalize Theorems 3.1 and 3.2. The following proof of Theorem 4.5
is very similar to the one in [DW14, Thm. 3], but it is worth stating here, as it makes a natural
stepping stone from the entirely elementary Theorem 3.1 to the measure-theoretic Theorem 5.5
later.

Theorem 4.5. For any PTS (X, τ), and for any x, y ∈ X, if x ≡∧ y then x ≈ y.

Proof. We show that ≡∧ is a probabilistic bisimulation on (X, τ), according to Definition 2.2. To
this end, take some x, y ∈ X and assume that there exists some a ∈ A such that τa(x,C) 6= τa(y, C)
for some C ∈ X/≡∧. We need to prove that x 6≡∧ y.

For brevity, denote δ = τa(x, ·) and γ = τa(y, ·). If δ(X) > γ(X), then pick a rational number
p such that δ(X) > p ≥ γ(X); it is easy so see that x |= 〈a〉p> and y 6|= 〈a〉p>, therefore x 6≡∧ y.
The same formula distinguishes x and y if δ(X) < γ(X).

If δ(X) = γ(X) then pick any C ∈ X/ ≡∧ such that δ(C) 6= γ(C). Let Φ be the set of all
formulas that hold for states in C. Clearly:

C =

⋂
φ∈Φ

[[φ]]

 ∩
⋂
φ 6∈Φ

(X − [[φ]])

 . (2)

Define
Π = {[[φ]] | φ ∈ PML∧} and Λ = {Y ⊆ X | δ(Y ) = γ(Y )}.

It is easy to see that Π is a π-system and Λ is a λ-system (in particular, Λ is closed under complement
since δ(X) = γ(X)). Moreover, since there are only countably many formulas, the intersections
in (2) are countable and so C ∈ σ(Π). Since by assumption C 6∈ Λ, we have σ(Π) 6⊆ Λ, hence (by
Theorem 4.3) Π 6⊆ Λ. In other words, there exists a PML∧ formula φ such that δ ([[φ]]) 6= γ ([[φ]]).

Without loss of generality, assume δ ([[φ]]) > γ ([[φ]]) and pick p ∈ Q such that δ ([[φ]]) > p ≥
γ ([[φ]]). We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ, hence x 6≡∧ y as requested.

Theorem 4.6. For any PTS (X, τ), and for any x, y ∈ X, if x ≡∨ y then x ≈ y.

Proof. Proceed exactly as for Theorem 4.5, but instead of Π define

Π
= {[[φ]] | φ ∈ PML∨} ,

notice that
Π

is a π-system and use Corollary 4.4 instead of Theorem 4.3.

5. The case of Labelled Markov Processes

To go beyond the setting of discrete-space, countably branching systems, we need to review
some definitions and concepts from measure theory and topology. We assume that the reader is
familiar with concepts like: σ-algebra, measurable functions, (sub)probability measures, topology

8



and continuity. For an introduction to these topics in the context of Labelled Markov Processes,
see e.g. [Pan09].

Given a topological space X, the σ-algebra induced by its open sets (or, equivalently, its closed
sets) is called the Borel algebra; we will always work with Borel algebras of topological spaces. We
call them Borel spaces.

A topological space is said to be separable if it has a countable dense subset. For metric spaces
this is equivalent to having a countable base of open sets. A Polish space is the topological space
underlying a complete separable metric space. Note that a space like the open interval (0, 1) which
is not complete in its usual metric is nevertheless Polish, since it can be given a complete metric
that produces the same topology. If X,Y are Polish spaces and f : X → Y is a continuous function
then the image f(X) ⊂ Y is an analytic space. The class of analytic spaces is not altered if we
allow f to be measurable instead of continuous or if we take the image of a Borel set instead of all
of X.

The following definition generalizes Definition 2.1.

Definition 5.1. A labelled Markov process (LMP) S with label set A is a structure

(X,Σ, {τa | a ∈ A}),

where (X,Σ) is a Borel space and, for each a ∈ A,

τa : X × Σ −→ [0, 1]

is a function such that:

• for each fixed x ∈ X, the set function τa(x, ·) is a sub-probability measure, and

• for each fixed C ∈ Σ the function τa(·, C) is measurable.

One interprets τa(x,C) as the probability of the process starting in state x making an a-labelled
transition into one of the states in C.

The logic PML and its fragments PML∧ and PML∨ are defined as in Section 2. Formally, for
the equation (1) to make sense, for any formula φ the set [[φ]] ⊆ X must be measurable, i.e., [[φ]] ∈ Σ.
This is, however, proved by easy induction on the structure of formulas.

Following [DEP02], bisimulation on labelled Markov processes is defined by analogy to Defini-
tion 4.1:

Definition 5.2 (Desharnais-Edalat-Panangaden). Probabilistic bisimulation on a labelled Markov
process (X,Σ, τ) is an equivalence relation R such that whenever xRy then

τa(x,M) = τa(y,M)

for each a ∈ A and each R-closed set M ∈ Σ.

It might be tempting to generalize Definition 2.2 instead, and to postulate the equality

τa(x,C) = τa(y, C)

not for arbitrary measurable R-closed sets, but only for measurable equivalence classes C ∈ X/R.
The resulting definition, however, would be rather ill-behaved, as the following example shows.
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Example 5.3. Denote X = {p, q} ∪ [0, 1]. Equip X with the smallest σ-algebra that makes all
Borel sets of [0, 1] as well as the singletons {p} and {q} measurable. Denote by µ the Lebesgue4

probability measure on [0, 1].
Consider a singleton action set A = {a}. Define a function τa : X × Σ→ [0, 1] as follows:

τa(p, C) = µ(C ∩ [0, 1])
τa(q, C) = 0
τa(x,C) = 0 for each x ∈ [0, 1].

It is easy to check that (X,Σ, τ) is a well-formed labelled Markov process.
Let ∆ denote the equality relation on X. For each x, y ∈ [0, 1], define an equivalence relation

on X:
R(x,y) = ∆ ∪ {(p, q), (q, p)} ∪ {(x, y), (y, x)}.

Since all equivalence classes of R(x,y) are finite, we have that

τa(p, C) = τa(q, C) = 0

for every equivalence class C. As a result, if bisimulations were defined by analogy to Definition 2.2
as explained above, every R(x,y) would be a bisimulation. However, the union of all these relations:

R =
⋃

x,y∈[0,1]

R(x,y) = [0, 1]2 ∪ {p, q}2

although itself an equivalence relation, would not be a bisimulation. Indeed, one of its equivalence
classes is [0, 1], and

τa(p, [0, 1]) = 1 6= 0 = τ(q, [0, 1]). (3)

This means that bisimulations on labelled Markov processes, defined by analogy to Definition 2.2,
would not be closed under (transitive closures) of unions, and largest bisimulations would not
necessarily exist. Moreover, the logic PML and its fragments would not be sound: here, the states
p and q would be related by a bisimulation (indeed, by every relation R(x,y)), but they are clearly
distinguished by the formula 〈a〉0.5>.

Note that (3) implies that none of the relations R(x,y) are bisimulations according to Defini-
tion 5.2, since the set [0, 1] is closed under every one of them.

For these reasons, from now on we stick to Definition 5.2. With this definition, largest bisim-
ulations do exist and PML is sound without any further assumptions, with arguments as given in
Section 4.

Expressiveness, however, is more problematic. If for PML∧ one tries to repeat the argument
from the proof of Theorem 4.5 using ≡∧-closed measurable sets M instead of classes C ∈ X/≡∧, one
hits a problem trying to rewrite equation (2): how to present an arbitrary ≡∧-closed, measurable
set using countable unions, intersections and complements of sets of the form [[φ]]?

In [DEP02], expressiveness of PML∧ was proved under the assumption that the underlying space
(X,Σ) is analytic. As observed in [DGJP03], the key property of analytic spaces that allows an
expressiveness proof to go through is the following:

4We mean the usual measure on [0, 1] which assigns to intervals their length. This is usually extended to the
Lebesgue σ-algebra, i.e. the one obtained by completing the Borel σ-algebra with respect to this measure. However,
we are just using this measure on the Borel sets.
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Theorem 5.4 (Unique Structure Theorem, [Arv76]). In any analytic space (X,Σ), for every count-
able family E ⊆ Σ such that X ∈ E, every measurable ≡E -closed subset of X is an element of
σ(E).

Here and in the following, ≡E is the relation of equivalence up to E , i.e., x ≡E y if and only if,
for every Y ∈ E , x ∈ Y iff y ∈ Y .

One can see that Theorem 5.4 is precisely what is needed for the equation (2) to be generalized
to any ≡∧-closed measurable set. The entire expressiveness proof, essentially copying the argument
of Theorem 4.5, becomes quite short:

Theorem 5.5. For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and A is count-
able, and for any x, y ∈ X, if x ≡∧ y then x ≈ y.

Proof. We show that ≡∧ is a probabilistic bisimulation on (X,Σ, τ), according to Definition 5.2. To
this end, take some x, y ∈ X and assume that there exists some a ∈ A such that τa(x,M) 6= τa(y,M)
for some ≡∧-closed set M ∈ Σ. We need to prove that x 6≡∧ y.

Denote δ = τa(x, ·) and γ = τa(y, ·). If δ(X) > γ(X), then pick a rational number p such that
δ(X) > p ≥ γ(X); it is easy so see that x |= 〈a〉p> and y 6|= 〈a〉p>, therefore x 6≡∧ y. The same
formula distinguishes x and y if δ(X) < γ(X).

If δ(X) = γ(X) then pick any ≡∧-closed M ∈ Σ such that δ(M) 6= γ(M). Define

Π = {[[φ]] | φ ∈ PML∧} and Λ = {Y ∈ Σ | δ(Y ) = γ(Y )}.
It is easy to see that Π is a π-system and Λ is a λ-system (in particular, Λ is closed under complement
since δ(X) = γ(X)). Clearly, ≡Π = ≡∧. Since > ∈ PML∧, we have X ∈ Π. Moreover, since there
are only countably many formulas, Π is countable and, by Theorem 5.4, M ∈ σ(Π). Since by
assumption M 6∈ Λ, we have σ(Π) 6⊆ Λ, hence (by Theorem 4.3) Π 6⊆ Λ. In other words, there
exists a PML∧ formula φ such that δ([[φ]]) 6= γ([[φ]]).

Without loss of generality, assume δ([[φ]]) > γ([[φ]]) and pick p ∈ Q such that δ([[φ]]) > p ≥ γ([[φ]]).
We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ, hence x 6≡∧ y as requested.

With the insights of Section 4, expressiveness of PML∨ is now immediate:

Theorem 5.6. For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and A is count-
able, and for any x, y ∈ X, if x ≡∨ y then x ≈ y.

Proof. Proceed exactly as for Theorem 5.5, but instead of Π define
Π

= {[[φ]] | φ ∈ PML∨} ,
notice that

Π
is a π-system and use Corollary 4.4 instead of Theorem 4.3.

6. Simulation on Labelled Markov Processes

For a preorder R on a set X, we say that C ⊆ X is R-closed if x ∈ C and xRy implies y ∈ C,
for all x, y ∈ X.

Definition 6.1 (Simulation). A probabilistic simulation on a labelled Markov process (X,Σ, τ) is
a preorder relation R such that whenever xRy then

τa(x,M) ≤ τa(y,M)

for each a ∈ A and each R-closed set M ∈ Σ.

11



We say that x is simulated by y, denoted x . y, if there exists a simulation R such that xRy. As
in the case of bisimulation, it is easy to see that (the transitive closure of) the union of an arbitrary
family of simulations is again a simulation; as a consequence, . is itself a simulation relation, indeed
the largest simulation on a given labelled Markov process.

The logic PML∨∧ is the union of PML∧ and PML∨:

φ = > | φ ∧ φ | φ ∨ φ | 〈a〉pφ.

We write x ≤∨∧ y to say that every formula in PML∨∧ satisfied by x is also satisfied by y.
Our proof of the logical characterization of simulation is completely analogous to the one for

bisimulation. It is enough to replace the two main ingredients (Theorems 4.3 and 5.4) by new ones,
Theorems 6.4 and Theorems 6.5 below. Theorem 6.4 (see Section 6.1) is similar and easier to prove
than Theorem 4.3, and it should be treated as folklore. Theorem 6.5 (see Section 6.2), on the other
hand, is a new, stronger version of Theorem 5.4.

6.1. Positive Monotone Class Theorem

A lattice of sets is a family of subsets of a set X closed under finite unions and intersections.5

A monotone class is a family closed under unions of increasing chains and under intersections of
decreasing chains. For a family E , let M(E) denote the least monotone class that contains E . A
σ-lattice of sets is a family of sets closed under countable unions and countable intersections. For
a family E , let L(E) denote the least σ-lattice of sets that contains E .

Lemma 6.2. For any lattice of sets E , the family M(E) is a lattice of sets.

Proof. The proof is by a two-step bootstrapping argument similar to the classical proof of the π-λ
theorem. Define

M0 = {Y ∈M(E) | ∀Z ∈ E . Z ∪ Y ∈M(E), Z ∩ Y ∈M(E)}.

Claim 1: M0 is a monotone class.
To prove this, take any chain Y0 ⊆ Y1 ⊆ Y2 ⊆ · · · with Yi ∈ M0. Define Y =

⋃
i Yi and pick

any Z ∈ E . Then calculate:

Y ∩ Z =
⋃
i

(Yi ∩ Z) and Y ∪ Z =
⋃
i

(Yi ∪ Z).

Since each Yi is in M0, by definition each Yi ∩ Z and Yi ∪ Z is in M(E). Since both unions on the
right are unions of increasing chains, and since M(E) is a monotone class, we get that Y ∩ Z and
Y ∪ Z are in M(E). Since Z ∈ E was chosen arbitrarily, we obtain Y ∈M0.

An analogous argument shows thatM0 is closed under intersections of decreasing chains, which
proves Claim 1.

Claim 2: E ⊆M0.
This is obvious since E is a lattice of sets and E ⊆M(E).

5 A lattice of sets is sometimes called a ring of sets. However, in measure theory ring of sets means something
else (a family closed under union and set difference), so we choose a different name.

12



Now define
M1 = {Z ∈M(E) | ∀Y ∈M(E). Z ∪ Y ∈M(E), Z ∩ Y ∈M(E)}.

Claim 3: M1 is a monotone class.
This is proved entirely analogously to Claim 1.

Claim 4: E ⊆M1.
This is less obvious than Claim 2. For a proof, pick any Z ∈ E and any Y ∈M(E). Since M(E)

is the least monotone class that contains E , from Claims 1 and 2 it follows that M(E) ⊆M0, hence
Y ∈ M0. By definition of M0 we get that Z ∪ Y and Z ∩ Y are in M(E). Since Y was chosen
arbitrarily, we get Z ∈M1.

Now, since M(E) is the least monotone class that contains E , from Claims 3 and 4 it follows
that M(E) ⊆M1, which immediately implies that M(E) is a lattice of sets.

Lemma 6.3. Any lattice of sets E that is also a monotone class is a σ-lattice of sets.

Proof. For any countable family Y1, Y2, . . . ∈ E , check:

∞⋃
i=1

Yi =

∞⋃
i=1

i⋃
j=1

Yj .

The outer union is increasing and each inner union is finite, therefore the entire union is in E . An
analogous argument works for countable intersections.

Theorem 6.4 (Positive Monotone Class Theorem). For any lattice of sets E and any monotone
class M on the same set X, if E ⊆M then L(E) ⊆M.

Proof. Assume E ⊆ M. By Lemmas 6.2 and 6.3, M(E) is a σ-lattice of sets, therefore L(M(E)) =
M(E) and:

L(E) ⊆ L(M(E)) = M(E) ⊆M.

6.2. Positive Unique Structure Theorem

The following result strengthens Theorem 5.4. Its proof is also more involved, using ideas similar
to the proof of Lusin’s Separation Theorem for analytic sets (see [Kec95]). The proof was pointed
out to us by Roman Pol.

Below, vE is the preorder determined by E , i.e., x vE y if and only if, for every Y ∈ E , x ∈ Y
implies y ∈ Y .

Theorem 6.5 (Positive Unique Structure Theorem). In any analytic space (X,Σ), for every count-
able family E ⊆ Σ such that X ∈ E, every nonempty, measurable and vE -closed subset of X is an
element of L(E).

Proof. First, consider the special case where (X,Σ) is a Polish space. We need some basic termi-
nology. First, for two topologies over the same set, the second one extends the first one if all sets
which are open in the first are also open in the second. Two topologies are Borel-isomorphic if they
induce the same σ-algebra of Borel sets. A clopen set is a set both closed and open.
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By a result stated in [Kec95] as Exercise 13.5, the topology on X can be extended to another
Polish space on X that is Borel-isomorphic to the original one, and such that every set in E is clopen.
(That exercise is easy to prove from Theorem 13.1 and Lemma 13.3 in [Kec95].) It is enough to
prove the theorem for E on that extended Polish space. Therefore, we shall safely assume that
every set in E is clopen in X.

Assume towards a contradiction that there exists a nonempty, vE -closed Borel set B such that
B 6∈ L(E). Since X ∈ E , necessarily B 6= X. Therefore both B and X \B are nonempty subsets of
a Polish space, so they, by definition, are analytic (see [Kec95], Defn 14.1). Hence they are images
of some continuous maps from the Baire space NN:

f : NN � B and g : NN � X \B.

In the following, for s ∈ NN and n ∈ N and σ ∈ Nn, denote:

s|n = s1s2 . . . sn ∈ Nn and C(σ) = {s ∈ NN | s|n = σ}.

In particular, s|0 = ε and C(ε) = NN.
We write ≺ for the prefix ordering on Nn. We shall define, by induction on n ∈ N, sequences

σn, τn ∈ Nn such that:

• σ0 = ε ≺ σ1 ≺ σ2 ≺ · · · ,

• τ0 = ε ≺ τ1 ≺ τ2 ≺ · · · , and

• there is no set C in L(E) that contains f(C(σn)) and is disjoint with g(C(τn)).

For n = 0, note that f(C(σ0)) = B and g(C(σ0)) = X \B, so the only candidate for C above is
B, and B 6∈ L(E) by assumption.

Assume that σn and τn have been chosen. Assume towards a contradiction that they cannot be
extended to any σn+1 and τn+1, i.e., that for every i, j ∈ N there is a set Cij ∈ L(E) that contains
f(C(σni)) and is disjoint with g(C(τnj)). Then the set

C =
⋃
i

⋂
j

Cij ∈ L(E)

contains
f(C(σn)) =

⋃
i

f(C(σni))

and is disjoint with

g(C(τn)) =
⋃
i

g(C(τni))

which contradicts the choice of σn and τn. As a result, some Cij as above does not exist, and we
may take σn+1 = σni and τn+1 = τnj. This completes the inductive construction.

Let us now take s, t ∈ NN such that s|n = σn and t|n = τn for n ∈ N. Note that, by definition,
f(s) ∈ B and g(t) 6∈ B. Since B is vE -closed, this means that f(s) 6vE g(t), hence there exists a
set C ∈ E such that f(s) ∈ C and g(t) 6∈ C. But C is clopen, and both f and g are continuous, so
both inverse images f−1(C) and g−1(X \C) are open in NN. This implies that there must be some
n such that

C(σn) ⊆ f−1(C) and C(τn) ⊆ g−1(X \ C)
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or, equivalently,
f(C(σn)) ⊆ C and g(C(τn)) ∩ C = ∅

which contradicts our choice of σn and τn. This contradiction completes the proof for the case
where (X,Σ) is Polish.

Now consider an arbitrary analytic space (X,Σ), a countable family E ⊆ Σ with X ∈ E , and a
measurable, nonempty, vE -closed subset B ⊆ X. We must prove that B ∈ L(E).

By definition, (X,Σ) is the image of a measurable function f from a Polish space (Y,∆). Since
B is measurable in Σ, obviously f−1(B) ⊆ Y is measurable in ∆. Consider the (countable) family:

f−1(E) = {f−1(C) | C ∈ E} ⊆ ∆.

Since f is surjective, obviously Y ∈ f−1(E).
It is easy to check that f−1(B) is vf−1(E)-closed. Indeed, consider any y ∈ f−1(B) and y′ ∈ Y

such that y vf−1(E) y
′. Then, for any C ∈ E such that f(y) ∈ C, we have y ∈ f−1(C), hence

y′ ∈ f−1(C) and f(y′) ∈ C. Since B is vE -closed, we obtain f(y′) ∈ B, therefore y′ ∈ f−1(B) as
requested.

By our theorem applied to the Polish space (Y,∆), the countable set f−1(E) and the nonempty
measurable set f−1(B), we get

f−1(B) ∈ L(f−1(E)).

Since inverse images commute with unions and intersections, we have L(f−1(E)) = f−1(L(E)), and,
since f is surjective, f(f−1(C)) = C for every C ⊆ X. Altogether we get:

B = f(f−1(B)) ∈ f(L(f−1(E))) = f(f−1(L(E))) = L(E)

as requested.

6.3. Logical Characterization

A proof of expressiveness of PML∨∧ now becomes an minor variation of the proof of Theorem 5.5.

Theorem 6.6. For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and A is count-
able, and for any x, y ∈ X, if x ≤∨∧ y then x . y.

Proof. We show that ≤∨∧ is a probabilistic simulation on (X,Σ, τ). Take some x, y ∈ X and assume
that there exists some a ∈ A such that τa(x,C) > τa(y, C) for some ≤∨∧-closed set C ∈ Σ. We need
to prove that x 6≤∨∧ y.

Denote δ = τa(x,−) and γ = τa(y,−). Pick any ≤∨∧-closed C ∈ Σ such that δ(C) > γ(C).
Then C cannot be empty, since δ(∅) = γ(∅) = 0. Define

L = {[[φ]] | φ ∈ PML∨∧} and M = {Y ∈ Σ | δ(Y ) ≤ γ(Y )}. (4)

It is easy to see that L is a lattice of sets and (by continuity of measure) M is a monotone class.
Clearly, vL = ≤∨∧. Since > ∈ PML∨∧, we have X ∈ L. Moreover, since there are only countably
many formulas, L is countable hence, by Theorem 6.5, C ∈ L(L). Since by assumption C 6∈ M, we
have L(L) 6⊆ M, hence (by Theorem 6.4) L 6⊆ M. In other words, there exists a formula φ such
that δ([[φ]]) > γ([[φ]]). Pick p ∈ Q such that δ([[φ]]) > p ≥ γ([[φ]]). We readily obtain x |= 〈a〉pφ and
y 6|= 〈a〉pφ, hence x 6≤∨∧ y as requested.
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7. Event simulation

In [DDLP06] it was argued that for probabilistic processes defined on continuous state spaces
bisimulation should be understood as a σ-algebra of measurable sets rather than as an equivalence
relation on the state space. The name event bisimulation was coined in order to emphasize the
connection with the events of the sample space. From a categorical viewpoint, [DDLP06] used
cospans of coalgebra morphisms rather than spans as in the original definition [DEP02].

In [DEP98, DEP02] a logical characterization of probabilistic bisimulation was given under the
condition of the state space being analytic. By using event bisimulation rather than the Larsen-Skou
definition [LS91] and its variants, [DDLP06, Cor. 5.6] extended the logical characterization result
to arbitrary measurable spaces. When the state space is analytic this shows that event bisimulation
induces the same equivalence relation as ordinary bisimulation. When the state space is not analytic
the logical characterization may fail for the traditional definition of bisimulation [Ter11].

Until now it was not clear how to develop a suitable concept of simulation analogous to event
bisimulation. In this section we use parts of the machinery introduced in Section 6 to define event
simulation. We begin by recalling the definition of event bisimulation from [DDLP06].

7.1. Event bisimulation

Definition 7.1. An event bisimulation on an LMP (X,Σ, τ) is a sub-σ-algebra Λ of Σ such that
(X,Λ, τ) is an LMP.

Intuitively, this definition tells us that Σ may be an unnecessarily fine σ-algebra for the LMP
it defines. Indeed, even if we restrict to the coarser σ-algebra Λ, the function τ is still measurable.
Thus there is no “loss of information” by using the coarser σ-algebra Λ. This should be compared
with ordinary bisimulation: if R is a bisimulation according to Definition 5.2 then quotienting the
state space by R does not lose any information.

The connection between event bisimulation and ordinary bisimulation is captured in the follow-
ing theorems [DDLP06].

Theorem 7.2. If R is a bisimulation on an LMP (X,Σ, τ), then the σ-algebra of R-closed Σ-
measurable sets is an event bisimulation.

For analytic spaces the two concepts coincide:

Theorem 7.3. Given an LMP (X,Σ, τ) on an analytic space (X,Σ) and an event bisimulation
Λ = σ(C) for some countable C in Σ, then the relation ≡Λ is a bisimulation.

Here recall that ≡Λ is the relation of equivalence up to Λ, i.e., x ≡Λ y if and only if, for every
Y ∈ Λ, x ∈ Y iff y ∈ Y .

7.2. Event simulation

In the context of an LMP (X,Σ, τ), we shall slightly abuse the notation and denote

〈a〉r(A) ::= τa(·, A)−1((r, 1]) = {x ∈ X | τa(x,A) > r} (5)

for an action a, a number r ∈ [0, 1] and A ⊆ X. Comparing this with Definition 2.3, it is easy to
check that then

〈a〉p[[φ]] = [[〈a〉pφ]]

for every PML formula φ and p ∈ [0, 1] ∩Q.
The following definition is a minor variation of one from [DDLP06]:
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Definition 7.4. A family E ⊆ Σ is stable for an LMP (X,Σ, τ) if for every action a, every
p ∈ [0, 1] ∩Q and every A ∈ E ,

〈a〉p(A) ∈ E .

Note that 〈a〉1(A) = ∅ for all A, so ∅ ∈ E for every nonempty stable family E .
It E is a σ-lattice (or, more generally, if it is closed under unions of increasing chains), then in

the stability condition one may equivalently consider all p ∈ [0, 1], since

〈a〉p(A) =
⋃

q∈[p,1]∩Q

〈a〉q(A)

for every p ∈ [0, 1]. This definition of stability is used in [DDLP06]. As observed there, event
bisimulations are exactly those sub-σ-algebras of Σ that are stable. This motivates the following
definition:

Definition 7.5. Given an LMP (X,Σ, τ), an event simulation is a stable σ-lattice E ⊆ Σ such that
X ∈ E .

Since a σ-algebra is a σ-lattice, every event bisimulation is an event simulation. The converse
is not true in general, since a σ-lattice need not be closed under complements.

Working in the context of a fixed LMP, define:

L = {[[φ]] | φ ∈ PML∨∧}

as in (4).

Lemma 7.6. For any LMP (X,Σ, τ), L is the smallest stable lattice that contains X.

Proof. Obviously L is a lattice: it is closed under finite union and intersection, and it contains
X = J>K. Moreover, L is stable: for JφK ∈ L, by definition 〈a〉pJφK = J〈a〉pφK ∈ L.

Now, for a stable lattice E that contains X, let us prove that L ⊆ E :

• J>K = X ∈ E by definition,

• if JφK and JψK are in E , then Jφ ∧ ψK = JφK ∩ JψK and Jφ ∨ ψK = JφK ∪ JψK are in E ,

• if JφK is in E , then J〈a〉pφK = 〈a〉pJφK is in E as it is stable.

The conclusions follows by induction on the structure of formulas in PML∨∧.

Recall from Section 6.1 that for a family E , L(E) denotes the least σ-lattice that contains E .

Lemma 7.7. For any LMP (X,Σ, τ), if E is a stable lattice then L(E) is stable.

Proof. We will first prove that the set

D = {A ∈ Σ | ∀a ∈ A ∀p ∈ [0, 1] ∩Q. 〈a〉p(A) ∈ L(E)}

is a monotone class (see Section 6.1). Note that L(E) is stable if and only if L(E) ⊆ D.
Let (An)n∈N be an increasing chain with An ∈ D for all n ∈ N. We want to prove that⋃

n∈NAn ∈ D. To do that, we shall prove that 〈a〉p
(⋃

n∈NAn
)

=
⋃
n∈N〈a〉p (An).
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Let x ∈ 〈a〉p
(⋃

n∈NAn
)
, i.e. τa

(
x,
(⋃

n∈NAn
))
> p. By continuity of measure we know that

τa
(
x,
(⋃

n∈NAn
))

= limn→∞ τa(x,An). This means in particular that limn→∞ τa(x,An) > p
and therefore there exists N such that for all n ≥ N , τa(x,An) > p, which means that x ∈⋃
n∈N〈a〉p (An).

Now let x ∈ ⋃n∈N〈a〉p (An), i.e. there exists N ∈ N such that τa(x,AN ) > p. Then, since

AN ⊆
⋃
n∈NAn, also τa

(
x,
(⋃

n∈NAn
))
> p. Hence, x ∈ 〈a〉p

(⋃
n∈N An

)
.

We have just proven that 〈a〉p
(⋃

n∈NAn
)

=
⋃
n∈N〈a〉p (An). By our assumption, 〈a〉pAn is

in L(E) for all n ∈ N. As L(E) is a σ-lattice, it is closed under countable unions, and therefore
〈a〉p

(⋃
n∈NAn

)
is in L(E), which proves that

⋃
n∈NAn ∈ D.

Now let (Bn)n∈N be a decreasing chain with Bn ∈ D for all n ∈ N. We want to prove that⋂
n∈NBn ∈ D. As before, it is enough to prove that 〈a〉p

(⋂
n∈NBn

)
=
⋂
n∈N〈a〉p (Bn).

Let x in 〈a〉p
(⋂

n∈NBn
)
, i.e. p < τa

(
x,
⋂
n∈NBn

)
. For all k,

⋂
n∈NBn ⊆ Bk, which means that

τa
(
x,
⋂
n∈NBn

)
< τa(x,Bk). In particular, for all n in N, p < τa(x,Bn), i.e. x ∈ 〈a〉p(Bn) and

therefore x ∈ ⋂n∈N〈a〉p (Bn).
Conversely, let x be in

⋂
n∈N〈a〉p (Bn), i.e. for all n in N, x is in 〈a〉p (Bn), i.e. τa(x,Bn) > p.

This means in particular that for all n ∈ N, τa(x,Bn) ≤ 1 − p. But as (Bn) is a decreasing
chain, (Bn) is an increasing chain, therefore by monotone convergence theorem, τa(x,

⋃
n∈NBn) =

limn→∞ τa(x,Bn). Since τa(x,Bn) ≤ p for all n, the limit is less than or equal to 1 − p, i.e.
τa(x,

⋃
n∈NBn) ≤ 1− p. Furthermore, note that

⋃
n∈NBn =

⋂
n∈NBn. This allows us to conclude

that τa(x,
⋂
n∈NBn) > p, i.e. x ∈ 〈a〉p(Bn).

We have just proven that 〈a〉p
(⋂

n∈NBn
)

=
⋂
n∈N〈a〉p (Bn). By our assumption 〈a〉pBn is in

L(E). As L(E) is a σ-lattice, it is closed under countable intersections, and therefore 〈a〉p
(⋂

n∈NBn
)

is in L(E), which proves that
⋂
n∈NBn ∈ D.

From this we conclude that D is a monotone class. Since E is stable and E ⊆ L(E), we have
E ⊆ D. By Theorem 6.4 we get that L(E) ⊆ D, i.e. L(E) is stable.

We arrive at the main result of this section (compare with [DDLP06, Prop. 5.5], an analogous
result for event bisimulation):

Theorem 7.8. For any LMP (X,Σ, τ), L(L) is the smallest event simulation.

Proof. L(L) is a stable σ-lattice that contains X by Lemmas 7.6 and 7.7. On the other hand, take
any stable σ-lattice E that contains X. By Lemma 7.6 we get L ⊆ E , so (since E is a σ-lattice)
L(L) ⊆ E .

Note that we made no assumptions on the state space of the LMP in question.

7.3. Comparison to simulation

To link event simulation with the relational notion of simulation, we now aim for simulation
counterparts of Theorems 7.2 and 7.3.

Given a preorder R on a measurable space, let Λ(R) be the family of all R-closed measurable
sets. Also recall that vΛ is the preorder induced by a family Λ ⊆ Σ, i.e., x vΛ y if and only if, for
every Y ∈ Λ, x ∈ Y implies y ∈ Y .

Lemma 7.9. For any preorder R, Λ(R) is a σ-lattice.
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Proof. Consider (An)n∈N a sequence of R-closed measurable sets. We need to prove that their
countable union and intersection are also R-closed (they are obviously measurable).

Consider x ∈ ⋃n∈NAn. This means that there exists k ∈ N such that x ∈ Ak. If xRy, then
y ∈ Ak since Ak is R-closed, and therefore y ∈ ⋃n∈NAn.

Consider x ∈ ⋂n∈NAn and assume xRy. This means that for all n ∈ N, x ∈ An. But since all
sets An are R-closed, then we also have that y ∈ An for all n ∈ N, i.e. y ∈ ⋂n∈NAn.

Theorem 7.10. For any LMP (X,Σ, τ), a preorder R on X is a simulation if and only if Λ(R) is
an event simulation.

Proof. By definition, R is a simulation if and only if

xRy and B ∈ Λ(R) implies τa(x,B) ≤ τa(y,B) (6)

for every x, y ∈ X and B ∈ Σ, and for every action a. The conclusion of this implication can be
equivalently rewritten as

τa(x,B) > p implies τa(y,B) > p for all p ∈ [0, 1] ∩Q

which, for every p, is equivalent to saying

x ∈ 〈a〉p(B) implies y ∈ 〈a〉p(B).

The implication (6) is therefore equivalent to saying that the set 〈a〉p(B) is R-closed whenever B is;
in other words, that Λ(R) is stable. Since Λ(R) is always a σ-lattice by Lemma 7.9, and it always
contains X, the conclusion follows.

Lemma 7.11. For any family E ⊆ Σ, vL(E) = vE .

Proof. The ⊆ containment is obvious since E ⊆ L(E). For ⊇, consider any x vE y and let Λ ⊆ Σ
be the family of all subsets Y ∈ Σ such that x ∈ Y implies y ∈ Y . It is easy to check that Λ is a
σ-lattice and obviously E ⊆ Λ, therefore L(E) ⊆ Λ. Since by definition x vΛ y, we get x vL(E) y as
required.

Lemma 7.12. If (X,Σ) is an analytic space and Λ = L(E) for some countable family E ⊆ Σ with
X ∈ E, if ∅ ∈ Λ then Λ(vΛ) = Λ.

Proof. First, consider B ∈ Λ. Then B ∈ Σ. To prove that B is vΛ-closed, let x ∈ B and assume
x vΛ y, i.e. for all C ∈ Λ, x ∈ C ⇒ y ∈ C. This is true in particular for C = B ∈ Λ, and hence
y ∈ B. This proves that B ∈ Λ(vΛ).

Now consider B ∈ Λ(vΛ). This means that B is vΛ-closed, therefore by Lemma 7.11 it is also
vE -closed. If B = ∅ then B ∈ Λ by assumption. For nonempty B, apply Theorem 6.5 to obtain
B ∈ L(E) = Λ.

From all this we deduce:

Theorem 7.13. Assume an LMP (X,Σ, τ) where (X,Σ) is an analytic space, and Λ = L(E) for
some countable family E with X ∈ E. If Λ is an event simulation, then vΛ is a simulation.

Proof. If Λ is an event simulation then it is stable, hence in particular ∅ ∈ Λ. By Lemma 7.12 we
get that Λ(vΛ) is an event simulation, hence by Theorem 7.10, vΛ is a simulation.

One could combine Theorems 7.8, 7.10 and 7.13 to give an alternative proof of Theorem 6.6.
Note that in such a proof our two key measure-theoretic ingredients, Theorems 6.4 and 6.5, would
still be present: the former in the proof of Lemma 7.7, the latter in Lemma 7.12.
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8. The case of uncountably many labels

Our proofs of the logical characterizations for simulation and bisimulation rely on the assump-
tion that the set of formulas (and, equivalently, the set of transition labels) is countable. In this
section we investigate the necessity of this assumption. We first observe that indeed if there are
uncountably many labels, then the logical characterization fails in general. However, we show that
if the transition structure is continuous, then the logical characterization holds again, without any
assumption on the set of labels.

An alternative approach to uncountable sets of labels was recently developed in [Gbu18]. There,
the set of labels is assumed to carry the structure of a measurable space itself, which allows a
characterization of (bi)similarity by a countable set of formulas.

8.1. A counterexample

In the classical logical characterization of (bi)similarity for nondeterministic labelled transition
systems [HM80], one can restrict to a logic with finite conjunction and disjunction only if the
systems in question satisfy a finite branching property called image finiteness: each state can have
only finitely many successors for any given transition label. Since [DEP98, DEP02] it has been
known that this restriction does not apply to probabilistic systems, where a finitary logic is enough
to characterize bisimilarity on systems with arbitrary (probabilistic) branching.

On the other hand, in the classical nondeterministic setting, once image finiteness is ensured, the
size of the set of transition labels matters very little. Even if infinitely many, or even uncountably
many labels are permitted, a finitary logic (with a correspondingly large set of modal operators) is
enough to characterize (bi)similarity for nondeterministic transition systems labelled with them.

We now show that this is not the case for labelled Markov processes with continuous state
spaces. Specifically, we show an example where the set of labels is uncountable and the logical
characterization fails, even though the space of states is a particularly simple, compact Polish
space.

p q

0 1x

⊤

x

Figure 1: The two states p and q do not simulate each other, but they satisfy the same formulas of PML∨∧.

Denote X = {p, q,>} ∪ [0, 1]. We equip X with the smallest σ-algebra that makes all Borel
sets of [0, 1] as well as the singletons {p}, {q} and {>} measurable. Denote by µ the Lebesgue6

6We mean the usual measure on [0, 1] which assigns to intervals their length. However this is usually extended to
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probability measure on [0, 1].
Consider a set of actions A = [0, 1]. Define functions τa : X × Σ → [0, 1] for each a ∈ A as

follows:
τa(p, C) = µ(C ∩ [0, 1

2 ])
τa(q, C) = µ(C ∩ [ 1

2 , 1])

τa(x,>) =

{
1 if x = a
0 otherwise

The following proposition easily implies that logical characterizations both for bisimulation and
for simulation fail for this labelled Markov process.

Proposition 8.1. Neither p nor q simulates the other, but they satisfy the same formulas of PML∨∧.

Proof. We prove that neither p nor q simulates the other. First, for any x, y in [0, 1], if x 6= y then
neither of these simulates the other. Indeed, from x, the action a = x leads to > with probability 1
and leads nowhere from y. It follows that every subset of [0, 1] is .-closed; in particular this applies
to [0, 1

2 ] and [ 1
2 , 1]. This implies that neither p nor q simulates the other, because τa(p, [0, 1

2 ]) = 1
and τa(q, [0, 1

2 ]) = 0, and vice-versa τa(p, [ 1
2 , 1]) = 0 and τa(q, [ 1

2 , 1]) = 1.
To see that p and q satisfy the same formulas, we observe that for every finite subset B ⊆ A,

p and q do simulate each other (indeed, they are even bisimilar) in the system restricted to labels
from B. The claim easily follows from this, since every formula of PML∨∧ uses finitely many labels.

So for a finite B ⊆ A, define a relation R on X to be the least equivalence relation such that
pRq and xRy for each x, y ∈ [0, 1] \ B. We claim that R is a bisimulation on the system restricted
to labels with B. The only nontrivial case is the pair pRq: every R-closed set C ⊆ [0, 1] is either
finite or co-finite, from which it easily follows that τa(p, C) = τa(q, C).

Intuitively, the core of the problem here is the highly non-continuous nature of transitions from
[0, 1], allowing one to observe specific states from that uncountable space. Indeed, as we show in
the following section, the problem disappears and the logical characterizations hold if we assume
that the transition function τa(·, C) is continuous for each a and C.

8.2. Logical characterizations for continuous transition functions

Given a labelled Markov process (X,Σ, τ) with labels from a set A, we denote by (X,Σ, τ|B)
the same system restricted to labels from B ⊆ A.

Theorem 8.2. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such that for
all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, there exists a countable set B such that the
bisimilarity relation ≈ on (X,Σ, τ|B) coincides with that on (X,Σ, τ).

Proof. We will use the fact that, under the above assumptions, X2 is also a Polish space for the
product topology, hence it satisfies the hereditary Lindelöf property: any open cover of a subset of
X2 has a countable subcover.

By definition, the bisimilarity relation ≈ on (X,Σ, τ) is the largest bisimulation. It is standard
to define it as the greatest fixpoint of a certain operator on binary relations on X. For us it will

the Lebesgue σ-algebra, i.e. the one obtained by completing the Borel σ-algebra with respect to this measure. We
are just using this measure on the Borel sets.
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be convenient to speak in terms of complements, and we consider the complement of ≈ as the least
fixpoint of the monotone operator:

Φ(R) =
{

(x, y) ∈ X2
∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \R)-closed, s.t. τa(x,C) 6= τa(y, C)

}
Thanks to Tarski’s fixed point theorem, this is obtained by defining a sequence (Wα)α of subsets
of X2 indexed by ordinals α: for α+ 1 a successor ordinal and β a limit ordinal, define:

W0 = ∅
Wα+1 =

{
(x, y) ∈ X2

∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \Wα)-closed, s.t. τa(x,C) 6= τa(y, C)
}

Wβ =
⋃
α<βWα.

The complement of ≈ on (X,Σ, τ) is the union of all Wα for all ordinals α. More specifically,
(Wα)α form an increasing sequence that reaches a fixpoint at some ordinal γ not larger than the
cardinality of P(X2).

Note that all Wα are open sets in X2. This is proved by ordinal induction: for a successor
ordinal, Wα+1 is a union of sets of the form{

(x, y) ∈ X2 | τa(x,C) 6= τa(y, C)
}

for some as and Cs. Such a set is open, since it is the inverse image of the (open) inequality relation
on [0, 1] along the continuous function τa(·, C).

For each ordinal α we construct a countable subset Bα ⊆ A such that Wα calculated on
(X,Σ, τ|Bα

) coincides with Wα calculated on (X,Σ, τ). We let B0 = ∅.
For successor ordinals, rewrite the definition of Wα+1 as:

Wα+1 =
⋃
a∈A

{
(x, y) ∈ X2 | ∃C ∈ Σ (X2 \Wα)-closed, s.t. τa(x,C) 6= τa(y, C)

}
.

This is a union of open sets. Since X2 is hereditary Lindelöf, one can extract a countable subcover
of this union, indexed by some set B ⊆ A. It is then enough to take Bα+1 = Bα ∪ B.

For limit ordinals, extract a countable subcover of the union Wβ =
⋃
α<βWα and take Bβ to

be the union of the Bα’s defined for α’s from that subcover.
Now the countable set Bγ , where γ is the ordinal for which Wγ reaches the least fixpoint of Φ,

satisfies the desired property.

The same result holds for simulation:

Theorem 8.3. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such that for
all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, there exists a countable set B such that the
similarity preorder . on (X,Σ, τ|B) coincides with that on (X,Σ, τ).

Proof. Completely analogous to the proof of Theorem 8.2, but with the operator

Φ(R) =
{

(x, y) ∈ X2
∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \R)-closed, s.t. τa(x,C) > τa(y, C)

}
instead. In particular the fact that each Wα is open, still holds.

The following immediately follows from Theorems 8.2 and 8.3 in the light of Theorems 5.5
and 6.6.
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Corollary 8.4. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such that for
all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, for any x, y ∈ X,

• x ≡∧ y if and only if x ≈ y,

• x ≤∨∧ y if and only if x . y.

9. Probabilistic (bi)simulation games

The classical notion of bisimulation and simulation for nondeterministic processes has a simple
and elegant characterization in terms of games. These games, played between two players named
Spoiler (who tries to prove that some two states in a process are not bisimilar) and Duplicator (who
claims the opposite), provide convenient intuitions about the essence of bisimilarity.

For probabilistic systems, a similar game was proposed in [DLT08], both for simulation and
bisimulation. It was later generalised to deal with a pseudometric version of probabilistic bisimu-
lation in [KM18]; a rather different game for the same purpose was studied in [vBW14]. Here we
propose a new game for probabilistic simulation and bisimulation. Our games have a pleasantly
simple structure, even in the setting of continuous space processes. Each round consists of a single
move by Spoiler and a single response by Duplicator, unlike the game from [DLT08] where each
round involves multiple interleaved actions from both players.

We begin with the case of bisimulation game. As in the classical case, we consider a
spoiler/duplicator game with two players. Duplicator’s plays are pairs of states that she claims
are bisimilar. Spoiler tries to show that a given pair of states proffered by Duplicator are not
bisimilar. Let S = (X,Σ, τ) be a labelled Markov process, and x, y ∈ X. The bisimulation game
starting from the position (x, y) alternates between moves of the following kinds:

• Spoiler chooses a ∈ A and C ∈ Σ such that τa(x,C) 6= τa(y, C),

• Duplicator answers by choosing x′ ∈ C and y′ 6∈ C and the game continues from (x′, y′).

A player who cannot make a move at any point loses. Duplicator wins if the game goes on forever.
Note that the only way for Spoiler to win is to choose C = X at some point; otherwise Duplicator

can always choose some x′ and y′ as prescribed. (The only other situation where Duplicator cannot
proceed would be C = ∅, but that is not a legal move for Spoiler since always τa(x, ∅) = τa(y, ∅) = 0.)
On the other hand, Duplicator can win either by forcing an infinite play or by reaching a position
(x, y) where τa(x,C) = τa(y, C) for every C ∈ Σ.

The intuition behind the game should be clear. Spoiler tries to prove that states x and y are
not bisimilar by showing a label a and a set C, purportedly closed under bisimilarity, such that the
probabilities of a-labelled transitions to C are different for x and y. This difference of probabilities
is checked but not disputed by Duplicator, who instead claims that C, in fact, is not closed under
bisimilarity. She does that by choosing x′ ∈ C and y′ 6∈ C and claiming that these two are bisimilar;
the game then proceeds in the same fashion.

Before we formally prove the correctness of this game, let us spend a moment to consider what
makes a game-theoretic characterization “elegant”. In our opinion, the classical bisimulation game
for nondeterministic processes is elegant because it allows one to characterize a global property
of behaviours (bisimilarity) in terms of a game whose rules only depend on local considerations.
Indeed, whether a move in the game is legal or not does not depend on bisimilarity or other long-
range properties, but merely on local observations about transition capabilities that cannot be
disputed by either player.
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We argue that this criterion of elegance is satisfied by our probabilistic game. One can imagine
the players engaging in a brief experiment with the given Markov process after each move by Spoiler,
to determine that the two transition probabilities involved are indeed different. By performing
random a-transitions from x and y sufficiently many times, Spoiler can demonstrate to Duplicator,
with an arbitrarily high confidence level, that the probabilities of getting to C are different and
so that the move to C is legal for Spoiler. It is important to note, comparing the game to the
definition of probabilistic bisimulation itself, that the legality of a Spoiler’s move does not depend
on the set C being actually closed under bisimilarity; a game with such a condition would not be
“elegant”.

The question of how many random transitions are enough to convince Duplicator that a Spoiler’s
move is legal, and hence how much time it takes for Spoiler to win the game if x and y are not
bisimilar, suggests a potentially interesting connection of the bisimulation game to the quantitative
framework of metrics on labelled Markov processes [DGJP04]. We leave this for future work.

Back to formal development. Since all infinite plays are won by the same player (Duplicator),
standard game-theoretic arguments prove that:

Fact 9.1. The bisimulation game is determined, i.e., from every position (x, y) either Spoiler has
a winning strategy or Duplicator does.

From this we infer:

Theorem 9.2. The states x and y are bisimilar if and only if Duplicator has a winning strategy
from (x, y).

Proof. For the left-to-right implication, for bisimilar x and y, we construct a winning strategy from
(x, y) for Duplicator. In this strategy, for any move a and C by Spoiler, Duplicator chooses some
arbitrary x′ ∈ C and y′ 6∈ C such that x′ and y′ are bisimilar. This is always possible: since
Spoiler’s move was legal, and it originated from a pair of bisimilar states, C cannot be closed under
bisimilarity. This strategy is winning for Duplicator since it allows her response to any move by
Spoiler, and Duplicator wins all infinite plays.

For the right-to-left implication, we shall show that the set R of all pairs (x, y) whence Duplicator
has a winning strategy, is a bisimulation. To this end, first we need to show that R is an equivalence
relation. Reflexivity is immediate, since from a position (x, x) Spoiler has no legal moves. For
symmetry, given a winning strategy from (x, y) Duplicator builds a strategy from (y, x) trivially:
she simply replies to any first move by Spoiler as if she would reply to a move from (x, y), and
then she follows the given strategy. For transitivity, assume winning strategies for Duplicator from
(x, y) and (y, z). A winning strategy for (x, z) works as follows: for a legal move a and C from
Spoiler, it must be that τa(x,C) 6= τa(y, C) or τa(y, C) 6= τa(z, C). Depending on which of these
inequalities holds, reply according to the strategy from (x, y) or from (y, z), and then follow that
winning strategy.

Now assume towards contradiction that R is not a bisimulation. This means that for some x, y
such that xRy, there exists a label a in A and an R-closed subset C of X such that τa(x,C) 6=
τa(y, C). Consider a and C as a Spoiler’s move from (x, y). No matter what Duplicator chooses as
x′ ∈ C and y′ 6∈ C, since C is R-closed we have that not (x′Ry′) and, by Fact 9.1, Spoiler has a
winning strategy from (x′, y′). This forms a winning strategy for Spoiler from (x, y), contradicting
the assumption that xRy.

Simulation game is defined in a very similar fashion, alternating the following moves:
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• Spoiler chooses a ∈ A and C ∈ Σ such that τa(x,C) > τa(y, C),

• Duplicator answers by choosing x′ ∈ C and y′ 6∈ C and the game continues from (x′, y′).

Again, a player who cannot make a move at any point loses, and Duplicator wins all infinite plays.
The intuition behind the game is as before, except now Spoiler maintains that his chosen sets

C are .-closed, and Duplicator contradicts that by choosing x′ ∈ C and y′ 6∈ C and maintaining
that x′ . y′. All other considerations remain virtually the same, up to and including:

Theorem 9.3. x . y if and only if Duplicator has a winning strategy from (x, y).

p1 p2 p3 p4 q

1
2

1
2

1
2

1
2

1
2 1

2

1

Figure 2: It takes four steps for Spoiler to convince Duplicator that the state p1 does not simulate q.

Example 9.4. We illustrate the simulation game on an example (see Fig. 2). In this Markov
process there is only one label. From the state q, the process loops forever. On the other hand,
from the state p1, one can reach the deadlock state p4 through the path to p2 and p3.

We examine the simulation game and how Spoiler can successfully prove to Duplicator that the
state p1 does not simulate q. We start the simulation game from (q, p1). A possible first move is
C = {q, p2} since τ(q, C) = 1 > τ(p1, C) = 1

2 , but it allows Duplicator to play (q, p1), back to the
original position. A smarter move is C = {q, p1}, to which Duplicator has several possible answers,
all losing. For instance, if Duplicator plays (q, p4), Spoiler wins immediately by choosing C = X.
Duplicator may survive more steps by playing (q, p2), then (q, p3), before the fatal (q, p4).

10. Conclusions

In this paper we have given a unified presentation of several proofs of bisimulation for prob-
abilistic transition systems of increasing complexity: finite, discrete and continuous. The last of
these uses the same tools as the proof in [DEP98, DEP02] but the logical organization is different
and allows one to see that all three proofs have the same pattern. The second contribution is to give
analogous proofs for the logical characterization of simulation. Previous proofs were limited to the
case where one of the systems was discrete and relied on approximation theory. The present proofs
are more general and follow the same pattern as the bisimulation proofs. This required new descrip-
tive set theory results which are positive versions of the toolkit used for the bisimulation proofs. We
have also developed an “event” version of simulation analogous to event bisimulation [DDLP06].
Finally we developed the theory for uncountably many labels. The crude logical characterization
result fails but is restored with additional continuity assumptions. All these developments were
illuminated by a game-theoretic characterization of bisimulation and simulation.
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One can ask how these techniques apply to other situations. There are a number of possible cases
to consider. First one can contemplate the combination of probability and nondeterminism. Note
first of all that the pure nondeterministic case embeds in this and hence there is no hope of obtaining
a simulation result. Essentially the same remark applies to weak simulation. For bisimulation and
weak bisimulation the techniques used here could apply more or less in the same way, but we have
not looked at it and there may be subtleties that are not apparent at first sight. Certainly, these
cases involve issues that are orthogonal to anything we have discussed. For real-time systems, more
precisely CTMCs, a logical characterization has been available [DP03]. The proof techniques of the
present paper should apply to that case straightforwardly once the subtleties of the real-time case
(such as the presence of Zeno paths) are taken into account.
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