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Abstract

A novel, general approach is proposed to proving the
compositionality of process equivalences on languages de-
fined by Structural Operational Semantics (SOS). The ap-
proach, based on modal logic, is inspired by the simple
observation that if the set of formulas satisfied by a pro-
cess can be derived from the corresponding sets for its sub-
processes, then the logical equivalence is a congruence.
Striving for generality, SOS rules are modeled categorically
as bialgebraic distributive laws for some notions of pro-
cess syntax and behaviour, and modal logics are modeled
via coalgebraic polyadic modal logic. Compositionality is
proved by providing a suitable notion of behaviour for the
logic together with a dual distributive law, reflecting the one
modeling the SOS specification. Concretely, the dual laws
may appear as SOS-like rules where logical formulas play
the role of processes, and their behaviour models logical de-
composition over process syntax. The approach can be used
either to proving compositionality for specific languages or
for defining SOS congruence formats.

Introduction

Structural Operational Semantics (SOS) [25, 1] is one of
the most successful frameworks for the formal description
of programming languages and process calculi. There, the
behaviour of programs or processes is described by means
of transition relations, also called labeled transition systems
(LTSs), induced by inference rules following the syntactic
structure of processes. For example, rules:

x
a−→ x′

x||y a−→ x′||y
y

a−→ y′

x||y a−→ x||y′
(1)

define the behaviour of a binary parallel composition op-
erator || without communication. In particular, the rule on
the left says that if a process can do a transition labelled
with a, then the same process put in parallel with any other

process can do a similar transition. One could also enrich
states and/or transitions in SOS specifications with environ-
ments, stores, probabilities, time durations etc., to induce
other, more sophisticated kinds of transition systems. The
intuitive appeal of SOS and, importantly, its inherent sup-
port for modeling nondeterministic behaviour, makes it a
natural framework for the formal description of process al-
gebras (see [5] for many examples).

For reasoning about processes a suitable notion of pro-
cess equivalence is needed. Various equivalences on LTSs
have been proposed (see [12] for a survey). Bisimilarity
is the most widely studied, but other equivalences such as
trace equivalence or testing equivalence have also been con-
sidered. Several equivalences have also been proposed for
probabilistic, timed and other kinds of transition systems,
including their respective notions of bisimilarity.

To support inductive reasoning, it is important for the
chosen process equivalence to be compositional; indeed, it
is useful to know that if a part of a process is replaced by an
equivalent part then the resulting process will be equivalent
to the original one. Compositionality proofs for specific lan-
guages can be quite lengthy, therefore in the literature many
congruence formats have been proposed. Such a format is
a syntactic restriction on SOS specifications that guarantees
a specific equivalence to be compositional on the induced
transition system. The most popular format is GSOS [7],
which guarantees the compositionality of bisimilarity, but
formats for other equivalences and/or kinds of transition
systems have also been studied (see [1, 14]).

The task of finding a reasonably permissive congruence
format for a given equivalence is usually quite demanding,
therefore it would be desirable to have a general framework
for the derivation of formats as well as for proving composi-
tionality for specific languages. To be sufficiently general,
such a framework should be parametrized by the process
equivalence and by the kind of transition system. It is the
purpose of this paper to provide such a framework.

Our approach is based on the categorical framework of
bialgebraic semantics [30], where process syntax is mod-
eled via algebras, and transition systems are viewed as coal-



gebras. For example, LTSs are coalgebras for the functor
(P−)A on the category Set of sets and functions, where
P is the powerset functor and A a set of labels, and other
kinds of transition systems are coalgebras for other func-
tors, called behaviour functors in this context. Coalgebras
also provide a general and abstract notion of bisimilarity
(for more information on the coalgebraic theory of systems,
see [26]). As it turns out, SOS specifications in the GSOS
format are essentially distributive laws of syntax functors
over (P−)A. Moreover, the process of inducing an LTS
with a syntactic structure on processes from SOS rules is a
special case of an abstract construction, where distributive
laws of syntax over behaviour induce bialgebras, i.e., coal-
gebras with algebraic structures on their carriers. Also the
fact that GSOS is a congruence format for bisimilarity can
be proved at the level of distributive laws. This makes bial-
gebraic semantics a general framework for deriving congru-
ence formats for bisimilarities, parametrized by the kind of
transition systems; it was used to this purpose in [4, 9, 16]
for probabilistic, timed and name-passing systems. In this
paper, the framework is further parametrized by the notion
of process equivalence.

Typically, process equivalences are characterized by
modal logics. For example, two processes in an LTS are
bisimilar if and only if they satisfy the same formulas in
Hennessy-Milner logic [15], and fragments of that logic
characterize other interesting equivalences on LTSs. Re-
cently [19] we have proposed a categorical generalization of
modal logics for coalgebras in arbitrary categories. There,
the syntax of a logic is modeled via algebras for an endo-
functor, and its semantics via a suitable natural transforma-
tion connecting the logic syntax with the process behaviour.

The main contribution of this paper is a combination of
the coalgebraic perspective on modal logic taken in [19]
with the bialgebraic approach to SOS from [30]. Roughly
speaking, to merge a logic and its semantics with a distribu-
tive law representing an SOS specification, one should pro-
vide a suitable notion of behaviour for the logic, and define
a “dual”, logical distributive law, where formulas play the
role of processes, in a way that reflects the SOS specifica-
tion. One might think of the logical behaviour as a way to
decompose logical formulas over the syntax of processes.
Our main result says that if such a logical distributive law
exists, then the equivalence characterized by the logic is
compositional on the transition system induced by the SOS
specification.

For some kinds of logical behaviours, logical distributive
laws can be presented as SOS-like inference rules where
formulas act for processes, logical operators (modalities)
for syntactic constructs, and logical inference operators for
transitions. For example, rules:

φ a ψ||σ
〈a〉φ a 〈a〉ψ||σ

φ a ψ||σ
〈a〉φ a ψ||〈a〉σ

(2)

are used to define a logical distributive law reflecting (1). In
particular, the rule on the left says that if a formula φ holds
for every process of the form x||y such that ψ holds for x
and σ holds for y, then the formula 〈a〉φ holds for every
process of the form z||w such that 〈a〉ψ holds for z and σ
holds for w. Since 〈a〉φ means that a process can do an a-
transition to a process for which φ holds, this corresponds
to the left rule in (1).

The framework proposed here can be seen as a very gen-
eral “meta-congruence format”, parametrized both by the
notion of process equivalence and by the kind of transition
system. It can be used directly to prove compositionality
for specific languages and equivalences. Obviously it is
hard to expect that such a general approach would be as
easy to use as syntactic congruence formats designed for
specific equivalences, and indeed finding the right logical
distributive law and presenting it in a readable form is not
always easy. However, our framework can also be used to
derive specialized formats by proving that suitable distribu-
tive laws exist for a whole class of SOS specifications. The
direct application to specific languages can be then left to
problematic cases that do not fit in any known format.

The structure of the paper is as follows. The basics of
classical SOS and congruence formats are presented in §1.
In §2 the bialgebraic approach of [30] is recalled, followed
by a brief description of our approach to coalgebraic modal
logic [19] in §3. In §4, the main technical result of the paper
is obtained by merging the two approaches, and it is illus-
trated in §5 on some simple examples. Finally, §6 sketches
some related and future work. Some familiarity with basic
category theory is expected; [2, 22] are good references.
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1 SOS and congruence formats

We begin by recalling the classical framework of
SOS [1]. A labelled transition system (LTS) (X,A,−→)
is a set X 3 x, y, . . . of processes, a set A 3 a, b, . . . of
labels, and a transition relation −→ ⊆ X ×A×X , typ-
ically written x a−→ y for (x, a, y) ∈ −→; y is then an
a-successor of x. An LTS is image finite if each process
has only finitely many successors for each label, and x 6−→
means that x has no successors.

Various equivalences are defined on processes in an LTS;
usually they are characterized by modal logics. For exam-
ple, on image finite LTSs, finitary Hennessy-Milner logic
(HML) [15], with syntax:

φ ::= > | ¬φ | φ ∧ φ | 〈a〉φ
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where a ∈ A, and with semantics defined on a given LTS
by:

x |= 〈a〉φ ⇐⇒ ∃y ∈ X. x a−→ y, y |= φ

and by the standard interpretation of propositional connec-
tives, characterizes strong bisimilarity [23]. Fragments of
HML have also been considered; see [12] for a survey.
For example, the fragment without conjunction or negation
characterizes trace equivalence on arbitrary LTSs, and the
same fragment extended with a constant ∅ with semantics:

x |= ∅ ⇐⇒ x 6−→

characterizes completed trace equivalence.
In the context of SOS, processes are closed terms over

some algebraic signature, i.e., a set Σ 3 f, g, . . . of opera-
tion symbols with an arity function ar : Σ → N, and the
transition relation is induced from a set of inference rules.
Assuming a fixed set Ξ 3 x, y, . . . of variables, a positive
(resp. negative) literal over Σ is an expression of the form
t

a−→ s (resp. t 6 a−→), where t and s are terms over Σ
with variables from Ξ, and an inference rule is an expres-
sion H

c , where H is a set of literals, called premises, and c
is a positive literal called the conclusion.

Considered in this generality, inference rules do not
guarantee the compositionality of any nontrivial process
equivalence. Indeed, it is not even clear that they mean-
ingfully induce an LTS. For these reasons, various restricted
formats of SOS specifications have been proposed that guar-
antee these and other desirable properties. The most widely
studied format is that of GSOS [7], where only rules of the
following form are allowed:

{xi
aij−→ yij}1≤i≤n

1≤j≤mi
{xi 6

bik−→}1≤i≤n
1≤k≤li

f(x1, . . . , xn) c−→ t

where n = ar(f), mi, li ∈ N, aij , bik, c ∈ A, xi and yij

are all distinct and no other variables occur in t. A GSOS
specification is image finite if it contains only finitely many
rules for each f ∈ Σ and c ∈ A. Image finite GSOS
specifications induce image finite LTSs in an obvious way,
and bisimilarity is guaranteed to be a congruence. Another
well-known format is de Simone format for trace equiva-
lence. A considerably more complex format for completed
trace equivalence was suggested in [20, 17]. For a detailed
study of various congruence formats and their properties,
see [1, 14].

2 Bialgebraic operational semantics

LTSs can be seen as functions h : X → (PX)A along
the correspondence y ∈ h(x)(a) ⇐⇒ x

a−→ y. In
category theory, such functions are called coalgebras for
the functor (P−)A on Set. Similarly, image finite LTSs

ar (Pω−)A-coalgebras, where Pω is the finite powerset
functor. Several other kinds of transition systems are B-
coalgebras for other endofunctorsB, called behaviour func-
tors in this context, on Set or on other categories (see
e.g. [26, 10]). A coalgebra morphism from h : X → BX
to g : Y → BY is a function f : X → Y such that
g ◦ f = Bf ◦ h.

Dually, syntax is traditionally modeled with alge-
bras [13]. An algebraic signature Σ corresponds to a func-
tor ΣX =

∐
f∈ΣX

ar(f) on Set, in the sense that alge-
bras for the signature are exactly Σ-algebras for the functor,
i.e, functions g : ΣX → X . An algebra morphism from
g : ΣX → X to h : ΣY → Y is a function f : X → Y
such that f ◦ g = h ◦ Σf . Given an algebra g : ΣX → X ,
(kernels of) algebra morphisms from g are called congru-
ences on g. For Σ’s corresponding to algebraic signatures,
they correspond to congruences in the sense of universal al-
gebra.

In LTSs induced from SOS descriptions, processes are
closed terms over some signatures. Abstractly, such coalge-
bras are induced by distributive laws, i.e., natural transfor-
mations like

λ : ΣB =⇒ BΣ (3)

for functors Σ, B on the same category C. Indeed, assum-
ing Σ has an initial algebra a : ΣP → P , a B-coalgebra
structure on P is defined as the unique algebra morphism:

ΣP
aoo

Σhλ

��
ΣBP.

λP

ooBΣP
Ba

oo

P

hλ

��
BP

(4)

The pair (a, hλ) is then an (initial) λ-bialgebra. In a very
similar fashion (see [30] for details), such bialgebras are
induced also by more general types of distributive laws like

λ : Σ(Id ×B) =⇒ BTΣ, or (5)
λ : ΣDB =⇒ B(Id + Σ), (6)

where TΣ is the free monad over Σ and DB is the cofree
comonad overB (assuming they exist), or even more gener-
ally by distributive laws of the monad TΣ over the comonad
DB , i.e., by natural transformations

λ : TΣDB =⇒ DBTΣ (7)

subject to a few axioms. Laws of type (3), (5) or (6)
uniquely induce laws of type (7) by appropriate “recursion
theorems” [30].

As was observed in [30], proved in detail in [4], and
explained on simple examples in [29, 17, 18], for B =
(Pω−)A and for Σ on Set corresponding to an algebraic
signature, laws of type (5) correspond to image finite GSOS
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specifications, and hλ is the LTS induced by the corre-
sponding specification; hence (5) is called abstract GSOS.
In [4, 16, 9], it was shown how this abstract treatment spe-
cializes to useful formats for probabilistic, timed or name-
passing systems for other choices of B and/or of the under-
lying category.

Similarly, distributive laws (6) for B = (Pω−)A corre-
spond to SOS specifications in the safe ntree format [30],
allowing rules of the form

{zi
ai−→ yi}i∈I {wj 6

bj−→}j∈J

f(x1, . . . , xn) c−→ t

where xi and yi are all distinct and are the only variables
occurring in the rule, I and J are countable sets, the graph
of positive premises is subject to a well-foundedness con-
dition, t is either a variable or a term built of a single op-
eration symbol and variables, and the entire specification
is again subject to an image finiteness condition. Unlike
GSOS, this allows lookahead in premises, i.e., rules such as

x
a−→ y y

b−→ z

f(x) c−→ g(z)

are allowed. Distributive laws (6) will be called abstract
safe ntree.

Laws of type (3), called abstract toy SOS in the follow-
ing, are special cases of both abstract GSOS and abstract
safe ntree. Concrete SOS formats defined by (3) are quite
restrictive, and not many interesting specifications conform
to them. However, the simplicity of abstract toy SOS makes
it useful for the presentation of abstract results, since they
are usually straightforward to generalize to other types of
distributive laws. This includes also the general (7); how-
ever, that type of laws has not been yet understood con-
cretely as a syntactic format of SOS specifications.

3 Coalgebraic modal logic

To study HML and other modal logics at the level of gen-
erality of distributive laws, we will use the recent approach
of [19], inspired by earlier results of [21, 24, 27]. Assume
a category C of structures of processes, and a category D
of structures of logical formulas, connected by an adjunc-
tion F a Gop : C → Dop. This means that a bijection
C(X,GΦ) ∼= D(Φ, FX) holds for any X ∈ C, Φ ∈ D;
slightly abusing the notation, we will denote both directions
of this bijection by −[. To avoid notational clutter, all op-
notation for functors and natural transformations is omitted
in the following; formally, we see F and G as contravariant
functors between C and D, and compose them with (covari-
ant) functors on C or D in the obvious way. In all con-
crete examples considered in this paper, C = D = Set and
F = G = 2−, where 2 = {tt, ff}.

Functors F and G provide the infrastructure for linking
processes and formulas. Note that GF is a monad on C;
denote its unit by η. For any f : Φ → FX in D, one has
f [ = Gf ◦ ηX . Also FG is a monad on D, with the unit
denoted by ε.

Assuming a functor B on C, a (coalgebraic polyadic
modal) logic for B-coalgebras is a functor L on D (the
syntax) together with a connection between L and B, i.e.,
a natural transformation ρ : LF =⇒ FB (the seman-
tics). Such a ρ determines the adjoint connection ρ? =
GLε ◦ GρG ◦ ηBG : BG =⇒ GL; it is not difficult to
see that the correspondence between ρ and ρ? is bijective.

If L has an initial algebra a : LΦ → Φ, then for any
coalgebra h : X → BX the interpretation [[ ]]h : Φ → FX
is defined as the unique algebra morphism:

LΦ
aoo

L[[ ]]h

��
LFX,

ρX

ooFBX
Fh

oo

Φ

[[ ]]h

��
FX

(8)

and the transpose [[ ]][h : X → GΦ represents the logical
equivalence associated with (L, ρ).

Example 1. The logic for completed trace equivalence on
finitely branching LTSs, i.e., on B-coalgebras for B =
(Pω−)A on Set, is defined by syntax:

LΦ = {>}+ {∅}+A× Φ

on Set, with semantics ρX : L2X → 2BX defined by cases:

ρX(>)(β) = tt always
ρX(∅)(β) = tt ⇐⇒ ∀a ∈ A. β(a) = ∅

ρX(〈a〉φ)(β) = tt ⇐⇒ ∃y ∈ β(a). φ(y) = tt.

It is easy to see how L corresponds to the syntax of the
logic for completed trace equivalence and ρ to its semantics.
Indeed, for any B-coalgebra h, the map [[ ]]h defined by (8)
is the usual semantics of the logic for completed traces, and
the kernel of [[ ]][h is completed trace equivalence on h.

4 Logical distributive laws

A logic (L, ρ) forB-coalgebras liftsB to an endofunctor
Bρ on the category (D ↓ F ), i.e., the slice category of the
contravariant adjunction of F andG. Objects of (D↓F ) are
triples (X, r,Φ) where X ∈ C, Φ ∈ D and r : Φ → FX in
D, and a morphism (f, g) : (X, r,Φ) → (Y, s,Ψ) is a pair
of maps f : X → Y , g : Ψ → Φ such that Ff ◦ s = r ◦ g.
The functor Bρ on (D↓F ) is defined by:

Bρ (X, r,Φ) = (BX, ρX ◦ Lr, LΦ)
Bρ (f, g) = (Bf,Lg)
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and a Bρ-coalgebra is a B-coalgebra together with an L-
algebra interpreted in it according to ρ.

The above suggests that, in a sense, coalgebraic modal
logic is a special case of the study of coalgebras, and to
combine it with the bialgebraic approach to SOS one should
interpret the latter in (D↓F ). To simplify the presentation,
we do it first for abstract toy SOS (3), and then show without
proof how the approach applies to the more general types of
distributive laws (5) and (7).

4.1 Abstract toy SOS

Assume that a syntax functor Σ on C is lifted to a functor
Σζ with a functor Γ on D and a transformation ζ : ΓF =⇒
FΣ, just asB is lifted toBρ withL and ρ. Some calculation
shows that a distributive law (λ, χ) : ΣζBρ =⇒ BρΣζ is a
pair of laws in C and D:

λ : ΣB =⇒ BΣ χ : LΓ =⇒ ΓL

such that the hexagon

LΓF
Lζ +3

χF

��

LFΣ
ρΣ +3 FBΣ

Fλ

��
ΓLF

Γρ
+3 ΓFB

ζB
+3 FΣB

(9)

commutes. The following informal picture shows cate-
gories, functors and natural transformations involved in this
distributive law:

C
Y�

F

%%
⊥

Σ

11

B

��
DY�

G

dd

L

��

Γ

ll

ρ:LF=⇒FB

λ:ΣB=⇒BΣ

ζ:ΓF=⇒FΣ

χ:LΓ=⇒ΓL ;

the contravariance of F andG is marked with crossed arrow
tails. Σ, B and λ model a language syntax, behaviour and
an SOS specification, as described in §2. L and ρ model
a modal logic for B-coalgebras, as described in §3. The
following theorem says that if the remaining ingredients Γ,
ζ and χ can be found, then the logical equivalence induced
by the logic on the transition system hλ induced from the
SOS specification is a congruence.

Theorem 2. Under the above notation, for given Σ, B, λ,
L and ρ, if Σ and L have initial algebras and if some Γ, ζ
and χ exist such that (9) holds, then [[ ]][hλ

is a congruence,
i.e., a Σ-algebra morphism from the initial Σ-algebra.

Proof. Initial algebras aΣ : ΣP → P and aL : LΦ → Φ
induce initial λ- and χ-bialgebras as in (4):

ΣP

aΣ

��

Σhλ // ΣBP

λP

��
BΣP

BaΣ

��
P

hλ

// BP

LΓΦ

χΦ

��

LΦ

aL

��

Lhχoo

ΓLΦ

ΓaL

��
ΓΦ Φ.

hχ

oo

(10)

Then [[ ]]hλ
is a “twisted coalgebra morphism” as below:

FP
FaΣoo

Φ.

[[ ]]hλ

OO

hχ

oo

FΣPΓFP
ζP //

ΓΦ

Γ[[ ]]hλ

OO

(11)

This is proved by L-induction, as both sides of this diagram
are algebra morphisms from the initial L-algebra to F (λP ◦
Σhλ) ◦ ρΣP : LFΣP → FΣP . Indeed, in the diagram

LΦ

aL

��

L[[ ]]hλ// LFP
LFaΣ //

ρP

��

LFΣP

ρΣP

��
FBP

FBaΣ//

Fhλ

��

FBΣP

FλP

��
FΣBP

FΣhλ

��
Φ

[[ ]]hλ

// FP
FaΣ

// FΣP

the left part is (8), the upper right part commutes by the
naturality of ρ, and the lower right part is the left diagram
in (10) mapped along F . On the other hand, in the diagram

LΦ

aL

��

Lhχ // LΓΦ

χΦ

��

LΓ[[ ]]hλ// LΓFP

χF P

��

LζP // LFΣP

ρΣP

��
ΓLΦ

ΓaL

��

ΓL[[ ]]hλ

// ΓLFP

ΓρP

��

FBΣP

FλP

��
ΓFBP

ΓFhλ

��

ζBP // FΣBP

FΣhλ

��
Φ

hχ

// ΓΦ
Γ[[ ]]hλ

// ΓFP
ζP

// FΣP

the left part is the diagram on the right in (10), the upper
middle part commutes by the naturality of χ, the lower mid-
dle part is (8) mapped along Γ, the upper right part is (9),
and the lower right part commutes by the naturality of ζ.
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Mapped along G, (11) is the upper right part of the fol-
lowing diagram, where the upper left part commutes by the
naturality of η, the lower left part by general properties of
adjunctions, and the lower right part is the naturality of ζ?:

P
ηP // GFP

G[[ ]]hλ // GΦ

GFΣP

GFaΣ

OO

GζP

��
ΣP

aΣ

OO

ηΣP

::uuuuuuuuu

ΣηP $$IIIIIIIII GΓFP
GΓ[[ ]]hλ // GΓΦ

Ghχ

OO

ΣGFP

ζ?
F P

OO

ΣG[[ ]]hλ

// ΣGΦ

ζ?
Φ

OO

Thus [[ ]][hλ
= G[[ ]]hλ

◦ ηP is a Σ-algebra morphism from
aΣ.

4.2 Abstract GSOS and further

To generalize the framework of §4.1 to distributive laws
λ of type (5), some technicalities are necessary. Assume
both C and D have products and coproducts. A connection
ρ : LF =⇒ FB induces a connection between the cofree
copointed functor over B and the free pointed functor over
L:

ρ+ : (Id + L)F =⇒ F (Id ×B).

To define it, define its adjoint

ρ+? : (Id ×B)G =⇒ G(Id + L) = G×GL

by ρ+? = id × ρ?.
Further, assume that Σ freely generates a monad TΣ on

C, i.e., that TΣX is the carrier of an initial (X + Σ−)-
algebra, and that Γ cofreely generates a comonad DΓ on D,
i.e., that DΓΦ is the carrier of a final (Φ × Γ−)-coalgebra.
Then ζ : ΓF =⇒ FΣ induces a connection ζ] : DΓF =⇒
FTΣ. To define it, define its adjoint ζ]? : TΣG =⇒ GDΓ

from ζ? : ΣG =⇒ GΓ pointwise, by a straightforward in-
duction in C.

Theorem 2 can be generalized to distributive laws λ :
Σ(Id × B) =⇒ BTΣ as follows: for any ρ : LF =⇒ FB,
if Γ on D, ζ : ΓF =⇒ FΣ and χ : LDΓ =⇒ Γ(Id + L)
exist such that

LDΓF
Lζ]

+3

χF

��

LFTΣ
ρTΣ +3 FBTΣ

Fλ

��
Γ(Id+ L)F

Γρ+
+3 ΓF (Id×B)

ζ(Id×B)
+3 FΣ(Id×B)

(12)

(compare with (9)) commutes, then [[ ]][hλ
is a Σ-algebra

morphism from the initial Σ-algebra. The proof of this pro-
ceeds as for Theorem 2. Note that while λ is generalized
to abstract GSOS, the logical distributive law χ needs to be
generalized to abstract safe ntree.

Further, the theorem can be generalized to type (7). This
time, for any distributive law λ of the free monad TΣ over
the cofree comonad DB , and for any ρ : LF =⇒ FB, one
requires that Γ on D, ζ : ΓF =⇒ FΣ and a distributive law
χ of the free monad TL over the cofree comonad DΓ exist
such that

TLDΓF
TLζ]

+3

χF

��

TLFTΣ
ρ]TΣ +3 FDBTΣ

Fλ

��
DΓTLF

DΓρ]

+3 DΓFDB
ζ]DB

+3 FTΣDB

(13)

commutes, where ρ] is defined from ρ by analogy to ζ]

above. This result is of little practical importance now, as
the type (7) has not yet been understood as a concrete syn-
tactic SOS format. However, its proof is entirely analogous
to that in §4.1, and the more specific results concerning ab-
stract toy SOS and abstract GSOS above can be obtained
from it via recursion theorems such as those used in [30].

5 Examples

In this section the framework developed in §4 is illus-
trated on three simple examples, aimed at explaining the
workings of logical distributive laws rather than at explor-
ing the full scope of our approach. First, a very simple ex-
ample of an SOS specification in the abstract toy SOS for-
mat is explained in detail. The two remaining examples are
described rather more concisely due to lack of space: first,
trace equivalence is proved compositional for a subset of
CCS; then, completed trace equivalence is proved compo-
sitional for a language with binary Kleene star, which does
not conform to any previously known congruence format
for completed traces.

In all examples in this section C = D = Set, F = G =
2− and B = (Pω−)A, for a fixed set A of labels. For sim-
plicity we assumeA to be finite, although all examples work
with little change for an infinite A.

5.1 A toy SOS specification

Consider a tiny language with synchronous product and
no sequential composition, with syntax and semantics de-
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scribed by:

t ::= nil | a | t⊗ t

a
a−→ nil

x
a−→ x′ y

a−→ y′

x⊗ y
a−→ x′ ⊗ y′

(14)

where a ranges overA. Categorically, the syntax is modeled
by the functor

ΣX = {nil}+A+X ×X

on Set, and the rules specify a distributive law λ : ΣB =⇒
BΣ. More specifically, for any set X , λ is defined by cases:

λX(nil)(b) = ∅

λX(a)(b) =
{
{nil} if a = b
∅ otherwise

λX(β1 ⊗ β2)(b) = {x⊗ y | x ∈ β1(b), y ∈ β2(b) }

where a, b ∈ A and β1, β2 ∈ BX = (PωX)A. Clearly λ is
natural in X .

We will apply the framework of §4 to prove that trace
equivalence is compositional for this language. The com-
positionality result is hardly interesting in itself (and in-
deed easy to prove without any advanced techniques), but
it should be useful to explain our approach on such a very
simple instance of abstract toy SOS.

The logic for trace equivalence on B-coalgebras (image
finite LTSs) is defined as in Example 1, but with syntax re-
stricted to

LΦ = {>}+A× Φ.

For the required compositionality result, Theorem 2 re-
quires a functor Γ on Set and transformations ζ : Γ2− →
2Σ− and χ : LΓ =⇒ ΓL such that (9) commutes.

To illustrate the role of Γ and explain the process of find-
ing ζ and χ, we begin with a very simple and natural (al-
though, as we shall see, wrong) choice, where Γ = Σ and ζ
is defined as follows:

ζX(nil)(t) = tt ⇐⇒ t = nil

ζX(a)(t) = tt ⇐⇒ t = a

ζX(φ1⊗φ2)(t) = tt ⇐⇒ t = x1 ⊗ x2, φi(xi) = tt

along the lines of §3. Constructors nil, a and ⊗ used here
will be called spatial modalities, as opposed to behavioural
modalities> and 〈a〉 used in the definition of L. Intuitively,
formulas built from spatial modalities can check the struc-
ture of Σ-terms.

One might now attempt to define a distributive law χ :
LΓ =⇒ ΓL such that (9) commutes. Since both L and Γ
are polynomial functors, such a law can be defined by cases,
separately for each combination of spatial and behavioural

modalities. Then (9) can also be proved by cases. For ex-
ample, consider the following partial definition of χ:

χΦ(〈a〉(φ1⊗φ2)) = (〈a〉φ1)⊗(〈a〉φ2).

Note that both the argument on the left side and the right
side of this equation have a simple intuitive meaning: the
former says “the process can do an a-step to a process of
the form y1 ⊗ y2 such that φ1 holds for y1 and φ2 holds for
y2”, and the latter says “the process is of the form x1 ⊗ x2,
x1 can do an a-step to a process for which φ1 holds, and x2

can do an a-step to a process for which φ2 holds”. A quick
look on (14) should convince anyone that these conditions
are equivalent; formally, the corresponding case of (9) com-
mutes. Indeed, to check the equation

2λX (ρΣX(LζX(〈a〉(φ1⊗φ2))))(t) =
ζBX(ΓρX(χ2X (〈a〉(φ1⊗φ2))))(t)

for a given X , a ∈ A, φ1, φ2 ∈ 2X and t ∈ ΣBX , it is
enough to unfold the definitions of ρ, ζ and χ to obtain the
equivalent condition:

∃r ∈ (λX(t))(a). r = y1 ⊗ y2, φi(xi) = tt ⇐⇒
t = β1 ⊗ β2,∃yi ∈ βi(a). φi(yi) = tt

which follows directly from the definition of λ.
Unfortunately, other cases of χ are harder to define. Al-

ready the simple behavioural modality> is problematic: for
χΦ(>) one would like an element of ΓLΦ that would rep-
resent the always true condition. This is, however, impossi-
ble with our initial choice of Γ: every test in ΓLΦ imposes
some syntactic condition on the tested process. A simple
attempt to overcome this problem would be to add a single
constant, always true modality T to Γ, with ζ extended by:

ζX(T)(t) = tt always.

Then, however, it becomes unclear what χΦ(〈a〉T) should
be. To formalize the condition “the process can do an a-
step” as an element of ΓLΦ, one would like to write some-
thing like:

χΦ(〈a〉T) = a ∨ (〈a〉>)⊗(〈a〉>);

this is, however, forbidden as Γ does not allow one to write
anything like logical disjunction in spatial modalities.

A solution to this problem is to extend Γ more substan-
tially by closing spatial modalities under finite disjunctions.
This amounts to taking Γ = PωΣ with ζ : Γ2− =⇒ 2Σ−

defined by:

ζX(γ)(nil) = tt ⇐⇒ nil ∈ γ
ζX(γ)(a) = tt ⇐⇒ a ∈ γ

ζX(γ)(x1 ⊗ x2) = tt ⇐⇒ ∃φ1⊗φ2 ∈ γ. φi(xi) = tt.
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One could then define χ with a set of equations as before,
writing for example

χΦ(>) = nil ∨ (>⊗>) ∨
∨

a∈A a

χΦ(〈a〉(nil ∨ (φ1⊗φ2))) = a ∨ (〈a〉φ1⊗〈a〉φ2)

and so forth. However, the theory of GSOS in §2 provides
another, more elegant method of presenting such distribu-
tive laws: inference rules. Note that the functor PωΣ is
rather similar to B = (Pω−)A, and it is reasonable to ex-
pect that χ could be presented in a manner similar to GSOS
rules. Two differences between PωΣ-coalgebras and B-
coalgebras are that in the former there is no labelled compo-
nent in transitions, and successors are Σ-terms rather than
simple elements. This suggests that instead of literals like
x

a−→ y, in rules for χ one should use literals such as
x −→ y⊗z. To distinguish the logical rules from the SOS
ones, we will use variables like φ, ψ, instead of x, y, and we
will replace the sign −→ with a. Now the following rules:

> a nil > a a > a >⊗>

φ a nil

〈a〉φ a a
φ a ψ⊗σ

〈a〉φ a (〈a〉ψ)⊗(〈a〉σ)

define a distributive law χ : LΓ =⇒ ΓL just as (14) defined
λ above. Note that behavioural modalities >, 〈a〉 play the
role of syntax here, and spatial modalities nil, a and ⊗
are a part of the behaviour. The sign a might be read “is
guaranteed by”; this is justified by the definition of ζ.

It turns out that for this χ the condition (9) holds. This
is formally proved by a rather tedious calculation; however,
it is not difficult to convince oneself, looking at (14), that
e.g., if a property φ holds for all processes x ⊗ y such that
ψ holds for x and σ holds for y, then 〈a〉φ holds for all
processes z ⊗ w such that 〈a〉ψ holds for z and 〈a〉σ holds
for w, which means that the last rule above is correct.

5.2 A step towards GSOS

For a slightly more complex, but still very simple exam-
ple, consider the subset of CCS [23] with action prefixing,
nondeterministic choice and parallel composition, with syn-
tax and semantics defined by:

t ::= nil | a.t | t+ t | t||t

a.x
a−→ x

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

x
a−→ x′

x||y a−→ x′||y
y

a−→ y′

x||y a−→ x||y′
x

a−→ x′ y
ā−→ y

x||y τ−→ x′||y′

where a ranges over A, assuming that A = A0 + {ᾱ | α ∈
A0}+{τ} for some set A0, and ¯̄α means α. The functor on
Set corresponding to the above syntax is

ΣX = {nil}+A×X +X ×X +X ×X,

and it is not difficult to see how the rules define a distributive
law similarly as in §5.1, but of the more complex form:

λ : Σ(Id ×B) =⇒ B(Id + Σ). (15)

Note that λ is not a special case of abstract toy SOS (3), but
it lies in the intersection of abstract GSOS (5) and abstract
safe ntree (6). Indeed, the above rules are both in GSOS and
safe ntree formats.

To prove the compositionality of trace equivalence for
this language, considerL and ρ as in §5.1. A version of The-
orem 2 for laws as in (15) (not stated in §4, but a straight-
forward simplification of that from §4.2) requires a functor
Γ, ζ : Γ2− =⇒ 2Σ− and χ : L(Id×Γ) =⇒ Γ(Id+L) such
that a corresponding version of (9) holds. Take Γ = PωΣ
and define ζ in analogy with §5.1, and let χ be defined by
the following rules:

> a nil > a a.> > a >+> > a >||>

〈a〉φ a a.φ 〈a〉φ a 〈a〉φ+> 〈a〉φ a >+〈a〉φ

φ a ψ||σ
〈a〉φ a 〈a〉ψ||σ

φ a ψ||σ
〈a〉φ a ψ||〈a〉σ

φ ` ψ||σ
〈τ〉φ a 〈a〉ψ||〈ā〉σ

Another tedious calculation shows that the corresponding
version of (9) holds. Again, rather that perform the formal
calculation it is easier to convince oneself that the logical
rules reflect the SOS rules of our language.

Note that χ is not of the abstract toy SOS type LΓ =⇒
ΓL. For example, in the first rule for 〈a〉 above, the variable
φ from the left side of the conclusion is used on the right
side of the conclusion (hence at least L(Id × Γ) is needed
in the domain of χ), and it is not put under any behavioural
modality (hence at least Γ(Id+L) is needed in the codomain
of χ). This corresponds to the reason why λ is not of the
type ΣB =⇒ BΣ: look at the first SOS rule for a.

5.3 GSOS: Kleene star and completed
trace equivalence

Consider a language with sequential composition and
(binary) Kleene star, with syntax defined by the following
grammar:

t ::= nil | a | t;t | t ∗ t
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and semantics by the rules:

a
a−→ nil

x
a−→ x′

x; y a−→ x′; y

{x 6 b−→}b∈A y
a−→ y′

x; y a−→ y′

x
a−→ x′

x ∗ y a−→ x′;(x ∗ y)
y

a−→ y′

x ∗ y a−→ y′

where a ranges over A. The syntax is modeled by

ΣX = {nil}+A+X ×X +X ×X

on Set. The distributive law defined by the rules is not in the
form of (15), since a complex term is used in the conclusion
of the first rule for ∗. However, since the rules are in the
GSOS format, the law is of the form (5).

Consider the logic for completed trace equivalence with
L and ρ as in Example 1. According to §4.2, to prove that
completed trace equivalence is compositional one needs to
find Γ, ζ and χ : LDΓ =⇒ Γ(Id + L) such that (12) holds.

A tempting choice is Γ = PωΣ which worked so well
in §5.1 and §5.2, with an analogous definition of ζ inter-
preting the finite powerset construction as finite disjunctions
of spatial modalities. In this example however, this choice
does not work. Indeed, for a logical rule for the modality
〈a〉 that would reflect the first SOS rule for ∗, one is tempted
to write something like:

φ a ψ;σ σ a κ∗θ
〈a〉φ a (〈a〉ψ ∧ κ)∗θ

since the variable x is indirectly duplicated in the conclusion
of the SOS rule. This is, however, forbidden: the structure
of L and Γ does not allow any use of conjunctions. An
obvious solution is to extend Γ and allow finite conjunctions
on the left side of the spatial modality ∗. Formally, consider

ΓΦ = Pω(1 +A+ Φ× Φ + PωΦ× Φ)

with ζ defined by analogy to §5.1, with one difference:

ζ(γ)(x ∗ y) = tt
m

∃(δ∗φ) ∈ γ.(φ(y) = tt ∧ ∀ψ ∈ δ. ψ(x) = tt)

where the universal quantifier justifies the understanding of
the inner powerset in Γ as conjunction. Now χ can be de-
fined by the following rules:

> a nil > a a > a >;> > a >∗>

∅ a nil ∅ a ∅;∅ ∅ a ∅∗∅

φ a nil

〈a〉φ a a
φ a ψ;σ

〈a〉φ a (〈a〉ψ);σ 〈a〉φ a ∅;〈a〉φ

φ a ψ;σ σ a K∗θ
〈a〉φ a (〈a〉ψ ∧K)∗θ 〈a〉φ a >∗〈a〉φ

where a ranges over A and K is a special variable denoting
an arbitrary finite conjunction of formulas. The use of such
variables in rules is justified by the structure of Γ, a little
more complex than in the examples before. Again, a rather
tedious calculation shows that (12) holds for this choice of
χ, hence completed trace equivalence is compositional for
our language. Here the calculation is a bit more complex
than in previous examples, as it involves the derived ρ+ and
the inductively defined ζ].

Note that the logical rules above are not in the abstract
GSOS format, as the first rule in the last row involves looka-
head. However, they are in the abstract safe ntree format.
This corresponds to the fact that SOS rules for our language
are not in safe ntree format, as the first rule for ∗ has a com-
plex term in the conclusion; however, they are in the GSOS
format. Note how the lookahead in the logical rule stems
from the complex conclusion in the SOS rule.

Note also that the behavioural modality ∅ is necessar-
ily used in a logical rule for the modality 〈a〉. This sug-
gests that there is no logical distributive law for the logic
for traces for our language. Indeed, trace equivalence is not
compositional for the sequential composition operator ;.

In all examples so far, a wrong choice of Γ was corrected
by extending it with additional constructs. However, Γ can
also be overextended. For example, if the choice above was
extended to allow finite conjunctions on the left side of the
spatial modality ;:

ΓΦ = Pω(1 +A+ PωΦ× Φ + PωΦ× Φ),

then one would have to replace the middle logical rule in
the third row above with a rule like:

φ a K;σ
〈a〉φ a (〈a〉K);σ

.

This is, however, forbidden, since the logical conjunction
represented byK is a part of a spatial modality and it cannot
occur under the behavioural modality 〈a〉 in the conclusion
of the rule. This shows that Γ should be chosen with care,
and there might be no easy and general way to choose it.

6 Related and future work

The approach presented here is a refined and extended
version of the framework of test suites [17], also aimed
at deriving congruence formats. There, distributive laws
are defined between fibred functors derived from notions
of process equivalences, in total categories of certain fibra-
tions. When C = D = Set and F = G = V− for some set
V of truth values, the present framework coincides with that
of Set; note that (D↓F ) is always fibred over C. However,
in other cases the present approach provides a better treat-
ment of equivalences. Moreover, it provides a clear connec-
tion to modal logic, and the presentation of distributive laws
as SOS-like rules makes the framework easier to apply.
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Some existing work on specific SOS formats and their
properties can be rephrased in terms of the present frame-
work. For example, the technique of frozen/liquid posi-
tions [6] used to derive formats for decorated trace equiva-
lences corresponds exactly to extending the functors Γ with
finite conjunctions as in in §5.3. More interestingly, the
SOS-like presentation of logical distributive laws suggests a
connection to compositional proof systems as in [28] and to
techniques for modal logic decomposition as in [11]. Also,
the notion of spatial modality used here seems to be related
to spatial logics for process calculi as in [3, 8]. The precise
nature of these connections needs to be studied.

Several other problems are left open. Importantly, some
guidelines for finding the right logical behaviour Γ are much
needed instead of informal guessing used in §5. It is also
unfortunate that the crucial compositionality condition (9)
is defined only abstractly, and it is not properly explained at
the level of SOS and logical rules. Such a concrete explana-
tion would make the entire framework much easier to use.
Also, a treatment of quantitative logics, where metric spaces
are used instead of equivalences, is missing. Last but not
least, more examples involving various equivalences and
kinds of transition systems need to be developed; examples
of systems based on categories other than Set include name-
passing systems interpreted in presheaf categories [9, 19].
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