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Abstract—Our motivating question is a Myhill-Nerode theorem
for infinite alphabets. We consider several kinds of those: alpha-
bets whose letters can be compared only for equality, but also
ones with more structure, such as a total order or a partial order.
We develop a framework for studying such alphabets, where the
key role is played by the automorphism group of the alphabet.
This framework builds on the idea of nominal sets of Gabbay
and Pitts; nominal sets are the special case of our framework
where letters can be only compared for equality. We use the
framework to uniformly generalize to infinite alphabets parts
of automata theory, including decidability results. In the case
of letters compared for equality, we obtain automata equivalent
in expressive power to finite memory automata, as defined by
Francez and Kaminski.

I. INTRODUCTION

We study languages and automata over infinite alphabets.
Each alphabet comes with some structure that can be accessed
by recognizing devices such as automata or formulas of
logic. We are particularly interested in three kinds of infinite
alphabets:
• Data values with equality. There is an infinite set D whose

elements are called data values. Words are elements of
D∗, or in some cases (Σ × D)∗, for some finite set
Σ. There is no structure on the data values, except for
equality. A typical language is

{d1 · · · dn ∈ D∗ : di+1 6= di for all i ∈ {1, . . . , n− 1}}.

• Totally ordered data values. The set of data values is
equipped with a total order. A typical language is

{d1 · · · dn ∈ D∗ : di+1 > di for all i ∈ {1, . . . , n− 1}}.

• Partially ordered data values. The set of data values is
equipped with a partial order.

Observe that, at least in the last two cases, the above descrip-
tions do not describe the alphabets uniquely. One of the themes
in this paper is the use of “universal” alphabets to obtain well-
behaved notions of recognizing devices.

A device can only access data values through the given
structure (e.g. equality, total order, or partial order). For
instance, in the case of data values with equality, an automaton
that accepts a two-letter word de with d 6= e, will also
necessarily accept the word de′ for any e′ 6= d.

The notion of structure on an alphabet is naturally captured
by the group of its automorphisms. For example, in the case
of unordered data values, the group consists of all bijections
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on D. In the case of totally ordered data values, it is the
group of all monotone bijections on D. For partially ordered
data, automorphisms are bijections that preserve and reflect
the order.

In general, we work with a set of data values D, together
with a group G of bijections of D, which need not be the
group of all bijections of D. Such a pair (D, G) is called a
signature. We then study sets X which are acted upon by the
group G. A key example is the set X = D∗, where G acts
separately on every letter. As far as languages are concerned,
we work with languages L ⊆ D∗ that are closed under actions
of the group G.

We now outline the main contributions of this paper.

Nominal sets for arbitrary signatures. When working with
a signature (D, G) and a set X with an action of G, we pay
attention to the interplay between the canonical action of G
on D and the action of G on X . An example of this interplay
is the definition of a nominal set. A set X is called nominal
wrt. the signature if for every x ∈ X there exists a finite set
of data values C ⊆ D, called a support of x, such that every
π ∈ G satisfies

∀c ∈ C. π(c) = c ⇒ x · π = x.

The left side of this implication uses the canonical action of
π on D, and the right side uses an action of π on X . The
intuition is that x depends only on data values from C.

An example of a nominal set is D∗, regardless of G: the
support of a word can be chosen as the set of letters that appear
in the word. In the case of data values with equality, where
D is some infinite set and G is the group of all bijections on
D, the theory of nominal sets was developed by Gabbay and
Pitts [14]. One of the contributions of this paper is a concept
of nominal sets in different signatures.

Automata theory for arbitrary signatures. We study the
theory of automata for a given signature. For basic defini-
tions of automata and languages, we instantiate an abstract
categorical theory of automata (see e.g. [1]) to categories of
nominal sets. We thus connect notions of automata developed
within category theory with some models that have been
developed by automata theorists. We prove that, in the cases
of unordered and ordered data values, the abstract definitions
are expressively equivalent with existing definitions of finite
memory automata [12], [8] and register automata over totally
ordered data [2], [10]. Some minor changes to the latter
models are needed; in fact, they help to make the automaton
model robust. For instance, independently of the signature,



our models admit minimization of deterministic automata.
As one of our contributions, we provide an infinite-alphabet
counterpart of the Myhill-Nerode theorem, thus concluding
previous work on this theme [13], [2].
Effective representation and decidability. Actually, our
framework has more applications than the theory of deter-
ministic automata. We introduce a method of representing
certain nominal sets, together with relations and functions on
them, which can be manipulated by algorithms. We prove
that an effective representation is possible in several signa-
tures, including equality, total order and partial order. As
a result we obtain a logical toolkit which, in the case of
automata, uniformly proves decidability of problems such as
emptiness for nondeterministic automata, language inclusion
for deterministic ones or testing if a deterministic automaton
is minimal. The toolkit can also be applied to study other
structures such as grammars or Turing machines.

A. Background

Automata for infinite alphabets. Languages over infinite
alphabets are a lively topic in the automata community. Two
principal sources of motivation are XML and verification. An
XML document is often modeled as a tree with labels from the
(infinite) set of all Unicode strings that can appear as attribute
values. In software verification, the infinite alphabet can refer
to pointers or function parameters.

Many automata models have been developed for infinite
alphabets, including: finite memory automata [12], automata
for ordered data values [2], two-way automata and automata
with pebbles [18], alternating register automata [8], data
automata [5], etc. See [20] for a survey. There is no consensus
as to which one is the “real” analogue of regular languages
in the case of infinite alphabets. This question is a topic of
debate, see e.g. [18] or [3].
Nominal sets and HD-automata. Nominal sets, studied until
now in the case of unordered data values, are a convenient
tool for capturing name generation and binding. They were
introduced by Gabbay and Pitts [14] as a mathematical model
of name-binding and α-conversion.

An fruitful line of research starting from [19] (see also [17]
for an overview) uses a category equivalent to nominal sets
for defining history-dependent (HD) automata, a syntax-free
model of process calculi that create and pass names, like π-
calculus. These are closely related to the notions of deter-
ministic automata studied here. In fact, our representation of
nominal sets, and consequently our notions of automata, are
inspired by, and generalize, similar results for Gabbay-Pitts
nominal sets as developed in [15], [21]. An initial connection
between HD-automata and finite memory automata was made
in [7].
Data monoids. The idea to use group actions in formal
language theory for infinite alphabets appeared in [4], which
is the closest relation to our current work. That paper already
includes: a group action of bijections of data values on
languages, a central role of finite supports, Myhill-Nerode

congruence in the monoid setting. However, the main focus
of [4] is the development of a monoid theory, including
Green’s relations and an effective characterization of first-
order definable word languages. This paper has a more funda-
mental approach. In particular we study: the connection with
the literature on nominal sets, different kinds of alphabets,
algorithms and methods of representing sets.

II. MOTIVATING EXAMPLE

As an introduction to the topic, we describe some issues that
appear when attempting to minimize a deterministic automaton
over data values with equality.

In the classical setting, over finite alphabets, the Myhill-
Nerode theorem says that the minimal deterministic finite
automaton for a language is obtained from the Myhill-Nerode
relation, with equivalence classes of words as states. We shall
now see how this works for unordered data values.
Myhill-Nerode equivalence. The Myhill-Nerode equivalence
relation also makes sense for an infinite alphabet D. That is, we
consider two words w,w′ ∈ D∗ to be equivalent with respect
to a language L ⊆ D∗, denoted by w ≡L w′, if

wv ∈ L⇔ w′v ∈ L for every v ∈ D∗.

This relation is a congruence with respect to appending new
letters, i.e. if w ≡L w′ then wd ≡L w′d holds for every letter
d ∈ D. We call it the syntactic congruence of L.

We would like to have an automaton model for words over
data values with equality, such that in a minimal automa-
ton, the configurations are in one-to-one correspondence with
equivalence classes of the syntactic congruence.

Example 1. In the case of a language of data words, it
is unreasonable to require finitely many equivalence classes
under the syntactic congruence. Consider, for example, the
following language of two letter data words.

L = {de : d = e} ⊆ D2

The equivalence classes of the syntactic congruence are:

{ε}, L, D≥2 − L, and {d} for every d ∈ D.

This language has infinitely many equivalence classes; the
infinity arises from equivalence classes {d} for single letters.
On the other hand, up to renaming data values, there are just
four equivalence classes. This more relaxed notion of finiteness
is the one that we use in this paper.

Equivalence classes of the syntactic congruence are con-
sistent with a natural deterministic register automaton that
recognizes the language. For L as above, the automaton has
one register, which is initially undefined. It begins in an initial
state qε. Then, it reads the first letter d, enters a state q and
puts the letter d into a register. When it reads the second letter
e, it enters an accepting state qL if d = e, and it enters a sink
error state q⊥ otherwise. Also, when entering either qL or q⊥,
the automaton erases its register.

A configuration of such an automaton is a state together
with a register valuation. Configurations of the automaton



above are in one-to-one correspondence with equivalence
classes of the syntactic congruence, and the automaton defined
above is isomorphic to the syntactic automaton.

Note how it is important to erase the register when entering
qL or q⊥. In particular, if we want to capture the syntactic
automaton, our definition of register automata needs to allow
undefined registers. �

Example 2. We now show that registers that store unordered
pairs are sometimes needed to capture the syntactic congru-
ence. Consider the following simple language:

L = {def : d 6= e, f ∈ {d, e}} ⊆ D3. (1)

If we were to use the classical model of register automata [12],
[8], the automaton would first put d in one register, and then
e in a second register. In particular, the configurations of the
automaton after reading de and after reading ed would be
different. However, in the syntactic congruence, the words de
and ed are equivalent. �

A quick fix to the above problem seems to be allowing
registers that store unordered pairs, or unordered triples etc.
The following example shows that more is needed.

Example 3. Let G be any subgroup of permutations of
{1, . . . , n}. Consider the following language

L = {d1 · · · dne1 · · · en : ∃π ∈ G ∀i di = eπ(i)} ⊆ D2n.

The equivalence class of an n-letter word d1 . . . dn consists
of all permutations of that word under action of the group G.
This example shows that in order to capture minimal automata,
our notion of automaton will need to be aware of permutation
groups. �

III. GROUP ACTIONS

In the previous section, we applied bijections of data values
not only to data values themselves, but also to words or
equivalence classes of the Myhill-Nerode relation. This is a
special case of a group action. This section recalls the basics
of group actions and shows how they can be used to generalize
automata to infinite alphabets.

Group actions. A (right) action of a group G on a set X is
a function · : X ×G→ X , written infix, subject to axioms

x · e = x x · (πσ) = (x · π) · σ

for x ∈ X and π, σ ∈ G, where e is the neutral element of
G. A set equipped with such an action is called a G-set.

Let us assume that G is a subgroup of the symmetric group
Sym(D) (i.e. the group of all bijections of some, usually
infinite, set D of data values). In this case, a simple example
of a G-set is the set D itself, with the action defined by
d · π = π(d). The action of G on D extends point-wise to
actions of G on tuples Dk, words D∗, infinite words Dω , or
sets P(D). For any G-sets X,Y , the Cartesian product X×Y
and the disjoint union X + Y are G-sets with actions defined
point-wise and by cases, respectively. Also, any set X is a
G-set with a trivial action defined by x · π = x.

For any x in a G-set X , the set

x ·G = {x · π | π ∈ G} ⊆ X

is called the orbit of x. We will mostly be interested in orbit-
finite sets, i.e., those that have a finite number of orbits. In the
world of G-sets these play the role of finite sets.

Example 4. If G = Sym(D) for some infinite set D, elements
of the powerset P(D) are in the same orbit if and only if they
have the same cardinality. As a result, P(D) is not orbit-finite.
�

Equivariant relations and functions. Suppose that X is a
G-set. A subset Y ⊆ X is called equivariant if it is preserved
under group actions, i.e. Y · π = Y holds for every π ∈ G.
In other words, Y is a union of orbits in X . This definition
extends to the notion of an equivariant relation R ⊆ X×Y , by
using the action of G on the Cartesian product. In the special
case when R is a function f , this definition says that

f(x · π) = f(x) · π for x ∈ X, π ∈ G

where the action on the left is taken in X and on the right in
Y . The identity function on any G-set is equivariant, and the
composition of two equivariant functions is again equivariant,
therefore for any group G, G-sets and equivariant functions
form a category, called G-Set.
Example 5. Assume again G = Sym(D), and consider the
set X = D2. There are two orbits in X , namely the diagonal
{(d, d) : d ∈ D} and its complement. Consequently, there are
four equivariant subsets of X . Likewise, for any power n ∈ N,
there are finitely many equivariant subsets of Dn. �

Languages and automata. We generalize the notion of a
language to the world of G-sets. An alphabet is any orbit-
finite G-set A. Examples of alphabets include the set of data
values D, any finite set Σ, or a product Σ × D where Σ is
finite. When A is an alphabet, the set of strings A∗ is treated
as a G-set, with the point-wise action of G. A G-language is
any equivariant subset L ⊆ A∗.

A classical deterministic automaton with a state space X
and an alphabet A is a transition function δ : X × A → X ,
a chosen initial state and a chosen subset of accepting states.
Viewing an element of X as a function from a singleton set
1 = {?} to X and a subset of X as a function from X to
a two-element set 2, one can depict an automaton using a
diagram:

1
ι��

X ×A
δ
// X

α
// 2.

(2)

In the categorical approach to automata theory (see e.g. [1]
and references therein), it is standard to define various kinds
of sequential automata by instantiating this diagram in suitable
categories. In this paper, we study the case of the category
G-Set; this amounts to interpreting all objects in (2) as G-sets
and arrows as equivariant functions. We consider the trivial
G-action on the sets 1 and 2. This means that the initial



configuration is a singleton orbit, and the set of accepting
configurations is a union of orbits.

Definition 1 A G-automaton is any instance of the dia-
gram (2) in G-Set.

The set X is called the set of configurations1, and the set A
is called the input alphabet.

Finally, just as X and A are typically assumed to be finite
sets in the classical case, we may require them to be orbit-
finite. An automaton itself is called orbit-finite if both X and
A are so.

The transition function δ : X × A → X of an automaton
extends from single letters to arbitrary words:

δ∗ : X ×A∗ → X.

The resulting function is equivariant. An automaton is called
reachable if every configuration is equal to δ∗(ι(?), w) for
some w ∈ A∗. A word w is accepted by an automaton if
δ∗(ι(?), w) is an accepting configuration. The set of accepted
words is called the language recognized by A. This language
is a G-language, by equivariance of ι, δ∗ and α.

A language is called G-regular if it is recognized by some
orbit-finite G-automaton.
Example 6. Let G = Sym(D) for some infinite set D. We
describe a G-automaton recognizing the language

{def : f ∈ {d, e}}.

Its configurations are ⊥,>, as well as tuples of data values of
size at most two:

X = D≤2 ∪ {>,⊥}.

The idea is that the automaton, when reading the first two
letters of its input, simply stores them in its configuration.
Then, after the third letter, it has state > or ⊥ depending
on whether its input belongs to L or not. Such a transition
function is easily seen to be equivariant. The configuration
space X has six orbits: three singleton orbits

{ε}, {⊥}, {>},

and three infinite orbits

{d : d ∈ D}, {(d, d) : d ∈ D}, {(d, e) : d 6= e ∈ D}.

�

Example 7. Consider the same group G and the same
language as in the previous example. We describe a different
automaton for the language. Its configurations are ⊥,>, as
well as sets of data values of size at most two. One can
give an equivariant transition function on these configurations
so that the resulting automaton recognizes L. Compared to

1Why do we use the name configurations instead of states? In the sequel,
some automata will be presented by giving a finite state space Q and a set
of registers R. Then, a configuration of the automaton will consist of a state
q ∈ Q together with a valuation v : R→ D mapping registers to data values.
The idea is that configurations will be orbit-finite, and states will be finite in
the usual sense.

the automaton from the previous example, the change is that
instead of the orbit

O1 = {(d, e) : d 6= e ∈ D}

we have an orbit

O2 = {{d, e} : d 6= e ∈ D}.

In particular, both automata have six orbits. However, the
new automaton is smaller in the following sense: there is an
equivariant surjective function from O1 to O2, but there is no
equivariant function from O2 to O1. �

Syntactic automaton. Suppose that L ⊆ A∗ is a G-language.
We define the syntactic automaton of L as follows: its config-
urations are equivalence classes of A∗ under Myhill-Nerode
equivalence ≡L, its initial configuration is the equivalence
class of the empty word, and accepting configurations are
equivalence classes of the words in L. The transition function
δ is defined by

δ([w]≡L
, a) = [wa]≡L

.

The above definition is well formed, i.e. the value of the
function does not depend on the choice of w ∈ [w]≡L

.

Fact 2 The syntactic automaton of a G-language is a reach-
able G-automaton.

For the language in Example 6, the syntactic automaton is
the one in Example 7, and not the one in Example 6.
Homomorphisms of automata. Suppose that A and B are G-
automata over A. A homomorphism from A to B is an equiv-
ariant function from configurations of A to configurations of B
that preserves and reflects initial and accepting configurations
and commutes with the transition functions of A and B.

The following result is an abstract counterpart of the Myhill-
Nerode theorem for infinite alphabets:

Theorem 3 Let L be a G-language. The syntactic automaton
of L is a homomorphic image of any reachable G-automaton
that recognizes L.

Corollary 4 A G-language L is recognized by an orbit-finite
G-automaton iff A∗/ ≡L is orbit-finite.

Finite representations. The notion of G-automaton presented
above is quite abstract. When working with a model of
computation, one expects it to have some kind of concrete
presentation, e.g., in terms of states and registers. Such a
presentation makes it easier to understand what the automaton
does, and is necessary to design algorithms that work with
automata, e.g., minimization algorithms.

One of the goals of this paper is to give a concrete
presentation for orbit-finite G-sets, equivariant functions and
automata, for well-behaved groups G.

Consider for instance the group G of all bijections of an
infinite set D. There is a concrete model in the literature,



which uses registers, and which captures exactly the languages
with orbit-finite syntactic automata: finite memory automata
introduced by Francez and Kaminski [12]. However, as shown
in Examples 6 and 7, a notion of symmetry on registers
is necessary to describe syntactic automata, e.g. to captured
unordered tuples. Such a notion of symmetry is missing from
finite memory automata. Therefore, they recognize all the
languages with orbit-finite syntactic automaton, but they do not
minimize: the syntactic automaton is always a homomorphic
image of a finite memory automaton, but in some cases it is
not isomorphic to a finite memory automaton.

In Section VI, we will come back to the issue of concrete
automata models. We will cover the case of data values with
equality, as described in the previous case, but also a range of
other cases, including total and partial orders.

A. Beyond deterministic automata

We introduced the name G-automata to describe automata
that generalize, to the world of G-sets, the notion of a
deterministic left-to-right finite automaton. Therefore, it would
be more appropriate to use the name deterministic left-to-right
G-automaton.

In the classical setting, deterministic left-to-right finite au-
tomata are equivalent to many different kinds of automata,
e.g. nondeterministic, deterministic right-to-left, alternating,
pebble automata, and so on. These notions can be generalized
to G-sets. However, in G-sets, they all diverge, as we illustrate
in the case G = Sym(D).
Right-to-left deterministic automata. Syntactically, a right-
to-left G-automaton is the same object as a G-automaton. Only
the semantics change: a reverse G-automaton reads its input
from right to left. In other words, a language L is recognized
by a reverse G-automaton if and only if its reverse

LR = {an · · · a1 : a1 · · · an ∈ L}

is recognized by a G-automaton. It turns out that reverse orbit-
finite G-automata do not recognize the same languages as
orbit-finite G-automata. For instance, the language

{a1 · · · an : ai = an for some i ∈ {1, . . . , n}}

is recognized by an orbit-finite reverse G-automaton, but not
by an orbit-finite G-automaton (due to Corollary. 3.4).
Nondeterminism. A nondeterministic G-automaton is defined
by allowing ι and δ in diagram (2) to be equivariant relations.
This amounts to allowing two subsets of initial and accepting
configurations, that are unions of orbits of X , and an equiv-
ariant transition relation

δ ⊆ X ×A×X.

A word a1 · · · an is accepted by the automaton if there exists
a sequence of configurations x0, . . . , xn such that x0 is an
initial configuration, xn is an accepting configuration, and the
triples (x0, a1, x1), . . . , (xn−1, an, xn) belong to δ.

Let G = Sym(D). For any alphabet A, the language

{a1 · · · an : ai = aj for some i < j ∈ {1, . . . , n}}

is recognized by an orbit-finite nondeterministic G-automaton.
The configurations of the automaton are letters from A,
together with an initial configuration ⊥ and an accepting con-
figuration >. By Corollary. 3.4, this language is not recognized
by any deterministic orbit-finite G-automaton.

There are many other examples of situations where notions
of automata diverge. Some of them have been studied in [18],
in the case of G = Sym(D), and without the terminology of
G-sets.
Beyond finite automata. Many other notions can be eas-
ily redefined in the world of G-sets, such as grammars,
pushdown automata, or even Turing machines. For instance,
the ingredients of a context-free G-grammar would be as
in the classical definition, with ’finite’ replaced by ’orbit-
finite. Concretely: orbit-finite G-sets A and N of alphabet
letters and nonterminals, respectively, a distinguished starting
symbol 1 −→ N , and a set of production rules given by
an orbit-finite equivariant subset P ⊆ N × (N ∪ A)∗. More
detailed investigation of further possibilities offered by G-sets
is beyond the scope of this paper.

IV. GENERALIZED NOMINAL SETS

From now on we shall consider permutation groups G ≤
Sym(D) for some set D of data values. The pair (D, G) will
be called a signature; we shall usually denote it simply by G
if D is irrelevant or clear from the context.

In this paper, we focus on the following signatures:
• The set D is a countable set, say the natural numbers.

The group G consists of all bijections on D. We call this
equality signature.

• The set D = Q is the set of rational numbers, and G is
the set of monotone bijections. We call this total order
signature2.

• The set D is the universal partial order (to be described
below), and G is the set of its automorphisms. We call
this partial order signature.

• The set D = Z is the set of integers, and G is the set of
translations i 7→ i+ j. The group G is isomorphic to the
additive group of integers. We call this integer signature.
It is used as a pathological example.

Our plan is to represent orbit-finite automata in some finite
way, and run algorithms on these representations. Unfortu-
nately the notion of G-set is too general and abstract to make
this possible, as we shall now demonstrate.
Uncountably many non-isomorphic single-orbit sets. We
show that in the total order signature there are uncountably
many non-isomorphic single-orbit sets, which makes it im-
possible to represent these sets in any finite way.

Consider the powerset P(Q), with the point-wise action of
G. From this powerset, extract the orbit of a single set X ⊆ Q,
i.e.

X ·G = {X · π : π ∈ G} ⊆ P(Q)

2Later it will become apparent why we chose the rational numbers, and
not some other totally ordered set.



and consider it as single-orbit G-set. We want to know for
which X,Y ⊆ Q, the orbits X ·G and Y ·G are isomorphic.

Example 8. Consider sets X = {0, 1}, Y = {0, 1, 2}, and
the closed unit interval Z = [0; 1]. There is no equivariant
function from X ·G to Y ·G, but there exists an equivariant
isomorphism between the orbit of X · G and Z · G; it is the
function X · π 7→ Z · π. �

We prove below that there are uncountably many of these
G-sets, even up to isomorphism.

Theorem 5 There is an uncountable family X ⊆ P(Q) such
that for any distinct X,Y ∈ X , there is no equivariant
isomorphism between the orbits X ·G and Y ·G.

As a result, there is no way to represent all single-orbit
sets using data structures such as bit strings. If we plan
on developing algorithms for representing G-sets, we must
introduce new restrictions, so that not all of the sets in X
need be represented. We present such a restriction now.
Generalized nominal sets. We recall the definition of a nom-
inal set from the introduction. Consider a signature (D, G),
and a G-set X . We say that a set C ⊆ D supports an element
x ∈ X if x · π = x for all π ∈ G that act as identity on
C. Observe that this definition talks about two group actions:
the action of G on X , and the action of G on D. A G-set is
called nominal in the signature (D, G) if its every element has
a finite support. By abuse of notation, we sometimes leave the
set of data values D implicit, and simply talk about a nominal
G-set.

The above definition generalizes the notion of nominal set
introduced by Gabbay and Pitts [14]; the latter is precisely the
case of equality signature.

Example 9. Consider any signature. Then D is a nominal
G-set, since every element d ∈ D is supported by {d} ⊆ D.
Similarly {d1, . . . , dk} supports (d1, . . . , dk) ∈ Dk, hence Dk
is also a nominal set. The same works for D∗, but not for Dω
or P(D) if D is infinite. �

Example 10. Consider the integer signature. If a translation
i 7→ i + j preserves any single integer, then it is necessarily
the identity. Therefore, any element of any set with an action
of integers is supported by {5} or {8}, etc. In the integer
signature, all G-sets are nominal. �

Example 11. Consider the total order signature, and the ele-
ment x ∈ P(Q) that is the union of two intervals [0; 1]∪[2; 3).
One can show that this element is supported by the set
{0, 1, 2, 3}. More generally, an element of P(Q) has a finite
support if and only if it is a finite Boolean combination of
intervals. In particular, there are countably many elements in
P(Q) that have finite support, which eliminates the problem
described in Thm. 4.1. �

Suppose that we change a signature (D, G) by keeping the
set of data values D, but considering a subgroup H ≤ G. What
happens to the nominal sets? If X is a G-set (and therefore
also a H-set), then every G-support of x ∈ X is also an
H-support of x, therefore every nominal G-set is a nominal

H-set. On the other hand, under the smaller group H , more
sets might become nominal.

For any G, if X,Y are nominal G-sets then so are X × Y
and X + Y . Indeed, if C supports x ∈ X and D supports
y ∈ Y then C ∪ D supports (x, y) ∈ X × Y , and also C
supports x ∈ X + Y and D supports y ∈ X + Y . A set
X equipped with the trivial G-action is always nominal, with
every element supported by the empty set.

Nominal G-sets and equivariant functions between them
form a category G-Nom.

In the context of automata, the fact that the set of configura-
tions is nominal means intuitively that only a finite amount of
information about data values is stored in each configuration.

Minimal and least supports. An element of a nominal set
always has a minimal support with respect to inclusion. As
shown in Example 10, there may be many incomparable
minimal supports (which means that there is no least support).
Minimal supports of the same element might even have
different cardinalities, as illustrated by the following example.

Example 12. Let D = N ∪ N × N and let G ≤ Sym(D)
contain all permutations π satisfying the following conditions:
π(N) = N, π(N× N) = N× N and π(n,m) = (π(n), π(m)).
Essentially, G contains all permutations of N, extended coor-
dinate-wise to N × N. Consider X = N × N as a nominal
G-set, with the action defined by (m,n) · π = π(m,n). The
pair (0, 1) has two minimal supports: the singleton {(0, 1)}
and the two-element set {0, 1}. �

A signature admits least supports if each element of every
nominal G-set has the least support.

Theorem 6 The equality signature, total order signature and
partial order signature admit least supports.

In the presence of least supports, the problems signified by
Theorem 4.1 disappear.

Theorem 7 In a signature that admits least supports, with a
countable set of data values, there are only countably many
orbit-finite nominal G-sets, up to an equivariant isomorphism.
Furthermore, for any two orbit-finite nominal G-sets X and Y ,
there are only finitely many equivariant functions f : X → Y .

Having countably many orbit-finite nominal G-sets is only a
necessary condition to represent these sets using data struc-
tures and to operate on them using algorithms. We revisit the
topic of effective representations in the next section.

Integer pathologies. We briefly consider the integer signature
as an illustration of pathologies. As we have already men-
tioned, it does not admit least supports, as every singleton
from D is always a support.

As far as single-orbit nominal sets are concerned, the integer
signature has a promisingly simple structure. One example of
a single-orbit nominal set is Z. Another example is the finite
cyclic group Zn, for any n ∈ N. It turns out that these are all
the single-orbit sets:



Fact 8 Every single-orbit nominal set in the integer signature
is isomorphic to Z or to Zn for some n ∈ N.

Equivariant functions between single-orbit sets are also
simple. If the domain in Z, these are all translations, possibly
modulo n if the co-domain is Zn. If the domain is Zn, the
co-domain must be necessarily Zm for m a divisor of n.

The problems with the integer signature appear as soon as
Cartesian products of nominal sets are considered. This has
bad consequences for automata. Suppose that we are interested
in automata where the set of configurations is Z and the input
alphabet is also Z. Both sets are single-orbit and nominal, so
these are among the simplest automata in the integer signature.
The transition function is any equivariant function δ : Z×Z→
Z. What kind of functions δ can we expect? Suppose that
we have defined δ for arguments of the form (0, i). Then, by
equivariance, this definition extends uniquely to all arguments:

δ(i, j) = δ((0, j − i) · i) = δ(0, j − i) + i.

However, there is no restriction on the value of δ(0, i), call it
g(i). It is not difficult to show that for any function g : Z→ Z,
the function δg defined by δg(i, j) = g(j−i)+i is equivariant.
In particular, there are uncountably many equivariant functions
Z× Z→ Z.

V. EFFECTIVE REPRESENTATIONS

The key signatures studied in this paper are the equality,
total order and partial order ones. It turns out that these are
special cases of a universal data domain, to be defined in this
section.

To avoid confusion with the name “signature”, we use the
name vocabulary for a set of relation names together with
arities; all structures will be implicitly understood to be over
some fixed finite vocabulary in this section.

For two relational structures A and B, by an embedding
f : A→ B we mean an injective function from the carrier of
A to the carrier of B that preserves and reflects all relations
in the vocabulary. Assume a class K of finite structures that
is closed under isomorphisms and that satisfies the following
properties (we call K a Fraı̈ssé class):
• closure under substructures: any substructure of a struc-

ture from K belongs to K;
• amalgamation: if fB : A → B and fC : A → C are

embeddings and A,B,C ∈ K then there is a structure
D ∈ K together with two embeddings f ′B : B→ D and
f ′C : C→ D that agree on the images of fB and fC, i.e.,
fBf

′
B = fCf

′
C.

Examples of K are: finite sets (seen as relational structures
over the empty vocabulary), finite total orders (seen as re-
lational structures over a vocabulary with a single binary
predicate ≤), finite partial orders (same vocabulary as for total
order). If K is closed under substructures and has amalgama-
tion, then there exists a unique, up to isomorphism, countable
universal structure UK, known also as the Fraı̈ssé limit of K,
with the property that the finite structures that embed into UK

are precisely those from K (see for instance [11])3. Equiva-
lently: the set of induced finite substructures of UK is precisely
K, up to isomorphism. Furthermore, UK is homogenous in
the sense that any isomorphism between two finite isomorphic
substructures of UK extends (not necessarily uniquely) to an
automorphism of UK.

For the rest of this section, fix a Fraı̈ssé class K. From K we
obtain a nominal signature (DK, GK), where DK is the carrier
of UK and GK is its group of automorphisms. Our general
development will be illustrated by the cases of K containing
finite sets, total orders and partial orders.
Example 13. Consider the case when K is the class of finite
sets, i.e., finite structures over the empty vocabulary. Then UK
is a countable set. Automorphisms of UK are bijections of it.
This corresponds to the equality signature. �

Example 14. Consider the case when K is the class of finite
total orders, over a vocabulary with the predicate ≤. Then
UK is isomorphic to the rational numbers. Automorphisms
of UK are monotone bijections of the rational numbers. This
corresponds to the total order signature. �

Example 15. Consider the case when K is the class of finite
partial orders, over a vocabulary with the predicate ≤. The
universal structure UK is not easily described (see e.g. [16]),
except that it is partially ordered and homogenous. �

We assume for this section that K has the following further
properties: (K is called well-behaved in this case):
• K is effective, i.e., has decidable membership;
• the nominal signature of K admits least supports;
• K is fungible: for any A ∈ K and any element a of A

there is an extension B of A by one element, say b, such
that A and B \ {a} are isomorphic via the bijection that
maps a to b and is identity on A \ {a}.

Example 16. A non-fungible class K whose signature admits
least supports is the class of finite structures over a vocab-
ulary consisting of a single predicate symbol P , containing
those structures where P holds for at most one element. In
other words, K is the class of finite sets, possibly with a
distinguished element. On the other hand, the class of finite
sets equipped with an equivalence relation with at most two
equivalence classes, although fungible, does not admit least
supports. �

Fact 9 In each of Examples 13–15, the class K is effective,
fungible and admits least supports.

Under the above assumption, we have a effective way of
representing orbit-finite nominal sets and equivariant functions
on them. This representation will be used in Sec. VI to define
a representation of GK-automata, and in Sec. VII to develop
decidability results regarding orbit-finite nominal sets.
Representation of single-orbit sets. A single-orbit represen-
tation consists of:
• a structure A from the class K, called the shape, and

3We are grateful to Thomas Colcombet, who suggested the Fraı̈ssé limit.



• a subgroup S ≤ Aut(A) of automorphisms of A, called
the symmetry.

The semantics of such a representation, written [[A, S]], is
the GK-set of embeddings u : A → UK, quotiented by the
equivalence ≡S defined by:

u ≡S v ⇔ ∃π ∈ S. u = πv,

with the GK-action defined by composition.
In the following, we shall denote the ≡S-equivalence class

of u by [u]S .

Theorem 10 Every single-orbit nominal set is isomorphic to
[[A, S]], for some single-orbit representation (A, S).

Example 17. Let K be the class of finite sets as in Example 13.
A single-orbit representation is a finite set C together with any
group S ≤ Sym(C). The semantics [[C, S]] is isomorphic to
the set of coordinate-wise distinct vectors (UK)S , quotiented
under coordinate permutations from S. �

Example 18. Let K be as in Example 14. A single-orbit rep-
resentation is a finite totally ordered set C, and the symmetry
S is necessarily trivial. Its semantics is the set of monotone
valuations v : C → Q. In other words, every single orbit
nominal set is isomorphic to the set of ordered tuples of
rational numbers, for some fixed tuple length. �

Example 19. Let K be as in Example 15. A single-orbit
representation is a finite partially ordered set C, together with
a group of its automorphisms. �

Representation of equivariant functions. We shall now
describe a representation of equivariant functions between
single-orbit sets. Suppose that (A, S) and (B, T ) are single-
orbit representations. An equivariant function representation
is given by an embedding u : B → A that is consistent with
symmetries in the following way:

∀σ ∈ S ∃τ ∈ T. uσ = τu, (3)

in short: uS ⊆ Tu. Moreover, we do not want to distinguish
two embeddings u, v : B → A if u ≡T v. Formally,
representations of equivariant functions are ≡T -equivalence
classes of embeddings.

The semantics of [u]T is the map

[[u]] : [[A, S]]→ [[B, T ]]

defined by composition:

[[u]]([v]S) = [uv]T .

This is well-defined thanks to (3).

Theorem 11 Let (A, S) and (B, T ) be single-orbit represen-
tations. The mapping [u]T 7→ [[u]] is a bijection between rep-
resentations and equivariant functions from [[A, S]] to [[B, T ]].

These results are easily extended to orbit-finite nominal sets
and equivariant functions between them. Indeed, note that any

G-set can be seen as a disjoint union of its orbits, with the G-
action defined independently for each orbit. Also equivariant
functions between G-sets preserve orbits. This means that
orbit-finite nominal sets can be represented by finite families
of single-orbit representations, and equivariant function by
families of function representations.

The above results can usefully be formulated in the language
of category theory, as an equivalence of the category of
nominal GK-sets and a category of representations. Due to
lack of space, we omit the categorical perspective here. It
should be stressed that in the case of the equality signature,
this equivalence of categories is known in the literature: our
category of representations is then essentially the category of
“named sets with symmetries” NSet introduced in [19], [9].
The only difference is that in NSet, representations (C, S) are
additionally quotiented by bijections of their shapes C, and as
a result the “shape” of a named set is a natural number rather
than a finite set. The equivalence of G-Nom and NSet was
established in [15], [21]; our Theorems 5.2 and 5.3 provide a
generalization to the setting of well-behaved Fraı̈ssé classes.

For effective representations of GK-automata, but also of
algorithms that work on them, it is necessary to provide
representations of Cartesian products of nominal sets in terms
of representations of the components. Under our assumptions
on the class K, such representations can be derived.

Theorem 12 Let U1, U2 be representations. One can compute
a representation U1 ⊗ U2 such that [[U1 ⊗ U2]] is isomorphic
to the Cartesian product [[U1]] × [[U2]]. Also the equivariant
projection functions can be effectively represented.

In particular, the product of orbit-finite nominal GK-sets is
orbit-finite. This is not a property of nominal sets in general.
For instance, in the integer signature, the product of two
single-orbit nominal sets Z× Z has infinitely many orbits.

Due to lack of space we omit a detailed description of
the product representation; it is similar to the construction of
products for NSet developed in [6].

VI. AN APPLICATION TO AUTOMATA

A nominal G-automaton, understood as in (2), is a simple
combination of a few nominal G-sets and equivariant functions
between them, involving a simple Cartesian product. It is
therefore natural that an effective representation of nominal
sets, equivariant functions and Cartesian products extends to
a similar representation of automata. In this section we sketch
the result of this extension in the case of signatures obtained
from Fraı̈ssé classes of relational structures.
Fraı̈ssé automata. Fix for the rest of this section a well-
behaved Fraı̈ssé class K of structures. Our goal is to develop a
syntax for deterministic left-to-right automata in the nominal
signature of K.

For the sake of presentation, we study automata over the
alphabet DK. The general case, when the alphabet is an
arbitrary orbit-finite nominal GK-set, like (DK)2 or DK]DK,
may be dealt with in essentially the same way.



The basic intuition is that the class K describes all possible
“memory shapes” of an automaton.

A Fraı̈ssé K-automaton has a finite set Q of states. Each
state q ∈ Q comes with a single-orbit representation (Aq, Sq).
The set of configurations in state q is the nominal set [[Aq, Sq]].
Elements of Aq are called registers of state q, and the group
Sq is the register symmetry. The set of configurations is:

X =
∐
q∈Q

[[Aq, Sq]]. (4)

At the risk of repeating material from the previous section,
we unravel the above definition. A configuration consists of a
state q ∈ Q, together with a valuation Aq → UK that maps
registers to data values, and preserves and reflects the structure
of Aq , with the proviso that valuations are considered equal if
they differ only by a register symmetry.

The automaton has a set of accepting states, and an initial
state. The structure of registers Aq in the initial state must
be empty. A further ingredient of the Fraı̈ssé automaton is
the symbolic transition function s = {sq}q∈Q that is used to
represent the equivariant transition function

δs : X × DK → X. (5)

When defining the symbolic transition function, we use a
notion of annotation. Annotations enumerate orbits of the
product X×DK. Intuitively speaking, annotations describe the
ways how the newly read input data value may compare to the
data values in the registers. An annotation of A ∈ K is one of
two kinds of structures: either a conservative extension A∗ ∈ K
of A by one element, denoted ∗; or the structure A itself with
additionally one distinguished element, that we denote by ∗ as
well. In the latter case, we identify two annotations if they are
related by an automorphism from Sq . There are finitely many
annotations as the vocabulary is finite.

The domain of sq contains all annotations of Aq . For any
annotation A∗, the function sq(A∗) is an embedding

sq(A
∗) : Ap → A∗, for some state p, (6)

that is consistent with symmetries, cf. (3). Summing up:

Definition 13 A Fraı̈ssé K-automaton consists of:
• a finite set of states Q;
• for each state q ∈ Q, a representation (Aq, Sq);
• an initial state qI ∈ Q with AqI the empty structure;
• a set of accepting states F ⊆ Q;
• a symbolic transition function s = {sq}q∈Q as above.

These ingredients induce naturally a GK-automaton. The tran-
sition function (5) is defined in the following way. Suppose
that the state in the current configuration is q ∈ Q and
the valuation is represented, up to register symmetry, by
η : A → DK. The automaton reads an input letter d ∈ DK.
Let η∗ extend η by mapping ∗ to d, thus η∗ : A∗ → DK is
an embedding, for some A∗ ∈ K∗q . Apply sq to A∗, yielding a
function (6). The new state is p, and the p-valuation is obtained
by composing sq(A∗) with the extended valuation η∗, that is

sq(A
∗) η∗ : Ap → DK. The new valuation is an embedding,

as a composition of embeddings, and its equivalence class
depends only on the equivalence class of η, due to consistency
with symmetries.

Theorem 14 Suppose that the Fraı̈ssé class K is well-
behaved. Every reachable orbit-finite GK-automaton over in-
put alphabet DK is isomorphic to a Fraı̈ssé K-automaton.

A comment is in order here. The representation results from
Section V apply to nominal GK-sets only, while the notion
of GK-automaton lives in GK-sets and does not require finite
supports. However, Theorem 6.2 still holds. Indeed, whenever
the alphabet has finite supports, any reachable automaton also
has finite supports, which in turn follows from the general
fact that equivariant functions preserve supports; and from the
empty support of the initial configuration.

By Theorems 6.2 and 3.3 one directly obtains:

Corollary 15 When K is well-behaved, the following condi-
tions are equivalent for a GK-language L ⊆ D∗:

(1) L is recognized by an orbit-finite GK-automaton
(2) the syntactic quotient D∗/≡L is orbit-finite
(3) the syntactic automaton of L is isomorphic to a Fraı̈ssé
K-automaton.

We now inspect in some more detail the three example
classes K: finite sets, total orders and partial orders.
Equality signature. The model of automaton resembles the
finite memory automata of Francez and Kaminski. The differ-
ences are: the number of registers varies from state to state
(thus no need for undefined register values), and symmetries
are imposed on registers. These are inessential as far as
expressive power is concerned:

Fact 16 When K is all finite sets, Fraı̈ssé automata (and hence
also GK-automata, by Thm 6.2) are expressively equivalent
to deterministic finite memory automata of [12], [8], over
singleton alphabet.

It should be noted that a similar, albeit weaker, connection to
finite memory automata has been made within the framework
of history-dependent automata in [7].
Total order signature. The model of automaton has a totally
ordered set of registers in each state, and valuations are
monotonic. The automata are capable to compare data values
with respect to data ordering. One easily verifies:

Fact 17 When K is all finite total orders, Fraı̈ssé automata
(and hence also GK-automata, by Thm 6.2) are expressively
equivalent to deterministic finite memory automata of [2], [10]
over totally ordered data and singleton alphabet.

Partial order signature. In this case, the model of automaton
has a partially ordered set of registers in each state, and the
valuations are partial-order embeddings. This model general-
izes both previous ones. To our best knowledge, this kind of
automaton is new.



VII. DECIDABLE THEORIES

In this section we use the representation from Section V to
sketch a logical framework for decidability results for prob-
lems that involve orbit-finite nominal sets. Problems covered
by our framework include testing a nondeterministic automa-
ton for emptiness, or testing if a deterministic automaton is
minimal.

Fix for the rest of this section a nominal signature that ad-
mits representations of sets, functions and Cartesian products,
as described in Section V. This includes the equality, total
order and partial order nominal signatures. We shall prove
that the first-order theory is decidable for every relational
structure whose carrier is orbit-finite and nominal, and where
every relation is equivariant. This result may be used to infer
decidability of certain problems concerning automata.
Nominal relational structures. Consider a vocabulary Σ,
i.e. a set of predicate names for relations. A nominal relational
structure A over a vocabulary Σ is a relational structure over
Σ where the carrier is a nominal set, and every predicate is
an equivariant relation. The structure is called orbit-finite if its
carrier is. We use the representation of Section V to represent
relational structures.

The vocabulary Σ should not be confused with vocabularies
used in the definition of Fraı̈ssé classes and nominal sets in
Section V. Also, relational structures used in the representation
results of Section V are not the same as nominal relational
structures we wish to consider here. Rather, the former are
used to represent the carriers of the latter.

For example, automata can be interpreted as relational struc-
tures. Consider an automaton A, where both the configurations
and input alphabet are orbit-finite and nominal. We do not
assume that the automaton is deterministic, but its transition
relation must be equivariant. The automaton structure of A
is defined as follows. Its carrier is the disjoint union of con-
figurations and input alphabet (essentially, we are simulating
a two-sorted relational structure in a one-sorted one). The
structure has four unary relations that identify: configurations,
initial configurations, final configurations, letters of the input
alphabet; and a ternary relation that identifies the transition
relation of the automaton.
First-order theory. The first-order theory of a relational
structure is the set of sentences of first-order logic that are true
in it. Using first-order logic one can express some rudimentary
property of automata. For instance, the transition relation of
an automaton is deterministic if the theory of its automaton
structure contains the sentence

∀x∀y∀z1∀z2 δ(x, y, z1) ∧ δ(x, y, z2)⇒ z1 = z2,

where δ stands for the transition relation.
As it turns out, first-order logic is decidable for every orbit-

finite nominal relational structure with equivariant relations.
In particular, this holds for automaton structures.

Theorem 18 The first-order theory of every nominal orbit-
finite relational structure is decidable.

In the full version of this paper, we also prove that a variant
of second-order theory is decidable, where quantifiers may
range over equivariant relations only.

VIII. FUTURE WORK

We would like to see in more detail what happens to various
computation models in the world of nominal sets. Are context-
free grammars equivalent to pushdown automata? Are regular
expressions equivalent to nondeterministic automata? Is the
P=NP question the same as in the classical case? What is the
complexity zoo?

In another direction, we plan to apply our approach to timed
automata. There seem to be at least two approaches. One
is to apply the Fraı̈ssé construction to some smartly chosen
class of finite structures. Another is to consider a nominal
signature where the data values are rational numbers, and the
bijections preserve order and the binary predicate x− y = 1.
This signature has very few of the good properties surveyed
in this paper.
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