
Logical Methods in Computer Science
Vol. 10(3:4)2014, pp. 1–44
www.lmcs-online.org

Submitted Jan. 6, 2012
Published Aug. 15, 2014

AUTOMATA THEORY IN NOMINAL SETS ∗

MIKO LAJ BOJAŃCZYK, BARTEK KLIN, AND S LAWOMIR LASOTA

University of Warsaw
e-mail address: {bojan, klin, sl}@mimuw.edu.pl

Abstract. We study languages over infinite alphabets equipped with some structure that
can be tested by recognizing automata. We develop a framework for studying such alpha-
bets and the ensuing automata theory, where the key role is played by an automorphism
group of the alphabet. In the process, we generalize nominal sets due to Gabbay and Pitts.

Contents

1. Introduction 2
1.1. Contribution 3
1.2. Background 3
1.3. Structure of the paper 4

Part 1. Nominal sets and automata 5
2. Group actions and data symmetries 5
3. G-automata 7
3.1. Deterministic G-automata 8
3.2. Myhill-Nerode Theorem 10
4. Nominal G-sets 12
5. Nominal G-automata 16
5.1. Myhill-Nerode theorem revisited 16
5.2. Nondeterministic G-automata 16
6. Relationship with finite memory automata 18
6.1. Finite memory automata 18
6.2. Equivalence for nondeterministic automata 20
6.3. Equivalence for deterministic automata 21
7. Other models and perspectives 22

Part 2. Finite representations of nominal sets and automata 24

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Automata over
infinite objects.

Key words and phrases: Nominal sets, automata.
This work is supported by the Polish National Science Centre (NCN) grant 2012/07/B/ST6/01497 (the

last two authors) and by the ERC Starting Grant Sosna (the first author).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:4)2014

c© M. Bojańczyk, B. Klin, and S. Lasota
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

8. G-set representation 25
9. Well-behaved symmetries 28
9.1. Least supports 28
9.2. Fungibility 30
9.3. Support representation 31
10. Fräıssé symmetries 34
10.1. Fräıssé limits 34
10.2. Structure representation 35
10.3. Representation of Cartesian products 36
11. Fräıssé automata 40
References 43

1. Introduction

We study languages and automata over infinite alphabets. Each alphabet comes with some
structure that can be accessed by recognizing devices such as automata. Examples of such
structures include:

• Equality. There is an infinite set D whose elements are called data values. Words are
elements of D∗, or in some cases (Σ×D)∗, for some finite set Σ. There is no structure on
the data values except for equality. A typical language is

{d1 · · · dn ∈ D∗ : di+1 6= di for all i ∈ {1, . . . , n− 1}}.

• Total order. The set of data values is equipped with a total order. A typical language is

{d1 · · · dn ∈ D∗ : di+1 > di for all i ∈ {1, . . . , n− 1}}.

One could also consider data values equipped with a graph structure (where, e.g., the
language of finite paths can be considered), a partial order etc.

Note that the above descriptions do not determine the data values uniquely. One of
the themes in this paper is the use of “universal” alphabets to obtain well-behaved notions
of automata.

A device can only access data values through the given structure (e.g. the equality or
order relation). For instance, in the case of data values with equality, an automaton that
accepts a two-letter word de with d 6= e, will also necessarily accept the word de′ for any
e′ 6= d.

The notion of structure on an alphabet is naturally captured by the group of its au-
tomorphisms. For example, in the case of unordered data values, the group consists of all
bijections on D. In the case of totally ordered data values, it is the group of all monotone
bijections on D.

In general, we work with a set of data values D, together with a group G of bijections
of D, which need not be the group of all bijections of D. Such a pair (D, G) is called a data
symmetry. We then study sets X which are acted upon by the group G. A key example is
the set X = D∗, where G acts separately on each letter. As far as languages are concerned,
we work with languages L ⊆ D∗ that are closed under actions of the group G.

AUTOMATA THEORY IN NOMINAL SETS 3

1.1. Contribution. We now outline the main contributions of this paper.

Nominal sets for arbitrary symmetries. When working with a data symmetry (D, G)
and a set X with an action of G, we pay attention to the interplay between the canonical
action of G on D and the action of G on X. An example of this interplay is the definition of
a nominal set. A set X is called nominal wrt. the symmetry if for every x ∈ X there exists
a finite set of data values C ⊆ D, called a support of x, such that every π ∈ G satisfies

∀c ∈ C. π(c) = c ⇒ x · π = x.

The left side of this implication uses the canonical action of π on D, and the right side uses
an action of π on X. The intuition is that x depends only on data values from C.

An example of a nominal set is D∗, regardless of G: a support of a word can be chosen
as the set of letters that appear in the word. In the case of data values with equality, where
D is a countably infinite set and G is the group of all bijections on D, the theory of nominal
sets was developed by Gabbay and Pitts [16, 24]. One of the contributions of this paper is
a concept of nominal sets in different symmetries.

Automata theory in arbitrary symmetries. We study the theory of automata in
various symmetries. For basic definitions of automata and languages, we transfer classical
definitions to the world of nominal sets. A crucial aspect here is an appropriate choice of
the notion of ’finiteness’. As far as nominal sets are considered, the appropriate notion is
orbit finiteness. Thus the abstract definitions we work with are just the classical definitions,
in which the requirement of finiteness (of alphabet, state space, etc.) is relaxed to orbit
finiteness.

It turns out that, in the cases of unordered and ordered data values, the abstract defini-
tions are expressively equivalent with existing definitions of finite memory automata [14, 12]
and register automata over totally ordered data [3, 13]. Some minor adjustments to finite
memory automata are needed; in fact, they help to make the automaton model robust. For
instance, independently of the data symmetry, our models admit minimization of determin-
istic automata. As one of our contributions, we provide an infinite-alphabet counterpart of
the Myhill-Nerode theorem, thus concluding previous work on this theme [15, 3].

Effective representation. Our framework can be applied far beyond the theory of de-
terministic automata. We introduce a method of representing orbit finite nominal sets,
together with relations and functions on them. We prove that an effective representation is
possible in any symmetry of a certain form. As a result we obtain a toolkit which may be
used to define and study nominal nondeterministic or alternating automata, context-free
grammars, pushdown automata, Petri nets, Turing machines or many other natural models
of computation.

1.2. Background. We briefly overview some related work on nominal sets in the context
of automata theory.

Nominal sets. The theory of nominal sets originates from the work of Fraenkel in 1922,
further developed by Mostowski in the 1930s. At that time, nominal sets were used to prove
independence of the axiom of choice and other axioms. In Computer Science, they have
been rediscovered by Gabbay and Pitts in [16], as an elegant formalism for modeling name
binding. Since then, nominal sets have become a lively topic in semantics; see [24] for a

4 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

recent comprehensive study. They were also independently rediscovered by the concurrency
community, as a basis for syntax-free models of name-passing process calculi, see [23, 21].

Automata for infinite alphabets. Languages over infinite alphabets are a lively topic
in the automata community. Two principal sources of motivation are XML and verification.
An XML document is often modeled as a tree with labels from the (infinite) set of all
Unicode strings that can appear as attribute values. In software verification, the infinite
alphabet can refer to pointers or function parameters.

Many automata models have been developed for infinite alphabets, including: finite
memory automata [14], automata for ordered data values [3], two-way automata and au-
tomata with pebbles [22], alternating register automata [12], data automata [6], etc. See [26]
for a survey. There is no consensus as to which one is the “real” analogue of regular lan-
guages in the case of infinite alphabets. This question is a topic of debate, see e.g. [22]
or [4].

Nominal sets and HD-automata. Nominal sets, studied until now in the case of un-
ordered data values, are a convenient tool for capturing name generation and binding. They
were introduced by Gabbay and Pitts [16] as a mathematical model of name-binding and
α-conversion.

A fruitful line of research starting from [23] (see also [21] for an overview) uses a category
equivalent to nominal sets for defining history-dependent (HD) automata, a syntax-free
model of process calculi that create and pass names, like π-calculus. These are closely
related to the notions of automata studied here. In fact, our representation of nominal sets,
and consequently our notions of automata, are inspired by, and generalize, similar results
for Gabbay-Pitts nominal sets as developed in [17, 27]. An initial connection between
HD-automata and finite memory automata was made in [11].

Data monoids. One of us used group actions in formal language theory for infinite alpha-
bets in [5], which is the closest relation to our current work. That paper already includes:
a group action of bijections of data values on languages, a central role of finite supports,
Myhill-Nerode congruence in the monoid setting. However, the main focus of [5] is the devel-
opment of a monoid theory, including Green’s relations and an effective characterization of
first-order definable word languages. The present paper has a more fundamental approach.
In particular we study: the connection with the literature on nominal sets, different kinds
of alphabets, algorithms and methods of representing sets.

1.3. Structure of the paper. The remainder of this paper is divided in two parts. The
first part, comprising Sections 2–7, is about nominal sets in an arbitrary data symmetry
and the basics of automata theory developed in orbit finite nominal sets, in place of finite
classical sets. In the last two sections we briefly venture beyond orbit regular languages:
we define context-free nominal languages and pushdown automata, prove them equivalent,
and discuss possible further work and other models of computation that can be expressed
in nominal sets. The second part of the paper, spanning Sections 8 to 11, introduces finite
representations for orbit finite nominal sets, with an application to deterministic automata.

One can also view this paper as an interleaving of two main threads. The first one com-
prises Sections 2, 4 and 8-10. In this thread, we study nominal sets for arbitrary symmetries
and prove finite representation theorems for orbit finite nominal sets, without reference to
automata theory except as a source of examples. Under progressively stronger assumptions

AUTOMATA THEORY IN NOMINAL SETS 5

on the symmetries involved, we are able to obtain more concrete representations, culminat-
ing in the notion of a well-behaved Fräıssé symmetry in Section 10.

The second thread is the development of rudiments of automata theory in nominal sets,
which is done is Sections 3, 5-7 and 11. There, we define the notion of nondeterministic finite
automaton in nominal sets, prove the Myhill-Nerode theorem for deterministic automata,
relate our notion to finite memory automata of Kaminski and Francez [14, 12], and finally
apply finite representation theorem for orbit finite automata in Section 11.

This paper is an extended and revised version of [8]. We are grateful to Thomas
Colcombet for suggesting that we use Fräıssé limits, and to Tomasz Wysocki for noticing
Lemma 10.8(3).

Part 1. Nominal sets and automata

2. Group actions and data symmetries

Group actions. A (right) action of a group G on a set X is a function · : X × G → X,
written infix, subject to axioms

x · e = x x · (πσ) = (x · π) · σ

for x ∈ X and π, σ ∈ G, where e is the neutral element of G. A set equipped with such an
action is called a G-set.

Example 2.1. Any set X is a G-set with a trivial action defined by x · π = x. The set G
can be seen as a G-set either with the composition action (π ·σ = πσ) or with the conjugacy
action (π ·σ = σ−1πσ). For any G-sets X,Y , the Cartesian product X ×Y and the disjoint
union X + Y are G-sets with actions defined point-wise and by cases, respectively.

For further examples, we introduce the following:

Definition 2.2. A data symmetry (D, G) is a set D of data, together with a subgroup
G ≤ Sym(D) of the symmetric group on D, i.e., the group of all bijections of D.

Example 2.3. We give names to a few important symmetries:

• the classical symmetry, where D = ∅ and G is the trivial group,
• the equality symmetry, where D is a countably infinite set, say the natural numbers, and
G = Sym(D) is the group of all bijections of D,

• the total order symmetry, where D = Q is the set of rational numbers, and G is the group
of monotone bijections,

• the integer symmetry, where D = Z is the set of integers, and G is the group of translations
i 7→ i+ c, isomorphic to the additive group of integers. We shall use this symmetry as a
source of pathological counterexamples.

Example 2.4. For any data symmetry (D, G), a simple example of a G-set is the set D

itself, with the action defined by d · π = π(d). The action of G on D extends pointwise to
actions of G on tuples Dn, words D∗, infinite words Dω, or sets P(D).

Other interesting G-sets include

D(n) = {(d1, . . . , dn) : di 6= dj for i 6= j},
(

D
n

)

= {C ⊆ D : |C| = n},

6 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

with G-actions inherited from D. For a subset C ⊆ D, there is a G-set

D(C) = {π|C : π ∈ G}.

In other words, this is the set of all injective functions from C to D that extend to some
permutation from G. The action is by composition:

(π|C) · ρ = (πρ)|C.

For the total order symmetry, one may also consider e.g.

D(<n) = {(d1, . . . , dn) : di < di+1 for 1 ≤ i < n},

and for the integer symmetry,
Zn = {0, 1, . . . , n− 1}

with action k ·m = (k +m) mod n.

Orbits. For any x in a G-set X, the set

x ·G = {x · π | π ∈ G} ⊆ X

is called the orbit of x. Any G-set is partitioned into orbits in a unique way. We will mostly
be interested in orbit finite sets, i.e., those that have a finite number of orbits. In the world
of G-sets these play the role of finite sets.

In group-theoretic literature, G-sets with only one orbit are called transitive. We prefer
to call them simply single-orbit sets.

Example 2.5. In the equality symmetry, elements of the powerset P(D) are in the same
orbit if and only if they have the same cardinality. As a result, P(D) is not orbit finite.

In the equality symmetry, the set D2 has two orbits:

{(d, d) : d ∈ D} {(d, e) : d 6= e ∈ D}

In the total order symmetry, D2 has three orbits:

{(d, d) : d ∈ D} {(d, e) : d < e ∈ D} {(d, e) : e < d ∈ D}

In the integer symmetry, D2 is not orbit finite. Indeed, for any y ∈ D, the set

{(x, x + y) : x ∈ D}

is a separate orbit.
In any symmetry, the set DC has one orbit.

Equivariant relations and functions. Suppose that X is a G-set. A subset Y ⊆ X
is called equivariant if it is preserved under group actions, i.e. Y · π = Y holds for every
π ∈ G. In other words, Y is a union of orbits in X. This definition extends to the notion of
an equivariant relation R ⊆ X × Y , by using the action of G on the Cartesian product, or
to relations of greater arity, by using the point-wise action of G. In the special case when
R ⊆ X × Y is a function f , this definition says that

f(x · π) = f(x) · π for x ∈ X, π ∈ G,

where the action on the left is taken inX and on the right in Y . The identity function on any
G-set is equivariant, and the composition of two equivariant functions is again equivariant,
therefore for any group G, G-sets and equivariant functions form a category, called G-Set.

If a singleton subset {x} of a G-set is equivariant, we say that x is an equivariant
element of the G-set. In other words, an equivariant element is one that is preserved under

AUTOMATA THEORY IN NOMINAL SETS 7

the action of every element from G. Again in other words, an equivariant element is one
that has a singleton orbit under the action of G.

Example 2.6. In the equality symmetry, the only equivariant function from D to D is
the identity; there are exactly two equivariant functions from D2 to D (the projections),
and exactly one from D to D2 (the diagonal function d 7→ (d, d)). Also, the mapping

(d, e) 7→ {d, e} is the only equivariant function from D(2) to
(

D
2

)

.

There is no equivariant function from
(

D
2

)

to D(2). To see this, first note that if an
equivariant function maps {d, e} to (b, c) then b, c ∈ {d, e}. Indeed if, say, b 6∈ {d, e} then
the permutation (b b′) that swaps b with a fresh b′, leaves {d, e} intact in

(

D
2

)

but changes

(b, c) into (b′, c) in D(2). Now, for any d, e ∈ D, assume that a function maps {d, e} to (d, e)
(the case of (d, d) is similar). The uniquely induced equivariant relation

{({d, e} · π, (d, e) · π) : π ∈ G}

is not a function, since the permutation (d e) that swaps d and e leaves {d, e} intact in
(

D
2

)

,

but changes (d, e) into (e, d) in D(2).

Languages. The classical notion of a language directly generalizes to the world of G-sets.
An alphabet is any orbit finite G-set A. Examples of alphabets in the symmetries mentioned
so far include the set of data values D, any finite set Σ, or a product Σ×D where Σ is finite.
When A is an alphabet, the set of strings A∗ is treated as a G-set, with the point-wise
action of G. A G-language is any equivariant subset L ⊆ A∗.

Example 2.7. In the examples below assume A = D. In the equality symmetry, exemplary
G-languages are:

⋃

d∈D

d · D∗ · d
⋃

d,e∈D

(d e)∗ {d1 . . . dn : n ≥ 0, di 6= dj for i 6= j}

or palindromes over D. In the total order symmetry, all monotonic words

{d1 . . . dn : n ≥ 0, d1 < . . . < dn}

is a G-language.

3. G-automata

The notion of G-automaton, to be introduced now, is an obvious generalization of classical
automata to G-sets. The definition is exactly like the classical one, except that

• the notion of finiteness is relaxed: orbit finite sets are considered instead of finite ones,
and

• the components of the automaton, such as the initial and accepting states, or the transi-
tion relation, are required to be equivariant.

Our main observation in this section is that the Myhill-Nerode theorem may be lifted to
the general setting of G-automata. This is the first step in the program that we develop
later in Sections 5–7.

For the rest of this section we fix some data symmetry (D, G).

Definition 3.1. A nondeterministic G-automaton consists of

• an orbit finite G-set A, called the input alphabet,

8 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

• a G-set Q, the set of states,
• equivariant subsets I, F ⊆ Q of initial and accepting states,
• an equivariant transition relation

δ ⊆ Q×A×Q.

We say that the automaton is orbit finite if the set of states Q is so.

To define acceptance, we extend the single-step transition relation δ to the multi-step
relation

δ∗ ⊆ Q×A∗ ×Q

in the usual way. A word w ∈ A∗ is accepted by an automaton if (qI , w, qF) ∈ δ∗ for some
initial state qI and accepting state qF . Note that δ∗ is equivariant, similarly as I and F ,
and thus the set of words accepted by a G-automaton is a G-language.

3.1. Deterministic G-automata. From now on, unless stated otherwise, we only consider
deterministic G-automata, the special case of a nondeterministic ones where the transition
relation is a function

δ : Q×A → Q,

and where the set of initial states is a singleton {qI}. A deterministic G-automaton is called
reachable if every state is equal to δ∗(qI , w) for some w ∈ A∗.

Example 3.2. In this example assume the equality symmetry G = Sym(D). We describe
a deterministic G-automaton recognizing the language

{def : f ∈ {d, e}}.

Its states are ⊥,⊤, as well as tuples of data values of size at most two:

Q = {⊤,⊥, ǫ} ∪ D ∪ D2.

The state space Q has six orbits: three singleton orbits

{⊥}, {⊤}, {ǫ},

and three infinite orbits

{d : d ∈ D}, {(d, d) : d ∈ D}, {(d, e) : d 6= e ∈ D}.

with the obvious pointwise action of G as in Example 2.4.
The idea is that the automaton, when reading the first two letters of its input, simply

stores them in its state. Then, after the third letter, it has state ⊤ or ⊥ depending on
whether its input belongs to L or not. Formally, the transition function δ : Q × D → Q is
defined by cases:

δ(ǫ, d) = d

δ(d, e) = (d, e)

δ((d, e), f) =

{

⊤ if f ∈ {d, e}
⊥ otherwise

δ(⊤, d) = δ(⊥, d) = ⊥

This function is easily seen to be equivariant. The only accepting state is ⊤, and ǫ is the
initial one.

AUTOMATA THEORY IN NOMINAL SETS 9

Example 3.3. Consider the same group G and the same language as in the previous
example. We describe a different automaton for the language. Its states are ⊥,⊤, as well
as nonempty sets of data values of size at most two:

Y = {⊤,⊥, ǫ} ∪ D ∪
(

D
1

)

∪
(

D
2

)

.

(In the above,
(

D
k

)

refers to subsets of D that have size exactly k.) One can give an
equivariant transition function on these states by analogy to the above example, so that the
resulting automaton recognizes the same language. The idea is that a state d ∈ D represents
a word d of one letter, and a state {d} ∈

(

D
1

)

represents a word dd of two letters, where the
letters happen to be equal. Compared to the automaton from the previous example, the
change is that instead of the orbit

O1 = {(d, e) : d 6= e ∈ D}

we have an orbit
O2 = {{d, e} : d 6= e ∈ D}.

In particular, both automata have six orbits of states. However, the new automaton is
smaller in the following sense: there is an equivariant surjection from O1 to O2, but there
is no equivariant function from O2 to O1. Intuitively, the new automaton is more abstract
in that it ignores the order of the two data stored in memory.

Categorical perspective. Viewing an element of Q as a function from a singleton set
1 = {⋆} to Q and a subset of Q as a function from Q to a two-element set 2, one can depict
an automaton using a diagram:

1
ι
��

Q×A
δ

// Q
α

// 2.
(3.1)

In the categorical approach to automata theory (see e.g. [2] and references therein), it is
standard to define various kinds of sequential automata by instantiating this diagram in
suitable categories. In this paper, we study the case of the category G-Set; this amounts to
interpreting all objects in (3.1) as G-sets and arrows as equivariant functions. We consider
the trivial G-action on the sets 1 and 2. This means that the initial state is a singleton
orbit, and the set of accepting states is a union of orbits.

Just as Q and A are typically assumed to be finite sets in the classical case, we will typi-
cally require them to be orbit finite. This again follows from abstract categorical principles,
as orbit finite G-sets are exactly finitely presentable objects in G-Set, just as finite sets are
finitely presentable in the category Set of sets and functions (see e.g. [1] for information on
locally finitely presentable categories).

We note, however, that the Cartesian product of two orbit finite G-sets is not always
orbit finite. A counterexample, in the integer symmetry, has been provided in Example 2.5.
In particular, even if both A and Q are orbit finite, the domain Q × A of the transition
function of a G-automaton is not always orbit finite. This inconvenience will be avoided
when we restrict to Fräıssé symmetries in Section 10.

10 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

3.2. Myhill-Nerode Theorem. The Myhill-Nerode equivalence relation makes sense for
any alphabet A, including infinite alphabets. That is, we consider two words w,w′ ∈ A∗ to
be equivalent with respect to a language L ⊆ A∗, denoted by w ≡L w′, if

wv ∈ L ⇔ w′v ∈ L for every v ∈ A∗.

Lemma 3.4. If L is equivariant then ≡L is equivariant too.

Proof. We need to show:

w ≡L w′ implies w · π ≡L w′ · π. (3.2)

Indeed, to prove the above observation, suppose that w ≡L w′. By unraveling the definition
of ≡L, we need to show that, for all v ∈ A∗, the following equivalence holds.

(w · π)v ∈ L ⇔ (w′ · π)v ∈ L

By acting on both sides by π−1, this is equivalent to

((w · π)v) · π−1 ∈ L · π−1 ⇔ ((w′ · π)v) · π−1 ∈ L · π−1

By equivariance of L, this is equivalent to

((w · π)v) · π−1 ∈ L ⇔ ((w′ · π)v) · π−1 ∈ L

By equivariance of concatenation in A∗, this is equivalent to

w(v · π−1) ∈ L ⇔ w′(v · π−1) ∈ L

The above is implied by w ≡L w′, which completes the proof of (3.2).

Below we will use the property that the quotient of a G-set by an equivariant equivalence
relation has a natural structure of G-set:

Lemma 3.5. Let X be a G-set and let R ⊆ X × X be an equivalence relation that is
equivariant. Then the quotient X/R is a G-set, under the action

[x]R · π = [x · π]R

of G, and the abstraction mapping

x 7→ [x]R : X → X/R

is an equivariant function.

Proof. Relying on equivariance of R, both well-definedness of the action of G, as well as
equivariance of the abstraction mapping, are routinely checked.

AUTOMATA THEORY IN NOMINAL SETS 11

As usual, the equivalence ≡L is a congruence with respect to appending new letters,
i.e. if w ≡L w′ then wa ≡L w′a holds for every letter a ∈ A. Thus one can define a transition
function on equivalence classes

δL : A∗/ ≡L × A → A∗/ ≡L

such that:
δL([w]≡L

, a) = [w a]≡L
. (3.3)

If A is a G-set and L is a G-language then ≡L is an equivariant relation on A∗. We call
it the syntactic congruence of L.

Suppose that A is orbit finite and L ⊆ A∗ is a G-language. We define the syntactic
automaton of L as follows: its states are equivalence classes of A∗ under Myhill-Nerode
equivalence ≡L, the transition function is δL, its initial state is the equivalence class of the
empty word ε, and accepting states are equivalence classes of the words in L.

Lemma 3.6. The syntactic automaton of a G-language is a reachable deterministic G-
automaton.

Proof. Note that we do not claim the syntactic automaton to be orbit finite.
By Lemma 3.4 the congruence ≡L is equivariant, and thus Lemma 3.5 applies. Thus

we can define an action of G on equivalence classes of ≡L by

[w]≡L
· π = [w · π]≡L

. (3.4)

So far, we have defined the structure of a G-set on the state space of the syntactic automaton.
To complete the proof of the lemma, we need to show that the various components of the
syntactic automaton are equivariant. It is easy to see that the initial state is a singleton
orbit:

[ǫ]≡L
· π

(3.4)
= [ǫ · π]≡L

= [ǫ]≡L
.

By equivariance of L, the set of final states is also equivariant:

[w]≡L
∈ F ⇔ w ∈ L ⇔ w · π ∈ L ⇔ [w · π]≡L

∈ F ⇔ [w]≡L
· π ∈ F.

Finally, the transition function in the syntactic automaton is equivariant:

δL([w]≡L
, a) · π

(3.3)
= [w · a]≡L

· π
(3.4)
= [(w · π) · (a · π)]≡L

(3.3)
= δL([w]≡L

· π, a · π).

For the language in Example 3.2, the syntactic automaton is the one in Example 3.3,
and not the one in Example 3.2.

Homomorphisms of automata. Suppose that we have two deterministic G-automata

A = (Q,A, qI , F, δ) A′ = (Q′, A, q′I , F
′, δ′)

over the same input alphabet A. An equivariant function

f : Q → Q′

is called an automaton homomorphism if it maps qI to q′I , maps F to F ′:

q ∈ F iff f(q) ∈ F ′ for every q ∈ Q,

and commutes with the transition functions δ and δ′:

f(δ(q, a)) = δ′(f(q), a) for every q ∈ Q and a ∈ A.

12 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

It is easy to see that two automata related by a homomorphism recognize the same language.
If there is a surjective homomorphism from A to A′ then we call A′ a homomorphic image
of A.

Myhill-Nerode theorem. In Theorem 3.8 below we state an abstract counterpart of the
Myhill-Nerode theorem for infinite alphabets. The proof relies on Lemma 3.6 and on the
following fact:

Lemma 3.7. Let L be a G-language. The syntactic automaton of L is a homomorphic
image of any reachable deterministic G-automaton that recognizes L.

Proof. Consider a reachable deterministic G-automaton that recognizes L, over the alphabet
A, with initial state qI and transition function δ. We claim that the mapping

δ∗(qI , w) 7−→ [w]≡L
, for w ∈ A∗,

is a homomorphism. It is total as the automaton is reachable, and well defined as δ∗(qI , w) =
δ∗(qI , v) implies w ≡L v. The mapping is easily shown equivariant using Lemmas 3.4 and 3.5.
It commutes with the transition functions by the very definition of the syntactic automaton.
The initial state qI is mapped to the initial one [ε]≡L

. Finally, the accepting states are
mapped to accepting states, as δ∗(qI , w) or [w]≡L

is accepting exactly when w ∈ L.

Theorem 3.8 (Myhill-Nerode theorem for G-sets). Let A be an orbit finite G-set, and let
L ⊆ A∗ be a G-language. The following conditions are equivalent:

(1) the set of equivalence classes of Myhill-Nerode equivalence ≡L is orbit finite;
(2) L is recognized by a deterministic orbit finite G-automaton.

Proof. The implication (1) =⇒ (2) follows by Lemma 3.6. For the opposite implication,
we observe that if L is recognized by a deterministic G-automaton A then without loss of
generality one may assume that A is reachable, and then use Lemma 3.7.

4. Nominal G-sets

The notion of G-automaton presented in Section 3 is quite abstract. When working with
a model of computation, one expects it to have some kind of concrete presentation, e.g.,
in terms of control states and memory. Such a presentation makes it easier to understand
what the automaton does, and is necessary to design algorithms that work with automata,
e.g., minimization algorithms. Although we have defined some particular automata by finite
means (e.g. Example 3.2), it is not clear how an arbitrary automaton can be presented.

One of the goals of this paper is to give a concrete presentation for orbit finite G-sets,
equivariant functions and algebraic structures such as automata. This, however, cannot
be done in full generality even for the equality symmetry (see Example 2.3), for rather
fundamental reasons:

Fact 4.1. For a countably infinite D and G = Sym(D), there are uncountably many non-
isomorphic single-orbit G-sets.

Proof. This proof is best deferred until Proposition 8.7, after some basic representation
machinery is introduced.

AUTOMATA THEORY IN NOMINAL SETS 13

Another problem with G-sets is that Cartesian product on them does not preserve orbit
finiteness in general:

Example 4.2. Consider G = Sym(D) for a countably infinite D, and let X ⊆ P(D) be the
set of all those subsets of D that are neither finite nor cofinite. It is easy to see that X is a
single-orbit G-set. However, X2 has infinitely many orbits. Indeed, for any n ∈ N one can
choose (Cn,Dn) ∈ X2 such that |Cn ∩ Dn| = n, and pairs (Cn,Dn) and (Cm,Dm) are in
different orbits of X2 if n 6= m.

Due to these difficulties, since the equality symmetry G = Sym(D) is one of the most
important cases we want to consider, we need to restrict attention to some class of well-
structured G-sets. To this end, we introduce the notion of a G-nominal set. Observe that
so far, we have only used the group G, and we have ignored the fact that G is a group
acting on some data values D. The definition of a G-nominal sets is where the data values
start to play a role.

From now on, we focus on G-sets for groups arising from data symmetries. Consider a
data symmetry (D, G) (cf. Definition 2.2).

Definition 4.3. A set C ⊆ D supports an element x ∈ X if x · π = x for all π ∈ G that act
as identity on C. A G-set is nominal in the symmetry (D, G) if every element of it has a
finite support.

Note that the definition of support mentions two group actions of G: an action on X,
and the canonical one on D. By abuse of notation, we usually leave the set of data values
D implicit, and simply talk about nominal G-sets.

Nominal G-sets and equivariant functions between them form a category G-Nom.

Example 4.4. For any data symmetry, D is a nominal G-set, since every element d ∈ D is
supported by {d} ⊆ D. Similarly {d1, . . . , dk} supports (d1, . . . , dk) ∈ Dk, hence Dk is also
a nominal G-set. The same works for D∗, but not for Dω or P(D) if D is infinite.

If X,Y are nominal G-sets then so are the Cartesian product X × Y and the disjoint
union X + Y . Indeed, if C supports x ∈ X and D supports y ∈ Y then C ∪ D supports
(x, y) ∈ X × Y , and also C supports x ∈ X + Y and D supports y ∈ X + Y . A set X
equipped with the trivial G-action is always nominal, with every element supported by the
empty set.

Example 4.5. For the equality symmetry (see Examples 2.3), nominal G-sets are exactly
nominal sets introduced by Gabbay and Pitts [16]. Assuming D = N, the sets {0, 1, 2, 3}
and its complement N \ {0, 1, 2, 3}, considered as elements of P(D), are both supported by
{0, 1, 2, 3}. In the equality symmetry, an element of P(D) has finite support if and only if
it is finite or cofinite. In particular, there are countably many finitely supported elements
in P(D).

Example 4.6. Consider the total order symmetry, where D = Q, and the element x ∈ P(Q)
that is the union of two intervals [0; 1]∪ [2; 3). It is easy to see that this element is supported
by the set {0, 1, 2, 3}. More generally, an element of P(Q) has a finite support if and only
if it is a finite Boolean combination of intervals.

Example 4.7. Consider the integer symmetry. If a translation i 7→ i + j preserves any
single integer, then it is necessarily the identity. Therefore, any element of any set with an
action of integers is supported by {5} or {8}, etc. In the integer symmetry, all G-sets are
nominal.

14 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Suppose that we change a symmetry (D, G) by keeping the set of data values D, but
considering a subgroup H ≤ G. What happens to the nominal sets? If X is a G-set (and
therefore also a H-set), then every G-support of x ∈ X is also an H-support of x, therefore
every nominal G-set is a nominal H-set. On the other hand, under the smaller group H,
more sets might become nominal (see Examples 4.5 and 4.6).

A basic property of equivariant functions is that they preserve supports:

Lemma 4.8. For any equivariant f : X → Y , x ∈ X and C ⊆ D, if C supports x then C
supports f(x).

Proof. For any π ∈ G, if x · π = x then f(x) · π = f(x · π) = f(x).

Similarly, action of the group preserves supports in the following sense:

Lemma 4.9. If C supports x then πC supports x · π, for any π ∈ G.

Proof. Assume an arbitrary ρ ∈ G to be the identity on πC. Then π ρπ−1 is the identity
on C, and thus preserves x,

x · (π ρπ−1) = x,

from which we obtain:
(x · π) · ρ = x · π

as required.

The problem signified by Fact 4.1 disappears for nominal G-sets:

Fact 4.10. For the equality symmetry (D, G), there are only countably many non-isomorphic
single-orbit nominal G-sets.

Proof. This will follow from the more general Corollary 9.18.

However, other problems persist and we shall not be able to distill a satisfactory repre-
sentation of nominal G-sets and automata for arbitrary data symmetries. As a pathological
example, consider the integer symmetry (see Example 2.3).

Integer pathologies. As far as single-orbit nominal sets are concerned, the integer sym-
metry has a promisingly simple structure. As we mentioned in Example 4.7, all G-sets are
nominal in this case. One example of a single-orbit G-set is Z. Another example is the
finite cyclic group Zn, for any nonzero n ∈ N. It is not difficult to see that every single-orbit
nominal set in the integer symmetry is isomorphic either to Z or to some Zn.

Equivariant functions between single-orbit sets are also simple. If the domain in Z,
these are all translations, possibly modulo n if the co-domain is Zn. If the domain is Zn,
the co-domain must be necessarily Zm for m a divisor of n.

The problems with the integer symmetry appear as soon as Cartesian products of
nominal sets are considered. This has bad consequences for automata. Suppose that we are
interested in automata where the set of states is Z and the input alphabet is also Z. Both
sets are single-orbit and nominal, so these are among the simplest automata in the integer
symmetry. The transition function is any equivariant function

δ : Z× Z → Z.

What functions δ can we expect? Suppose that δ is defined for arguments of the form (0, i).
Then, by equivariance, this definition extends uniquely to all arguments:

δ(i, j) = δ((0, j − i) · i) = δ(0, j − i) + i.

AUTOMATA THEORY IN NOMINAL SETS 15

However, there is no restriction on the value of δ(0, i), call it g(i). It is not difficult to show
that for any function g : Z → Z, the function δg defined by

δg(i, j) = g(j − i) + i

is equivariant. In particular, there are uncountably many equivariant functions Z× Z → Z.
Wishing to disregard the integer symmetry and other pathological cases, we shall require

some desirable properties of data symmetries such as the existence of least supports.

Definition 4.11. A symmetry (D, G) admits least supports if each element of every nominal
G-set has a least finite support with respect to set inclusion, or, equivalently, if finite
supports of each element are closed under intersection.

We shall study the existence of least supports in some detail in Section 9. For now, we
simply state some examples:

Example 4.12. The equality symmetry and the total order symmetry both admit least
supports. This will be proved as Corollaries 9.4 and 9.5; for the equality symmetry, it was
proved already in [16].

The integer symmetry does not admit least supports, as is evident from Example 4.7.

Later, in Section 9, we shall restrict attention to those data symmetries that admit least
supports and enjoy some other desirable properties, to achieve a finitary representation of
nominal sets. For instance, Fact 4.10 holds for any data symmetry (D, G) that admits least
supports, assumed that D itself is a countable set, as we show in Corollary 9.18. For now,
however, we shall continue the study of nominal automata in an abstract setting, in the
following Sections 5–7.

We conclude this section with a simple fact that gives a feeling of a kind of finitary
representation we mean above. Recall from Example 2.4 that D(C) is the set of all injective
functions C → D that extend to a permutation from G.

Lemma 4.13. Every single orbit nominal set X is an image, under an equivariant function,
of D(C), for some C ⊆fin D. Moreover, if (D, G) admits least supports then the function
may be chosen so that it preserves least supports.

Proof. For the first part, choose any x ∈ X and any finite support C of x. Because this is
a support it follows that

π|C = σ|C ⇒ x · π = x · σ for every π, σ ∈ G.

Therefore, the relation defined by

f = {(π|C , x · π) : π ∈ G}

is actually an equivariant function from D(C) to X. The function is clearly surjective,
because every element of X is of the form x · π for some π ∈ G.

Assuming that (D, G) admits least supports, C above may be chosen as the least support
of x. It is easy to see that πC is the least support both of x · π ∈ X (use Lemma 4.9 for

π−1) and of π|C ∈ D(C), which means that f preserves least supports.

16 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

In the equality symmetry every injective function C → D extends to a permutation,
thus we obtain:

Corollary 4.14. In the equality symmetry, every single orbit nominal set is an image of
D(n), for some n ∈ N, under an equivariant function that preserves least supports.

5. Nominal G-automata

This section is a continuation of our theory of G-automata initiated in Section 3, but now we
restrict attention to nominal G-sets. We call a G-automaton nominal if both the alphabet
A and the state space Q are nominal G-sets.

Note that if A is nominal then A∗ is so as well, as every finite word is supported by the
union of supports of individual letters. Thus every G-language over a nominal alphabet is
automatically nominal.

The restriction to nominal sets will have little or no impact on the expressive power of
automata. In particular, in any data symmetry (D, G):

Proposition 5.1. In any reachable deterministic G-automaton over a nominal alphabet A,
the G-set of states is nominal.

Proof. Reachability of an automaton (see Definition 3.1 and the following paragraphs)
means that the function w 7→ δ∗(qI , w) is an equivariant function from the nominal set
A∗ onto the state space of the automaton. By Lemma 4.8, the image of a nominal set under
an equivariant function is a nominal set.

As before, for the rest of this section we fix some infinite set D and a group G ≤ Sym(D).
The deterministic orbit finite nominal G-automata we call shortly G-DFA; similarly, the
nondeterministic orbit finite nominal G-automata we call G-NFA.

5.1. Myhill-Nerode theorem revisited. Assume the alphabet A is an orbit finite nom-
inal G-set. By Proposition 5.1 every reachable deterministic automaton over A is nominal.
As a conclusion, the syntactic automaton is always nominal. Thus in condition (2) in
Theorem 3.8 one may equivalently require that the automaton be nominal:

Theorem 5.2 (Myhill-Nerode theorem for nominalG-sets). Let A be an orbit finite nominal
G-set, and let L ⊆ A∗ be a G-language. The following conditions are equivalent:

(1) the set of equivalence classes of Myhill-Nerode equivalence ≡L is orbit finite;
(2) L is recognized by a G-DFA.

5.2. Nondeterministic G-automata. In the sequel we investigate some basic properties
of classical NFA, and verify which of them still hold for G-NFA.

Determinization fails. In the world of nominal sets, one cannot in general determinize
finite automata. One reason is that complementation fails for nondeterministic finite au-
tomata. Perhaps a more suggestive explanation is that the powerset of an orbit finite set
can have infinitely many orbits, as illustrated in Example 2.5 in the case of the equality
symmetry. This means that applying the subset construction to a nominal nondeterministic
finite automaton yields a nominal deterministic automaton, but not necessarily one with
an orbit finite state space.

AUTOMATA THEORY IN NOMINAL SETS 17

Elimination of ε-transitions. Consider nominal G-automata as in Definition 3.1, but
which also have additionally ε-transitions, described by an equivariant relation

δε ⊆ Q×Q.

Lemma 5.3. The expressive power of G-NFA is not changed if ε-transitions are allowed.

Proof. The standard proof works. After eliminating ε-transitions, we should have transitions
of the form (p, a, q) ∈ Q×A×Q such that

(p1, p2), . . . , (pn−1, pn) ∈ δε (pn, a, q1) ∈ δ (q1, q2), . . . , (qm−1, qm) ∈ δε

holds for some

p1, . . . , pn, q1, . . . , qm ∈ Q p1 = p qm = q.

It is not difficult to see that the new set of transitions is equivariant.

Union and intersection. It is easy to see that languages recognized by G-NFA are closed
under union (because orbit finite sets are closed under disjoint union) and concatenation
(disjoint union again, and using Lemma 5.3). They also contain all orbit finite subsets of
A∗. This raises the question of regular expressions and a Kleene Theorem, but we do not
discuss these issues in this paper.

Closure under intersection is a bit more subtle, as it does not hold in an arbitrary
symmetry. The essential reason is that orbit finite nominal sets are not stable under Carte-
sian product, as shown in Example 2.5 in the case of the integer symmetry. However, if
one restricts to well-behaved symmetries only, as we do in Sections 9-11, the closure under
products is recovered, and, as a consequence, the closure of G-NFA under intersection is
recovered as well.

Complementation. For closure under complementation, the situation is much worse, as
the closure fails essentially in every symmetry. The proof below works for the equality
symmetry, but with minor changes it can be adapted to other symmetries.

Lemma 5.4. In the equality symmetry, languages recognized by G-NFA are not closed under
complementation.

Proof. Anticipating Section 6, we follow that same lines as the proof that finite memory
automata of Francez and Kaminski are not closed under complementation. Consider the
words over D which contain some data value twice:

L =
⋃

d∈D

D∗ · d · D∗ · d · D∗.

The complement of this language is the set of words where all letters are distinct. Suppose
that the complement of L is recognized by a G-NFA A, with states Q and transitions δ.
For each q ∈ Q, let Cq ⊆ D be some chosen finite support of q. By Lemma 4.9, the sets Cq

may be chosen so that the size of Cq depends only on the orbit of q, and therefore

max
q∈Q

|Cq|

is a finite number, since there are finitely many orbits in Q. Choose n ∈ N to be bigger
than this finite number. Consider a word

d1 · · · d2n 6∈ L.

18 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

This word should be accepted by A, so there should be an accepting run

q0, . . . , q2n such that (qi−1, di, qi) ∈ δ for all i ∈ {1, . . . , 2n}.

Because the least support Cqn of qn has fewer than n data values it follows that

di, dj 6∈ Cqn for some i ∈ {1, . . . , n} and some j ∈ {n+ 1, . . . , 2n}.

Let π be the transposition which swaps di and dj . By equivariance of the transition relation,
we see that the sequence

q0 · π, . . . , qn · π

is a run over the prefix

(d1 · · · dn) · π.

Because π does not move the support of qn, it follows that qn · π = qn. Therefore, the
sequence

q0 · π, . . . , qn · π, qn+1, . . . , q2n

is an accepting run over the word

((d1 · · · dn) · π) · dn+1 · · · d2n.

However, the above word contains the data value dj twice, so it should be rejected by A.

6. Relationship with finite memory automata

In this section, we take a detour from the discussion of automata theory in general sym-
metries, and we discuss the special case of the equality symmetry (D, G). In this case, for
alphabets of a special form, the abstract model of nominal finite automata coincides with an
existing automaton model, namely the finite memory automata of Francez and Kaminski. A
connection between finite memory automata and nominal sets was first made in [11], in the
related framework of named sets and history-dependent automata. However, no comparison
of the expressive power of automata was considered there.

6.1. Finite memory automata. We begin by defining finite memory automata [14], known
also under the name register automata [12].

Partial data tuples. Consider a finite set N of names. A partial data tuple over N is a
partial function from N to D. We write (D ∪ ⊥)N for the set of partial data tuples. An
equality constraint over N is an element

(r, τ, r′) ∈ N × {=, 6=} ×N

We say a partial tuple t satisfies the constraint if t(r) is defined, and t(r′) is defined, and
their data values are related by τ . For instance, the completely undefined tuple is the unique
partial tuple that satisfies no constraints.

Lemma 6.1. Every equivariant subset of (D ∪ ⊥)N is equivalent to a boolean combination
of equality constraints.

AUTOMATA THEORY IN NOMINAL SETS 19

Proof. Fix an arbitrary orbit of (D∪⊥)N and an arbitrary element x of the orbit. Consider
the set of equality constraints satisfied by x. A crucial but easy observation is that precisely
the same constraints are satisfied by all other elements of the orbit. On the other side, any
two tuples that satisfy the same equality constraints are related by some permutation π.
Thus the orbit is equivalent to a conjunction of equality constraints.

There are only finitely many equality constraints, as long as N is finite, thus by the
above lemma (D ∪ ⊥)N is an orbit finite nominal set.

Definition 6.2. A nondeterministic finite memory automaton consists of

• a finite set Afin of input labels;
• a finite set C of control states;
• a finite set N of register names;
• sets of initial I ⊆ C and final F ⊆ C control states;
• a transition relation, which is a subset of

δ ⊆ C ×Afin × bool(Φ)× C

where Φ is the set of equality constraints over the following set of names:

N ′ = {before} ×N ∪ {input} ∪ {after} ×N

and bool(Φ) stands for the boolean combinations of constraints from Φ.

Such an automaton A is used to accept or reject words over the alphabet Afin×D, and works
as follows. After reading a prefix of the input word, the configuration of the automaton
consists of a control state from C together with a partial valuation from registers to data
values. In other words, a configuration is an element of the set

QA = C × (D ∪ ⊥)N .

Initial configurations are the ones of the form

(c,⊥, . . . ,⊥) ∈ QA

where c ∈ I; note that there are only finitely many of them. Suppose that the automaton
is in a configuration

(c, d1, . . . , dn) ∈ QA

and that it reads an input letter (a, d) ∈ A. The automaton can nondeterministically choose
any new configuration

(c′, d′1, . . . , d
′
n) ∈ QA

provided that there is a transition

(c, a, φ, c′) ∈ δ

such that the partial tuple

(d1, . . . , dn, d, d
′
1, . . . , d

′
n),

interpreted as a partial tuple over N ′, satisfies the boolean combination of equality con-
straints given by φ.

Lemma 6.3. Consider an alphabet A = Afin × D, where Afin is a finite set. Then the
following conditions are equivalent for every language L ⊆ A∗:

(1) L is recognized by a finite memory automaton.

20 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

(2) L is recognized by a G-NFA, where
• The state space is C × (D ∪ ⊥)n for some finite set C and n ∈ N,
• There are finitely many initial states.

Proof. The implication from (1) to (2) follows immediately from the definition; states of
the G-NFA correspond to configurations in the finite memory automaton. Note that ⊥ is a
singleton orbit in D∪⊥. For the converse implication, we use Lemma 6.1. The assumption
on initial states guarantees that every initial state is of the form (c,⊥n) for some c ∈ C.

6.2. Equivalence for nondeterministic automata. In this section, we prove a stronger
version of Lemma 6.3, namely:

Theorem 6.4. Consider an alphabet A = Afin × D, where Afin is a finite set. Then the
following conditions are equivalent for every language L ⊆ A∗:

(1) L is recognized by a finite memory automaton.
(2) L is recognized by a G-NFA.

The implication from (1) to (2) has already been shown in Lemma 6.3. The rest of
Section 6.2 is devoted to the implication from (2) to (1).

Corollary 6.5. Every orbit finite nominal set is an image, under a partial equivariant
function f that preserves least supports, of a set of the form

I × (D ∪⊥)n for some finite set I and n ∈ N.

Proof. Suppose that X is a nominal set with k orbits. Recall from Example 2.4 that D(n)

is the set of non-repeating n-tuples of data values. By Corollary 4.14, X is an image of the
disjoint union:

∐

i∈{1...k}

D(ni). (6.1)

Let n be the maximal number among {ni}i∈{1...k}. It is not difficult to see that D(ni) is
isomorphic to an orbit of (D∪⊥)n. It follows that the disjoint union from (6.1) is isomorphic
to an equivariant subset of {1 . . . k} × (D ∪ ⊥)n.

We are now ready to prove Theorem 6.4. Consider a G-NFA A = (Q,A, I, F, δ) with
A = Afin × δ for some finite set Afin. We assume that there is only one initial state, call it
qI . Otherwise, we add a new initial state, call it qI , with a trivial action

qI · π = qI ,

and extend the set of transitions by the equivariant set of triples of the form

{(qI , a, q) : (p, a, q) ∈ δ for some p ∈ I}.

Basing on Lemma 6.3, we only need to show that there is an equivalent G-NFA with a single
initial state, whose state space is C × (D ∪ ⊥)n for some finite set C and n ∈ N. Apply
Corollary 6.5 to Q, yielding a partial surjective equivariant function

f : C × (D ∪ ⊥)n → Q

for some finite set C and n ∈ N. Because there is just one initial state, we may assume that

qI = f(cI ,⊥
n)

AUTOMATA THEORY IN NOMINAL SETS 21

for some cI ∈ C. Define a G-NFA, call it f−1(A), with states C × (D ∪ ⊥)n, initial state
(cI ,⊥n), final states f−1(F) and transitions f−1(δ). It is easy to see that the automata A
and f−1(A) recognize the same language. This completes the proof of Theorem 6.4.

Local symmetry. Although finite memory automata and G-NFA have the same expressive
power, the latter model is arguably richer and has more structure. Indeed, in contrast to
Lemma 3.6, syntactic automata of G-languages are not necessarily finite memory automata.
An example is the automaton from Example 3.3, which does not arise from any finite
memory automaton. This is because G-NFA allow for a local symmetry1, as illustrated in
Example 3.3 where a G-NFA stores an unordered pair of data values instead of an ordered
one; on the other hand finite memory automata do not allow any notion of local symmetry,
or permutation, of registers. As a result, the Myhill-Nerode theorem fails, and finite memory
automata do not minimize: the syntactic automaton is always a homomorphic image of a
finite memory automaton, but it may not be isomorphic to one.

The importance of local symmetries for automata minimization was first noticed in the
context of history-dependent automata, in [23].

6.3. Equivalence for deterministic automata. Recall that the set of configurations of
a finite memory automaton A is QA = C × (D∪⊥)N . The semantics of a nondeterministic
finite memory automaton is given by a transition relation between configurations, being
an equivariant subset of QA × (Afin × D) × QA. A finite memory automaton is called
deterministic if this relation is actually a function QA × (Afin × D) → QA.

In this section, we prove a deterministic variant of Theorem 6.4:

Theorem 6.6. Consider an alphabet A = Afin × D, where Afin is a finite set. Then the
following conditions are equivalent for every language L ⊆ A∗:

(1) L is recognized by a deterministic finite memory automaton.
(2) L is recognized by a G-DFA.

We do the same proof as for the nondeterministic automata. The only problem is that
f−1(δ) might not in general be deterministic. To solve this problem, we need one additional
result:

Lemma 6.7. Suppose that f : X → X ′ is a surjective equivariant function that preserves
least supports. Then for every nominal set A, and every equivariant function

δ′ : X ′ ×A → X ′

there exists a function

δ : X ×A → X

such that the following diagram commutes

X ×A
δ //

f×IdA ��

X
f��

X ′ ×A
δ′

// X ′
(6.2)

1The notion of local symmetry is introduced in its full generality in Section 10.

22 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Proof. Let (Yi)i∈I be the family of all orbits of the set X ×A.
Consider some i ∈ I. Pick a representative (xi, ai) ∈ Yi. In the diagram (6.2), follow

the f × IdA arrow, and then δ′, yielding an element

x′i = δ′(f(xi), ai).

Because the above element is the result of applying two equivariant functions, the least
support of x′i is a subset of the least support of (xi, ai). Because the function f is surjective,
there must be some yi ∈ X such that

f(yi) = x′i = δ′(f(xi), ai).

Because the function f preserves least supports, the least support of yi is equal to the least
support of x′i, which is included in the least support of (xi, ai). It follows that there is an
equivariant function

δi : Yi → X such that δi(xi, ai) = yi.

Do the construction above for all orbits Yi, yielding functions (δi)i∈I . Define δ to be
the union of these functions. We now prove that the diagram (6.2) commutes.

Pick some (x, a) ∈ X × A. Because the pairs (xi, ai) for i ∈ I represent all orbits of
X ×A, it follows that

(x, a) = (xi · π, ai · π) for some i ∈ I and some π ∈ G.

Following the down-right path in the diagram (6.2) from (x, a) yields

δ′(f(x), a) = δ′(f(xi · π), ai · π) = δ′(f(xi), ai) · π.

Following the right-down path in the diagram (6.2) from (x, a) yields

f(δ(x, a)) = f(δi(x), a)) = f(δi(xi · π, ai · π)) = f(δi(xi, ai)) · π = f(yi) · π,

which means that the diagram commutes because f(yi) = δ′(f(xi), ai).

We now prove Theorem 6.6. Let X ′ be the state space of the G-DFA from item (2),
and let δ′ be its transition function. Apply Corollary 6.5 to X ′, yielding a partial surjective
equivariant function f : X → X ′ where

X = C × (D ∪ ⊥)n.

Let Y ⊆ X be the domain of f . Because f preserves least supports, we can apply Lemma 6.7
for f , yielding a transition function δ : Y × A → Y . Extend δ to an equivariant function
X×A → X in an arbitrary way. The rest of the proof is the same as in Theorem 6.4, using
Lemma 6.3.

7. Other models and perspectives

In Sections 3 and 5 we defined and studied the nominal version of finite automata. The
same approach could be pursued for a wide variety of computation models. For a simple
example:

Definition 7.1. A nominal pushdown automaton A consists of

• an input alphabet A, which is an orbit finite nominal set;
• a set of states Q, which is an orbit finite nominal set;
• a stack alphabet Γ, which is an orbit finite nominal set;

AUTOMATA THEORY IN NOMINAL SETS 23

• an initial state qI ∈ Q, which is equivariant;
• an initial stack symbol γI ∈ Γ, which is equivariant;
• a set of transitions

δ ⊆ Q× Γ× (A ∪ ǫ)×Q× Γ∗

which is orbit finite and equivariant.

By analogy to classical pushdown automata, the condition that the set of transitions is orbit
finite is to prohibit a set of rules which can push arbitrarily large words onto the stack in
one step. Assuming acceptance by empty stack, the acceptance by a pushdown automaton
is defined exactly like in the classical case.

Example 7.2. For an orbit finite alphabet A, consider the language of even-length palin-
dromes:

P = {a1a2 · · · anan · · · a2a1 : a1, . . . , an ∈ A} ⊆ A∗

This language is recognized by a nominal pushdown automaton which works exactly the
same way as the usual automaton for palindromes, with the only difference that the stack
alphabet Γ is now A. For instance, in the case when A = D, the automaton keeps a stack
of data values during its computation. The automaton has two control states: one for the
first half of the input word, and one for the second half of the input word.

Example 7.3. The automaton in Example 7.2 had two control states. In some cases, it
might be useful to have a set Q of control states that is orbit finite, but not finite. Consider
for example the set of odd-length palindromes where the middle letter is equal to the first
letter:

P ′ = {a1a2 · · · ana1an · · · a2a1 : a1, . . . , an ∈ A} ⊆ A∗.

A natural automaton recognizing this language would be similar to the automaton for
palindromes, except that it would store the first letter a1 in its control state.

Also the definition of a nominal context-free grammar is obtained from the standard
definition by replacing ‘finite’ with ’orbit finite’, and requiring elements and subsets to be
equivariant.

Definition 7.4. A nominal context-free grammar G consists of

• an input alphabet A, which is an orbit finite nominal set;
• a set of nonterminals N , which is an orbit finite nominal set;
• a starting nonterminal, which is equivariant;
• an orbit finite, equivariant set of productions

P ⊆ N × (N ∪A)∗

As usual, we assume that the sets A and N are disjoint.

Example 7.5. Consider the palindrome language P from Example 7.2. This language is
generated by the following grammar with one nonterminal N :

N → aNa for every a ∈ A.

N → ǫ

24 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Example 7.6. In the previous example, the grammar had just one nonterminal. Sometimes,
it is useful to have an orbit finite, but infinite, set of nonterminals. Consider the language
P ′ from Example 7.3. For this language, we need a different set of nonterminals, with a
starting nonterminal N as well as one nonterminal Na for every a ∈ A. The rules of the
grammar are:

N → aNaa for every a ∈ A.

Na → bNab for every a, b ∈ A.

Na → a for every a ∈ A.

One can apply the same treatment to other classical definitions such as two-way au-
tomata, alternating automata (cf. [7]), Turing machines(cf. [9]), Petri nets, and so on. In
each case one has to be careful to see which of the classical constructions or equivalences
work, and which of them fail. For example:

• Nominal pushdown automata are expressively equivalent to nominal context-free gram-
mars. The proof is essentially the same as the standard proof for classical sets.

• Nominal two-way G-NFA (G-DFA) are more powerful than one-way G-NFA (G-DFA).
For instance, the language

L = {d1 · · · dn : n ∈ N and all the letters d1, . . . , dn are different} ⊆ D∗

is recognized by a two-way G-DFA.
• Nominal alternating finite automata are more powerful than nominal nondeterministic
finite automata. For instance, the language Lmentioned above is recognized by a nominal
alternating finite automaton. In the spirit of Section 6, one makes a connection between
nominal alternating finite automata, and models of alternating register automata known
in the literature [12, 13]. This connection is investigated in [7].

• Determinization of Turing machines heavily depends on the data symmetry. In the equal-
ity symmetry, nondeterministic Turing machines are more powerful than deterministic
ones, and P 6= NP. In the total order symmetry, Turing machines determinize, and the
P = NP question is equivalent to the classical one. These questions are investigated in
detail in [9].

A general analysis of the types of reasoning allowed for nominal G-sets of various kinds is
beyond the scope of this paper. One general rule is Pitts’s equivariance principle:

Any function or relation that is defined from equivariant functions and rela-
tions using classical higher-order logic is itself equivariant [24].

For example, the language recognized by an equivariant automaton is automatically equi-
variant.

In practice, various classical results in nominal sets fail either due to the fact that the
finite powerset construction does not preserve orbit-finiteness (so, e.g., standard automata
determination fails), or due to the failure of the axiom of choice, even in its orbit-finite form
(see [9]).

Part 2. Finite representations of nominal sets and automata

In the framework presented so far, automata and other models are generalized to infinite
alphabets by reinterpreting their standard definitions, replacing finite sets by orbit-finite
nominal sets and arbitrary relations and functions by equivariant ones. This is pleasantly

AUTOMATA THEORY IN NOMINAL SETS 25

simple, but not sufficient for a satisfactory treatment of the algorithmic aspect of automata
theory. For instance, for every deterministic finite automaton, one can minimize it, or test
the emptiness of its recognized language, in polynomial time. To transport such results to
the nominal case, one needs a finite representation of nominal data structures, amenable to
effective manipulation.

We shall now provide finite representation results for nominal G-sets and equivariant
functions. In Sections 8-10 we shall prove a sequence of progressively more concrete rep-
resentations, under certain assumptions on the underlying data symmetry. An example
application, shown in Section 11, is a generalization of the development of Section 6, where
a concrete understanding of deterministic and nondeterministic G-automata for the equality
symmetry was provided. More applications can be found in [7], where we define a program-
ming language for manipulating orbit-finite nominal G-sets, with an implementation based
on the representations presented here.

8. G-set representation

We begin with well-known results from group theory, regarding the structure of arbitrary
G-sets for any group G, and we indicate why orbit finite G-sets cannot be presented by
finite means in general.

Important examples of G-sets are provided by subgroups of G and their coset spaces.
For a subgroup H ≤ G, a (right) coset of H is a set of the form

Hπ = {σπ | σ ∈ H} ⊆ G,

for some π ∈ G. Note that Hπ = Hθ if and only if πθ−1 ∈ H. Right cosets of H define a
partition of G, and the set of all such cosets is denoted G/Hr.

We shall now show a well-known representation result for single-orbit G-sets as coset
spaces of subgroups of G.

Definition 8.1. A subgroup representation of a G-set is a subgroup H ≤ G. Its semantics
is the set

[[H]]c = G/Hr,

with a G-action defined by (Hπ) · σ = H(πσ) for any Hπ ∈ G/Hr and σ ∈ G.

The following two propositions are well known and their proofs completely standard;
we include them here for completeness.

Proposition 8.2. (1) For each H ≤ G, [[H]]c is a single-orbit G-set. (2) Every single-orbit
G-set X is isomorphic to some [[H]]c.

Proof. For (1), first check that the G-action on [[H]]c is well-defined under the choice of π;
indeed, Hπ = Hπ′ implies H(πσ) = H(π′σ). Further, every Hπ,Hσ ∈ [[H]] are in the same
orbit since Hπ = Hσ · (σ−1π).

(2) is known in the literature as the orbit-stabilizer theorem. For any x in a G-set X,
the group

Gx = {π ∈ G | x · π = x} ≤ G

is called the stabilizer of x.
To prove (2), put H = Gx for any x ∈ X. Define f : X → [[Gx]]

c by f(x ·π) = Gxπ. The
function f is well defined: if x · π = x · σ then πσ−1 ∈ Gx, hence Gxπ = Gxσ. It is easy to

26 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

check that f is equivariant. It is also a bijection. For injectivity, if f(x ·π) = f(x ·σ), which
means Gxπ = Gxσ, then πσ−1 ∈ Gx, hence x · σ = (x · πσ−1) · σ = x · π. For surjectivity of
f , for any π ∈ G there is f(x · π) = Gxπ.

Recall from group theory that subgroups H,K ≤ G are called conjugate if K = πHπ−1

for some π ∈ G.

Proposition 8.3. For any H,K ≤ G, [[H]]c and [[K]]c are isomorphic if and only if H and
K are conjugate.

Proof. For the if part, assume K = πHπ−1 and define

f(Hσ) = Kπσ.

This is well defined as a function from [[H]]c to [[K]]c: if Hσ = Hθ then σθ−1 ∈ H, therefore
πσθ−1π−1 = πσ(πθ)−1 ∈ K, hence Kπσ = Kπθ. Moreover, f is obviously equivariant by
Definition 8.1, and the mapping Kσ 7→ Hπ−1σ is its inverse.

For the only if part, assume an equivariant isomorphism f : [[H]]c → [[K]]c and take any
π ∈ G such that f(He) = Kπ, for e the neutral element of G. Now, for any σ ∈ H there is

Kπσ = f(He) · σ = f(Hσ) = f(He) = Kπ

hence πσπ−1 ∈ K; as a result, H ≤ πKπ−1. For f−1 the inverse of f , there is f−1(Kπ) =
He, therefore by equivariance, f−1(Ke) = Hπ−1 and by repeating the previous argument,
K ≤ π−1Hπ, hence πKπ−1 ≤ H. As a result, H = πKπ−1 as required.

The subgroup representation can be extended to a representation of equivariant func-
tions from single orbit G-sets:

Proposition 8.4. Let X = [[H]]c and let Y be a G-set. Equivariant functions from X to Y
are in bijective correspondence with elements y ∈ Y for which H ≤ Gy.

Proof. Given an equivariant function f : X → Y , let y be the image under f of the coset
He ∈ X. Equivariant functions can only increase stabilizers, so H = GHe ≤ Gy. On the
other hand, given y ∈ Y , define a function f : X → Y by f(Hπ) = y ·π. This is well-defined
if H ≤ Gy; indeed, if Hπ = Hσ then πσ−1 ∈ H ⊆ Gy, hence y · π = y · σ.

It is easy to check that the two above constructions are mutually inverse.

Corollary 8.5. Equivariant functions from X = [[H]]c to Y = [[K]]c are in bijective corre-
spondence with those cosets Kπ for which πH ⊆ Kπ.

Proof. By Proposition 8.4 unfolding Definition 8.1. Notice that the stabilizer of Ke ∈ [[K]]c

is K itself, and the stabilizer of Kπ is the conjugate subgroup π−1Kπ. The condition
H ≤ π−1Kπ obtained from Proposition 8.4 is equivalent to πH ⊆ Kπ.

Proposition 8.2 provides a way to represent single-orbit G-sets by subgroups. Together
with Corollary 8.5, this representation can be rephrased concisely as an equivalence of two
categories. Denote by G-Set1 the category of single-orbit G-sets and equivariant function
between them.

Theorem 8.6. For any group G, G-Set
1 is equivalent to a category with:

• as objects, subgroups H ≤ G,
• as morphisms from H to K, cosets Kπ such that πH ⊆ Kπ.

AUTOMATA THEORY IN NOMINAL SETS 27

We do not pursue the categorical formulation of G-sets in this paper, but we include
this theorem to make a connection with related work such as [27], where formulated with
essentially the same proof as above.

Thanks to Proposition 8.3, one could refine Theorem 8.6 and represent single-orbit G-
sets not by subgroups of G, but by conjugacy classes of those subgroups. For the sake of
simplicity we choose not to do so.

The representation can be extended from single-orbit to arbitrary G-sets. To this end,
note that the action of G on a set X acts independently on different orbits, and can be
defined separately on each orbit. Formally, every G-set X is isomorphic to the disjoint union
of its orbits understood as single orbit G-sets. As a result, a G-set can be represented by a
family of subgroups of G, and equivariant functions are represented as suitable families of
functions.

The subgroup representation exhibits some structure in the world of G-sets and equi-
variant functions. At the same time, it implies that it is impossible to present all orbit finite
G-sets by finite means, as we shall now demonstrate.

By Propositions 8.2 and 8.3, the following proposition proves Fact 4.1.

Proposition 8.7. For a countably infinite D and G = Sym(D), there are uncountably many
non-conjugate subgroups of G.

Proof. Fix an arbitrary family of pairwise-disjoint subsets Cp ⊆ D, indexed by prime num-
bers p, such that |Cp| = p for any p. Then, fix a family of permutations πp, indexed also
by prime numbers, such that each πp acts as identity on D \ Cp, and as a permutation of
order p on Cp. For any subset I of prime numbers, let the group HI ≤ G be generated by
the family {πp : p ∈ I}. One easily observes that HI contains an element of a prime order
p if and only if p ∈ I.

On the other hand, is is easy to show that for conjugate subgroups H,K ≤ G, if H
contains an element of some finite order, then K contains an element of the same order.
Therefore, if I 6= I ′ then HI and HI′ are not conjugate, and there are uncountably many
different choices of I.

Open subgroups. We shall now restrict the subgroup representation to nominal G-sets.
For any C ⊆ D, define GC ≤ G by:

GC = {π ∈ G | π(c) = c for all c ∈ C}. (8.1)

In other words, the subgroup GC is the intersection of all stabilizers Gc for c ∈ C, in D

considered as a G-set.

Definition 8.8. A subgroup H ≤ G is open if GC ≤ H for some finite C ⊆ D. If this is
the case, we say that C supports H.

The name “open” is justified by considering G ≤ Sym(D) as a topological group. This
technique is well known, see e.g. [20] for an application in the context of sheaf theory closely
related to nominal sets. For any set D, a set of permutations G ⊆ Sym(D) can be equipped
with a topology with basis given by C-neighborhoods of all π ∈ G:

BC(π) = {σ ∈ G | σ|C = π|C}. (8.2)

It is not difficult to check that a subgroup H ≤ G is an open subset with respect to this
topology if and only if it satisfies Definition 8.8.

Open subgroups of G are linked to nominal G-sets via the following result.

28 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Proposition 8.9. A single-orbit G-set [[H]]c is nominal if and only if H is open in G.

Proof. Unfolding the definitions, it is easy to see that in a G-set X, a subset C ⊆ D supports
an element x ∈ X if and only if GC ≤ Gx. Then use (the proof of) Proposition 8.2(2).

The above proof also implies that the notions of support in Definitions 4.3 and 8.8
coincide along the representation function [[−]]c. We shall use both notions as convenient.

It is now straightforward to restrict the subgroup representation of Definition 8.1: nom-
inal G-sets are represented by open subgroups of G. The representation of equivariant func-
tions from nominal sets remains as in Proposition 8.4. In categorical terms, Theorem 8.6
restricts to:
Theorem 8.10. For data symmetry (D, G), the category G-Nom

1 is equivalent to a cat-
egory with:

• as objects, open subgroups H ≤ G,
• as morphisms from H to K, cosets Kπ such that πH ⊆ Kπ.

Here, G-Nom1 denotes the category of single-orbit nominal sets and equivariant func-
tions.

9. Well-behaved symmetries

Open subgroups of permutation groups are rather abstract entities, and it is not at all clear
how to represent them by finite means. Much more concrete representations can be obtained
under certain assumptions on the data symmetry involved, as we shall now demonstrate.

9.1. Least supports. An element of a nominal set always has minimal supports with
respect to inclusion, simply because it has some finite support. As shown in Example 4.7,
there may be many incomparable minimal supports (which means that there is no least
support). Minimal supports of the same element might even have different cardinalities, as
illustrated by the following example.

Example 9.1. For a permutation π ∈ Sym(N), let π2 ∈ Sym(N× N) be the permutation

π2(n,m) = (π(n), π(m)).

Let D = N × N and let G = {π2 : π ∈ Sym(N)} ≤ Sym(D). Essentially, G contains all
permutations of N, extended coordinate-wise to N × N. Consider the set D as a nominal
G-set, with the canonical action of G. The pair (0, 1) has three minimal supports: the
singleton {(0, 1)}, the singleton {(1, 0)}, and the two-element set {(0, 0), (1, 1)}.

The following fact follows immediately from the development of Section 8:

Fact 9.2. A symmetry (D, G) admits least supports if and only if for every subgroupH ≤ G
and for every finite C,D ⊆ D, if GC ≤ H and GD ≤ H then GC∩D ≤ H (see (8.1)).

We now give a convenient sufficient and necessary condition for (D, G) admitting least
supports. It is easy to check that

C ⊆ D implies GC ≥ GD

and, as a result, for all C,D ⊆ D,

GC∩D ≥ GC +GD,

AUTOMATA THEORY IN NOMINAL SETS 29

where the right-hand side denotes the subgroup of G generated by the union of GC and GD,
i.e., the smallest subgroup of G that contains GC and GD. The opposite subgroup inclusion
guarantees least supports for open subgroups of G. In fact it is not necessary to compare
both sides as groups, but merely to check containment of their single orbits of D, in the
special case when both C \D and D \ C are singleton sets.

Theorem 9.3. For any symmetry (D, G), the following conditions are equivalent:

(1) For all finite E ⊆ D and c, d ∈ D \ E such that c 6= d,

c ·GE ⊆ c ·
(

GE∪{c} +GE∪{d}

)

.

(2) (D, G) admits least supports, i.e., if GC ≤ H and GD ≤ H then GC∩D ≤ H, for any
H ≤ G and any finite C,D ⊆ D.

Proof. (2)=⇒(1) is easy: take C = E∪{c}, D = E∪{d} and H = GE∪{c}+GE∪{d}. Clearly
GC ≤ H and GD ≤ H, so by (2), GE ≤ H, hence c ·GE ⊆ c ·H for any c ∈ D.

For (1)=⇒(2), we shall assume (1) and prove (2) by induction on the size of the (finite)
set C ∪D.

If C ⊆ D or D ⊆ C, then C ∩D = C or C ∩D = D and the conclusion follows trivially.
Otherwise, consider any c ∈ C \D and d ∈ D \ C; obviously c 6= d. Define

E = (C ∪D) \ {c, d}.

We have C ⊆ E ∪ {c} and D ⊆ E ∪ {d}, so

GE∪{c} ≤ GC ≤ H GE∪{d} ≤ GD ≤ H.

We shall now prove that GE ≤ H. To this end, consider any π ∈ GE . By (1), there
exists a permutation

τ = σ1θ1σ2θ2 · · · σnθn
such that all σi ∈ GE∪{c}, θi ∈ GE∪{d}, and τ(c) = π(c). Since GE∪{c} ≤ H and GD∪{d} ≤
H, all σi, θi ∈ H, hence also τ ∈ H.

On the other hand, clearly GE∪{c} ≤ GE and GE∪{d} ≤ GE , so all σi, θi ∈ GE , therefore

τ ∈ GE . As a result, τπ−1 ∈ GE . Since τπ−1(c) = c, we obtain τπ−1 ∈ GE∪{c}, therefore

τπ−1 ∈ H. Together with τ ∈ H proved above, this gives π ∈ H. Thus we have proved
GE ≤ H.

It is now easy to show that GC∩D ≤ H. Indeed, |C ∪ E| = |C ∪ D| − 1, so by the
inductive assumption for C and E, we have GC\{c} ≤ H (note that C \ {c} = C ∩ E).
Further, |(C \ {c}) ∪D| = |C ∪D| − 1, so GC∩D ≤ H (note that (C \ {c}) ∩D = C ∩D).

As an application:

Corollary 9.4. The equality symmetry admits least supports.

Proof. Consider any finite E ⊆ D and c, d 6∈ E such that c 6= d. Take any e ∈ c ·GE = D\E.
We need to show some π ∈ GC∪{c} +GC∪{d} such that π(c) = e.

There are two cases to consider. If e 6= d, put π = (c e) ∈ GC∪{d}. If e = d, take some

fresh d′ 6∈ E ∪ {c, d} and put π = σθ, where

σ = (c d′) ∈ GC∪{d} and θ = (d d′) ∈ GC∪{c}.

Then use Theorem 9.3.

30 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Corollary 9.4 was first proved by Gabbay and Pitts [16, Prop. 3.4].

Corollary 9.5. The total order symmetry admits least supports.

Proof. Consider any finite E ⊆ D and c, d 6∈ E such that c 6= d. Let l be the greatest element
of E smaller than c, and let h be the smallest element of E greater than c, assuming they
both exist. (The cases where c is smaller/greater than all elements of E are similar). Then
c · GE is the open interval of rational numbers (l, h). Take any e ∈ (l, h); without loss
of generality assume that e > c. We need to show some π ∈ GC∪{c} + GC∪{d} such that
π(c) = e.

The only interesting case is d ∈ (c, e]. In this case, take some d′ ∈ (c, d) and put π = σθ,
where

• σ is some monotone permutation that acts as identity on (−∞, l]∪[d,+∞) (so σ ∈ GE∪{d})
and such that σ(c) = d′,

• θ is some monotone permutation that acts as identity on (∞, c]∪ [h,+∞) (so θ ∈ GE∪{c})
and such that θ(d′) = e.

Then use Theorem 9.3.

9.2. Fungibility. In general, even if G ≤ Sym(D) admits least supports, not every finite
subset of D is the least support of some open subgroup of G (see Example 9.9 below). We
now characterize those subsets that are.

For any C ⊆ D and G ≤ Sym(D), the restriction of G to C is defined by

G|C = {π|C | π ∈ G, C · π = C} ≤ Sym(C).

Clearly if H ≤ G then H|C ≤ G|C . On the other hand, for S ≤ Sym(C), the G-extension
of S is

extG(S) = {π ∈ G | π|C ∈ S} ≤ G.

Definition 9.6. A finite set C ⊆ D is fungible (wrt. G) if for every c ∈ C there exists a
π ∈ G such that:

• π(c) 6= c, and
• π(c′) = c′ for all c′ ∈ C \ {c}.

We say that a data symmetry (D, G) is fungible if every finite C ⊆ D is fungible.

Example 9.7. The equality symmetry and the total order symmetry are both fungible.
The integer symmetry is not fungible, as the set {1, 2} is not fungible in it: if π(1) = 1 then
necessarily π(2) = 2, for π ∈ G.

Lemma 9.8.

(1) For any open H ≤ G, if the least support of H exists then it is fungible.
(2) If (D, G) admits least supports then every finite fungible C ⊆ D is the least support of

extG(S), for any S ≤ Sym(C).
(3) If (D, G) is fungible then every finite C ⊆ D is the least support of extG(S), for any

S ≤ Sym(C).

Proof. For (1), it is not difficult to check that if C is not fungible then GC\{c} = GC for
some c ∈ C, therefore whenever C supports H so does C \ {c}.

For (2), first show that C supports extG(S); indeed, GC = {π ∈ G | π|C = e|C} ⊆
extG(S). In this part fungibility is not used. Since (D, G) admits least supports, if C is not

AUTOMATA THEORY IN NOMINAL SETS 31

the least support then there must be some support properly contained in it. However, if C
is fungible then no C \{c} supports extG(S); indeed, the permutation π from Definition 9.6
is a witness for GC\{c} 6≤ extG(S). Since supports of a given group are always closed under

supersets, no C ′ (C supports extG(S).
Note that in (3) the existence of least supports is not assumed, so it does not follow

immediately from (2). For a proof of (3), first show that C supports extG(S) as in (2)
above. Then assume another support D of extG(S). We shall show that necessarily C ⊆ D.
To this end, assume to the contrary that some c ∈ C \ D exists. By the assumption on
(D, G) the set C ∪D is fungible, so the permutation π from Definition 9.6 is a witness for
GC∪D\{c} 6≤ extG(S). But GC∪D\{c} ≤ GD, so GD 6≤ extG(S), contradicting the assumption
on D.

In general, there is no implication between fungibility and the existence of least supports,
as the following two examples show.

Example 9.9. Let D be a countably infinite set with a distinguished element d, and let G
be the group of all permutations π of D such that π(d) = d. The symmetry (D, G) is not
fungible, as the set {d, e} is not fungible for any e 6= d. The fact that (D, G) admits least
supports can be proved along the lines of Corollary 9.4.

Note that the set {d, e} is not the least support of any open subgroup of G. Indeed,
G{d,e} = G{e}, so whenever {d, e} supports a subgroup, so does {e}.

Example 9.10. Let D = {0, 1} × N, and let G be the group of all bijections π on D that
either preserve the first components of all elements, or negate the first components of all
elements. Such a permutation may be presented by a triple (a, π, σ) with a ∈ {0, 1} and
π, σ ∈ Sym(N), acting on D as follows:

(0, n) 7→ (a, π(n)) (1, n) 7→ (1− a, σ(n))

It is easy to check that D is fungible. Now consider the set X = {0, 1} with an action of G
defined by:

0 · (a, π, σ) = a 1 · (a, π, σ) = 1− a

Note that this action disregards the π and σ components of a permutation in G. Now,
0 ∈ X is supported by any singleton {(0, n)} ⊆ D, but not by the empty set. As a result,
(D, G) does not admit least supports.

9.3. Support representation. From now on, we assume a data symmetry (D, G) that
admits least supports.

Definition 9.11. A support representation is a pair (C,S), where C ⊆ D is finite and
fungible, and S ≤ G|C . Its subgroup semantics is

[[C,S]]e = extG(S).

By Lemma 9.8(2), [[C,S]]e is an open subgroup of G and C is the least support of it.

Proposition 9.12. Every open subgroup H ≤ G is equal to some [[C,S]]e.

32 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Proof. Put S = H|C where C is the least support of H; obviously H|C ≤ G|C since H ≤ G,
and C is fungible by Lemma 9.8(1). Then calculate

extG(H|C) = {π ∈ G | π|C ∈ H|C} = {π ∈ G | ∃σ ∈ H. π|C = σ|C , C · σ = C}

(∗)
= {π ∈ H | C · π = C}

(∗∗)
= H

Step (∗) above is valid since C supports H, as π|C = σ|C iff π ∈ BC(σ) ⊆ H for σ ∈ H
(see (8.2)). For step (∗∗), check that for any π ∈ G,

{σ−1 | σ ∈ BC(π)} = BC·π(π
−1).

This implies that if C supports H then so does C · π, for any π ∈ H. Since C is the least
support of H, there must be C ⊆ C · π and hence by finiteness, C · π = C.

In the following we shall use a simple characterization of the subgroup relation in terms
of representations:

Lemma 9.13. [[C,S]]e ≤ [[D,T]]e if and only if D ⊆ C and S|D ≤ T .

Proof. First we prove that [[C,S]]e ≤ [[D,T]]e implies D ⊆ C. Indeed, assuming the former,
C supports [[D,T]]e (as it supports [[C,S]]e). However, the least support of [[D,T]]e is D by
Lemma 9.8(2), therefore D ⊆ C.

Then, assuming D ⊆ C, unfold the definitions and check

[[C,S]]e ≤ [[D,T]]e

m
∀π ∈ G. π|C ∈ S =⇒ π|D ∈ T

m
∀π ∈ G. π|C ∈ S =⇒ (π|C)|D ∈ T

m
∀τ ∈ S. τ |D ∈ T ;

the last step uses the assumption that S ≤ G|C .

We now compose representations 8.1 and 9.11 to represent single-orbit nominal G-sets
in terms of least supports.

Definition 9.14. The G-set semantics [[C,S]]ec of a support representation (see Defini-
tion 9.11) is the set of those functions u : C → D that extend to a permutation from G,
quotiented by the equivalence relation:

u ≡S v ⇔ ∃τ ∈ S. τu = v. (9.1)

An action of G on [[C,S]]ec is defined by composition:

[u]S · π = [uπ]S .

Here and in the following, by [u]S we denote the equivalence class of u under ≡S .

Proposition 9.15. (1) [[C,S]]ec is a single-orbit nominal G-set. (2) Every single-orbit
nominal G-set X is isomorphic to some [[C,S]]ec.

Proof. Both parts easily follow from Propositions 8.2 and 9.12 once we prove that

[[C,S]]ec ∼= [[[[C,S]]e]]c. (9.2)

AUTOMATA THEORY IN NOMINAL SETS 33

(recall from Definition 8.1 that [[H]]c is the set of right cosets of a subgroup H in G). For
this we need an equivariant bijection between [[C,S]]ec and the set of cosets of H = [[C,S]]e

in G.
To this end, map a coset Hσ to [σ|C]S ; this is well-defined since C supports H. Con-

versely, for any u : C → D, map [u]S to Hσ where σ ∈ G is such that σ|C = u. This is again
well-defined under the choice of σ since C supports H. To check that it is also well-defined
under the choice of u from [u]S , assume τu = v for some τ ∈ S. Since H = extG(S), there is
some π ∈ H such that π|C = τ . Then σ|C = u and θ|C = v implies (πσ)|C = θ|C , therefore
(since C supports H) Hσ = Hπσ = Hθ.

Finally, it is easy to check that the two constructions are equivariant and mutually
inverse.

It is also possible to represent equivariant functions between G-sets represented via
least supports.

Proposition 9.16. Let X = [[C,S]]ec and Y = [[D,T]]ec be single-orbit nominal sets. Equi-
variant functions from X to Y are in bijective correspondence with those injective functions
u : D → C that extend to a permutation from G, such that uS ⊆ Tu, quotiented by ≡T

(see Definition 9.14).

Proof. By Proposition 8.4 and by (9.2), equivariant functions from X to Y bijectively cor-
respond to those elements [u]T ∈ [[D,T]]ec (i.e., injective functions u : D → D that extend
to permutations from G, quotiented by ≡T) for which the condition

[[C,S]]e ≤ G[u]T (9.3)

holds. Considering [u]T as a right coset of [[C,K]]e, it is easy to show that G[u]T =

π−1[[D,T]]eπ, for any π ∈ G that extends u. Further, it is easy to check that π−1[[D,T]]eπ =
[[D · u, u−1Tu]]e (here note that D · u is fungible whenever D is). As a result, (9.3) is
equivalent to

[[C,S]]e ≤ [[D · u, u−1Tu]]e

and, by Lemma 9.13, to

D · u ⊆ C and S|D·u ≤ u−1Tu.

Equivalently, u is an injection from D to C such that uS ⊆ Tu, as in the conclusion.

As before, Propositions 9.15 and 9.16 can be phrased in the language of category theory,
by analogy to Theorem 8.10:

Theorem 9.17. For any data symmetry (D, G) which admits least supports, the category
G-Nom

1 is equivalent to a category with:

• as objects, pairs (C,S) where C ⊆ D is finite and fungible and S ≤ G|C ,
• as morphisms from (C,S) to (D,T), those injective functions u : D → C that extend to
permutations from G, such that uS ⊆ Tu, quotiented by ≡T .

This representation is much more concrete than those of Theorems 8.6 or 8.10. Indeed, pairs
(C,S) are finite entities, and equivariant functions are also represented by finite functions.
As an immediate application, we obtain:

Corollary 9.18. For any data symmetry (D, G) with D countable, which admits least sup-
ports, there are only countably many non-isomorphic single-orbit nominal G-sets.

34 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Proof. Since D is countable, it has only countably many finite subsets C. Moreover, for any
C, there are only finitely many choices of S ≤ Sym(C).

To obtain an even more appealing representation, we shall now restrict attention to
symmetries arising from certain classes of finite relational structures.

10. Fräıssé symmetries

Two of the key symmetries studied in this paper: the equality and the total order symmetry,
arise from a general construction of a Fräıssé limit known from standard model theory, to
be defined in this section.

10.1. Fräıssé limits. A signature is a set of relation names together with (finite) arities. We
shall now consider relational structures over some fixed finite signature. For two relational
structures A and B, an embedding f : A → B in an injective function from the carrier of A
to the carrier of B that preserves and reflects all relations in the signature.

Definition 10.1. A class K of finite structures over some fixed signature is called a Fräıssé
class if it:

• is closed under isomorphisms and substructures,
• has amalgamation: if fB : A → B and fC : A → C are embeddings and A,B,C ∈ K then
there is a structure D ∈ K together with two embeddings gB : B → D and gC : C → D

that agree on the images of fB and fC, i.e., gBfB = gCfC.

Example 10.2. Examples of Fräıssé classes include, over the empty signature:

(a) all finite structures, i.e., sets,
(b) sets of size at most k, for any constant k > 0,

over the signature with a single unary predicate symbol P :

(c) all finite sets such that at most one element satisfies P ,

and over the signature with a single binary relation symbol:

(d) all finite structures, i.e., directed graphs,
(e) undirected graphs, undirected trees,
(f) equivalence relations,
(g) equivalence relations with at most two equivalence classes,
(h) preorders, partial orders, total orders.

Classes that are not Fräıssé due to lack of amalgamation include, over the signature with a
single binary relation symbol:

(i) total orders of size at most k, for any constant k > 1,
(j) directed acyclic graphs,
(k) undirected forests (i.e., sets of disjoint trees),
(l) planar graphs.

The following theorem is standard in model theory (see e.g. [18]):

Theorem 10.3. For any Fräıssé class K there exists a unique, up to isomorphism, countable
universal structure UK, called the Fräıssé limit of K, such that:

• the class of structures isomorphic to finite substructures of UK is exactly K, and

AUTOMATA THEORY IN NOMINAL SETS 35

• UK is homogenous, i.e., any isomorphism between two finite substructures of UK extends
(not necessarily uniquely) to an automorphism of UK.

For the rest of this section, fix a Fräıssé class K. From K we obtain a data symmetry
(DK, GK), where DK is the carrier of UK and GK = Aut(UK) ≤ Sym(DK) is its group of
automorphisms. We shall call a data symmetry of this form a Fräıssé symmetry.

Example 10.4. The equality and total order symmetries (see Example 2.3), are both
Fräıssé symmetries; the former arises from the class of all finite sets, the latter from the
class of finite total orders.

Other Fräıssé symmetries of interest include:

• The graph symmetry, arising from the class of finite undirected graphs. The universal
undirected graph is the so-called random graph [25], where vertices are natural numbers,
and an edge {x, y} is present if and only if the x-th bit in the binary representation of y
is 1 (for x < y). In the graph symmetry, D is therefore the set of natural numbers, and
G is the automorphism group of the random graph.

• The partial order symmetry, arising from the class of finite partial orders. The universal
structure UK is not easily described in this case (see e.g. [19]), except that it is partially
ordered and homogenous.

Definition 10.5. A Fräıssé symmetry (DK, GK) is well-behaved if it admits least supports
and is fungible.

All symmetries in Example 10.4 are well behaved. However, not every Fräıssé symmetry
admits least supports or is fungible. Indeed, symmetries in Examples 9.9 and 9.10 are both
Fräıssé. The one from Example 9.9 arises from the class in Example 10.2(c), and the one
from Example 9.10 from Example 10.2(g).

10.2. Structure representation. We shall now refine the nominal set representation pro-
vided in Section 9 for well-behaved Fräıssé symmetries. Looking at Definitions 9.11 and 9.14,
from the properties of Fräıssé limits it is easy to form the following definition:

Definition 10.6. A structure representation is a finite structure A ∈ K (the shape) together
with a group of automorphisms S ≤ Aut(A) (the local symmetry). Its semantics [[A, S]] is
the set of embeddings u : A → UK, quotiented by ≡S (see 9.1). A GK-action on [[A, S]] is
defined by composition of embeddings with automorphisms of UK.

Proposition 10.7. (1) [[A, S]] is a single-orbit nominal GK-set. (2) Every single-orbit
nominal GK-set X is isomorphic to some [[A, S]].

Proof. Easy from Proposition 9.15. Indeed, compare Definitions 10.6 and 9.11 and notice
that AutA = (GK)|C , where C is the carrier of A, as UK is homogenous. Moreover, em-
beddings of A into UK are exactly those injective functions from C to DK that extend to
automorphisms of UK. As a result, [[A, S]] = [[C,S]]ec.

Equivariant functions get a similar characterization:

Proposition 10.8. Let X = [[A, S]] and Y = [[B, T]] be single-orbit nominal sets. Equivari-
ant functions from X to Y are in bijective correspondence with those embeddings u : B → A

for which uS ⊆ Tu, quotiented by ≡T .

Proof. Easy from Proposition 9.16.

36 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

As before, this induces an equivalence of categories:

Theorem 10.9. In a well-behaved Fräıssé symmetry, the category G-Nom
1 is equivalent

to a category with:

• as objects, pairs (A, S) where A ∈ K and S ≤ Aut(A),
• as morphisms from (A, S) to (B, T), those embeddings u : B → A for which uS ⊆ Tu,
quotiented by ≡T .

For K the class of all finite sets, this gives rise to the category of “named sets with sym-
metries” studied in the theory of history-dependent automata. In this special case, Theo-
rem 10.9 was proved in [17, 27].

10.3. Representation of Cartesian products. Nominal automata as studied in Sec-
tion 5 are algebraic structures that involve equivariant functions, or relations, between
nominal sets that are Cartesian products of other sets. To present such models by finite
means, it is therefore necessary to calculate Cartesian products of nominal sets in terms of
their representations. We shall now do this for the case of well-behaved Fräıssé symmetries.2

First, consider a Cartesian product of the form

[[A, 1]] × [[B, 1]]

for some finite structures A,B ∈ K, where both representation symmetries are trivial groups.
Recall that [[A, 1]] is the set of embeddings f : A → UK, withGK-action defined by f ·π = π◦f ,
and similarly for [[B, 1]].

For any pair of embeddings f : A → UK, g : B → UK, consider a relation ρ(f,g) between
the carriers A,B of A,B defined by:

ρ(f,g)(a, b) ⇔ f(a) = g(b). (10.1)

Since both f and g are embeddings, ρ(f,g) is a partial isomorphism between A and B. This
isomorphism is invariant under the action of GK on pairs of embeddings:

ρ(f,g)·π = ρ(f,g) (10.2)

for all π ∈ GK. Indeed, calculate:

ρ(f,g)·π(a, b) ⇔ (f · π)a = (g · π)a ⇔ π(f(a)) = π(g(b)) ⇔ f(a) = g(b) ⇔ ρ(f,g)(a, b).

For a partial bijection ρ between A and B, the amalgamated sum A∪ρ B is the disjoint
union of A and B quotiented by ρ, together with canonical injections

A
i // A ∪ρ B B.

j
oo (10.3)

To save space, A ∪ρ(f,g) B will be denoted by A ∪(f,g) B.
Define a function γ(f,g) : A ∪(f,g) B → D by cases:

γ(f,g)(i(a)) = f(a) γ(f,g)(j(b)) = g(b). (10.4)

This is well defined by definition of A ∪(f,g) B. Moreover, obviously

γ(f,g)·π = π ◦ γ(f,g). (10.5)

2 In the case of the equality symmetry, a somewhat less concrete representation, in terms of minimal
spans of representation morphisms, was provided in [10].

AUTOMATA THEORY IN NOMINAL SETS 37

Let C(f,g) be the unique relational structure on the carrier A ∪(f,g) B that makes γ(f,g) an
embedding into UK. By universality of UK, we have C(f,g) ∈ K. From (10.5) it is clear that

C(f,g)·π = C(f,g) (10.6)

for any π ∈ GK. Also, it is easy to see that i : A → C(f,g) and j : B → C(f,g) are embeddings.
In sum, embeddings f : A → UK and g : B → UK determine:

• a partial isomorphism ρ(f,g) between A and B,
• a relational structure C(f,g) on A ∪(f,g) B,
• an embedding γ(f,g) : C(f,g) → UK;

moreover, by (10.2) and (10.6), ρ(f,g) and C(f,g) are invariant under the GK-action on (f, g).
As a result, we obtain an equivariant function to a disjoint union:

[[A, 1]] × [[B, 1]] −→
∐

ρ,C

[[C, 1]] (10.7)

where ρ ranges over partial isomorphisms between A and B, and C ∈ K over those relational
structures on A ∪ρ B that make the inclusions i, j in (10.3) embeddings. In other words,
(ρ,C) ranges over the indexing set:

IA,B = {(ρ(f,g),C(f,g)) : f : A → UK and g : B → UK}. (10.8)

It is not difficult to define an inverse to (10.7): given ρ and C, simply precompose embeddings
γ : C → UK with i : A → C and j : B → C. Routine calculation shows that both
constructions are mutually inverse, therefore (10.7) is an isomorphism of nominal sets.

If the relational signature of K is finite and the class K has decidable membership,
then the collection of all possible ρ and C is finite and can be effectively enumerated. As
a result, we have obtained a way to compute representations of Cartesian products of the
form [[A, 1]] × [[B, 1]].

We now adapt the above reasoning to the general case

[[A, S]] × [[B, T]]

for arbitrary S ≤ Aut(A) and T ≤ Aut(B).
First, consider an action of the product group Sop×T on the set of partial isomorphisms

between A and B defined by:

(ρ · (σ, τ))(a, b) ⇔ ρ(σ(a), τ−1(b));

equivalently, with ρ considered as a partial isomorphism from A to B, this can be written
as

ρ · (σ, τ) = τ ◦ ρ ◦ σ.

For any σ ∈ S and τ ∈ T , there is a bijection

mσ,τ : A ∪ρ B → A ∪ρ·(σ,τ) B

given by:
mσ,τ (i(a)) = i(σ−1(a)) mσ,τ (j(b)) = j(τ(b)). (10.9)

This is well defined; indeed, calculate:

i(a) = j(b) ⇔ ρ(a, b) ⇔ (ρ · (σ, τ))(σ−1(a), τ(b)) ⇔ i(σ−1(a)) = j(τ(b)).

For any relational structure C on A∪ρB, let C · (σ, τ) be the unique structure on A∪ρ·(σ,τ)B
that makes mσ,τ into an isomorphism.

38 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

It is easy to check that we thus obtain a group action of Sop×T on the indexing set (10.8)
of the disjoint union in (10.7). Pick a family of representatives (ρ,C) for each orbit of this
action. For any representative, where C ∈ K is a structure on A ∪ρ B, let S ⋒ T ≤ Aut(C)
be the group of all those automorphisms of C that, roughly speaking, restrict to S on A and
to T on B. Formally,

S ⋒ T = i−1Si ∩ j−1Tj. (10.10)

The following theorem is a generalization of (10.7).

Theorem 10.10. There is an equivariant isomorphism

[[A, S]] × [[B, T]] ∼=
∐

ρ,C

[[C, S ⋒ T]]

where ρ,C in the disjoint union range over the chosen representatives as above.

Proof. For a function from left to right, take any [f]S ∈ [[A, S]] and [g]T ∈ [[A, T]]. The
embeddings f : A → UK and g : B → UK determine a partial isomorphism ρ(f,g), a
relational structure C(f,g) and an embedding γ(f,g) : C(f,g) → UK as before.

Let (ρ,C) be the chosen representative of the (Sop × T)-orbit of (ρ(f,g),C(f,g)). In
particular, there exists some σ ∈ S and τ ∈ T such that

ρ(f,g) = ρ · (σ, τ) C(f,g) = C · (σ, τ). (10.11)

Define an embedding γ : C → UK by:

γ = γ(f,g) ◦m(σ,τ). (10.12)

There may be many possible choices of σ, τ that satisfy (10.11), and they may yield
different embeddings γ. However, all these embeddings are ≡S⋒T -equivalent. To see this,
assume

ρ · (σ, τ) = ρ · (σ′, τ ′) C · (σ, τ) = C · (σ′, τ ′);

then it is easy to check
m(σ,τ) = m(σ′,τ ′) ◦m(σ′−1σ,ττ ′−1),

andm(σ′−1σ,ττ ′−1) is an automorphism of C that restricts to σ′−1σ ∈ S on A and to ττ ′−1 ∈ T
on B. As a result,

m(σ,τ) ≡S⋒T m(σ′,τ ′).

Moreover, for γ in (10.12), [γ]S⋒T does not depend on the choice of representatives f ∈ [f]S
and g ∈ [g]T . To see this, notice that for any σ ∈ S and τ ∈ T :

γ(f◦σ,g◦τ) = γ(f,g) ◦m(σ−1,τ)

by (10.4) and (10.9).
As a result, we obtain a function that maps the pair ([f]S , [g]T) to ρ, C and [γ]S⋒T .

Equivariance of this function is checked routinely. As before, its inverse is obtained by
precomposing embeddings h : C → UK with injections i : A → C and j : B → B. Both
constructions are well-defined and mutually inverse up to ≡S , ≡T and ≡S⋒T .

AUTOMATA THEORY IN NOMINAL SETS 39

Example 10.11. In the equality symmetry, where K is the class of finite sets, there are no
nontrivial relational structures, i.e., every structure is simply its carrier. Let

A = {x, y} B = {z}.

By Definition 10.6, there is

[[A, 1]] ∼= D(2) [[B, 1]] ∼= D

(see Example 2.4). There are three partial isomorphisms between A and B:

ρ1 = {(x, z)} ρ2 = {(y, z)} ρ3 = ∅,

with the corresponding amalgamated sums A∪ρi B having 2, 2 and 3 elements, respectively.
By (10.7), there is an isomorphism

D(2) × D ∼= D(2) + D(2) + D(3)

(here and in the following, + denotes disjoint union). In elementary terms:

{(c, d) | c 6= d} × D = {(c, d, e) | c 6= d = e}+ {(c, d, e) | e = c 6= d}+ {(c, d, e) | c 6= d 6= e}.

In general, the product D(n) × D has n+ 1 orbits.
Now consider a local symmetry S = Aut(A) = {1, (x y)}. By Definition 10.6, there is

[[A, S]] ∼=
(

D
2

)

(see Example 2.4). Partial isomorphisms ρ1 and ρ2 form an orbit under the action of Sop×1,
therefore by Theorem 10.10, the product of [[A,S]] and [[B, 1]] has only two orbits:

(

D
2

)

× D ∼= [[{x, y}, 1]] + [[{x, y, z}, S ⋒ 1]] ∼= D(2) +
{

({x, y}, z) | z 6∈ {x, y}
}

;

here S ⋒ 1 = {1, (x y)}.

Example 10.12. In the total order symmetry, where K is the class of finite total orders,
there are no nontrivial local symmetries S in representations, since the only automorphism
of a finite total order is the identity. Let

A = {x < y} B = {z}.

By Definition 10.6, there is

[[A, 1]] ∼= D(<2) [[B, 1]] ∼= D

(see Example 2.4). As in Example 10.11, there are three partial isomorphisms between A

and B:
ρ1 = {(x, z)} ρ2 = {(y, z)} ρ3 = ∅.

However, in this case there are three different total orders on A∪ρ3B = {x, y, z} that embed
A and B:

C = {z < x < y}, C
′ = {x < z < y}, C

′′ = {x < y < z},

each giving rise to a different orbit of the Cartesian product. As a result, there are five
orbits:

D(<2) × D = D(<2) + D(<2) + D(<3) + D(<3) + D(<3).

In general, the product D(<n) × D has 2n+ 1 orbits.

40 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

Example 10.13. Consider the graph symmetry, where K be the class of all finite undirected
graphs (see Example 10.4). By analogy to Example 10.11, let

x y z

A B

be discrete graphs. There are three partial isomorphisms between A and B:

ρ1 = {(x, z)} ρ2 = {(y, z)} ρ3 = ∅,

with the corresponding amalgamated sums A∪ρi B having 2, 2 and 3 elements, respectively.
The sums corresponding to ρ1 and ρ2 have unique (discrete, isomorphic to A) graphs on
them that embed A. The sum A ∪ρ3 B = {x, y, z} allows four graphs:

z y

x

z y

x

z y

x

z y

x

C C
′

C
′′

C
′′′

As a result, the indexing set in (10.8) has six elements altogether:

IA,B = {(ρ1,A), (ρ2,A), (ρ3,C), (ρ3,C
′), (ρ3,C

′′), (ρ3,C
′′′)} (10.13)

hence the product [[A, 1]] × [[B, 1]] has six orbits:

[[A, 1]] × [[B, 1]] = [[A, 1]] + [[A, 1]] + [[C, 1]] + [[C′, 1]] + [[C′′, 1]] + [[C′′′, 1]].

Now consider a local symmetry S = Aut(A) = {1, (x y)}. Under the action of the group
Sop × 1 on the three-element set of partial isomorphisms between A and B, ρ1 and ρ2 fall
in one orbit, and ρ3 forms another by itself. As described above, this further determines
an action of Sop × 1 on the indexing set (10.13). Here, (ρ1,A) and (ρ2,A) fall in one orbit,
(ρ3,C

′) and (ρ3,C
′′) in another, and the remaining two elements form two singleton orbits.

As the indexing set of representatives from Theorem 10.10 we may take:

{(ρ1,A), (ρ3,C), (ρ3,C
′), (ρ3,C

′′′)}

Easy calculation shows that the amalgamated groups S ⋒ 1 from (10.10) are nontrivial on
C and C

′′′: in both cases, S ⋒ 1 = {1, (x y)}. As a result, by Theorem 10.10, the product of
[[A, S]] and [[B, 1]] has the following representation:

[[A, S]]× [[B, 1]] = [[A, 1]] + [[C, S ⋒ 1]] + [[C′, 1]] + [[C′′′, S ⋒ 1]].

11. Fräıssé automata

A deterministic orbit-finite nominal G-automaton, understood as in Section 5, is a simple
combination of a few orbit-finite nominal G-sets and equivariant functions between them,
involving a simple Cartesian product. It is therefore natural that an effective represen-
tation of nominal sets, equivariant functions and Cartesian products extends to a similar
representation of automata for Fräıssé symmetries.

The resulting notion is rather complex, and for mathematical reasoning about nominal
automata, the more abstract definitions introduced in Sections 3 and 5 seem more suit-
able. Even when finite representations are important, for example for the implementation

AUTOMATA THEORY IN NOMINAL SETS 41

of algorithms that manipulate automata, it seems more productive to formulate those al-
gorithms in abstract terms, and then have a general-purpose programming language that
can translate them to effective procedures, constructing finite representations of complex
data structures (e.g., automata) implicitly. This approach was used in [7], where nontrivial
algorithms on nominal automata were formalized and implemented without spelling out an
explicit finite representation of those automata.

Nevertheless, we wish to sketch a finite representation of nominal G-automata for two
reasons. First, the representation resembles and generalizes Kaminski-Francez finite mem-
ory automata, which shows that the equivalence results of Section 6 are not accidental; on
the contrary, that the basic ingredients of finite memory automata, such as registers, ap-
pear naturally from our representation results applied to the abstract notion of a nominal
automaton. Secondly, the concrete definition of Fräıssé automaton below, although com-
plex, does not rely on notions such as support or orbit, and so they may conceivably appeal
to those who wish to study automata on infinite alphabets without learning nominal sets.
The concrete notion is also more in the spirit of [14] and [23], making the relation to some
previous work more apparent.

Fix for the rest of this section a class K of structures that induces a well-behaved Fräıssé
symmetry (DK, GK). Our goal is to apply Theorems 10.9 and 10.10 to develop a syntax
(understood as a finite representation) for GK-DFA. At the risk of repeating some material
from Section 10, we unravel below the definition of a deterministic orbit finite nominal
GK-automaton.

For the sake of presentation, we only study deterministic automata, and restrict to
the alphabet DK. The general case, when the alphabet is an arbitrary orbit finite nominal
GK-set such as (DK)

2 or DK ⊎ DK, may be dealt with in essentially the same way.
The basic intuition is that the class K describes all possible “memory shapes” of an

automaton.
A Fräıssé K-automaton has a finite set Q of control states. Each state q ∈ Q comes

with a structure representation (Aq, Sq). The set of configurations in state q is the nominal
set [[Aq, Sq]]. We shall call elements of Aq registers of state q, and the group Sq is the register
symmetry. The set of all configurations of an automaton is a disjoint union:

X =
∐

q∈Q

[[Aq, Sq]]. (11.1)

A configuration consists of a state q ∈ Q, together with a valuation Aq → UK that maps
registers to data values, and preserves and reflects the structure of Aq, with the proviso that
valuations are considered equal if they differ only by a register symmetry.

The automaton has a set of accepting states, and an initial state. The structure of
registers Aq in the initial state must be empty.

The last ingredient of the Fräıssé automaton is a symbolic transition function s =
{sq}q∈Q that is used to represent an equivariant transition function

δs : X × DK → X. (11.2)

The symbolic transition function is a representation of δs along the lines of Theorem 10.10
and Proposition 10.8. We define symbolic transition functions in terms of annotations,
which are simply an elementary view on the orbits of the product X × DK as explained in
Theorem 10.10. An annotation of a representation (A, S) is a structure of one of two kinds:
either a conservative extension A

∗ ∈ K of A by one element, denoted ∗; or the structure A

42 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

itself with additionally one distinguished element, that we denote by ∗ as well. In either
case, we identify two annotations if they are related by an automorphism σ ∈ S such that
σ(∗) = ∗. An annotation comes thus with its local symmetry, that is isomorphic either to
the group S itself, or to its subgroup determined by the requirement σ(∗) = ∗. There are
finitely many possible annotations for every A, as the relational signature is assumed to be
finite.

Intuitively speaking, annotations describe the ways in which the newly read input data
value (∗) may compare to the data values in the registers. In other words, annotations
formalize the tests an automaton on the input letters.

Note that an annotation of a structure A uniquely determines:

• a partial isomorphism ρ between A and a one-element structure ∗ (ρ is empty if the
annotation extends A with ∗, otherwise it identifies ∗ with the distinguished element of
A),

• a relational structure on the amalgamated sum A ∪ρ {∗}.

In other words, by Theorem 10.10, annotations of Aq correspond to orbits of the Cartesian
product [[Aq, Sq]]×DK. (See also Examples 10.11-10.13.)

The domain of sq contains all possible annotations of (Aq, Sq). For any annotation A
∗,

the value sq(A
∗) is a state p ∈ Q together with an embedding

sq(A
∗) : Ap → A

∗ (11.3)

that commutes with the local symmetries as prescribed by Proposition 10.8.
To sum up:

Definition 11.1. A Fräıssé K-automaton consists of:

• a finite set of control states Q;
• for each state q ∈ Q, a structure representation (Aq, Sq) (see Definition 10.6);
• an initial state qI ∈ Q with AqI the empty structure;
• a set of accepting states F ⊆ Q;
• a symbolic transition function s = {sq}q∈Q as above.

Elements of Aq are called registers of q.

These ingredients naturally induce a GK-automaton, with a transition function (11.2)
defined as follows. Suppose that the state in the current configuration is q ∈ Q and the
valuation is represented, up to register symmetry, by η : Aq → DK. The automaton reads an
input letter d ∈ DK. Let η

∗ extend η by mapping ∗ to d, thus η∗ : A∗ → DK is an embedding,
for some annotation A

∗ ∈ K. Apply sq to A
∗, yielding p ∈ Q and a function (11.3). The

new state is p, and the new valuation is obtained by composing sq(A
∗) with the extended

valuation η∗, that is η∗ ◦ sq(A
∗) : Ap → DK. The new valuation is an embedding, as a

composition of embeddings, and its equivalence class depends only on the equivalence class
of η, thanks to the assumption that sq commutes with local symmetries.

By Theorem 10.10 and Proposition 10.8 one obtains:

Theorem 11.2. For a well-behaved Fräıssé symmetry induced by a class K, every reachable
orbit finite deterministic nominal GK-automaton over the input alphabet DK is isomorphic
to a Fräıssé K-automaton.

By Theorems 11.2 and 5.2 one directly obtains:

Corollary 11.3. For a well-behaved Fräıssé symmetry induced by a class K, the following
conditions are equivalent for a GK-language L ⊆ DK

∗:

AUTOMATA THEORY IN NOMINAL SETS 43

(1) L is recognized by a GK-DFA
(2) L is recognized by a Fräıssé K-automaton
(3) the syntactic quotient DK

∗/≡L is orbit finite.

Example 11.4. For the equality symmetry, Fräıssé K-automata are very similar to finite
memory automata studied in Section 6, with two differences:

• the number of registers varies from state to state (thus no need for undefined register
values),

• symmetries are imposed on registers.

An even more similar model is that of history-dependent automata [23], where symmetries
on local names were first introduced. For the equality symmetry, our Fräıssé K-automata
are essentially a deterministic version of history-dependent automata. A connection of the
latter with finite memory automata has been tentatively made in [11].

For the total order symmetry, a K-automaton has a totally ordered set of registers in
each state, and valuations are monotonic. These automata are capable of comparing data
values with respect to data ordering. It is easy to verify that Fräıssé K-automata (and hence
also GK-DFA, by Thm 11.2) in this case are expressively equivalent to deterministic finite
memory automata of [3, 13] over totally ordered data, in the special case of a singleton
alphabet.

For the graph symmetry, a K-automaton keeps a graph of registers in each state, and
valuations are graph embeddings into the random graph. An automaton can test a newly
read letter for edge connections with nodes stored in current registers. To our best knowl-
edge, this kind of automaton has not been studied in the literature.

References

[1] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Cambridge Univ. Press, 1994.
[2] J. Adamek and V. Trnkova. Automata and Algebras in Categories. Kluwer Academic Publishers, 1990.
[3] M. Benedikt, C. Ley, and G. Puppis. What you must remember when processing data words. In AMW,

volume 619 of CEUR Workshop Proceedings, 2010.
[4] H. Björklund and T. Schwentick. On notions of regularity for data languages. TCS, 411(4-5):702–715,

2010.
[5] M. Bojańczyk. Data monoids. In STACS, volume 9 of LIPIcs, 2011.
[6] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic on words

with data. In LICS, pages 7–16, 2006.
[7] Miko laj Bojańczyk, Laurent Braud, Bartek Klin, and S lawomir Lasota. Towards nominal computation.

In Proc. POPL’12, pages 401–412, 2012.
[8] Miko laj Bojańczyk, Bartek Klin, and S lawomir Lasota. Automata with group actions. In Proc. LICS’11,

pages 355–364, 2011.
[9] Miko laj Bojańczyk, Bartek Klin, S lawomir Lasota, and Szymon Toruńczyk. Turing machines with atoms.

In Proc. LICS’13, 2013.
[10] V. Ciancia. Accessible functors and final coalgebras for named sets. PhD thesis, University of Pisa, 2008.
[11] V. Ciancia and E. Tuosto. A novel class of automata for languages on infinite alphabets. Technical

Report CS-09-003, University of Leicester, 2009.
[12] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log., 10(3), 2009.
[13] D. Figueira, P. Hofman, and S. Lasota. Relating timed and register automata. In Proc. EXPRESS’10,

volume 41 of Electronic Proceedings in Theoretical Computer Science, pages 61–75, 2010.
[14] N. Francez and M. Kaminski. Finite-memory automata. TCS, 134(2):329–363, 1994.
[15] N. Francez and M. Kaminski. An algebraic characterization of deterministic regular languages over

infinite alphabets. TCS, 306(1-3):155–175, 2003.

44 M. BOJAŃCZYK, B. KLIN, AND S. LASOTA

[16] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal Asp.

Comput., 13(3-5):341–363, 2002.
[17] F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and named

sets. Higher-Order and Symbolic Computation, 19(2-3):283–304, 2006.
[18] W. Hodges. A shorter model theory. Cambridge Univ. Press, 1997.
[19] J. Hubička and J. Nešetřil. Universal partial order represented by means of oriented trees and other

simple graphs. Eur. J. Comb., 26:765–778, 2005.
[20] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: a first introduction to topos theory. Springer,

1992.
[21] U. Montanari and M. Pistore. History-dependent automata: An introduction. In SFM, volume 3465 of

Lecture Notes in Computer Science, pages 1–28, 2005.
[22] F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over infinite alphabets. In MFCS,

volume 2136 of Lecture Notes in Computer Science, pages 560–572, 2001.
[23] M. Pistore. History Dependent Automata. PhD thesis, University of Pisa, 1999.
[24] Andrew Pitts. Nominal sets: names and symmetry in computer science, volume 57 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 2013.
[25] R. Rado. Universal graphs and universal functions. Acta Arith., 9:331–340, 1964.
[26] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, volume 4207

of Lecture Notes in Computer Science, pages 41–57, 2006.
[27] S. Staton. Name-passing process calculi: operational models and structural operational semantics. PhD

thesis, University of Cambridge, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Contribution
	1.2. Background
	1.3. Structure of the paper

	Part 1. Nominal sets and automata
	2. Group actions and data symmetries
	3. G-automata
	3.1. Deterministic G-automata
	3.2. Myhill-Nerode Theorem

	4. Nominal G-sets
	5. Nominal G-automata
	5.1. Myhill-Nerode theorem revisited
	5.2. Nondeterministic G-automata

	6. Relationship with finite memory automata
	6.1. Finite memory automata
	6.2. Equivalence for nondeterministic automata
	6.3. Equivalence for deterministic automata

	7. Other models and perspectives

	Part 2. Finite representations of nominal sets and automata
	8. G-set representation
	9. Well-behaved symmetries
	9.1. Least supports
	9.2. Fungibility
	9.3. Support representation

	10. Fraïssé symmetries
	10.1. Fraïssé limits
	10.2. Structure representation
	10.3. Representation of Cartesian products

	11. Fraïssé automata
	References

