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Abstract. We use modal logic as a framework for coalgebraic trace semantics, and show
the flexibility of the approach with concrete examples such as the language semantics of
weighted, alternating and tree automata, and the trace semantics of generative probabilis-
tic systems. We provide a sufficient condition under which a logical semantics coincides
with the trace semantics obtained via a given determinization construction. Finally, we
consider a condition that guarantees the existence of a canonical determinization proce-
dure that is correct with respect to a given logical semantics. That procedure is closely
related to Brzozowski’s minimization algorithm.

1. Introduction

The theory of coalgebras [31, 14] is a framework of choice to model and study state-based
systems at a high level of generality. Coalgebraic methods have been rather successful in
modeling branching time behaviour of various kinds of transition systems, with a general
notion of bisimulation and final semantics as the main contributions. But in a wide range of
settings, from automata theory to verification and model checking, one is interested in the
linear time behaviour of systems, such as trace semantics of transition systems or language
semantics of automata. Indeed, coalgebraic modeling of linear time behaviour has also
attracted significant attention.

However, the emerging picture is considerably more complex: several approaches have
been developed whose scopes and connections are not yet fully understood. Here we suggest
a new approach which, contrary to previously considered coalgebraic ideas, crucially and
explicitly defines trace semantics not by coinduction but by induction, based on techniques
from modal logic. This provides a transparent framework that covers new examples such
as weighted tree automata, allows us to naturally relate trace semantics to determinization
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constructions, and, in certain well-behaved cases, provides canonical determinization and
minimization procedures.

To study trace semantics coalgebraically, one usually considers systems whose behaviour
type is a composite functor of the form TB or BT , where T represents a branching aspect
of behaviour that trace semantics is supposed to “resolve”, and B represents the transition
aspect that should be recorded in system traces. Typically it is assumed that T is a monad,
and its multiplication structure is used to resolve branching. For example, in [30, 12], a
distributive law of B over T is used to lift B to the Kleisli category of T , and trace semantics
is obtained as final semantics for the lifted functor. Additional assumptions on T are needed
for this, so this approach does not work for coalgebras such as weighted automata. On the
other hand, in [16, 33] a distributive law of T over B is used to lift B to the Eilenberg-Moore
category of T , with trace semantics again obtained as final semantics for the lifted functor.
This can be seen as a coalgebraic generalization of the powerset determinization procedure
for non-deterministic automata. While it applies to many examples, that approach does not
work for systems that do not determinize, such as tree automata. A detailed comparison of
these two approaches is in [16].

In this paper, we study trace semantics in terms of modal logic. The basic idea is very
simple: we view traces as formulas in suitable modal logics, and trace semantics of a state
arises from all formulas that hold for it. A coalgebraic approach to modal logic based on
dual adjunctions is by now well developed [29, 20, 17, 22], and we apply it to speak of traces
generally. Obviously not every logic counts as a trace logic: assuming a behaviour type of
the form BT or TB, we construct logics from arbitrary (but usually expressive) logics for B
and special logics for T whose purpose is to resolve branching. We call such logics forgetful.

Our approach differs from previous studies in a few ways:

• Trace semantics is obtained not as final semantics of coalgebras, but by initial semantics
of algebras. Fundamentally, we view trace semantics as an inductive concept and not a
coinductive one akin to bisimulation, although in some well-behaved cases the inductive
and coinductive views coincide.
• We do not assume that T is a monad, unless we want to relate our logical approach to
ones that do, in particular to determinization constructions.
• Instead of using monad multiplication µ : TT ⇒ T to resolve branching, we use a natural
transformation α : TG ⇒ G, where G is a contravariant functor that provides the basic
infrastructure of logics. In case of nondeterministic systems, T is the covariant powerset
functor and G the contravariant powerset, so TT and TG act the same on objects, but
they carry significantly different intuitions.
• Thanks to the flexibility of modal logics, we are able to cover examples such as the
language semantics of weighted tree automata, that does not quite fit into previously
studied approaches, or alternating automata.

Example 1.1. Consider weighted automata over a semiring S. Every state of such an au-
tomaton, given an input letter, has a linear combination of successor states, with coefficients
in S. The semantics of a weighted automaton with state space X is a function s♭ : X → S

A∗
,

mapping every state to a weighted language. In our framework, the actual map s♭ is com-
puted as the transpose of a certain map s : A∗ → S

X , which arises by induction on words.
This computation is determined by a certain (rather simplistic) forgetful logic; the formulas
of this logic are just the words in A∗. In this example, it is crucial to distinguish between
the branching structure of automata, modeled by linear combinations of states, and the
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functor S− that allows arbitrary assignments of weights to words and states. This distinc-
tion is an instance of a general distinction between a covariant functor (or a monad) T and
a contravariant functor G, which will be a recurring theme in this paper.

Applying the term logic to our framework is admittedly a bit of an exaggeration. We
do not consider syntactic aspects usually connected with logical systems, such as deduction
relations. We merely study ways to interpret certain terms (formulas) on models (coalge-
bras) in an inductive fashion. One might call it a testing framework, as in [29], but similar
systems are often called logics in coalgebraic literature, and we reluctantly stick to this
custom.

The idea of using modal logics for coalgebraic trace semantics is not new; it is visi-
ble already in [29]. In [12] it is related to behavioural equivalence, and applied to non-
deterministic systems. A generalized notion of relation lifting is used in [6] to obtain infinite
trace semantics, and applied in [7] to get canonical linear time logics. In [19], coalgebraic
modal logic is combined with the idea of lifting behaviours to Eilenberg-Moore categories,
with trace semantics in mind. In [16], a connection to modal logics is sketched from the
perspective of coalgebraic determinization procedures. In a sense, this paper describes the
same connection from the perspective of logic. In [8], the framework of [6, 7] is rephrased
in terms of coalgebraic modal logic. The result is rather similar to the one we considered,
with forgetful modalities to resolve branching. Unlike our approach, [8] relies on T being
a monad, and under some more assumptions it studies canonical forgetful modalities that
give rise to particularly well-behaved logics. In [23, 28], monads feature even more promi-
nently, with the entire behaviour functor embedded in a so-called graded monad. In [11], it
is embedded in a more complex functor with a so-called observer.

Our main new contribution is the notion of forgetful logic and its ramifications. Basic
definitions are provided in Section 3 and some illustrative examples in Section 4. We intro-
duce a systematic way of relating trace semantics to determinization, by giving sufficient
conditions for a given determinization procedure, understood in a slightly more general way
than in [16], to be correct with respect to a given forgetful logic (Section 6). For instance,
this allows showing in a coalgebraic setting that the determinization of alternating automata
into non-deterministic automata preserves language semantics.

A correct determinization procedure may not exist in general. In Section 7 we study
a situation where a canonical correct determinization procedure exists. It turns out that
even in the simple case of non-deterministic automata that procedure is not the classical
powerset construction; instead, it relies on a double application of contravariant powerset
construction. Interestingly, this is what also happens in Brzozowski’s algorithm for au-
tomata minimization [4], so as a by-product, we get a new perspective on that algorithm
which has recently attracted much attention in the coalgebraic community [1, 2, 3].

Although we do not assume the branching functor T to be a monad, a forgetful logic for
T is equivalent to a transformation from T to a certain monad which, in the case of sets, is
the double contravariant powerset monad (a special case of the continuation monad). One
might say that the continuation monad is rich enough to handle all types of branching that
can be “forgotten” within our framework.

This paper is an extended version of [21], adding full proofs and a treatment of the
trace semantics of probabilistic systems as a non-trivial instance of the framework.

Acknowledgments We thank Marcello Bonsangue, Helle Hvid Hansen, Ichiro Hasuo,
Bart Jacobs and Jan Rutten for discussions. Joost Winter spotted a serious mistake in
a previous version of Example 6.8. We are very grateful to the anonymous reviewer who
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pointed out Lemma 5.2 and whose many insightful comments let us significantly improve
the paper.

2. Preliminaries

We assume familiarity with basic notions of category theory (see, e.g., [24]). A coalgebra
for a functor B : C → C consists of an object X and a map f : X → BX. A homomorphism
from f : X → BX to g : Y → BY is a map h : X → Y such that g◦h = Bh◦f . The category
of B-coalgebras is denoted by Coalg(B). Algebras for a functor L are defined dually; the
category of L-algebras and homomorphisms is denoted by Alg(L).

We list a few examples where C = Set, the category of sets and functions. Consider the
functor Pω(A×−), where Pω is the finite powerset functor and A is a fixed set. A coalgebra
f : X → Pω(A ×X) is a finitely branching labelled transition system: it maps every state
to a finite set of next states. Coalgebras for the functor (Pω−)

A are image-finite labelled
transition systems, i.e., the set of next states for every label is finite. When A is finite the
two notions coincide. A coalgebra f : X → Pω(A×X + 1), where 1 = {∗} is a singleton, is
a non-deterministic automaton; a state x is accepting whenever ∗ ∈ f(x).

Consider the functor BX = 2×XA, where 2 is a two-element set of truth values. A coal-
gebra 〈o, f〉 : X → BX is a deterministic automaton; a state x is accepting if o(x) = tt, and
f(x) is the transition function. The composition BPω yields non-deterministic automata,
presented in a different way than above. We shall also consider BPωPω-coalgebras, which
represent a general version of alternating automata.

Let S be a semiring. Define MX = {ϕ ∈ S
X | supp(ϕ) is finite} where supp(ϕ) =

{x | ϕ(x) 6= 0}, and M(f : X → Y )(ϕ)(y) =
∑

x∈f−1(y) ϕ(x). A weighted automaton is a

coalgebra for the functorM(A × − + 1). Let Σ be a polynomial functor corresponding to
an algebraic signature. A top-down weighted tree automaton is a coalgebra for the functor
MΣ. For S the Boolean semiring these are non-deterministic tree automata. Similar to
non-deterministic automata above, one can present weighted automata as coalgebras for
S× (M−)A.

We note that Pω is a monad, by taking the unit ηX(x) = {x} and the multiplication µ
to be set union. More generally, the functorM extends to a monad, by taking µX(ϕ)(x) =
∑

ψ∈SX ϕ(ψ) ·ψ(x). The case of Pω is obtained by taking the Boolean semiring. Notice that
the finite support condition is required for µ to be well-defined.

2.1. Contravariant adjunctions. The basic framework of coalgebraic logic is formed of
two categories C, D connected by functors F : Cop → D and G : Dop → C that form an
adjunction F op ⊣ G. For example, one may take C = D = Set and F = G = 2−, for
2 a two-element set of logical values. The intuition is that objects of C are collections of
processes, or states, and objects of D are logical theories.

To avoid cluttering the presentation with too much of the (−)op notation, we opt to
treat F and G as contravariant functors, i.e., ones that reverse the direction of all arrows
(maps), between C and D. The adjunction then becomes a contravariant adjunction “on
the right”, meaning that there is a natural bijection

C(X,GΦ) ∼= D(Φ, FX) for X ∈ C,Φ ∈ D.

Slightly abusing the notation, we shall denote both sides of this bijection by (−)♭. Applying
the bijection to a map is referred to as transposing the map.
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In such an adjunction, GF is a monad on C, whose unit we denote by ι : Id⇒ GF , and
FG is a monad on D, with unit the denoted by ǫ : Id ⇒ FG. As usual, multiplication of
the monad GF is GǫF : GFGF ⇒ GF , and multiplication of FG is FιG : FGFG ⇒ FG.
The counit-unit equations for adjunctions amount to:

F
ǫF +3

❋❋
❋❋

❋❋
❋❋

❋

❋❋
❋❋

❋❋
❋❋

❋
FGF

Fι
��
F

G
ιG +3

❋❋
❋❋

❋❋
❋❋

❋

❋❋
❋❋

❋❋
❋❋

❋
GFG

Gǫ
��
G

(2.1)

Both F and G map colimits to limits, by standard preservation results for adjoint functors.
In what follows, the reader need only remember that F and G are contravariant, i.e.,

they reverse maps and natural transformations. All other functors, except a few that lift F
and G to other categories, are standard covariant functors.

2.2. Coalgebraic modal logic. We recall an approach to coalgebraic modal logic based
on contravariant adjunctions, see, e.g., [20, 17]. Consider categories C, D and functors F ,
G as in Section 2.1. Given an endofunctor B : C → C, a coalgebraic logic to be interpreted
on B-coalgebras is built of syntax, i.e., an endofunctor L : D → D, and semantics, a natural
transformation ρ : LF ⇒ FB. We will usually refer to ρ simply as a logic. If an initial
L-algebra a : LΦ → Φ exists then, for any B-coalgebra h : X → BX, the logical semantics
of ρ on h is a map s♭ : X → GΦ obtained by transposing the map defined by initiality of a.

LΦ

a

��

Ls // LFX

ρX
��

FBX

Fh
��

Φ
s

// FX

(2.2)

The mapping of a B-coalgebra h : X → BX to an L-algebra Fh ◦ ρX : LFX → FX deter-
mines a contravariant functor F̂ that lifts F , i.e., acts as F on carriers.

Coalg(B)

��

F̂ // Alg(L)

��
C

F
// D

(2.3)

The functor F̂ has no (contravariant) adjoint in general; later in Section 7 we shall study

well-behaved situations when it does. Notice that F̂ maps coalgebra homomorphisms to
algebra homomorphisms, and indeed the logical semantics factors through coalgebra homo-
morphisms, i.e., behavioural equivalence implies logical equivalence. The converse holds if ρ
is expressive, meaning that the logical semantics decomposes as a coalgebra homomorphism
followed by a mono.

Example 2.1. Let C = D = Set, F = G = 2−, B = 2 × −A and L = A × − + 1. The
initial algebra of L is the set A∗ of words over A. We define a logic ρ : LF ⇒ FB as
follows: ρX(∗)(o, t) = o and ρX(a, ϕ)(o, t) = ϕ(t(a)). For a coalgebra 〈o, f〉 : X → 2 ×XA
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the logical semantics is a map s♭ : X → 2A
∗
, yielding the usual language semantics of the

automaton: s♭(x)(ε) = o(x) for the empty word ε, and s♭(x)(aw) = s♭(f(x)(a))(w) for any
a ∈ A,w ∈ A∗.

Note that logical equivalences, understood as kernel relations of logical semantics, are
conceptually different from behavioural equivalences typically considered in coalgebra the-
ory, in that they do not arise from finality of coalgebras, but rather from initiality of algebras
(albeit in a different category). Fundamentally, logical semantics for coalgebras is defined
by induction rather than coinduction. In some particularly well-behaved cases the inductive
and coinductive views coincide; we shall study such situations in Section 7.

A logic ρ : LF ⇒ FB gives rise to its mate ρ♭ : BG⇒ GL, defined by

BG
ιBG +3 GFBG

GρG +3 GLFG
GLǫ +3 GL, (2.4)

where ι and ǫ are as in Section 2.1. A routine calculation shows that ρ in turn is the mate
of ρ♭ (with the roles of F , G, ι and ǫ swapped), giving a bijective correspondence between
logics and their mates. Some important properties of logics are conveniently stated in terms
of their mates; e.g., under mild additional assumptions (see [20]), if the mate is pointwise
monic then the logic is expressive. Two simple but useful diagrams show how logics relate
to their mates along the basic adjunction:

Lemma 2.2. For any logic ρ : LF ⇒ FB, the following diagrams commute:

B
ιB +3

Bι
��

GFB

Gρ
��

BGF
ρ♭F

+3 GLF

L
ǫL +3

Lǫ
��

FGL

Fρ♭

��
LFG

ρG
+3 FBG.

Proof. For the first diagram, chase:

B
ιB +3

Bι
��

GFB

GFBι

ow ❤❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤

Gρ
��

BGF
ιBGF +3

ρ♭F +3

GFBGF
GρGF

+3 GLFGF

GLǫF "*▲
▲▲

▲▲
▲▲

▲▲

▲▲
▲▲

▲▲
▲▲

▲
GLF

GLFιks

GLF

where everything commutes, clockwise starting from top-left: by naturality of ι, by natural-
ity of ρ, by (2.1) above, and by definition of ρ♭.

The other diagram is similar.

There is a direct characterization of logical semantic maps in terms of mates, first formulated
in [29]. Indeed, by transposing (2.2) it is easy to check that the logical semantics s♭ : X →
GΦ on a coalgebra h : X → BX is a unique map that makes the following “twisted coalgebra
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morphism” diagram commute.

BX
Bs♭ // BGΦ

ρ♭
Φ

��
GLΦ

X

h

OO

s♭
// GΦ.

Ga

OO (2.5)

2.3. Morphisms of logics. Given logics ρ : LF ⇒ FB and θ : MF ⇒ FK, a morphism
from θ to ρ consists of a pair of natural transformations τ : M ⇒ L and κ : B ⇒ K such
that the following diagram commutes:

MF
θ +3

τF
��

FK

Fκ
��

LF
ρ

+3 FB

or, equivalently,

BG
ρ♭ +3

κG
��

GL

Gτ
��

KG
θ♭

+3 GM.

(2.6)

Natural transformations τ and κ as above induce functors

Alg(L)
−◦τ // Alg(M) and Coalg(B)

κ◦− // Coalg(K)

defined by composition.

Lemma 2.3. Suppose (τ, κ) is morphism from θ : MF ⇒ FK to ρ : LF ⇒ FB. Then the
following diagram commutes:

Coalg(B)
κ◦− //

F̄ρ

��

Coalg(K)

F̄θ

��
Alg(L)

−◦τ
// Alg(M)

where F̄ρ and F̄θ are the liftings of F induced by ρ and θ respectively, as in (2.3).

Proof. Let f : X → BX be a coalgebra, and consider:

MFX
θX // FKX

FκX // FBX
Ff // FX

MFX
τFX

// LFX
ρX

// FBX
Ff

// FX

The upper path is F̄θ(κX ◦ f), and the lower path is (F̄ρ(f)) ◦ τX . The diagram commutes
since (τ, κ) is a morphism of logics.
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Morphisms of logics apppear in [5], where the category of logics and morphisms between
them is studied. The examples in [5] involve a translation of syntax determined by τ . Our
main interest in morphisms of logics is cases where τ = id. Then, it is a direct consequence
of Lemma 2.3 that the logical semantics of ρ on a coalgebra f : X → BX coincides with
the logical semantics of θ on κX ◦ f . In the sequel, in a situation where τ = id we simply
say that κ is a morphism of logics.

3. Forgetful logics

In most abstract approaches to coalgebraic trace semantics, the behaviour functor under
consideration is a composition TB or BT , where T is the branching aspect and B is the
type of observations of interest. Our approach is to capture trace semantics as the logical
semantics of a suitable logic for TB or BT . The logics that we consider are defined as
the composition of a logic for B and a special kind of logic for T which has trivial syntax.
This special logic for T specifies how the branching behaviour should be “forgotten” in the
resulting logical theory.

Logics for composite functors can often be obtained from logics of their components.
Consider functors B,T : C → C and logics for them ρ : LF ⇒ FB and α : NF ⇒ FT , for
some functors L,N : D → D. One can then define logics for the functors TB and BT :

α⊚ ρ = αB ◦Nρ : NLF ⇒ FTB, ρ⊚ α = ρT ◦ Lα : LNF ⇒ FBT.

It is easy to see that taking the mate of a logic respects this composition operator, i.e., that
(α⊚ ρ)♭ = α♭ ⊚ ρ♭. Such compositions of logics appear in [14] and were studied in a slightly
more concrete setting in [9, 32]. In [5, Lemma 3.12], it is shown how to (horizontally)
compose morphisms of logics, turning ⊚ into a bifunctor.

We shall be interested in the case where the logic for T has a trivial syntax; in other
words, where N = Id. Intuitively speaking, we require a logic for T that consists of a
single unary operator, which could therefore be elided in a syntactic presentation of logical
formulas. The semantics of such an operator is defined by a natural transformation α : F ⇒
FT or equivalently by its mate α♭ : TG ⇒ G. Intuitively, the composite logics α ⊚ ρ and
ρ ⊚ α, when interpreted on TB- and BT -coalgebras respectively disregard, or forget, the
aspect of their behaviour related to the functor T , in a manner prescribed by α. We call
logics obtained in this fashion forgetful logics.

Transformations α : F ⇒ FT (and their mates α♭) are also in bijective correspondence
with natural transformations α† : T ⇒ GF . Indeed, define

α† = Gα ◦ ιT or equivalently α† = α♭F ◦ T ι,

and recover
α = Fα† ◦ ǫF and α♭ = Gǫ ◦ α†G

in what is easily seen to be mutually inverse operations. This means that, intuitively, a
forgetful logic for T is equivalent to an encoding of T into the monad GF . In all examples
considered in the next section α† is (pointwise) monic, which justifies the name “encoding”,
but we do not use the monicity for anything and we do not have an understanding of its
significance.

As long as we do not assume T to be a monad, it makes no sense to ask e.g. whether α†

is a monad morphism. However, composing forgetful logics for multiple behaviour functors
does agree with the multiplication structure of GF . Specifically, for α : F ⇒ FT and
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β : F ⇒ FS, one may consider the composite α ⊚ β : F ⇒ FTS. The corresponding
encoding (α⊚ β)† : TS ⇒ GF is then equal to:

TS
α†β†

+3 GFGF
GǫF +3 GF.

Encodings α† will be technically useful in Section 7.2.

4. Examples

We instantiate the setting of Section 3 and use forgetful logics to obtain trace semantics
for several concrete types of coalgebras: non-deterministic automata, transition systems,
alternating automata, weighted tree automata and probabilistic systems.

In the first few examples we let C = D = Set and F = G = 2−, and consider TB or
BT -coalgebras, where T = Pω is the finite powerset functor. Our examples involve the logic
α : 2− ⇒ 2Pω defined by:

αX(ϕ)(S) = tt ⇐⇒ ∃x ∈ S.ϕ(x) = tt. (4.1)

This choice of F and G has been studied thoroughly in the field of coalgebraic logic, and
our α is an example of the standard notion of predicate lifting [14, 22] corresponding to

the so-called diamond modality. Its mate α♭ : Pω2
− ⇒ 2− and the corresponding encoding

α† : Pω ⇒ 22
−
are as follows:

α♭Φ(S)(w) = tt ⇐⇒ ∃ϕ ∈ S.ϕ(w) = tt

α
†
X(U)(ϕ) = tt ⇐⇒ ∃x ∈ U.ϕ(x) = tt

Here and in all examples below, Pω could be replaced by the full powerset P without any
problems.

Example 4.1. We define a forgetful logic α⊚ ρ for the functor Pω(A×−+ 1) whose coal-
gebras are non-deterministic automata, so that the logical semantics is the usual language
semantics. To this end, we let:

• C = D = Set, F = G = 2−;
• T = Pω, B = L = (A×−+ 1);
• α be as in (4.1), and

• ρ be defined by its mate ρ♭ : A× 2− + 1→ 2A×−+1 as follows:

ρ♭Φ(∗)(t) = tt ⇐⇒ t = ∗ ρ♭Φ(a, ϕ)(t) = tt ⇐⇒ t = (a,w) and ϕ(w) = tt .

for any set Φ.

The choice of L is motivated by the fact that the initial algebra of A×−+1 is A∗, hence the
logical semantics will be a map from states to languages (elements of 2A

∗
). Now the logical

semantics of the logic α⊚ ρ on an automaton f : X → PωBX is the map s♭ from (2.5), i.e.,
the unique map that makes the following diagram commute:

X

f

��

s♭ // 2A
∗

��
Pω(A×X + 1)

PωBs♭
// Pω(A× 2A

∗
+ 1)

Pωρ♭A∗

// Pω(2
A×A∗+1)

α♭
LA∗

// 2A×A
∗+1
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It is easy to calculate (see Appendix A) that for any x ∈ X:

s♭(x)(ε) = tt ⇐⇒ ∗ ∈ f(x),

s♭(x)(aw) = tt ⇐⇒ ∃y ∈ X.(a, y) ∈ f(x) and s♭(y)(w) = tt,

for ε the empty word, and for all a ∈ A and w ∈ A∗.

Note that the logic ρ in the above example is expressive. One may expect that given
a different expressive logic θ involving the same functors, the forgetful logics α ⊚ ρ and
α ⊚ θ yield the same logical equivalences, but this is not the case. For instance, define
θ♭ : BG ⇒ GL as θ♭Φ(∗)(t) = tt for all t, and θ♭Φ(a, ϕ) = ρ♭Φ(a, ϕ). This logic is expressive

as well (since θ♭ is componentwise monic) but in the semantics of the forgetful logic α⊚ θ,
information on final states is discarded.

Example 4.2 (Length of words). The initial algebra of the functor L defined by LX = X+1
is Φ = N, the set of natural numbers. Define a logic for BX = A × X + 1 by its mate
ρ♭ : A× 2− + 1⇒ 2−+1 as follows:

ρ♭(∗)(t) = tt ⇐⇒ t = ∗ ρ♭(a, ϕ)(t) = tt ⇐⇒ t = x and ϕ(x) = tt .

Note that this logic is not expressive. With the above α (Equation 4.1), we have a logic

α⊚ ρ, and given any f : X → Pω(A×X + 1), this yields the following map s♭ : X → 2Φ:

s♭(x)(0) = tt ⇐⇒ ∗ ∈ f(x),

s♭(x)(n + 1) = tt ⇐⇒ ∃a ∈ A, y ∈ X.(a, y) ∈ f(x) and s♭(y)(n) = tt .

Thus, s♭(x) is the binary sequence which is tt at position n iff the automaton f accepts a
word of length n, starting in state x.

Example 4.3 (Labelled transition systems). In this example we consider the finite traces
of labelled transition systems of the form f : X → (PωX)A, i.e., BT -coalgebras where

BX = XA and TX = PωX. To this end, let LX = A×X +1. Define ρ♭ : (2−)A ⇒ 2A×−+1

as follows:
ρ♭Φ(ϕ)(∗) = tt ρ♭Φ(ϕ)(a,w) = ϕ(a)(w) . (4.2)

Then the logical semantics s♭ : X → 2A
∗
of ρ ⊚ α on a transition system f : X → (PωX)A

is given by s♭(x)(ε) = tt and s♭(x)(aw) = tt iff s♭(y)(w) = tt for some y ∈ f(x)(a).

Example 4.4 (Non-deterministic automata as BT -coalgebras). Consider the functorBX =

2×XA. Let LX = A×X +1, let ρ♭ : 2× (2−)A ⇒ 2A×−+1 be the mate of the logic ρ given
in Example 2.1; explicitly, it is the obvious isomorphism given by manipulating exponents:

ρ♭Φ(o, ϕ)(∗) = o ρ♭Φ(o, ϕ)(a,w) = ϕ(a)(w) (4.3)

The logical semantics s♭ : X → 2A
∗
of ρ⊚ α on a coalgebra 〈o, f〉 : X → 2× (PωX)A is the

usual language semantics, i.e., for any x ∈ X we have:

s♭(x)(ε) = o(x) s♭(x)(aw) = tt ⇐⇒ s♭(y)(w) = tt for some y ∈ f(x)(a) .
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Non-determinism can be resolved differently: in contrast to (4.1), consider β : Pω ⇒

Pω2
−, and the corresponding β♭ : Pω2

− ⇒ Pω and β† : Pω ⇒ 22
−
, given by

βX(ϕ)(S) = tt ⇐⇒ ∀x ∈ S.ϕ(x) = tt

β♭Φ(S)(w) = tt ⇐⇒ ∀ϕ ∈ S.ϕ(w) = tt

β
†
X(U)(ϕ) = tt ⇐⇒ ∀x ∈ U.ϕ(x) = tt

Similarly to (4.1), β is a predicate lifting that corresponds to the so-called box modality.
The semantics s♭ induced by the forgetful logic ρ ⊚ β accepts a word if all paths end
in an accepting state: s♭(x)(ε) = o(x), and s♭(x)(aw) = tt iff s♭(y)(w) = tt for all y ∈
f(x)(a). We call this the conjunctive semantics. In automata-theoretic terms, this is the
language semantics for (BPω-coalgebras understood as) co-nondeterministic automata, i.e.,
alternating automata with only universal states.

Some non-examples. It is not clear how to use forgetful logics to give a conjunctive semantics
to coalgebras for Pω(A ×X + −); simply using β together with ρ from Example 4.1 does
not yield the expected logical semantics. Also, transition systems as Pω(A×−)-coalgebras
do not work well; with α as in (4.1) the logical semantics of a state with no successors is
always empty, while it should contain the empty trace.

Example 4.5 (Alternating automata). Consider BPωPω-coalgebras with B = 2×−A. We
give a forgetful logic by combining ρ, α, and β from the previous example (more precisely,
the logic is (ρ ⊚ α) ⊚ β); recall that α and β resolve the non-determinism by disjunction
and conjunction respectively. The logical semantics on a coalgebra 〈o, f〉 : X → BPωPωX
then is the map s♭ in the following diagram (see (2.5)):

X

〈o,f〉

��

s♭ // 2A
∗

��
BPωPωX

BPωPωs♭
// BPωPω2

A∗

BPωβ♭
A∗

// BPω2
A∗

Bα♭
A∗

// B2A
∗

ρ♭
A∗

// 2LA
∗

(4.4)

Spelling out the details for a coalgebra 〈o, f〉 : X → 2 × (PωPωX)A yields, for any x ∈ X:
s♭(x)(ε) = o(x) and for any a ∈ A and w ∈ A∗: s♭(x)(aw) = tt iff there is S ∈ f(x)(a) such
that s♭(y)(w) = tt for all y ∈ S (see Appendix A).

Example 4.6 (Weighted tree automata). In this example we let C = D = Set and F = G =
S
− for a semiring S. We consider coalgebras forMΣ (Section 2), where Σ is a polynomial

functor corresponding to a signature. The initial algebra of Σ is carried by the set of finite
Σ-trees, denoted by Σ∗∅. Define ρ : ΣF ⇒ FΣ by cases on the operators σ in the signature:

ρX(σ(ϕ1, . . . , ϕn))(τ(x1, . . . , xm)) =

{

∏

i=1..n ϕi(xi) if σ = τ

0 otherwise

where n is the arity of σ. Define α : S− ⇒ S
M by its mate: α♭Φ(ϕ)(w) =

∑

ψ∈SΦ ϕ(ψ) ·ψ(w).
Notice that α and ρ generalize the logics of Example 4.1.
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The logical semantics of α ⊚ ρ on a weighted tree automaton f : X → MΣX is the
unique map s♭ : X → S

Σ∗∅ making the following diagram commute:

X

f

��

s♭ // SΣ
∗∅

��

MΣX
MΣs♭

//MΣSΣ
∗∅

Mρ♭
Σ∗∅

//MS
ΣΣ∗∅

α♭
ΣΣ∗∅

// SΣΣ∗∅

(4.5)

This means that for any tree σ(t1, . . . , tn) and any x ∈ X we have (see Appendix A):

s♭(x)(σ(t1, . . . , tn)) =
∑

x1,...,xn∈X

f(x)(σ(x1, . . . , xn)) ·
∏

i=1..n

s♭(xi)(ti)

As a special case, we obtain for any weighted automaton f : X →M(A ×X + 1) a unique

map s♭ : X → S
A∗

so that for any x ∈ X, a ∈ A and w ∈ A∗: s♭(x)(ε) = f(x)(∗) and
s♭(x)(aw) =

∑

y∈X f(x)(a, y) · s
♭(y)(w). For S the Boolean semiring we get the usual

semantics of tree automata: s♭(x)(σ(t1, . . . , tn)) = tt iff there are x1, . . . , xn such that

σ(x1, . . . , xn) ∈ f(x) and for all i ≤ n : s♭(xi)(ti) = tt.

The Σ-algebra F̂ (X, f) (see (2.3)) is a deterministic bottom-up tree automaton. It

corresponds to the top-down automaton f , in the sense that the semantics s♭ of f is the
transpose of the unique homomorphism s : Σ∗∅ → S

X arising by initiality; the latter is the
usual semantics of bottom-up tree automata.

Example 4.7 (Probabilistic systems). Consider generative probabilistic transition sys-
tems [34] with explicit termination, modeled as coalgebras f : X → ∆(A×X +1), where ∆
is the finitely supported probability distribution functor on Set. One would like to interpret
sequences of labels from A as completed traces for such coalgebras, i.e., ones ending with a
transition to the unique element of 1, and assign probabilities to them.

Although probability distributions on a set X can be seen as functions from X to
the interval [0, 1], techniques of Example 4.6 are not directly applicable, since [0, 1] is not
a semiring in the expected sense: addition is not a total operation. One could replace
[0, 1] with the semiring of nonnegative real numbers and proceed as in Example 4.6, but
the resulting trace semantics would obscure an important property of probabilistic traces:
every trace has probability at most 1. Actually, in the example considered here, an even
stronger property holds: for every process, probabilities of all complete traces generated
from it form a subprobability distribution. We wish to design a forgetful logic framework
that would make this property apparent.

To this end, put C = Set and D = PCM, the category of partial commutative monoids
(see [15] for details). A partial commutative monoid is a set X together with a unit 0 ∈ X
and a partial binary addition function > onX that is commutative and associative whenever
defined. A morphism of such monoids is a function that preserves units and addition,
whenever defined. A paradigmatic example of a partial commutative monoid is the interval
[0, 1] with 0 as unit and addition defined whenever the result is at most 1.

The obvious forgetful functor U : PCM→ Set has a left adjoint (−)⊥ : Set→ PCM that
assigns to every set X the partial monoid X + ⊥ with ⊥ as the unit, and addition defined
by ⊥> x = x>⊥ = x and undefined otherwise.

The category PCM is symmetric monoidal closed [15] with the internal hom-functor
Φ ⊸ Ψ = homPCM(Φ,Ψ) with the constant function 0(φ) = 0Ψ as the unit, and addition



COALGEBRAIC TRACE SEMANTICS VIA FORGETFUL LOGICS 13

defined by
(f > g)(φ) = f(φ) > g(φ)

if the addition on the right is defined for every φ ∈ Φ, and f > g undefined otherwise.
The symmetric monoidal closed structure implies that the functor −⊸ Ψ is contravariant
self-adjoint for any partial commutative monoid Ψ.

Define contravariant functors

FX = X⊥ ⊸ [0, 1] and GΦ = homPCM(Φ, [0, 1]).

They form a contravariant adjunction: a composition of the adjunction (−)⊥ ⊣ U with the
contravariant self-adjunction of −⊸ [0, 1]. In other words, there is a bijection

X → homPCM(Φ, [0, 1]) ∼= homPCM(Φ,X⊥ ⊸ [0, 1])

natural in X ∈ Set and Φ ∈ PCM.
Define α : F ⇒ F∆ by its mate α♭ : ∆G⇒ G:

α♭Φ(δ)(φ) = >
f∈GΦ

δ(f) · f(φ).

This takes values in [0, 1], since

0 ≤ >
f∈GΦ

δ(f) · f(φ) ≤ >
f∈GΦ

δ(f) = 1.

PCM has products, defined as expected as cartesian products on carriers. Define a
functor L on PCM by

LΦ = ΦAω × {⊤}⊥
where ΦAω , for the set A of transition labels, is the A-fold product of Φ restricted to those
tuples that have the unit 0Φ on all but finitely many components. If A is finite then this is
simply the A-fold product of Φ.

Elements of LΦ are A-indexed families of elements of Φ that are 0Φ almost everywhere,
with an additional component that is either ⊤ or ⊥, with addition defined componentwise
(note that ⊤>⊤ is undefined).

Consider the set Λ = Pω(A
∗) of all finite sets of A-traces, considered as a partial

commutative monoid with ∅ as the unit, and set union as addition, but defined only for
disjoint sets. This partial monoid carries an L-algebra structure h : LΛ→ Λ defined by:

h(Ta, Tb, . . . ,⊥) = {aw | a ∈ A, w ∈ Ta}

h(Ta, Tb, . . . ,⊤) = {aw | a ∈ A, w ∈ Ta} ∪ {ǫ},

for any Ta, Tb, . . . ⊆ A∗. It is easy check that h is a bijection and a morphism in PCM. In
particular, h takes values in finite sets thanks to the restriction of ΦAω to tuples that are ∅
almost everywhere.

Moreover, h is an initial L-algebra. To see this, consider any algebra k : LΦ→ Φ. The
unique algebra map f : Λ → Φ from h to k is defined by induction on the length of the
longest trace in elements of Λ:

f(∅) = 0Φ = k(0Φ, 0Φ, . . . ,⊥)

f({ǫ}) = k(0Φ, 0Φ, . . . ,⊤)

f(T ) = k(f(Ta), f(Tb), . . . ,⊥) if ǫ 6∈ T

f(T ) = k(f(Ta), f(Tb), . . . ,⊤) if ǫ ∈ T
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where Ta = {w ∈ A∗ | aw ∈ T}, for T ⊆ A∗ and a ∈ A∗. This is a well-formed inductive
definition since each Ta only contains traces strictly shorter than the longest trace in T . It
is also a partial monoid morphism, since if T and T ′ are disjoint sets of traces then Ta and
T ′
a are disjoint for each a ∈ A, and at most one of T and T ′ contains the empty word ǫ. The

fact that f is an algebra morphism follows directly from its definition, and its uniqueness
follows by routine induction.

A logic ρ : LF ⇒ FB, where BX = A×X+1, can be defined by its mate ρ♭ : BG⇒ GL:

ρ♭Φ : A× homPCM(Φ, [0, 1]) + 1→ homPCM(ΦA × {⊤}⊥, [0, 1])

ρ♭Φ(a, h)(φa, φb, . . . , x) = h(φa) for x ∈ {⊤,⊥}

ρ♭Φ(∗)(φa, φb, . . . , x) =

{

0 if x = ⊥
1 if x = ⊤

where ∗ is the unique element of 1. Both α and ρ are easily seen to be natural, so this
completes an instance of the framework of forgetful logics.

As a result, for any probabilistic transition system f : X → ∆(A×X + 1) we obtain a

map s♭ : X → homPCM(Λ, [0, 1]) that assigns, to every state x ∈ X, a map from finite sets of
A-traces to the interval [0, 1] that is additive as far as disjoint sets of traces are concerned.
Such a map gives (indeed, is equivalent to) a subprobability distribution δ on the set of all

A-traces. Indeed, put δ(w) = s♭({w}); then

∑

w∈A∗

δ(w) = sup
W⊆finA∗

(

∑

w∈W

δ(w)

)

= sup
W⊆finA∗

s♭(W ) ≤ 1.

Note that the partial monoid homomorphism s : Λ→ (X⊥ ⊸ [0, 1]) does not map traces
to any distributions of states.

In [16, Sec. 7.2], where another coalgebraic approach to generative probabilistic sys-
tems was developed, the subprobability distribution monad had to be used instead of ∆.
The reason for that was that even though a state in a generative probabilistic system deter-
mines a full probability distribution on successors (including immediate termination, i.e. the
empty trace, as a degenerate successor), the finite complete traces of a state do not form
a probability distribution, but only a subprobability distribution, due to possibility of infi-
nite traces. In the forgetful logic approach the branching type functor ∆ is distinguished
from the functor G used to collect a structure of traces, so the distribution monad can be
used. Note that although the subdistribution monad is naturally isomorphic to the functor
∆(− + 1) that is present in our behaviour functor, the +1 component here is not a part
of the branching structure: it models trace termination and it is very much a part of the
trace behaviour structure. In [16], the subdistribution monad is used on top of that, with
an additional +1 component necessary to handle global nontermination.

The technique developed in this example does not work for reactive probabilistic transi-
tion systems modeled as coalgebras f : X → [0, 1]×(∆X)A. Technically, it is not clear how to
find a functor L on PCM with a natural transformation ρ : LF ⇒ FB for BX = [0, 1]×XA,
that would model trace semantics as expected. This is not surprising, as under a standard
probabilistic semantics of reactive systems, traces accepted from a fixed state do not form
a (sub)probability distribution.
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5. Forgetful logics for monads

In most coalgebraic attempts to trace semantics [6, 11, 16, 19, 23, 30], the functor T , which
models the branching aspect of system behaviour, is assumed to be a monad. The basic
definition of a forgetful logic is more relaxed in that it allows an arbitrary functor T but
one may notice that in all examples in Section 4, T is a monad.

In coalgebraic approaches cited above, the structure of T is resolved using monad
multiplication µ : TT ⇒ T . Forgetful logics use transformations α : F ⇒ FT with their
mates α♭ : TG⇒ G for the same purpose. If T is a monad, it will be useful to assume a few
basic axioms analogous to those of monad multiplication:

Definition 5.1. Let (T, η, µ) be a monad. A natural transformation α♭ : TG ⇒ G is a
(T )-action (on G) if the following diagram commutes:

TTG

µG
��

Tα♭
+3 TG

α♭

��

G
ηGks

④④
④④
④④
④④

④④
④④
④④
④④

TG
α♭

+3 G

i.e., if each component of α♭ is an Eilenberg-Moore algebra for T .

Monad actions on functors are to monads as monoid actions on sets are to monoids.
Logics α whose mates are monad actions have a characterization in terms of their

corresponding encodings α† : T ⇒ GF defined as in Section 3:

Lemma 5.2. For any α : F ⇒ FT , the mate α♭ : TG ⇒ G is a monad action if and only
if α† : T ⇒ GF is a monad morphism.

Proof. This is a special case of [10, Prop. II.1.4], but see Appendix B for a self-contained
proof.

This means that a forgetful logic for T whose mate is a monad action, is equivalent to
an encoding of the monad structure of T (which is used for resolving branching in [30, 12,
16, 33]) into the monad GF . We shall use this connection in Section 6 to relate forgetful
logics to the determinization constructions of [16].

It is easy to check by hand that in all examples in Section 4, α♭ is an action, but it also
follows from the following considerations.

In some well-structured cases, one can search for a suitable α by looking at T -algebras
in C. We mention it only briefly and not explain the details, as it will not be directly used
in the following.

If C has products, then for any object V ∈ C there is a contravariant adjunction as
in Section 2.1, where: D = Set, F = C(−, V ) and G = V −, where V X denotes the X-
fold product of V in C. (This adjunction was studied in [25] for the purpose of combining
distributive laws.) By the Yoneda Lemma, natural transformations α : F ⇒ FT are in
bijective correspondence with algebras g : TV → V . Routine calculation shows that the
mate α♭ is a T -action if and only if the corresponding g is an Eilenberg-Moore algebra for
T .

Alternatively, one may assume that C = D is a symmetric monoidal closed category
and F = G = V − is the internal hom-functor based on an object V ∈ C. (This adjunction
was studied in [20] in the context of coalgebraic modal logic.) If, additionally, the functor
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T is strong, then every algebra g : TV → V gives rise to α : F ⇒ FT , whose components
αX : V X → V TX are given by transposing:

TX ⊗ V X strength // T (X ⊗ V X)
T (application)

// TV
g // V

If T is a strong monad and g is an Eilenberg-Moore algebra for T then α♭ is a T -action.
In an enriched setting, if D is enriched over C, both these constructions are instances

of a more general one based on the existence of suitable powers.
If C = D = Set then both constructions apply (and coincide). In this situation more

can be said [16, 14]: the resulting contravariant adjunction can be factored through the
category of Eilenberg-Moore algebras for T .

6. Determinization

The classical powerset construction turns a non-deterministic automaton into a determinis-
tic one, with states of the former interpreted as singleton states in the latter. More generally,
a determinization procedure of coalgebras involves a change of state space. We define it as
follows.

Definition 6.1. Let T,H : C → C be endofunctors. A (T )-determinization procedure of
H-coalgebras consists of a natural transformation η : Id ⇒ T , a functor K : C → C and a
lifting of T :

Coalg(H)

��

T̄ // Coalg(K)

��
C

T
// C

We will mostly focus on cases where H = TB or H = BT , but in Section 7 we will
consider situations where T is not directly related to H.

The classical powerset construction is correct, in the sense that the language semantics of
a state x in a non-deterministic automaton coincides with the final semantics (the accepted
language) of the singleton of x in the determinized automaton. At the coalgebraic level, we
capture trace semantics by a forgetful logic. Then, a determinization procedure is correct
if logical equivalence on the original system coincides with behavioural equivalence on the
determinized system along η, formally captured as follows.

Definition 6.2. A T -determinization procedure (T̄ ,K, η) of H-coalgebras is correct wrt. a

logic for H if, for any H-coalgebra (X, f) with logical semantics s♭:

(1) s♭ factors through h ◦ ηX , for any K-coalgebra homomorphism h from T̄ (X, f).

(2) there exists a K-coalgebra homomorphism h from T̄ (X, f) and a mono m so that s♭ =
m ◦ h ◦ ηX .

The first condition states that behavioural equivalence on the determinized system implies
logical equivalence on the original system; the second condition states the converse.

It is standard to define a lifting T̄ : Coalg(H)→ Coalg(K) of T from a natural transfor-
mation λ : TH ⇒ KT , as follows:

T̄ (X, f) = (TX, λX ◦ Tf) T̄ (h) = Th (6.1)



COALGEBRAIC TRACE SEMANTICS VIA FORGETFUL LOGICS 17

for any H-coalgebra (X, f) and coalgebra morphism h. All of the (liftings in) determiniza-
tion constructions considered in this paper arise from such natural transformations.

In [16] a more specific kind of determinization for TB-coalgebras was studied, arising
from a natural transformation κ : TB ⇒ KT and a monad (T, η, µ). This construction is
an instance of (6.1), by setting H = TB and λ = κ ◦ µB : TTB ⇒ KT . We denote the
lifting of T arising in this way by T κ. Spelling out the details, for any TB-coalgebra (X, f)
we have:

T κ(X, f) = (TX
Tf // TTBX

µBX // TBX
κX // KTX) . (6.2)

For examples see, e.g., [16] and the end of this section.
The same type of natural transformation can be used to determinize BT -coalgebras.

This is again an instance of (6.1), where H = BT and λ = Kµ ◦ κT : TBT ⇒ KT .
We denote the lifting of T arising in this way by Tκ. Spelling out the details, for any
BT -coalgebra (X, f) we have:

Tκ(X, f) = (TX
Tf // TBTX

κTX // KTTX
KµX // KTX) . (6.3)

This is considered in [33, 16] for the case where B = K and κ is a distributive law of monad
over functor.

In Theorem 6.4 below, we give a sufficient condition for the logical semantics on TB or
BT -coalgebras to coincide with a logical semantics on determinized K-coalgebras, for the
determinization constructions T κ and Tκ. The same condition was recently studied in [8,
Lemma 5.11], where it (more precisely, its mate) was proved to hold, under some additional
assumptions, if α arises from the algebra µ1 : TT1 → T1 as described in Section 5. First,
we prove a general result, in the setting of (6.1), which relates the logical semantics of an
H-coalgebra to a logical semantics for the K-coalgebra obtained by applying the lifting T̄ .

Lemma 6.3. Assume natural transformations λ : TH ⇒ KT , δ : LF ⇒ FH, θ : LF ⇒ FK

and α : F ⇒ FT such that λ is a morphism of logics from θ ⊚ α to α⊚ δ.
Let s♭ be the logical semantics of δ on a coalgebra f : X → HX. Then α♭Φ ◦ Ts

♭ is the
logical semantics of θ on the coalgebra (TX, λX ◦ Tf).

Proof. Consider the following diagram:

TX
Ts♭ //

Tf
��

TGΦ

TGa
��

α♭
Φ // GΦ

Ga
��

THX

λX
��

THs♭ // THGΦ

λGΦ

��

Tδ♭
Φ // TGLΦ

α♭
LΦ // GLΦ

KTX
KTs♭

// KTGΦ
Kα♭

Φ

// KGΦ
θ♭
Φ

// GLΦ

which commutes, clockwise starting from the top left: by definition of the logical semantics
s♭, naturality of α♭, the assumption that λ is a morphism of logics, and naturality of λ.
Commutativity of the outside of the diagram means that α♭Φ ◦ Ts

♭ is indeed the logical
semantics of θ on (TX, λX ◦ Tf).
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Theorem 6.4. Assume:

• a monad (T, η, µ);

• a forgetful logic α : F ⇒ FT , ρ : LF ⇒ FB, such that α♭ is a T -action on G (Defini-
tion 5.1);
• a natural transformation κ : TB ⇒ KT , and
• another logic θ : LF ⇒ FK,

such that κ is a morphism of logics from θ⊚α to α⊚ρ, i.e., the following diagram commutes:

TBG
Tρ♭ +3

κG
��

TGL
α♭L +3 GL

KTG
Kα♭

+3 KG
θ♭

+3 GL.

Let s♭ be the semantics of α⊚ ρ on a coalgebra f : X → TBX, and let s♭θ be the semantics

of θ on T κ(X, f) (see (6.2)). Then s♭ = s♭θ ◦ ηX .
The same holds for the determinization procedure Tκ (see (6.3)) for BT -coalgebras and

the logic ρ⊚ α.

Proof. We first consider TB-coalgebras. Our aim is to use Lemma 6.3, instantiated to
H = TB, δ = α ⊚ ρ and λ = κ ◦ µB. To this end, we must show that λ is a morphism of
logics from θ ⊚ α to α⊚ α⊚ ρ, i.e., the outside of the following diagram should commute:

TTBG
TTρ♭ +3

µBG

��

TTGL

µGL

��

Tα♭L +3 TGL

α♭L
��

TBG

κG
��

Tρ♭ +3 TGL
α♭L +3 GL

KTG
Kα♭

+3 KG
θ♭

+3 GL

Indeed, the diagram commutes, clockwise starting from the top left: by naturality of µ, by
the assumption that α♭ is a T -action, and by the assumption that κ is a morphism of logics
from θ ⊚ α to α ⊚ ρ (in fact, since α♭ is a T -action, µ is a morphism of logics from α to
α⊚α, hence µB is a morphism from α⊚ ρ to α⊚α⊚ ρ, and the above diagram is obtained
by composing this morphism with κ).

By Lemma 6.3, for any TB-coalgebra (X, f) we obtain

s♭θ = α♭Φ ◦ Ts
♭

where s♭ is the logical semantics of α ⊚ ρ on (X, f) and s♭θ is the logical semantics of θ on

T κ(X, f) = (TX, κX ◦µBX ◦Tf). Hence s
♭
θ ◦ ηX = α♭Φ ◦Ts

♭ ◦ ηX = α♭Φ ◦ ηGΦ ◦ s
♭ = s♭ where

the second equality holds by naturality of η, and the third since α♭ is a T -action.
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For BT -coalgebras, we instantiate Lemma 6.3 to H = BT , δ = ρ⊚α and λ = Kµ ◦κT .
We prove that λ is a morphism of logics:

TBTG
TBα♭

+3

κTG
��

TBG

κG
��

Tρ♭ +3 TGL

α♭L

��

KTTG

KµG
��

KTα♭
+3 KTG

Kα♭

��
KTG

Kα♭

+3 KG
θ♭

+3 GL

The diagram commutes, clockwise starting from the top left: by naturality of κ, the assump-
tion that by κ is a morphism of logics and by the assumption that α♭ is a T -action (again, the
above diagram amounts to a composition of the logic morphisms µ and κ). By Lemma 6.3,

for any BT -coalgebra (X, f) we obtain s♭θ = α♭Φ ◦ Ts
♭ where s♭ is the logical semantics of

ρ⊚ α on (X, f) and s♭θ is the logical semantics of θ on Tκ(X, f) = (TX,KµX ◦ κTX ◦ Tf).
The conclusion of the proof is analogous to the above case of TB-coalgebras.

We apply Theorem 6.4 to obtain a sufficient condition for a determinization construction
to be correct with respect to a trace semantics given by a forgetful logic. The main idea
is to choose θ to be an expressive logic for K, so that logical equivalence coincides with
behavioural equivalence.

Corollary 6.5. Let (T, η, µ), α, ρ, θ and κ be as in Theorem 6.4, and suppose that θ is an
expressive logic. Then the determinization procedure T κ of TB-coalgebras (6.2) is correct
with respect to α⊚ρ, and the determinization procedure Tκ of BT -coalgebras (6.3) is correct
with respect to ρ⊚ α.

Proof. Let T̄ be either T κ or Tκ, let (X, f) be a TB-coalgebra or a BT -coalgebra respec-

tively, and s♭ the semantics of the forgetful logic on f . Under the above assumptions, by
Theorem 6.4 we have s♭ = s♭θ ◦ ηX , where s

♭
θ is the logical semantics of θ on T̄ (X, f). Since

s♭θ is a logical semantics it factors through any coalgebra homomorphism, yielding condition
(1) of correctness, and since it is expressive it decomposes as a coalgebra homomorphism
followed by a mono, yielding condition (2).

To illustrate all this, we show that the determinization of weighted automata as given
in [16] is correct with respect to weighted language equivalence. (There is no such result
for tree automata, as they do not determinize.)

Example 6.6. Fix a semiring S, let B = A×−+1 and K = S×−A. Consider κ :MB ⇒
KM defined as follows [16]: κX(ϕ) = (ϕ(∗), λa.λx.ϕ(a, x)). This induces a determinization
procedure Mκ as in (6.2), for weighted automata. Let α ⊚ ρ be the forgetful logic for
weighted automata introduced in Example 4.6, and recall that the logical semantics on
a weighted automaton is the usual notion of acceptance of weighted languages. We use
Corollary 6.5 to prove that the determinization procedure Mκ is correct with respect to
α ⊚ ρ. To this end, consider the logic θ♭ : S× (S−)A ⇒ S

A×−+1 given by the isomorphism,

similar to the logic in Example 4.4. Since θ♭ is componentwise injective, θ is expressive.
Moreover, α♭ is an action (see Section 5). The only remaining condition is commutativity of
the diagram in Theorem 6.4, which is a straightforward calculation. This proves correctness
of the determinizationMκ with respect to the semantics of α⊚ ρ.
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Example 6.7. In [33] it is shown how to determinize non-deterministic automata of the
form BPω, where BX = 2 × XA, based on κ = 〈κo, κt〉 : Pω(2 × −

A) ⇒ 2 × (Pω−)
A

(note that B = K in this example) where κoX(S) = tt iff ∃t.(tt, t) ∈ S, and κtX(a) =
{x | x ∈ t(a) for some (o, t) ∈ S}. In Example 4.4 we have seen an expressive logic ρ
and an α so that the logical semantics of ρ ⊚ α yields the usual language semantics. It
is now straightforward to check that the determinization κ together with the logics ρ, α
above satisfies the condition of Theorem 6.4, where θ = ρ. By Corollary 6.5 this shows the
expected result that determinization of non-deterministic automata is correct with respect
to language semantics.

Moreover, recall that the logic ρ ⊚ β, where β is as defined in Example 4.4, yields a
conjunctive semantics. Take the natural transformation τ = 〈τ o, τ t〉 of the same type as κ,
where τ o(S) = tt iff o = tt for every (o, t) ∈ S, and τ t = κt. Using Corollary 6.5 we can
verify that this determinization procedure is correct.

One can also get the finite trace semantics of transition systems (Example 4.4) by
turning them into non-deterministic automata (then, B and K are different).

Example 6.8. Alternating automata (see Example 4.5) can be determinized into non-
deterministic automata in a process that preserves the language semantics. We shall now
see how this arises as an application of Theorem 6.4 without a reference to final semantics
of coalgebras.

This problem is more subtle than it may look, and our solution from a previous version
of this paper [21] suffered from a serious mistake. We therefore present a corrected solution
a little more elaborately.

Let BX = 2 × XA as before. We wish to determinize BPωPω-coalgebras where, ac-
cording to Example 4.5, the outer Pω is interpreted disjunctively (as in nondeterministic
automata), and the inner Pω is interpreted conjunctively (as in co-nondeterministic au-
tomata). The result should be a nondeterministic automaton, i.e., a BPω-coalgebra with
the Pω interpreted disjunctively. If the original alternating automaton had a carrier X,
then the nondeterministic automaton should have a carrier PωX, interpreted conjunctively.

To model all this, we should instantiate Theorem 6.4 so that T = Pω, the functors
B and K from the theorem are both BPω = 2 × (Pω−)

A, the logic α from the theorem
is instantiated to β from Example 4.5 and the logics ρ and θ from the theorem are both
instantiated to ρ⊚ α from Example 4.5.

We then need to provide an appropriate natural transformation κ : PωBPω ⇒ BPωPω
that would model the intended determinization procedure. It is natural to define it as a
composition of two steps:

κ = Bχ ◦ τPω : PωBPω ⇒ BPωPω

where τ : PωB ⇒ BPω is defined as at the end of Example 6.7. As argued there, this
distributes B over Pω according to the conjunctive interpretation modeled by the logic β.

The question remains how to define χ : PωPω ⇒ PωPω so that it distributes the “con-
junctive” powerset over the “disjunctive” one as intended. One may attempt (as we did
in [21]):

χX(S) = {
−→g (S) | g : S → X s.t. g(U) ∈ U for each U ∈ S} (6.4)

which, given a family of sets S, returns all possible sets obtained by choosing a single element
from each set in S.
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Unfortunately this is not a natural transformation. The following counterexample is
due to Joost Winter: consider

X = {a, b, c} Y = {d, e}

f : X → Y f(a) = f(b) = d f(c) = e

and calculate:

(PωPωf)(χX({{a, c}, {b, c}})) = (PωPωf)({{a, b}, {a, c}, {b, c}, {c}}) = {{d}, {d, e}, {e}}

χY ((PωPωf)({{a, c}, {b, c}})) = χY ({{d, e}}) = {{d}, {e}}

therefore the naturality square for χ on f : X → Y does not commute for the argument
{{a, c}, {b, c}} ∈ PωPωX.

This mistake has occured in the literature before. In [27, pp. 183-184], (6.4) was claimed
to be a distributive law of the powerset monad over itself, and a monad structure on the
double (covariant) powerset was derived from that claim in the standard way. The above
counterexample applies there, and the structure defined in [27] is not, in fact, a monad. The
mistake can be traced back to [26, pp. 76-79], where the same purported monad structure is
defined via a Kleisli triple which, in fact, fails to satisfy one of the axioms of Kleisli triples.

To avoid these problems, we choose another definition of χ: given a finite family S of
finite sets, it returns all sets that:

• are contained in the union of S (and are therefore finite, and there are finitely many of
them), and
• intersect with every set in S.

Formally:

χX(S) =
{

V ⊆
⋃

S | V ∩ U 6= ∅ for each U ∈ S
}

. (6.5)

This turns out to be a natural transformation (see Appendix C). As a side remark, note
that χ is not a distributive law of the monad Pω over itself; it does not even satisfy the unit
axioms.

Now the composition κ = Bχ ◦ τPω yields a determinization procedure. To show
that the diagram in Theorem 6.4 commutes, a key ingredient is the fact that χ correctly
distributes conjunction over disjunction or, more formally, that the diagram

PωPωG
Pωα♭

+3

χG

��

PωG
β♭

�%
❈❈

❈❈
❈❈

❈❈

❈❈
❈❈

❈❈
❈❈

PωPωG
Pωβ♭

+3 PωG
α♭

+3 G

(6.6)

commutes, where α and β are as in Example 4.5. (See Appendix C for details.)
By Theorem 6.4 we conclude that for any alternating automaton: s♭ = s♭ρ⊚α ◦ ηX

where X is the set of states, s♭ is the language semantics of the alternating automaton
as in Example 4.5, and s♭ρ⊚α is the usual language semantics (as in Example 4.4) of the
non-deterministic automaton obtained by determinization.

The determinization procedure formalized by our χ (and therefore κ) is slightly different
from the standard procedure for transforming alternating automata into nondeterministic
ones. It still returns an automaton where states are sets of states of the original alternating
automaton, but the family of successors of each such state is larger than in the standard
procedure (in particular, it is closed under taking set-theoretic unions). This does not change
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the language semantics (additional successor states, being supersets of some successor states
in the standard nondeterministic automaton, do not accept any additional words), but the
reachable part of the nondeterministic automaton may be larger than the one obtained by
the standard procedure. As a result, although our determinization is correct, it may be less
efficient than the standard one. This is the price we paid to salvage the naturality of χ. We
do not know how to model precisely the standard transformation of alternating automata
into nondeterministic ones in our framework.

7. Logics whose mates are isomorphisms

Corollary 6.5 provides a sufficient condition for a given determinization procedure to be
correct with respect to a forgetful logic. However, in general there is no guarantee that
a correct determinization procedure for a given logic exists. Indeed it would be quite
surprising if it did: the language semantics of (weighted) tree automata (see Example 4.6)
is an example of a forgetful logic, and such automata are well known not to determinize in
a classical setting.

In this section we provide a sufficient condition for a correct determinization procedure
to exist. Specifically, for an endofunctor B, we assume a logic ρ whose mate ρ♭ : BG⇒ GL is
a natural isomorphism. This condition holds, for instance, for ρ in Example 4.4 and for θ in
Example 6.6. It has been studied before in the context of determinization constructions [16].

Its important consequence is that the logical semantics s♭ in (2.5) from Section 3 can be
seen as a B-coalgebra morphism:

BX
Bs♭ // BGΦ

GLΦ

(ρ♭
Φ
)−1

OO

X

h

OO

s♭
// GΦ

Ga

OO (7.1)

Moreover, as shown in [16, Lemma 6] (see also [13]), the construction mapping

LA
g // A to GA

Gg // GLA
(ρ♭A)−1

// BGA

defines a functor Ĝ : Alg(L)→ Coalg(B), which is a contravariant adjoint to F̂ (see (2.3) in

Section 3). As a result, Ĝ maps initial objects to final ones, hence Ĝ(Φ, a) = (GΦ, (ρ♭Φ)
−1 ◦

Ga) is a final B-coalgebra. Therefore, s♭ is a final coalgebra morphism from (X,h).
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7.1. Canonical determinization. The setting of a forgetful logic α, ρ where the mate of
ρ is a natural isomorphism gives rise to the following diagrams:

Coalg(TB)
F̃ //

��

Alg(L)
Ĝ ..

��

Coalg(B)

��

F̂

mm

C
F

// D
G

++ C
F

kk

Coalg(BT )
F̃ ′

//

��

Alg(L)
Ĝ ..

��

Coalg(B)

��

F̂

mm

C
F

// D
G

++ C
F

kk

(7.2)

The functor F̃ arises from the logic α ⊚ ρ, the functor F̃ ′ arises from ρ ⊚ α, the functor
F̂ arises from ρ and its contravariant adjoint Ĝ from the fact that ρ♭ is iso. Note that we
make no assumptions on α; in particular, α♭ need not be an action.

The composition ĜF̃ is a determinization procedure, turning a coalgebra f : X → TBX

into a B-coalgebra with carrier GFX. Explicitly, ĜF̃ (X, f) is

GFX
GFf // GFTBX

GαBX // GFBX
GρX // GLFX

(ρ♭)−1

FX // BGFX . (7.3)

Similarly, the composition ĜF̃ ′ is a determinization procedure, mapping a coalgebra g : X →
BTX to

GFX
GFg // GFBTX

GρTX // GLFTX
GLαX // GLFX

(ρ♭)−1
FX // BGFX . (7.4)

These determinization procedures are correct with respect to the logics α ⊚ ρ and ρ ⊚ α

respectively, in the following sense, much stronger than required by Definition 6.2.

Theorem 7.1. For any TB-coalgebra (X, f), the logical semantics s♭ of α ⊚ ρ on (X, f)

coincides with the final semantics of the B-coalgebra ĜF̃ (X, f) precomposed with the unit
ι : Id⇒ GF . The same holds for BT -coalgebras and ρ⊚ α.

Proof. Let (X, f) be a TB-coalgebra (the case of BT -coalgebras is analogous). The logical

semantics s♭ is defined by s♭ = Gs ◦ ιX , where s : (L, a) → F̃ (X, f) is the unique algebra
morphism arising by initiality. Hence, we only need to show that Gs is the final semantics
of ĜF̃ (X, f). To see this, apply Ĝ to s to get a coalgebra morphism

Gs : ĜF̃ (X, f)→ Ĝ(L, a) .

But Ĝ(L, a) is a final coalgebra, so we are done.

7.2. Determinization after preprocessing. Strictly speaking, the above constructions
ĜF̃ and ĜF̃ ′ are not examples of determinization procedures as understood in [16]: the

functors ĜF̃ and ĜF̃ ′ lift GF rather than T , and the liftings do not arise from a natural
transformation as described in Section 6. However, they are almost examples: after an
encoding of TB-coalgebras as GFB-coalgebras and of BT -coalgebras as BGF -coalgebras,
they arise from a distributive law κ : GFB ⇒ BGF .

Indeed, recall from Section 3 that α : F ⇒ FT uniquely determines a natural transfor-

mation α† : T ⇒ GF . Furthermore, this induces functors Coalg(BT )
Bα†◦−
−−−−→ Coalg(BGF )

and Coalg(TB)
α†B◦−
−−−−→ Coalg(GFB), by simple composition.



24 B. KLIN AND J. ROT

Now, define a canonical logic for GF by

ε = ǫF : F ⇒ FGF, or equivalently, ε♭ = Gǫ : GFG⇒ G.

(Note that ε♭ is always a GF -action on G.) Given a logic ρ for B this gives rise to forgetful
logics ρ ⊚ ε and ε ⊚ ρ, for GFB-coalgebras and BGF -coalgebras respectively. Note that
these logics do not depend on α anymore.

Lemma 7.2. For any ρ : LF ⇒ FB and α : F ⇒ FT , the natural transformation α†B is a
morphism of logics (with id as the translation of syntax) from ε⊚ ρ to α⊚ ρ, and Bα† is a
morphism from ρ⊚ ε to ρ⊚ α.

Proof. It suffices to prove that α† is a morphism of logics from ε to α. This, recalling the
definition of α† from Section 3, means that the outside of the following diagram should
commute:

TG

T ιG
��

TG

α♭

��
TGFG

α♭FG
��

TGǫ

3;♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦

G

GFG

Gǫ

3;♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦

which follows from naturality of α♭ and from (2.1).

As a consequence of Lemma 2.3 and the above, we have commuting diagrams

Coalg(TB)

F̄ ##❋
❋❋

❋❋
❋❋

❋

α†B◦− // Coalg(GFB)

F̄εzz✈✈✈
✈✈
✈✈
✈✈

Alg(L)

Coalg(BT )

F̄ ′ ##❋
❋❋

❋❋
❋❋

❋

Bα†◦− // Coalg(BGF )

F̄ ′
εzz✈✈✈

✈✈
✈✈
✈✈

Alg(L)

(7.5)

where F̄ε is the functor defined by ε⊚ρ as in (2.3), and F̄ ′
ε the functor defined by ρ⊚ε. Hence,

encoding TB-coalgebras as GFB-coalgebras does not change their logical semantics. More
precisely, for any f : X → TBX, the map from X to GΦ defined as the logical semantics

of ε ⊚ ρ on α
†
BX ◦ f , coincides with semantics of α ⊚ ρ on f . A similar result holds for

BT -coalgebras.
Thanks to the mate ρ♭ : BG ⇒ GL being an isomorphism, the functor GF has a

distributive law over B, denoted κ : GFB ⇒ BGF and defined by:

GFB
Gρ +3 GLF

(ρ♭)−1F
+3 BGF. (7.6)

Remark 7.3. The same construction is used in [18] to prove that a functor lifting to the
category of Eilenberg-Moore algebras for a monad induces a distributive law. There, the
right adjoint G is the (covariant) forgetful functor; having a lifting of B then means having
a functor L with the equality BG = GL.

Using κ we can apply the determinization construction from [16] as described in Sec-
tion 6, putting K = B, and taking the monad on GF arising from the adjunction.

Lemma 7.4. The determinization procedure (GF )κ defined as in (6.2) is correct with respect
to ε⊚ ρ. The determinization procedure (GF )κ is correct with respect to ρ⊚ ε.
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Proof. We use Corollary 6.5, where we put T = GF , α = ε defined above, K = B, and
θ = ρ. Obviously then θ is expressive, and it is easy to check that ε♭ = Gǫ is an action. The
only remaining condition is that κ is a morphism of logics as in Theorem 6.4, which is the
outer shape of:

GFBG
GFρ♭ +3

GρG
��

GFGL

GǫL
��

GLFG

(ρ♭)−1FG
��

GLǫ +3 GL

(ρ♭)−1

��

id

❏❏
❏❏

❏❏
❏❏

❏

❏❏
❏❏

❏❏
❏❏

❏

BGFG
BGǫ

+3 BG
ρ♭

+3 GL.

Here, the top square commutes by Lemma 2.2 and the bottom square by naturality of
(ρ♭)−1.

Altogether, the following two-step determinization procedures arise:

Coalg(TB)

��

α†B◦−// Coalg(GFB)

��

(GF )κ// Coalg(B)

��
C

Id // C
GF // C

Coalg(BT )

��

Bα†◦−// Coalg(BGF )

��

(GF )κ// Coalg(B)

��
C

Id // C
GF // C

and they are correct with respect to α⊚ ρ and ρ⊚ α respectively.
Correctness can also be proved without Corollary 6.5, using Theorem 7.1, since the

procedures coincide with the constructions from (7.3) and (7.4):

Theorem 7.5. The following diagrams commute:

Coalg(TB)
α†B◦−//

F̃
��

Coalg(GFB)

(GF )κ

��
Alg(L)

Ĝ

// Coalg(B)

Coalg(BT )
Bα†◦−//

F̃ ′

��

Coalg(BGF )

(GF )κ
��

Alg(L)
Ĝ

// Coalg(B).

with F̃ and F̃ ′ and Ĝ defined as in (7.2).

Proof. By Lemma 7.2, α†B andBα† are morphisms of logics, which means that the diagrams
in (7.5) commute. Hence, we only need to check commutativity of:

Coalg(GFB)

(GF )κ

��

F̄ε

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

Alg(L)
Ĝ

// Coalg(B)

Coalg(BGF )

(GF )κ
��

F̄ ′
ε

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

Alg(L)
Ĝ

// Coalg(B).

For the left triangle, notice that F̄ε maps any f : X → GFBX to

LFX
ρX // FBX

ǫFBX // FGFBX
Ff // FX

and applying Ĝ yields

GFX
GFf // GFGFBX

GǫFBX // GFBX
GρX // GLFX

(ρ♭)−1

FX // BGFX
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which coincides with (GF )κ(X, f). Note that GǫF is the multiplication of the monad GF .

For the right triangle, we compute F̃ ′
ε(g : X → BGFX):

LFX
LǫFX // LFGFX

ρGFX // FBGFX
Fg // FX

and apply Ĝ, yielding:

GFX
GFg // GFBGFX

GρGFX // GLFGFX
GLǫFX // GLFX

(ρ♭)−1

FX // BGFX. (7.7)

Further, (GF )κ(g : X → BGFX) is:

GFX
GFg // GFBGFX

GρGFX // GLFGFX
(ρ♭)−1

FGFX// BGFGFX
BGǫFX // BGFX

which coincides with (7.7) by naturality of (ρ♭)−1.

7.3. A connection to Brzozowski’s algorithm. Call a B-coalgebra observable if the
morphism into a final coalgebra (assuming it exists) is mono [3]. For D = Set, the above
canonical determinization procedure can be adapted to construct, for any TB-coalgebra, an
observable B-coalgebra whose final semantics coincides with the logical semantics on the
original one.

Indeed, recall that Set has an (epi,mono)-factorization system and L (as every endo-
functor on Set) preserves epimorphisms. From this it follows that every L-algebra homo-
morphism decomposes as a surjective homomorphism followed by an injective one. Given a
coalgebra f : X → TBX, apply this to decompose the algebra homomorphism s : (Φ, a)→
F̃ (X, f) as s = m ◦ e, where m and e are injective and surjective respectively; call the
L-algebra in the middle (R, r). Recall that Gs is a coalgebra homomorphism into the final
coalgebra. In the present situation it decomposes as follows:

ĜF̃ (X, f)
Gm

//

Gs

))

Ĝ(R, r)
Ge

// Ĝ(Φ, a)

and recall that Ĝ(Φ, a) is a final coalgebra. Because G is a right adjoint, it maps epis to

monos, therefore Ge is injective and Ĝ(R, r) is observable. Moreover, thanks to Theorem 7.1

we have s♭ = Gs ◦ ιX = Ge ◦ Gm ◦ ιX , hence the final semantics Ge of Ĝ(R, r) coincides
with the logical semantics on (X, f) along the mapping Gm ◦ ιX .

Note that the construction of Ĝ(R, r) from (X, f) is not a determinization procedure
itself according to Definition 6.1, as it does not lift any functor on C.

The above refers to TB-coalgebras, but as everything else in this section, analogous
reasoning works also for BT -coalgebras. For T = Id and B = 2× −A on C = Set, that (al-
most) corresponds to Brzozowski’s algorithm for minimization of deterministic automata [4].

Applying F̃ to the given automaton corresponds to reversing transitions and turning final
states into initial ones. Epi-mono factorization corresponds to taking the reachable part of
this automaton. Then, applying Ĝ reverses transitions again, and turns initial states into
final ones. Our abstract approach stops here; the original algorithm concludes by taking
the reachable part again, which ensures minimality.

For a more detailed coalgebraic presentation of the full Brzozowski minimization algo-
rithm in several concrete examples, see [3]. Another approach, based on duality theory, is
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presented in [2]. The main idea there is similar, in the sense that contravariant adjunctions
are lifted to adjunctions between categories of coalgebras and algebras. However, it differs
from the above development in that the adjunctions used in [2] are assumed to be dual equiv-
alences, and the lifting of the duality is proved concretely for each example, rather than
that a general condition is given. Another coalgebraic approach to minimization, based on
partition refinement, is in [1]. It is mentioned in the conclusion that part of Brzozowski’s
algorithm appears as an instance of the abstract construction introduced there, but the
precise connection remains to be understood.

Notice that we only assume the mate of ρ to be iso; there are no requirements on α.
The mate of ρ is iso for the logic from Example 4.4. Thus, we can instantiate α to obtain
observable deterministic automata from non-deterministic automata or even alternating
automata (by taking T = PωPω and, for α, the composition of α and β from Example 4.5).
The logic θ from Example 6.6 is covered as well, so one can treat Moore automata and
weighted automata. However, the abstract construction of an observable automaton does
not necessarily yield a concrete algorithm, as discussed for the case of weighted automata
in [3].
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Appendix A. Details of Section 4

In this section we expand on some of the examples considered in Section 4.

Example 4.1. We spell out the details of the semantics of the logic α⊚ ρ on an automaton
f : X → PωBX:

s♭(x)(ε) = tt ⇐⇒ α♭LA∗(Pωρ
♭
A∗((PωBs

♭)(f(x))))(∗) = tt

⇐⇒ ∃ϕ ∈ Pωρ
♭
A∗((PωBs

♭)(f(x))). ϕ(∗) = tt

⇐⇒ ∃t ∈ f(x). ρ♭A∗(Bs♭(t))(∗) = tt

⇐⇒ ∗ ∈ f(x)

where ε is the empty word, and for all a ∈ A and w ∈ A∗:

s♭(x)(aw) = tt ⇐⇒ ∃t ∈ f(x). ρ♭A∗(Bs♭(t))(a,w) = tt

⇐⇒ ∃t ∈ f(x). Bs♭(t) = (a, ϕ) ∧ ϕ(w) = tt

⇐⇒ ∃y ∈ X. (a, y) ∈ f(x) ∧ s♭(y)(w) = tt
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Example 4.5. Spelling out s♭ yields s♭(x)(ε) = o(x), and

s♭(x)(aw) = tt ⇐⇒ α♭A∗(Pωβ
♭
A∗((PωPωs

♭)(f(x)(a))))(w) = tt

⇐⇒ ∃ϕ ∈ Pωβ
♭
A∗((PωPωs

♭)(f(x)(a))). ϕ(w) = tt

⇐⇒ ∃U ∈ (PωPωs
♭)(f(x)(a)). ∀ϕ ∈ U. ϕ(w) = tt

⇐⇒ ∃S ∈ f(x)(a). ∀y ∈ f(x)(a). s♭(y)(w) = tt

Example 4.6. In order to understand the semantics s♭ of the forgetful logic on a tree au-
tomaton, we first compute the composite logic α♭Σ ◦Mρ♭ :MΣS− ⇒ SΣ:

(α♭ΣΦ ◦Mρ♭Φ(ϕ))(σ(w1, . . . , wn)) =
∑

ψ∈SΣΦ

(Mρ♭Φ(ϕ))(ψ) · ψ(σ(w1, . . . , wn))

=
∑

ψ∈SΣΦ

∑

γ∈ρ♭
Φ

−1
(ψ)

ϕ(γ) · ψ(σ(w1, . . . , wn))

=
∑

ϕ1,...,ϕn∈SΦ

ϕ(σ(ϕ1, . . . , ϕn)) ·
∏

i=1..n

ϕi(wi)

The next step is to instantiate this to Σ∗∅ and precompose withMΣs♭:

(α♭ΣΣ∗∅ ◦Mρ♭ ◦MΣs♭(ψ))(σ(t1, . . . , tn))

=
∑

ϕ1,...,ϕn∈SΣ
∗∅

(MΣs♭(ψ))(σ(ϕ1 , . . . , ϕn)) ·
∏

i=1..n

ϕi(ti)

=
∑

ϕ1,...,ϕn∈SΣ
∗∅

∑

x1∈s♭
−1

(ϕ1)
...

xn∈s♭
−1

(ϕn)

ψ(σ(x1, . . . , xn)) ·
∏

i=1..n

ϕi(ti)

=
∑

x1,...,xn∈X

ψ(σ(x1, . . . , xn)) ·
∏

i=1..n

s♭(xi)(ti)

It follows that the diagram (4.5) commutes if and only if for all σ(t1, . . . tn) and all x ∈ X:

s♭(x)(σ(t1, . . . , tn)) =
∑

x1,...,xn∈X

f(x)(σ(x1, . . . , xn)) ·
∏

i=1..n

s♭(xi)(ti)

which is the semantics presented in Example 4.6.
The map s♭ is computed by induction; this is done by turning a weighted tree automaton

f into the Σ-algebra F̂ (f), which can be viewed as a deterministic weighted bottom-up tree
automaton. We spell out the details. Given a coalgebra f : X → MΣX the computed
Σ-algebra looks as follows:

Σ(SX)
ρX // SΣX

αΣX // SMΣX Sf // SX

We have
αX(ϕ)(ψ) =

∑

x∈X

ϕ(x) · ψ(x)
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and ρ = ρ♭:

(SΣηX ◦ S
ρ♭
SX ◦ ηΣSX (σ(ϕ1, . . . , ϕn)))(τ(x1, . . . , xm))

= (S
ρ♭
SX

◦ΣηX ◦ λψ.ψ(σ(ϕ1, . . . , ϕn)))(τ(x1, . . . , xm))

= (ρ♭
SX
◦ ΣηX(τ(x1, . . . , xm)))(σ(ϕ1, . . . , ϕn))

= ρ♭
SX

(τ(λϕ.ϕ(x1), . . . , λϕ.ϕ(xm)))(σ(ϕ1, . . . , ϕn))

=

{

∏

i=1..n ϕi(xi) if σ = τ

0 otherwise

The algebra is as follows:

F̂ (X, f)(σ(ϕ1, . . . , ϕn))(x) = (Sf ◦ αΣX ◦ ρX(σ(ϕ1, . . . , ϕn)))(x)

= (αΣX ◦ ρX(σ(ϕ1, . . . , ϕn)))(f(x))

=
∑

t∈ΣX

f(x)(t) · ρX(σ(ϕ1, . . . , ϕn))(t)

=
∑

x1,...,xn∈X

f(x)(σ(x1, . . . , xn)) ·
∏

i=1..n

ϕi(xi)

Appendix B. Proof of Lemma 5.2

Recall the definitions:
α† = α♭F ◦ T ι, α♭ = Gǫ ◦ α†G.

First let us assume that α♭ : TG ⇒ G is a monad action, and check the axioms of monad
morphisms for α†. The unit axiom is the outer shape of:

Id
ι +3

η

��

GF

●●
●●

●●
●●

●

●●
●●

●●
●●

●

ηGF
��

T
T ι

+3 TGF
α♭F

+3 GF

where the square commutes by naturality of η, and the triangle by a monad action axiom.
The multiplication axiom is the outer shape of:

TT
TT ι +3

µ

��

TTGF
Tα♭F +3

µGF

��

TGF
T ιGF +3

▲▲
▲▲

▲▲
▲▲

▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
TGFGF

α♭FGF+3

TGǫF
��

GFGF

GǫF

��

TGF

α♭F

"*▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

T
T ι

+3 TGF
α♭F

+3 GF

where everything commutes, from left to right: by naturality of µ, by a monad action axiom,
by (2.1) and by naturality of α♭.
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Now assume that α† : T ⇒ GF is a monad morphism, and check the axioms of monad
actions for α♭. The unit axiom is the outer shape of:

G
ηG

w� ✇✇
✇✇
✇✇
✇✇

✇✇
✇✇
✇✇
✇✇

ιG
�� ❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋

TG
α†G

+3 GFG
Gǫ

+3 G

where the left triangle is the unit axiom of a monad morphism, and the right triangle is (2.1).
The multiplication axiom is the outer shape of:

TTG
Tα†G +3

µG

��

TGFG
TGǫ +3

α†GFG
��

TG

α†G
��

GFGFG
GFGǫ

+3

GǫFG
��

GFG

Gǫ
��

TG
α†G

+3 GFG
Gǫ

+3 G

where the leftmost shape is the multiplication axiom of a monad morphism, and the two
smaller squares commute by naturality of α† and ǫ.

Appendix C. Details of examples in Section 6

Example 6.6. The condition from Theorem 6.4 is commutativity of the following diagram:

M(A× S
− + 1)

Mρ♭ +3

κ
S−

��

M(SA×−+1)
α♭
A×−+1+3 SA×−+1

S× (MS
−)A

id×(α♭)A +3 S× (S−)A
θ♭ +3 SA×−+1

Indeed, we have

Kα♭Φ ◦ κSΦ(ϕ) = (ϕ(∗), λa.α♭(λψ.ϕ(a, ψ))) = (ϕ(∗), λa.λw.
∑

ψ∈SΦ

ϕ(a, ψ) · ψ(w))

and thus

(θ♭Φ ◦Kα
♭
Φ ◦ κSΦ(ϕ))(∗) = ϕ(∗)

(θ♭Φ ◦Kα
♭
Φ ◦ κSΦ(ϕ))(a,w) =

∑

ψ∈SΦ

ϕ(a, ψ) · ψ(w)

which coincides with α♭A×Φ+1◦Mδ♭Φ as computed (in a more general setting) in Appendix A.
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Example 6.7. We treat the determinization 〈τ o, τ t〉 described in the example. The relevant
condition of Theorem 6.4 instantiates to commutativity of:

Pω(2× (2−)A)
Pωρ♭ +3

〈τo
2−
,τ t

2−
〉

��

Pω(2
A×−+1)

β♭L +3 2A×−+1

2× (Pω(2
−))A

id×(β♭)A+3 2× (2−)A
ρ♭ +3 2A×−+1

We have, for any set Φ:

(β♭LΦ ◦ Pωρ
♭
Φ)(S)(∗) = tt ⇐⇒ ∀ϕ ∈ (Pωρ

♭
Φ)(S).ϕ(∗) = tt

⇐⇒ ∀(o, t) ∈ S.o = tt

⇐⇒ τ o2Φ(S) = tt

⇐⇒ (ρ♭Φ ◦Bβ
♭
Φ ◦ 〈τ

o
2Φ , τ

t
2Φ〉)(S)(∗) = tt

and for any a ∈ A, w ∈ Φ:

(β♭LΦ ◦ Pωρ
♭
Φ)(S)(a,w) = tt ⇐⇒ ∀ϕ ∈ (Pωρ

♭
Φ)(S).ϕ(a,w) = tt

⇐⇒ ∀(o, t) ∈ S.t(a)(w) = tt

⇐⇒ ∀ϕ ∈ τ t2Φ(S)(a).ϕ(w) = tt

⇐⇒ β♭Φ(τ
t
2Φ(S)(a))(w) = tt

⇐⇒ ((β♭Φ)
A ◦ τ t2Φ)(S)(a)(w) = tt

⇐⇒ (ρ♭Φ ◦Bβ
♭
Φ ◦ 〈τ

o
2Φ , τ

t
2Φ〉)(S)(a,w) = tt

which proves commutativity of the diagram.

Example 6.8. First, we check that χ defined by (6.5) is a natural transformation. To this
end, for any function f : X → Y , and a family S ∈ PωPωX, we need to check that

χY ((PωPωf)(S)) = (PωPωf)(χX(S)).

For any W ⊆ Y , calculate:

W ∈ χY ((PωPωf)(S)) ⇐⇒ W ⊆
⋃

(PωPωf)(S) ∧ ∀T ∈ (PωPωf)(S). W ∩ T 6= ∅

⇐⇒ W ⊆ Pωf
(

⋃

S
)

∧ ∀U ∈ S. W ∩ (Pωf)(U) 6= ∅ (C.1)

W ∈ (PωPωf)(χX(S)) ⇐⇒ ∃V ∈ χX(S). W = (Pωf)(V )

⇐⇒ ∃V ⊆
⋃

S. (W = (Pωf)(V ) ∧ ∀U ∈ S. V ∩ U 6= ∅) (C.2)

For the second equivalence in (C.1), notice that
⋃

(PωPωf)(S) = Pωf
(

⋃

S
)

for any f : X → Y and S ⊆ PωX, since direct images preserve unions.
We need to show that (C.1) and (C.2) are equivalent for every W .
For the implication from (C.1) to (C.2), put

V =
←−
f (W ) ∩

⋃

S.
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Then W = (Pωf)(V ). Indeed, for the left-to-right containment, pick any y ∈ W . Then,

sinceW ⊆ Pωf (
⋃

S), there is some x ∈
⋃

S such that f(x) = y. Obviously then x ∈
←−
f (W ),

hence x ∈ V and y ∈ Pωf(V ). The right-to-left containment is equivalent to
←−
f (W ) ⊇ V ,

which follows directly from the definition of V .
Moreover, for any U ∈ S, by (C.1) there exists some y ∈ W ∩ (Pωf)(U), so there is

some x ∈ U such that f(x) = y. Then x ∈
←−
f (W ). Obviously x ∈

⋃

S as well, so x ∈ V
and V ∩ U 6= ∅.

For the implication from (C.2) to (C.1), take a V ⊆
⋃

S that exists by (C.2), and
calculate:

W = (Pωf)(V ) ⊆ (Pωf)
(

⋃

S
)

.

Furthermore, for any U ∈ S, by (C.2) we have V ∩ U 6= ∅. Then calculate:

W ∩ (Pωf)(U) = (Pωf)(V ) ∩ (Pωf)(U) ⊇ (Pf)(V ∩ U) 6= ∅.

We thus conclude that χ : PωPω ⇒ PωPω is a natural transformation.

We now prove that the diagram (6.6) commutes. Recall that, for any set X and any
S ∈ PωPω2

X , U ∈ Pω2
X and x ∈ X:

χ2X (S) = {V ⊆
⋃

S | ∀U ∈ S. V ∩ U 6= ∅}

α♭X(U)(x) = tt ⇐⇒ ∃φ ∈ S. φ(x) = tt

β♭X(U)(x) = tt ⇐⇒ ∀φ ∈ S. φ(x) = tt

Then calculate, for any S ∈ PωPω2
X and x ∈ X:

β♭X(Pωα
♭
X(S))(x) = tt ⇐⇒ ∀φ ∈ Pωα

♭
X(S). φ(x) = tt

⇐⇒ ∀U ∈ S. α♭X(U)(x) = tt

⇐⇒ ∀U ∈ S. ∃φ ∈ U.φ(x) = tt (C.3)

α♭X(Pωβ
♭
X(χ2X (S)))(x) = tt ⇐⇒ ∃φ ∈ Pωβ

♭
X(χ2X (S)). φ(x) = tt

⇐⇒ ∃V ∈ χ2X (S). β
♭
X(V )(x) = tt

⇐⇒ ∃V ∈ χ2X (S). ∀φ ∈ V.φ(x) = tt

⇐⇒ ∃V ⊆
⋃

S.(∀U ∈ S. U ∩ V 6= ∅) ∧ (∀φ ∈ V.φ(x) = tt)

(C.4)

Conditions (C.3) and (C.4) are easily equivalent, therefore (6.6) commutes.

Finally, the condition of Theorem 6.4 in this case is that the following commutes:

PωBPωG
PωBα♭

+3

τPωG

��

PωBG
Pωρ♭ +3

τG
��

PωGL
β♭L +3 GL

BPωPωG
BPωα♭

+3

BχG

��

BPωG
Bβ♭

+3 BG

ρ♭
7?

✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇

BPωPωG
BPωβ♭

+3 BPωG

Bα♭
5=ttttttttt

ttttttttt
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The square commutes by naturality of α♭, and the upper right shape is the diagram for
proving correctness of the determinization procedure τ considered in Example 6.7. The
lower shape is (6.6) mapped by B.
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