
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 5:1–5:47
https://lmcs.episciences.org/

Submitted Mar. 20, 2018
Published Oct. 29, 2019

SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS†

BARTEK KLIN∗ AND MATEUSZ LE LYK∗∗

University of Warsaw, Dept. of Mathematics, Informatics and Mechanics
e-mail address: klin@mimuw.edu.pl

University of Warsaw, Dept. of Philosophy and Sociology
e-mail address: mlelyk@uw.edu.pl

Abstract. We study an extension of modal µ-calculus to sets with atoms and we study its
basic properties. Model checking is decidable on orbit-finite structures, and a correspondence
to parity games holds. On the other hand, satisfiability becomes undecidable. We also
show expressive limitations of atom-enriched µ-calculi, and explain how their expressive
power depends on the structure of atoms used, and on the choice between basic or vectorial
syntax.

1. Introduction

Modal µ-calculus [1,5,6,31] is perhaps the best known formalism for describing properties of
labeled transition systems or Kripke models. It combines a simple syntax with a mathemati-
cally elegant semantics and it is expressive enough to specify many interesting properties
of systems. For example, the property “[in the current state] the predicate p holds, and
there exists a transition path where it holds again some time in the future” is defined by a
µ-calculus formula:

p ∧ ♦µX.(p ∨ ♦X).

Other similar formalisms, such as the logic CTL∗ [18], can be encoded in the modal µ-calculus.
On the other hand, decision problems such as model checking (“does a given µ-calculus
formula hold in a given (finite) model?”) or satisfiability (“does a given formula hold in
some model?”) are decidable.

Formulas of the µ-calculus are built over some fixed vocabulary of basic predicates, such
as p above, whose semantics is provided in every model. In principle this vocabulary may
be infinite, but this generality is hardly useful: since a formula of the µ-calculus is a finite
object, it may only refer to finitely many basic predicates.

In modelling systems, this finiteness may sometimes seem restrictive. Real systems
routinely operate on data coming from potentially infinite domains, such as numbers or

Key words and phrases: modal µ-calculus, sets with atoms.
† This is a revised and extended version of the conference paper [28].
∗ Supported by the Polish NCN grant 2012/07/E/ST6/03026.
∗∗ Partially supported by the Polish NCN grant 2016/21/B/ST6/01505.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(4:5)2019
c© Bartek Klin and Mateusz Łełyk
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

5:2 Bartek Klin and Mateusz Le lyk Vol. 15:4

character strings. Basic predicates observed about a system may reasonably include ones like
“a number n was input”, denoted here pn, for every number n. If one considers properties
such as “there exists a transition path where the currently input number is input again some
time in the future”, one is in trouble writing finite formulas to define them. Were infinitary
connectives allowed in the formalism, the formula∨

n∈N
(pn ∧ ♦µX.(pn ∨ ♦X))

would do the job; however, few good properties of the µ-calculus transport to a naively
construed infinitary setting. In particular, an obvious obstruction to any kind of decidability
results is that a general infinitary formula is not readily presented as input to an algorithm.

In this paper we introduce µ-calculus with atoms, where infinitary propositional connec-
tives are allowed in a restricted form that includes formulas such as the one above. Roughly
speaking, basic properties in formulas, and indeed whole Kripke models, are assumed to be
built of atoms that come from a fixed infinite structure. Out of many possible structures of
atoms, we concentrate on two: equality atoms, which come from a pure infinite set without
any relations, and ordered atoms, where a total ordering on the atoms can be used to build
Kripke models and formulas.

Boolean connectives in µ-formulas are indexed by sets that are potentially infinite but
are finitely definable in terms of atoms. This makes formulas finitely presentable.

Several basic properties of the standard µ-calculus hold in the atom-based setting.
Syntax and semantics of the calculus is defined in a standard way. The model checking
problem remains decidable, although this is not trivial, as formulas and models are now,
strictly speaking, infinite. A correspondence between µ-formulas and parity games with
atoms holds.

Some other properties of the classical calculus fail. The satisfiability problem becomes
undecidable, and the atom-based generalization of the finite model property fails. A vectorial
extension of the µ-calculus, which in the classical setting is expressively equivalent to the
basic “scalar” variant, here becomes strictly more expressive.

Atomic µ-calculi also turn out to be less expressive than might be expected. In particular,
the property #Path, which says “there exists a path where no basic predicate holds more
than once”, although decidable, is not definable. This means that, unlike in the classical
setting, an atomic extension of CTL∗ (where explicit quantification over paths makes such
properties easy to define) is not a fragment of the atomic µ-calculus. As it turns out, for
atomic CTL∗ even the model-checking problem is undecidable.

Our approach is a part of a wider programme of extending various computational models
to sets with atoms, which are a generalization of nominal sets [37]. For example, in [3] the
classical notion of finite automaton was reinterpreted in the universe of sets with atoms,
with a result related to register automata [22,34], an established model of automata over
infinite alphabets.

Temporal logics over structures extended with data from infinite domains, and their
connections to various types of automata, have been extensively studied in the literature. For
example, the linear time logic LTL has been extended with a freeze quantifier [16, 17, 21, 38]
which, for structures where every position is associated with a single data item, can store
the current item for future reference. This can serve as a mechanism for detecting repeated
data values (see also [14,15]). Another known idea is to extend temporal logics with local

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:3

constraints over data from a fixed infinite domain, see e.g. [8, 13]. In [20, 26], alternating
register automata on data words and trees were studied, closely connected to µ-calculi.

In all these works, the main goal is to study the decidability border for satisfiability
(or nonemptiness, in the case of automata). To that end, the authors impose various,
sometimes complex restrictions on their logics or automata, and inevitably limit their
expressiveness to some extent. In contrast to that, our aim is to lift the classical modal
µ-calculus to data-equipped structures in the most syntactically economic way, and to achieve
a relatively expressive formalism. As a price for this, the satisfiability problem quickly
becomes undecidable. However, we believe that this does not disqualify the atomic µ-calculus
as a practical formalism: most applications of temporal logics in system verification rely
only on solving the model checking problem, and that remains decidable here on a wide
class of structures.

It would be easy to give up even the decidability of model checking. This was done
in [36], in a setting very similar to ours, by extending a basic multimodal logic with infinitary
boolean connectives subject only to a finite support condition. The resulting logic has few
good properties except its huge expressive power (indeed, it can immediately encode our
atomic µ-calculus, and much more): its set of formulas is not even countable. Instead, our
boolean connectives are subject to a more restrictive condition of orbit finiteness, an idea
first used in [4] in the context of first-order logic with atoms.

Another branch of related work is centered around algebras of name-passing processes
such as the π-calculus, and variants of the µ-calculus aimed at specific transition systems
induced by those algebras. This line of work was started in [11], where a version of the
µ-calculus for model checking properties of π-calculus processes was proposed, with a sound-
and-complete proof system. Other efforts in this direction, resulting in logics fine-tuned to
specific infinite models, include [19,32], and a more abstract calculus was proposed in [12].

The closest related work in the literature is the first-order µ-calculus of Groote et
al. [24,25], where the classical µ-calculus is extended with quantification over data values
from arbitrary infinite data domains, and with fixpoints parametrized by data. Our in-
finitary boolean connectives can be seen as a syntactic variant of quantification over data
values, and indeed our atomic µ-calculi in their more expressive, vectorial form can be
seen as variants of the first-order µ-calculus specialized to very particular, well-behaved
infinite data domains. The main difference is in focus: while [24,25] aim for an expressive
formalism over rich data domains, with little hope for general decidability results and with
a focus on pragmatic usability, we insist on keeping model-checking decidable and delineate
expressiveness limitations that arise as a result.

This work is a revised and extended version of the conference paper [28]. There, the
basic (“scalar”) atomic µ-calculus over equality atoms L=

µ was introduced. Here we extend
that definition to ordered atoms, and consider a vectorial extension of atomic µ-calculus
over both structures of atoms, resulting in four calculi altogether. As it turns out, each of
the four has a different expressive power, but (in addition to the obviously similar definitions
of syntax and semantics) they share several basic properties, including the decidability of
model checking.

The structure of this paper is as follows. In Sect. 2 we briefly recall the modal µ-calculus
and related logics in the classical setting. In Sect. 3 we recall the basics of sets with atoms,
including the notions of finite support and orbit finiteness, focusing on two important cases:
equality atoms and ordered atoms. In Sect. 4 we introduce the syntax and semantics of
the atomic µ-calculus both in a basic “scalar” and in a vectorial version, for both these

5:4 Bartek Klin and Mateusz Le lyk Vol. 15:4

structures of atoms. In Sects. 5–8 we show various basic properties of atomic µ-calculi,
including the decidability of model checking, and a correspondence to parity games and
atomic bisimulation games. In Sect. 9 we focus on undecidability results. In Sect. 10 we
define properties of Kripke models that separate the four calculi we study in this paper, and
in Sect. 11 we formulate a decidable and natural property that is undefinable in all of them.
A brief list of future work directions is in Sect. 12.
Acknowledgments. We are very grateful to A. Facchini for collaboration in initial stages
of this work, to M. Bojańczyk, W. Czerwiński, P. Hofman, S. Lasota, S. Toruńczyk and
B. Wcis lo for valuable discussions, and to anonymous reviewers for their thorough work and
numerous insightful comments.

2. µ-calculus and related logics

To fix the notation and terminology, we begin by recalling basic definitions and properties of
the µ-calculus in the classical setting. For a more detailed exposition see e.g. [1, 5–7,39,41].

Definition 2.1 (Syntax). Let P be an infinite set of basic predicates and X an infinite set
of variables. The set Lµ of µ-calculus formulas is generated by the grammar:

φ ::= p | X | φ ∨ φ | ¬φ | ♦φ | µX.φ
where p ranges over P and X over X. We only allow formulas µX.φ where X occurs only
positively in φ (i.e. under an even number of negations).

We use the following standard abbreviations:

• > := p ∨ ¬p,
• φ ∧ ψ := ¬(¬φ ∨ ¬ψ),

• �φ := ¬♦¬φ,
• νX.φ := ¬µX.¬φ[X := ¬X].

Definition 2.2 (Kripke model). A Kripke model is a triple

K = 〈K,−→K, |=K〉
such that

• K is a set of states,
• −→K ⊆ K ×K is a transition relation,
• |=K ⊆ K × P is the satisfaction relation for basic predicates.

Superscripts in −→K and |=K will be often omitted when no risk of confusion arises. As
a convention, for a model denoted by a calligraphic letter such as K, its set of states will be
denoted by the corresponding italic letter.

Sometimes it will be notationally convenient to speak of the set of basic predicates that
hold in a state of a model:

predK(x) = {p ∈ P | x |=K p}.
Again, the superscript will usually be omitted.

Definition 2.3 (Semantics). Formulas of µ-calculus are interpreted in the context of a
Kripke model K and an environment, i.e., a partial function ρ : X⇀ P(K). For any formula
φ, the interpretation [[φ]]ρ ⊆ K is defined by induction:

• [[p]]ρ = {x ∈ K | x |= p},
• [[X]]ρ = ρ(X),

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:5

• [[¬φ]]ρ = K \ [[φ]]ρ,
• [[φ ∨ ψ]]ρ = [[φ]]ρ ∪ [[ψ]]ρ,
• [[♦φ]]ρ = {k ∈ K | ∃s ∈ [[φ]]ρ. k −→ s},
• [[µX.φ]]ρ = lfp(F),where F (A) = [[φ]]ρ[X 7→A].

In the last clause, the least fixpoint is taken for a function F : P(K)→ P(K). Subsets of
K form a complete lattice and (thanks to the positivity assumption in Definition 2.1) the
function F is monotone, so by Tarski’s theorem the least fixpoint exists and it arises as the
union of an increasing chain of approximants:

A0 ⊆ A1 ⊆ A2 ⊆ · · ·Aω ⊆ Aω+1 ⊆ · · ·
indexed by ordinal numbers, where

• Aα+1 = F (α) and
• Aβ =

⋃
α<β A

α for a limit ordinal β.

In particular, A0 = ∅.
We write [[φ]] (or [[φ]]K if K is less clear from context) instead of [[φ]]ρ if ρ is empty (i.e.,

nowhere defined). We say that φ holds in a state x ∈ K if x ∈ [[φ]] and denote it x |= φ; this
clearly agrees with the satisfaction relation |= for basic predicates.

Example 2.4. The formula µX.(p∨♦X) holds for a state x in a Kripke model K if and only
if there is a finite path from x to a state where p holds. The formula νX.(�X ∧µY.(p∨�Y))
holds in those states x where p holds infinitely often on every path from x.

For applications in system verification, the following two problems are considered:
Model checking: given a finite Kripke model K, a state x ∈ K and a formula φ ∈ Lµ,
decide if x |= φ.
Satisfiability: given a formula φ ∈ Lµ, decide if there exists a Kripke model K and a state
x ∈ K such that x |= φ.

It is very easy to see that model checking is decidable: in a finite Kripke model, one
can compute the semantics of a formula inductively, directly from the definition. A more
efficient procedure can be derived from a correspondence of µ-calculus with parity games.

Some well-known logics used in system verification can be translated into fragments of
the µ-calculus. We give two important examples:

Definition 2.5 (CTL∗). In the logic CTL∗ we distinguish state formulas Φ and path
formulas φ, formed according to the following grammar:

Φ ::= p | Φ ∨ Φ | ¬Φ | ∃φ φ ::= Φ | φ ∨ φ | ¬φ | φUφ | Xφ
where p comes from some fixed set of propositional variables.

Standard notational conventions include:

• ∀φ = ¬∃¬φ,
• φRψ = ¬(¬φU¬ψ),

• Fφ = >Uφ,
• Gφ = ¬F¬φ.

CTL∗ formulas are interpreted in Kripke models K: state formulas are interpreted over
states, and path formulas over paths. In the following definition of a satisfaction relation |=,
for a path π = 〈x0, x1, x2, . . .〉, by π[n..] we denote the subpath starting at xn.

• x |= ∃φ ⇐⇒ for some path π starting at x, π |= φ.
• π |= Φ ⇐⇒ π[0] |= Φ.

5:6 Bartek Klin and Mateusz Le lyk Vol. 15:4

• π |= Xφ ⇐⇒ π[1..] |= φ
• π |= φUψ ⇐⇒ there exists j ≥ 0 s.t. π[j..] |= ψ and for all i < j, π[i..] |= φ.

Boolean connectives are interpreted as expected.
The logic LTL is the fragment of CTL∗ where the symbol ∃ does not occur, with

semantics inherited from CTL∗. Usually LTL (where the distinction between state and path
formulas disappears) is interpreted in models that are infinite paths. Slightly more generally
(and more conveniently for our purposes), we will interpret them over pointed deterministic
Kripke models, i.e., ones where for each x ∈ K there is exactly one y ∈ K such that x −→ y.
This makes little difference, since in such a model every state uniquely determines an infinite
path.

Sometimes it is convenient to consider a syntactic extension of the µ-calculus to a
vectorial form. There, the fixpoint construct µX.φ is generalized to one of the form

φ = µXi.

X1. φ1

...
Xn. φn

 (2.1)

where {X1, . . . , Xn} ⊆ X (where we assume Xi 6= Xj for i 6= j) is any finite set of variables,
Xi is some element of that set, and φ1, . . . , φn are formulas where all of X1, . . . , Xn are
considered bound (and, as before, occur only positively).

There are a few intuitive notions concerning the body of the formula in (2.1), and it
will be useful to keep them in mind when we extend the vectorial µ-calculus with atoms in
Section 4. An expression

Xj .φj
may be seen as an equation (where the Xj is the left-hand side, and the φj the right-hand
side), and the set

Φ = {Xj .φj}j=1..n

is a system of equations where each variable appears on the left-hand side exactly once.
Alternatively, it can be seen as a function from the finite set {Xj}j=1..n to the set of formulas.
The variable Xi in φ, which we call the entry variable of the fixpoint formula, must belong
to that finite set. Then, striving for syntax that fits in a single line of text, the formula
in (2.1) may be rewritten as:

φ = µXi.Φ = µXi. {Xj .φj}j=1..n . (2.2)

The set of vectorial µ-calculus formulas will be denoted by ~Lµ. When we want to
distinguish the original calculus Lµ from the vectorial one, we will call it the scalar µ-
calculus.

For the semantics of a formula φ as above, in the context of a model K and an environment
ρ : X⇀ P(K), consider a function

F : (P(K))n → (P(K))n

defined by:

(F (A1, . . . , An))j = [[φj]]ρ[X1 7→A1,...,Xn 7→An] for j = 1, . . . , n,

then, for (B1, . . . , Bn) the least fixed point of F , define

[[φ]]ρ = Bi.

It is not difficult to see that for n = 1 this specializes to the original semantics in Definition 2.3.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:7

In the classical setting, vectorial modal µ-calculus is expressively equivalent to the
scalar one, i.e., every formula can be rewritten to a semantically equivalent scalar form,
using the so-called Bekić principle. The vectorial calculus is therefore mostly considered for
convenience, as its formulas seem to be more succint, and they correspond more closely to
alternating tree automata. As we shall see in Section 10, in the atomic setting the difference
is more significant, and adding vectorial formulas will extend the expressivity of atomic
µ-calculus.

3. Sets with atoms

We now recall the basic notions and results concerning sets with atoms, beginning with the
case of equality atoms, also known as nominal sets [37]. There are several essentially equivalent
ways to introduce these; we follow the set-theoretic presentation of [23], culminating in the
notion of orbit-finite sets [3, 37] and computable operations on them. Then we recall a more
general setting, advocated in [3], where atoms are equipped with a nontrivial relational
structure, in particular a total order.

Remark 3.1. When developing a theory of ”objects with atoms” (like automata with
atoms or modal µ-calculus with atoms) there seems to be two natural ways to proceed: one
can either (i) stick to the universe of (sufficiently well-behaved) sets with atoms and work
exclusively within this universe (which corresponds to working in a formal system such as
ZFA), or (ii) work in a broader universe of all sets and within this universe define what does
it mean to be a (sufficiently well-behaved) set with atom. We regard the second strategy as
more convenient to our immediate goals so will consistently follow it.

3.1. Equality atoms. Fix a countably infinite set A, whose elements we shall call atoms. A
bijection on A will be called an atom automorphism, and the group of atom automorphisms
is denoted Aut(A).

Loosely speaking, a set with atoms is a set that can have atoms, or other sets with atoms,
as elements. Formally, the universe UA of sets with atoms is defined by a von Neumann-like
hierachy, by transfinite induction on ordinal numbers α:

UA
0 = ∅, UA

α+1 = P(UA
α) + A, UA

β =
⋃
α<β

UA
α for β a limit ordinal,

where + denotes disjoint union of sets.
We are interested in sets that only depend on a finite number of atoms, in the following

sense. Atom automorphisms act on the universe UA by consistently renaming all atoms in
a given set. Formally, this is again defined by transfinite induction. This defines a group
action:

· : UA ×Aut(A)→ UA.

For a finite set S ⊂ A, let AutS(A) be the group of those automorphisms of A that fix every
element of S. We say that S supports a set x if x · π = x for every π ∈ AutS(A). A set is
equivariant if it is supported by the empty set. If x has a finite support then it has the least
finite support (see [3, Cor. 9.4] for a proof), denoted supp(x).

5:8 Bartek Klin and Mateusz Le lyk Vol. 15:4

Remark 3.2. In [23,37] a slightly different variant of equality atoms is developed, where
Aut(A) is taken to be the group of finite bijections, i.e. those that fix almost all atoms.
As argued in [37, Sec. 6.2], this difference is irrelevant as far as finitely supported sets are
concerned: exactly the same finite supports exist under both definitions. In the context of
finite bijections as atom automorphisms, existence of least supports was first proved in [23,
Prop. 3.4]. We allow all atom bijections as automorphisms since this approach generalizes
more naturally to richer atom structures: anticipating ordered atoms (see Section 3.2 below),
note that there are no nontrivial finite monotone bijections on the total order of rational
numbers.

From now on, we shall only consider sets with atoms that are hereditarily finitely
supported, i.e., ones that have a finite support, whose every element has some finite support
and so on.

Relations, functions etc. are sets in the standard sense, so the notions of support and
equivariance applies to them as well. Unfolding the definitions, for equivariant sets X and
Y , a relation R ⊆ X × Y is equivariant if

〈x, y〉 ∈ R implies 〈x · π, y · π〉 ∈ R
and a function f : X → Y is equivariant if

f(x · π) = f(x) · π
for every π ∈ Aut(A).

For any x with atoms, the S-orbit of x is the set {x · π | π ∈ AutS(A)}. Note that if S
supports x then the S-orbit of x is the singleton {x}. We shall write x ∼S y to say that x
and y belong to the same S-orbit, and we shall omit the subscript and write simply x ∼ y
for empty S. Similarly, an ∅-orbit will simply be called an orbit.

For any S, S-orbits form a partition of the universe U . Moreover, for any S-supported
set X, the S-orbits of its elements form a partition of X. We call such X S-orbit-finite if it is
a union of finitely many S-orbits. If S ⊆ T are finite, S supports X and X is S-orbit-finite,
then (T supports X and) X is also T -orbit-finite. Thanks to this observation, we may drop
the qualifier and simply call X orbit-finite, meaning “S-orbit-finite for any/every S that
supports X”. It is not difficult to check that every finitely supported subset of an orbit-finite
set is orbit-finite.

Example 3.3. • Any classical set (without atoms) is an equivariant set with atoms. Since
its every element is also equivariant, it forms its own orbit. Therefore, a classical set is
orbit-finite if and only if it is finite.
• An atom a ∈ A has no elements, and it is supported by {a}. Every finite set of atoms
S ⊆ A is supported by S, and every element of it forms a singleton S-orbit. Its complement
A \ S is also supported by S, and it is a single S-orbit. A subset of A that is neither finite
nor co-finite is not finitely supported, so we do not consider it a legal set with atoms.
• The set A of atoms, the set

(A
2

)
of two-element sets of atoms, and the set A2 of all ordered

pairs of atoms, are equivariant sets. The first two have a single orbit each, and the last
one is a union of two orbits:

A2 = {〈a, a〉 | a ∈ A} ∪ {〈a, b〉 | a 6= b ∈ A}.
Similarly, An is orbit-finite for every n ∈ N. The set A∗ of finite sequences of atoms is
hereditarily finitely supported, but not orbit-finite.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:9

• The powerset P(A) is equivariant itself, but it contains elements that are not finitely
supported, and therefore it is not considered a legal set with atoms. However, for every
legal set with atoms X, the set Pfs(X) of finitely supported subsets of X has the same
support as X and is a legal set of atoms.
• There are four equivariant binary relations on A: the empty relation, the equality relation,

the inequality relation and the full relation.
• There is no equivariant function from

(A
2

)
to A, but {〈{a, b}, a〉 | a 6= b ∈ A} is a legal

equivariant relation, and the function constant at an atom a is supported by {a}. The
only equivariant function from A to A is identity. The only equivariant functions from
A2 to A are the two projections, and the only equivariant function from A to A2 is the
diagonal a 7→ 〈a, a〉.

Orbit-finite sets, although usually infinite, can be presented by finite means and are
therefore amenable to algorithmic manipulation. There are a few ways to do this. In [3]
(with the idea going back to [9]), it was observed that every single-orbit equivariant set is
in an equivariant bijection with a set of k-tuples of distinct atoms, suitably quotiented by
a subgroup G ≤ Sym(k) of the symmetric group on k elements. Thus such a set can be
presented by a number k and the finite group G, and an orbit-finite set is a formal union of
such presentations. A somewhat more readable and concise scheme was used in [27], where
orbit-finite sets are presented by set-builder expressions of the form

{e | v1, . . . , vn ∈ A, φ} (3.1)

where e is again an expression, vi are bound atom variables and φ is a first-order formula
with equality. We refer to [27] for a precise formulation (and to [35] for a proof that all
orbit-finite sets can be presented this way, up to an equivariant bijection); suffice it to say
that the expressions in Example 3.3 are of this form, and other similar expressions are
allowed. The set defined by such an expression is supported by the atoms that appear freely
in the expression.

Remark 3.4. Using this representation, several basic operations on orbit-finite sets are
computable, including:

• union and intersection of sets, cartesian product, set difference,
• checking whether two sets are equal, or whether one is an element (or a subset) of the

other,
• applying an orbit-finite function to an argument, composing functions or relations,
• finding the direct image of a set along a function, finding the image of a subset along a

relation, etc.
• checking whether a finite set S supports a given set, calculating the least support of a set,
• partitioning a given set into S-orbits, calculating the S-orbit of a given element.

These basic operations have been implemented as components of atomic programming
languages [29,30].

The following easy but useful fact says that there are not too many orbit-finite sets or
finitely supported relations (or functions) between them.

Proposition 3.5. For any finite S ⊆ T ⊆ A,

(1) For any n ∈ N, there are only finitely many (up to equivariant bijection) n-orbit sets
supported by S.

5:10 Bartek Klin and Mateusz Le lyk Vol. 15:4

(2) For any orbit-finite set X supported by S, there are only finitely many subsets of X
supported by T .

(3) For any orbit-finite sets X,Y supported by S, there are only finitely many relations
between X and Y supported by T .

Proof. Part (1) follows from a stronger representation result mentioned above [3], which
says that every single-orbit set is a quotient of the set of all distinct tuples of atoms of a
fixed length. For n > 1, every n-orbit set is obviously just an n-tuple of single-orbit sets.

For part (2), notice that X has only finitely many T -orbits, and a subset of X supported
by T must arise by selecting a subset of these orbits.

Part (3) follows directly from part (2) as if X and Y are supported by S, then X × Y is
supported by S.

3.2. Ordered atoms. Intuitively, orbit-finite structures with atoms are those that can be
built of atoms using equality as the only relation between them. As advocated in [3], it is
possible and useful to consider atoms with more structure. Perhaps the most significant case
is that of atoms being rational numbers with the ordering relation.

Technically, this amounts to taking A = Q and putting Aut(A) to be the group of
automorphism of the total order Q, i.e., the group of monotone bijections on rational numbers.
All other definitions follow without further change. The basic results mentioned above for
equality atoms hold here as well, although the fact that the least support supp(x) exists,
requires a different proof (see [3, Cor. 9.5]). In particular, operations listed in Remark 3.4
remain computable.

Since Aut(A) is now a subgroup of the automorphism group considered for equality
atoms, it is easy to see that all legal sets with equality atoms remain legal for ordered atoms.
However, new legal sets, functions and relations appear.

Example 3.6. • For any a < b ∈ A, the open interval (a; b) ⊆ A becomes legal, at it is
finitely supported by S = {a, b}. The interval forms a single S-orbit. The closed interval
[a; b] is also supported by S, and it comprises three S-orbits: {a}, {b} and the open
interval. In general, finitely supported subsets of A are exactly those that are finite unions
of open intervals and single points.
• A and

(A
2

)
remain equivariant single-orbit sets, but the set of ordered pairs A2 now

decomposes into three orbits:

A2 = {〈a, a〉 | a ∈ A} ∪ {〈a, b〉 | a < b ∈ A} ∪ {〈a, b〉 | a > b ∈ A}.
Nevertheless, An remains orbit-finite for every n.
• There are now two equivariant functions from

(A
2

)
to A: the minimum and maximum. The

only equivariant function from A to A is still identity. There are four equivariant functions
from A2 to A: the two projections, minimum and maximum, but the only equivariant
function from A to A2 remains the diagonal a 7→ 〈a, a〉.

Remark 3.4 and Proposition 3.5 remain true for ordered atoms.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:11

4. µ-calculus with atoms

In this section we present our central definition: an extension of the classical µ-calculus
to sets with atoms. We begin by considering the scalar calculus; the vectorial calculus is
defined towards the end of this section.

4.1. Syntax. Syntactically, the (scalar) µ-calculus with atoms (or atomic µ-calculus) is
simply an extension of the (scalar) classical formalism with orbit-finite propositional connec-
tives.

Definition 4.1. Let P be an equivariant set with atoms of basic propositions, and let X be
an equivariant set with atoms of variables. The set LAµ of formulas of the atomic µ-calculus
is generated by the following grammar:

φ ::= p | X |
∨

Φ | ¬φ | ♦φ | µX.φ

where p ranges over P, X ranges over X and Φ ranges over orbit-finite sets of formulas. As
usual we only allow µX.φ where X occurs only positively in φ.

The above definition is parametrised by a basic structure A of atoms, and in particular
it makes sense for both equality atoms and ordered atoms. When we need to specify and
distinguish between these two cases, we will denote the equality-atomic µ-calculus by L=

µ ,

and the ordered-atomic µ-calculus by L<µ .
The “orbit-finite set of formulas” in the definition refers to a canonical action of Aut(A)

on formulas, extending the action on P (and on X, if it is nontrivial) inductively. Note that,
despite ostensibly infinite disjunctions, every formula in LAµ has a finite depth, since two
formulas in the same orbit necessarily have the same depth. Thanks to this, no need arises
for transfinite induction in reasoning about the syntax of LAµ formulas.

We use the same syntactic conventions as in the classical case:

• > := p ∨ ¬p,
•
∧

Φ := ¬
∨
{¬φ | φ ∈ Φ},

• �φ := ¬♦¬φ,
• νX.φ := ¬µX.¬φ[X := ¬X].

With these conventions, every formula can be written in the negation normal form,
where negation occurs only in front of a basic proposition or a variable.

Often it is notationally convenient to view an orbit-finite set Φ as a family of formulas
indexed by a simpler orbit-finite set. For example, we may write∨

a∈A♦a to mean
∨
{♦a | a ∈ A}.

This quantifier-like notation suggests that orbit-finite disjunctions and conjunctions can
be used to quantify over atoms existentially and universally. This intuition will be useful in
reading our example formulas in what follows.

Example 4.2. Put P = A. For every a ∈ A let Φa = {¬b | b ∈ A \ a}. Then Φa is
supported by {a} and orbit-finite, hence

∧
Φa :=

∧
b 6=a ¬b is a formula in LAµ . The set

Ψ =
{
♦
(
a ∧

∧
b 6=a ¬b

)
| a ∈ A

}
is equivariant and orbit-finite, hence∧

Ψ =
∧
a∈A♦

(
a ∧

∧
b6=a ¬b

)

5:12 Bartek Klin and Mateusz Le lyk Vol. 15:4

is also a legal formula in LAµ .

Remark 4.3. In the classical µ-calculus, one often wants a formula to be clean, or well-
named, meaning that every bound variable is bound only once. This is to ensure that to every
variable one can associate a unique binding occurrence of it. In the presence of infinitary
connectives, achieving cleanness may seem problematic. For example, in the formula∧

a∈A (µX.a ∨ ♦X)

the variable X occurs infinitely many times, and naively replacing each binding occurrence
with a completely fresh variable would result in an orbit-infinite conjunction. This is why we
will not insist that our formulas be presented in a clean form; instead, we will only require
that no variable is bound more than once on any syntactic path from the root of a formula
to its subformula. It is easy to rewrite any formula to an equivalent one of this form (for
example by annotating each variable with a natural number that is the depth of its binding
occurrence in the syntactic tree of a formula), and it will allow us to speak of “the binding
occurrence” for any occurrence of a bound variable.

The following syntactic properties can be easily proved by induction on the depth of
formulas:

• Every formula φ is finitely supported.
• For every formula φ, the set of its subformulas is finitely supported and orbit-finite.
• The relation E ⊆ LAµ × LAµ of being a subformula is equivariant, i.e. for every π ∈ Aut(A)

and every φ, ψ ∈ LAµ we have

φ E ψ if and only if φ · π E ψ · π.

4.2. Semantics. Semantics of the atomic µ-calculus is a straightforward extension of the
classical one: we simply require all sets and relations to be sets with atoms, and replace
finite models with orbit-finite ones. The following is a simple rewriting of Definition 2.2:

Definition 4.4 (Kripke model). An atomic Kripke model is a triple

K = 〈K,−→K, |=K〉
such that

• K is a set with atoms,
• −→K ⊆ K ×K is a finitely supported transition relation,
• |=K ⊆ K × P is a finitely supported satisfaction relation for basic predicates.

We shall say that an atomic Kripke model K is orbit-finite if the set K is so. A set S
supports K if and only if it supports K, −→K and |=K.

We use the same notational conventions regarding dropping the superscripts as for the
classical case. Also as in the classical case, the satisfaction relation can be equivalently
defined by the function:

pred(x) = {p ∈ P | x |= p}.
which is now a function from K to Pfs(P), the set of finitely supported subsets of P.

Example 4.5. A model K with:

• {?} ∪ A as the set of states,
• transitions ? −→ a for all a ∈ A,

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:13

• satisfaction relation |= such that pred(?) = ∅ and pred(a) = {a} for a ∈ A,

is an infinite but orbit-finite, equivariant atomic Kripke model. It can be drawn as:

?

tt yy �� %% ** ,,a b c d e . . .

Example 4.6. A model K with:

• A∗, i.e., finite sequences of atoms as states,
• transitions w −→ wa for all w ∈ A∗ and a ∈ A,
• satisfaction relation |= such that pred(ε) = ∅ and pred(a1 · · · an) = {an},
is an equivariant atomic Kripke model with infinitely many orbits.

Definition 4.7. For an atomic Kripke model K, the meaning of a formula φ ∈ LAµ in a
variable environment ρ : X⇀ P(K) is defined exactly as in Definition 2.3, with the obvious
modification: [[∨

Φ
]]
ρ

=
⋃
{[[φ]]ρ | φ ∈ Φ}. (4.1)

Remark 4.8. There is an apparent lack of consistency in literally transporting Definition 2.3
to sets with atoms. In one clause taken from that definition:

[[µX.φ]]ρ = lfp(F),where F (A) = [[φ]]ρ[X 7→A],

the least fixpoint of a function F : P(K) → P(K) is considered. However, as mentioned
in Example 3.3, P(K) is not a legal set with atoms in general. The set Pfs(K) of finitely
supported subsets of K is legal, and one could consider a restriction of F to:

F : Pfs(K)→ Pfs(K).

However, Pfs(K) is not a complete lattice, so Tarski’s theorem does not immediately apply
to it.

Our approach is to interpret Definition 2.3 and its extending clause in Definition 4.7
literally, initially without regard for the legality of sets with atoms, and then to prove
Lemma 4.9 below, which shows by induction that the semantics of each formula, including
fixpoint formulas, is in fact a legal, finitely supported set.

A more principled approach would be to restrict functions F and environments ρ to
finitely supported sets from the beginning. This would amount to reinterpreting Definition 2.3
in the set theory with atoms ZFA, an approach pursued e.g. in [23]. One then needs to
show a suitable version of Tarski’s theorem to infer the existence of least fixpoints. Such a
theorem indeed holds in a general topos-theoretic setting (see e.g. [2]); for sets with atoms,
it guarantees the existence of least fixpoints of monotone, finitely supported functions on
lattices where least upper bounds exist for all finitely supported families (see also e.g. [33]).

We choose the more elementary approach to avoid a formal reliance on ZFA. We then
need to state the following lemma, which implies that the semantics of every formula is
finitely supported.

Lemma 4.9. For every φ ∈ LAµ , an atomic Kripke model K and a variable environment ρ,
the set [[φ]]ρ ⊆ K is supported by S = supp(φ) ∪ supp(K) ∪B ⊆ A, where B is any support
of ρ.

Proof (sketch). By structural induction on φ. For example, consider the case of orbit-finite
disjunction above, i.e., φ =

∨
Φ. By the inductive assumption, the set {[[φ]]ρ | φ ∈ Φ} is

5:14 Bartek Klin and Mateusz Le lyk Vol. 15:4

supported by S. Since
⋃

is an equivariant operation on finitely supported families of sets
with atoms, the lemma follows.

The most interesting case is that of the fixpoint operator. Recall that

[[µX.φ]]ρ = lfp(F),where F (A) = [[φ]]ρ[X 7→A]

is obtained as the union of an increasing chain of approximants:

A0 ⊆ A1 ⊆ A2 ⊆ · · ·Aω ⊆ Aω+1 ⊆ · · ·
defined as in Definition 2.3. By ordinal induction, and using the inductive assumption
about φ, it is easy to show that Aα is supported by S for every ordinal α. Indeed, if Aα is
supported by S then for any π ∈ AutS(A):

Aα+1 · π = ([[φ]]ρ[X 7→Aα]) · π = [[φ]]ρ[X 7→Aα] = Aα+1

where the middle equality holds by the inductive assumption about φ, using the simple
observation that, since S supports µX.φ (hence also φ and X), ρ and Aα, then it also
supports ρ[X 7→ Aα].

As a result, the set [[µX.φ]]ρ, being the union of an increasing chain of S-supported sets,
it itself S-supported.

Atomic CTL∗ and atomic LTL are defined by analogy to atomic µ-calculus, extending
Definition 2.5 with orbit-finite disjunctions, with semantics extended by analogy to (4.1) in
Definition 4.7. With CTL∗ a design decision is to be made: in the semantic clause

• x |= ∃φ ⇐⇒ for some path π starting at x, π |= φ,

do we require the path π to be finitely supported or not? Note that even an equivariant
Kripke model can contain infinite paths that are not finitely supported. As it turns out, this
choice matters little: in Theorem 9.3 we shall prove that model checking for atomic CTL∗ is
undecidable and the argument there works whether or not we choose paths as being finitely
supported.

4.3. The vectorial calculus. A beginner’s recipe for moving atom-less mathematical
notions to sets with atoms is rather straightforward: replace all functions and relations by
equivariant or finitely supported ones, all finite structures by orbit-finite ones, and then see
what happens. With this in mind, notice that the classical definition of vectorial µ-calculus
includes a finiteness condition that is not explicitly present in the scalar µ-calculus: namely,
in a vectorial formula as in (2.1), the set of variables Xj is finite. A natural idea is therefore
to replace that set with an orbit-finite one.

Formally, in the vectorial atomic µ-calculus ~LAµ , the fixpoint construction is generalized
to the form

φ = µX̌.Φ

where X̌ ∈ X is the entry variable and Φ is an orbit-finite set of equations of the form X.φ,
X ∈ X and φ is a formula. We assume that in Φ no variable occurs on the left-hand side of
two different equations, and that the entry variable occurs on the left-hand side of some
equation.

As with orbit-finite boolean connectives, it is often useful to see the orbit-finite set Φ as
a family of equations

{Xj .φj}j∈J

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:15

indexed by some simpler orbit-finite set J , with the entry variable pointed to by some i ∈ J .
The formula φ can be then written as

φ = µXi. {Xj .φj}j∈J ,

quite resembling the classical vectorial formula (2.2).
The semantics of such a formula is defined very much like in the classical vectorial

calculus, except that here the operator whose fixpoint is calculated runs not on finite
tuples (A1, . . . , An), but tuples (Aj)j∈J , indexed by an orbit-finite set J , where Aj ⊆ K
(considerations in Remark 4.8 apply here as well). The set of such tuples is (in a classical
sense) a complete lattice under pointwise intersections and unions, so least fixpoints of
monotone operators exist on it. If the operator defined by:

(F (Aj)j∈J)k = [[φk]]ρ[Xj 7→Aj]j∈J for k ∈ J
has a tuple (Bj)j∈J as its least fixpoint, we put

[[φ]] = Bi

(where Xi is the entry variable for φ) as in the classical setting.
It is easy to check that Lemma 4.9 still holds for this extended semantics, with essentially

the same proof.
This syntax and semantics makes sense for any choice of atoms. When we need to specify

and distinguish between the two specific cases considered in this paper, we will denote the

vectorial equality-atomic µ-calculus by ~L=
µ , and the vectorial ordered-atomic µ-calculus by

~L<µ .

Example 4.10. Working over ordered atoms, consider a vocabulary of basic propositions

that coincides with the set A of atoms. Let us analyse the following formula in ~L<µ :

φ =
∨
a∈A

νXa.

{
Xb.(♦b) ∧

∨
c>b

Xc

}
b∈A

.

Here, the indexing set J = A is single-orbit, and for each atom b, the formula

φb = (♦b) ∧
∨
c>b

Xc

says that:

• some immediate successor of the current state satisfies b, and
• for some c > b, the property Xc (which, in the fixpoint construction, will be bound to an

analogous formula φc) holds in the current state.

Altogether, the formula φ says that there is an infinite increasing chain of atoms such that
each atom in that chain is satisfied in some immediate successor of the current state. This,
by the way, is equivalent to saying that there is any infinite set of atoms with this property;
this is because the set of immediate successors of a particular state in a Kripke model is
always finitely supported, and every infinite but finitely supported subset of A contains an
open interval and therefore it contains an infinite increasing chain.

It is instructive to see how the greatest fixpoint in the semantics of φ is approximated
on an equivariant Kripke model K, by successive applications of a monotone operator on
A-indexed tuples of subsets of K:

• at the starting point, every variable Xb is mapped to the full set K;

5:16 Bartek Klin and Mateusz Le lyk Vol. 15:4

• after one step, Xb is mapped to the set all states where some successor satisfies b;
• after two steps, Xb is mapped to the set of all states where:

– some successor satisfies b,
– some successor satisfies some atom greater than b;
• . . .
• after k steps, Xb is mapped to the set of all states where:

– some successor satisfies b,
– there are at least k − 1 atoms greater than b that are satisfied in some successor.

Note that, after each step, the approximate interpretation of Xb is a subset of K supported
by {b}; moreover, the function that maps each Xb to its approximate interpretation is
equivariant. From this it follows that if the model K is orbit-finite then the fixpoint is
reached after finitely many steps.

In the atom-less world one does not gain expressivity by allowing fixpoints over systems
of equations. This is a consequence of the following Bekić principle:

Theorem 4.11 (Bekić). Let D, E be any complete lattices and suppose F : D×E → D and
G : D×E → E are two monotone functions. Then the least fixpoint of 〈F,G〉 : D×E → D×E
is the pair 〈f̂ , ĝ〉, where

f̂ = µf.F (f, µg.G(f, g))

ĝ = µg.G(µf.F (f, g), g)

As we shall see in Section 10, contrary to the classical setting, vectorial atomic µ-calculus
is strictly more expressive than its scalar counterpart. However, Bekić principle can still
be used some extent, to obtain a more regular normal form for vectorial atomic formulas.
Recall that when introducing syntax we allowed the fixpoint to be taken over arbitrary
orbit-finite sets of equations. Next proposition shows that in fact we can restrict ourselves
to just single-orbit systems of equations. More precisely: we can demand that in a well-built
formula

µXi.{Xj .φj}j∈J
then the set {Xj .φj}j∈J is single-orbit.

Proposition 4.12 . Every formula of vectorial atomic µ-calculus is semantically equivalent
to one with fixpoints over single orbit sets of equations.

Proof. It is sufficient to show that if

µXi.{Xj .φj}j∈J
is a well-built formula and {Xj .φj}j∈J has two orbits, then we can split the fixpoint into
two nested fixpoints over single-orbit sets of equations. Let

{Xj .φj}j∈J1 and {Xj .φj}j∈J2
be the two orbits of {Xj .φj}j∈J . Given an arbitrary Kripke model K we can see them as
monotone functions

F1 : P(K)J1 × P(K)J2 → P(K)J1

F2 : P(K)J1 × P(K)J2 → P(K)J2

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:17

so that the function defined by the whole system {Xj .φj}j∈J can be presented as 〈F1, F2〉
(note that P(K)J1 × P(K)J2 is canonically isomorphic to P(K)J). By the Bekić principle
the least fixpoint of 〈F1, F2〉 is

µf.F1(f, µg.F2(f, g)),

µg.F2(µf.F1(f, g), g).

Without loss of generality suppose that Xi ∈ J1. Then it follows that µXi.{Xj .φj}j∈J is
equivalent to

µXi.{Xj .φ
′
j}j∈J1 ,

where
φ′j := φj [Xk 7→ µXk.{Xl.φl}l∈J2]k∈J2 .

Note that µXk.{Xl.φl}l∈J2 is by definition the k-th projection of the least fixpoint of
{Xj .φj}j∈J2 ; φj [Xk 7→ θk]k∈J2 denotes the simultaneous substitution of all formulas θk for
the respective variables in φj .

5. Model checking

As we shall see in the following sections, the landscape of modal µ-calculi with atoms is
considerably more complex than the classical setting. Some results that hold classically fail
here, some others behave differently depending on the chosen structure of atoms. However,
some important results from the classical calculus transport to the atomic setting. We begin
by proving that this is the case for the decidability of model checking. We state the theorem
for the vectorial calculus, and the scalar counterpart follows trivially.

Theorem 5.1. Model-checking problem for the vectorial atomic µ-calculus ~LAµ is decidable
over orbit-finite atomic Kripke models.

Proof. Let us fix an orbit-finite atomic Kripke model K. We shall show that the meaning

of any formula φ ∈ ~LAµ in K (under a variable environment ρ) can be computed from φ, by
structural induction on φ and using basic operations listed in Remark 3.4.

In the inductive computation, we shall only ever consider environments ρ that are
defined only on an orbit-finite set of variables, and are supported by (the support of K
together with) the support of some subformula of φ. Every such environment is presentable
by finite means and is amenable to algorithmic manipulation.

The cases of basic propositions, variables, negation and the modality ♦ are straightfor-
ward. For the case of orbit-finite disjunction φ =

∨
Φ, first calculate

S = supp(Φ) ∪ supp(K) ∪ supp(ρ).

Then partition Φ into S-orbits (there are finitely many of them), and select a system of
representatives φ1, . . . , φn, one from each orbit. Using the inductive assumption, calculate
Pi = [[φi]]ρ for each i. Then compute the S-orbit Oi of each Pi; each Oi is an S-supported
family of subsets of K. The union of all

⋃
Oi is the desired set [[φ]]ρ.

The most interesting case is computing

[[µXi. {Xj .φj}j∈J]]ρ.

This is done by approximating the least fixpoint by the following standard procedure:

(1) Put Aj = ∅ for each j ∈ J ;

5:18 Bartek Klin and Mateusz Le lyk Vol. 15:4

(2) Extend ρ by mapping each variable Xj to Aj ;
(3) Using the inductive assumption, calculate [[φj]]ρ[Xk 7→Ak]k∈J for each j ∈ J , and assign the

resulting tuple as a new value of A;
(4) Repeat steps (2)-(3) until A stabilizes;
(5) Return Ai.

Step (3) above is achieved by choosing an arbitrary representative j from each S-orbit of J ,
computing the subset [[φj]]ρ[Xk 7→Ak]k∈J ⊆ K for each representative, and (uniquely) extending
the result to an S-supported relation between J and subsets of K.

The set of all J-indexed tuples of subsets of K is a complete lattice, so by the Knaster-
Tarski theorem (see [1]) all we need to show is that this procedure terminates. Notice that,
at every stage of computation, the current value of (Aj)j∈J defines a relation between J and
K. Moreover, by Lemma 4.9 applied to the vectorial calculus, each such relation is finitely
supported by

S = supp(φ) ∪ supp(K) ∪ supp(ρ).

Since K is orbit-finite, by Proposition 3.5(3) A can take on only finitely many values,
therefore the above procedure terminates after finitely many steps.

6. Failure of orbit-finite model property

The classical modal µ-calculus enjoys the so-called finite model property: every satisfiable
formula has a finite model. (In fact a stronger small model property holds, useful for
complexity upper bounds.) There is no chance for this property to hold in the atomic setting,
but since orbit-finite sets play the role of finite sets in the universe of sets with atoms, one
might hope that an orbit-finite model property holds, i.e., that every satisfiable formula in
LAµ has an orbit-finite model.

However, even that weaker property fails even for the scalar µ-calculus LAµ both for
equality and ordered atoms, as we shall now prove. We apply different arguments for the
two atom structures.

6.1. The case of equality atoms. Over a vocabulary of basic predicates that includes a
predicate for each atom a, consider the following two properties:

P1: every reachable state has at least one successor for which some basic predicate holds;
P2: on every path that starts from the current state, no basic predicate holds more than

once.

These are definable in the atomic µ-calculus L=
µ :

P1 is νX.

((
♦
∨
a∈A

a

)
∧�X

)
,

P2 is ¬(µX.(ψ ∨ ♦X)) where ψ =
∨
a∈A

(a ∧ ♦µY.(a ∨ ♦Y)).

The conjunction of P1 and P2 is satisfiable. Indeed, it is satisfied in (every state) of
the Kripke model from Example 4.6 restricted to those states w ∈ A∗ where w does not
contain any letter more than once. It is easy to see that this is a well-defined equivariant
model, and that P1 and P2 hold in it. Note that this model still has infinitely many orbits
of states, with exactly one orbit for each length of w.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:19

On the other hand, the conjunction of P1 and P2 has no orbit-finite models. Indeed,
assume that some state x0 in such a model satisfies both properties. By P1, there exists an
infinite path in the model:

x0 −→ x1 −→ x2 −→ x3 −→ x4 −→ · · · .
where each state (perhaps except x0) satisfies some basic predicate. By P2 no such predicate
is satisfied more than once on this path.

Since the model is orbit-finite, there exists a global upper bound on the size of the least
supports supp(xi). This implies that there exists a number j and distinct atoms a, b such
that:

• a holds in some xi where i < j,
• b holds in some xk where j < k, and
• a, b 6∈ supp(xj).

Let π ∈ Aut(A) be the atom automorphism that swaps a and b and leaves all other atoms
untouched; then xj · π = xj , therefore xj−1 −→ xj · π is a valid transition. As a result:

x0 −→ x1 −→ · · · −→ xi −→ · · · −→ xj−1 −→ xj · π −→ · · · −→ xk · π −→ · · ·
is a legal path in the model. But a holds both in xi and in xk · π, so P2 is violated on this
path.

6.2. The case of ordered atoms. Properties P1 and P2 above make sense also for ordered
atoms, and they are defined in L<µ by the same formulas as before; the ordering relation
on atoms is simply not used in those formulas. The orbit-infinite model from before still
satisfies both properties.

However, over ordered atoms, the above proof of the lack of an orbit-finite model fails:
the bijection π that swaps a and b is not a valid atom automorphism. In fact, over ordered
atoms the conjunction of P1 and P2 has an orbit-finite model. Indeed, consider a Kripke
model with A as the set of states, the satisfaction relation defined by a |= a, and the
transition relation by:

a −→ b if and only if a < b.

It is easy to see that both P1 and P2 hold for (every state of) this model.
Consider, however, a stronger version of P1, defined with an essential use of the ordering

relation between atoms:

P1’: for every open interval (a; b) ⊆ A, every reachable state has at least one successor for
which some basic proposition c ∈ (a; b) holds.

This is definable in the atomic µ-calculus L<µ , by the formula

∧
a<b∈A

νX.

♦ ∨
c∈(a;b)

c

 ∧�X
 .

The conjunction of P1’ and P2 is satisfiable; indeed, it is satisfied in (every state of) the
orbit-infinite model that we used to model P1 and P2 for equality atoms.

On the other hand, the conjunction of P1’ and P2 has no orbit-finite models over
ordered atoms. Indeed, assume that some state x0 in such a model satisfies both properties.
By P1’, there exists an infinite path in the model:

x0 −→ x1 −→ x2 −→ x3 −→ x4 −→ · · · .

5:20 Bartek Klin and Mateusz Le lyk Vol. 15:4

where each state (perhaps except x0) satisfies some basic predicate. By P2 no such predicate
is satisfied more than once on this path.

Since the model is orbit-finite, there exists a global upper bound on the size of the least
supports supp(xi). This implies that there exists a number j and an atom d such that:

• d holds in some xi where i < j,
• d 6∈ supp(xj).

Pick some open interval (a; b) that contains d but does not contain any atom from supp(xj).
By P1’, xj has some successor (call it y) that satisfies some basic proposition c ∈ (a; b).

Let π ∈ Aut(A) be an atom automorphism that maps c to d and leaves all atoms from
supp(xj) untouched; then xj · π = xj , therefore xj−1 −→ xj · π is a valid transition. As a
result:

x0 −→ x1 −→ · · · −→ xi −→ · · · −→ xj−1 −→ xj · π −→ y · π
is a legal path in the model. But a holds both in xi and in y · π, so P2 is violated on this
path.

7. Parity games

An important result in the theory of classical µ-calculus is its correspondence to parity games.
In this section we show that this correspondence extends, without significant conceptual
changes, to the setting with atoms. This has a double purpose. First, since (as we prove)
orbit-finite games are decidable, the correspondence gives an alternative route to deciding
the model-checking problem for atomic Kripke models. Second, in Section 8 we will use
parity games to show that modal µ-formulas are invariant under atomic bisimulations, which
will be used in Sections 10-11 for proving expressive limitations of atomic µ-calculi.

The following development closely follows analogous definitions and results for the
classical, atom-less µ-calculus; see e.g. [7] or [41] for a detailed exposition of that theory.

Definition 7.1. An atomic parity game G is a quadruple 〈V, V∃, R,Ω〉 such that

(1) V is a set (with atoms) of nodes, V∃ is a finitely supported subset and we define
V∀ = V \ V∃;

(2) R ⊆ V 2 is a finitely supported move relation;
(3) Ω : V → N is a bounded, finitely supported rank function.

The game is called orbit-finite if V is orbit-finite.

In a context of a parity game, a match (starting at a node v0) is a sequence, finite or
infinite, of nodes:

~v = v0, v1, v2, . . .

such that 〈vn, vn+1〉 ∈ R for each n ∈ N. A match is complete if it cannot be extended
to a longer match, i.e., if it is infinite or if it ends with a node that has no successors in
R. Otherwise the match is partial. A complete match ~v is won by ∃ if it is infinite and
lim supn Ω(vn) is an even number, or if it is finite and its last node is in V∀. Otherwise ~v is
won by ∀.

For a node v0 ∈ V , let PM∃(v0) be the set of partial matches that begin in v0 and end
in a node from V∃. A strategy for ∃ is a function ρ : PM∃(v0)→ V such that for each partial
match ~v = 〈v0, . . . , vn〉 ∈ PM∃(v0) it holds that 〈vn, ρ(~v)〉 ∈ R. A strategy is positional if
ρ(v0, . . . , vn) only depends on vn; positional strategies can be seen as functions from V∃ to
V . A match ~v = v0, v1, v2, . . . conforms to a strategy ρ if for every n such that vn ∈ V∃

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:21

there is vn+1 = ρ(v0, . . . , vn) (vn+1 = ρ(vn) if ρ is positional). A strategy ρ is winning for
∃ if every match that conforms to ρ is won by ∃. If a positional winning strategy exists
for v0, we say that v0 is a winning node for ∃. The set of such nodes is denoted Win∃(G).
Strategies and winning strategies for ∀, and the set Win∀(G) of nodes winning for ∀, are
defined analogously.

It is a standard result that every parity game G is positionally determined, i.e., for every
node in it either there is a positional winning strategy for ∃ or for ∀. Atomic parity games
are obviously (forgetting about the action of atom automorphisms) parity games in the
classical sense, so they are positionally determined. However, it might happen that in an
atomic parity game no winning strategy is finitely supported.

Example 7.2. Consider an atomic parity game (over equality atoms) where:

V =
(A

2

)
∪ A V∃ =

(A
2

)
R = {〈{a, b}, a〉 | a, b ∈ A} ∪ {〈a, {b, c}〉 | a, b, c ∈ A}

Ω(v) = 0 for all v ∈ V .

Since ∃ wins every infinite play and every state has a successor with respect to R, it is clear
that every state is winning for ∃. However, no winning strategy for ∃ is finitely supported.
Indeed, such a strategy would determine a finitely supported function from

(A
2

)
to A such as

f(C) ∈ C for all C ∈
(A

2

)
, and it is easy to see that over equality atoms no such function

exists.

In spite of this, winning regions in orbit-finite parity games are computable. Indeed,
every orbit-finite game can be effectively transformed into a finite game in the following
way. For an orbit-finite parity game G = 〈V, V∃, R,Ω〉, let S be any finite set of atoms
that supports G. Let V/S, V∃/S be the sets of S-orbits of V and V∃, respectively; let [v]
denote the S-orbit of v ∈ V . Obviously V∃/S ⊆ V/S. Define R/S ⊆ V/S × V/S and
Ω/S : V/S → N by:

〈[v], [w]〉 ∈ R/S if 〈x, y〉 ∈ R for some x ∈ [v], y ∈ [w]

Ω/S([v]) = n if Ω(x) = n for some x ∈ [v]

This is well defined since S supports both R and Ω. In particular, Ω/S is a function. We
call G/S = 〈V/S, V∃/S,R/S,Ω/S〉 the orbit game of G.

Games G and G/S are very similar. Indeed, forgetting about the winning condition, the
game G can be seen as a Kripke model over N as the set of basic predicates: put V as the
set of states, R as the transition relation and the satisfaction relation defined by

v |= n if and only if Ω(v) = n.

The same can be said for G/S. As it turns out, G and G/S are bisimilar in the classical
sense:

Lemma 7.3. The quotient function Π defined for every v ∈ V by Π(v) = [v] is a bisimulation
between G and G/S understood as Kripke models.

Proof. First, if Π(w) = [v], then w ∈ [v] and consequently all the elements of [v] have label
Ω(w). So, by definition Ω/S([v]) = Ω(w).

Now suppose Π(w) = [v] and 〈[v], [z]〉 ∈ R/S. It means that there are x ∈ [v], y ∈ [z]
such that 〈x, y〉 ∈ R. Since w and x are in the same S-orbit, pick a π ∈ AutS(A) such that
x · π = w. Since S supports R, we get 〈w, y · π〉 ∈ R. But y · π ∈ [z], so Π(y · π) = [z].

For the opposite direction, let Π(w) = [v] and for some x, 〈w, x〉 ∈ R. Then by the
definition of R/S, 〈[v], [x]〉 ∈ R/S and obviously Π(x) = [x].

5:22 Bartek Klin and Mateusz Le lyk Vol. 15:4

Moreover, for every v ∈ V , v ∈ V∃ if and only if [v] ∈ V∃/S. As a result, ∃ has a
(positional) winning strategy from v in G if and only if she has a (positional) winning
strategy from [v] in G/S. This implies that one can effectively decide whether a player has a
winning strategy in an orbit-finite atomic parity game G by calculating first S = supp(G),
then G/S, and finally solving the analogous problem in the finite parity game obtained,
using standard methods.

A correspondence of the atomic µ-calculus with atomic parity games relies on defining,
for an atomic modal µ-formula and a Kripke model K, a parity game with atoms Gφ,K whose
nodes are pairs consisting of (occurrences of) subformulas of φ and states of K, such that
x |=K φ if and only if 〈φ, k〉 is a winning node for ∃ in Gφ,K. We shall show how to do this

for the vectorial µ-calculus ~LAµ ; the analogous result for the scalar calculus LAµ is a special
case. Both results are uncomplicated translations of the classical theorem (see e.g. [7, 41]);
the main difference is that the classical proof deals only with the scalar calculus (which in
the atom-less world is sufficient, because the vectorial calculus can be translated into the
scalar one).

First, notice that alternation depth of a formula can be defined exactly as in the classical
case (see e.g. [7]). In particular, if

{Xj .ψj}j∈J
is an orbite-finite system of equations, then ψj are of finitely many syntactical shapes, hence
µXi.{Xj .ψj}j∈J can be assigned a depth as in the atom-less case. The alternation depth of
φ will be denoted by α(φ).

We work with a fixed model K, context ρ and a fixed formula φ in negation normal
form, possibly containing free fixpoint variables. The nodes of Gφ,K are pairs of the form
〈ψ, x〉 where x is a state in K and ψ is an occurrence of a subformula of φ (we do not count
equations and systems of equations as subformulas; for the sake of simplicity we shall be
talking about formulas and not their occurrences, but it must be noted that distinguishing
between the two is important for the parity game to be well-defined). This set of nodes is
orbit-finite and finitely supported by supp(φ) ∪ supp(K).

Nodes controlled by ∃ are of the following types:

• 〈X,x〉, where X is a free variable in φ and x /∈ ρ(X);
• 〈p, x〉, where p is a basic predicate, and x /∈ [[p]]ρ ;
• 〈¬p, x〉, where p is a basic predicate and x ∈ [[p]]ρ ;
• 〈
∨

Φ, x〉;
• 〈♦ψ, x〉.

Dually, nodes controlled by ∀ are of the following form

• 〈X,x〉, where X is a free variable in φ and x ∈ ρ(X);
• 〈p, x〉, where p is a basic predicate, and x ∈ [[p]]ρ ;
• 〈¬p, x〉, where p is a basic predicate and x /∈ [[p]]ρ ;
• 〈
∧

Φ, x〉;
• 〈�ψ, x〉.
Nodes of the form 〈µX.Φ, x〉, 〈νX.Φ, x〉 and 〈X,x〉 where X is a bound variable, are not
controlled by either player. This is not a problem since from each such node there will be
only one move available.

Depending on a type of a node, the following moves are available:

No move: from a node of type 〈X,x〉, where X is a free variable, or nodes of type 〈p, x〉 or
〈¬p, x〉 where p is a basic predicate, no moves are available.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:23

Modal move: from a node of type 〈♦φ, x〉 or 〈�φ, x〉 the player that controls the node can
move to any node 〈φ, y〉 such that x −→K y;

Boolean move: from a node of type 〈
∧

Φ, x〉 or 〈
∨

Φ, x〉, the controlling player can move
to any node 〈φ, x〉 such that φ ∈ Φ;

Automatic move: there are two types of automatic moves:
• from a node of type 〈µX.Φ, x〉 or 〈νX.Φ, x〉 the game moves to the node 〈ψ, x〉 where
ψ is the unique formula such that X.ψ ∈ Φ;
• from a node of type 〈X,x〉 where X is a variable bound by a (unique) subformula
µX ′.Φ (or νX ′.Φ) of φ, the game moves to the node 〈ψ, x〉 where ψ is the unique
formula such that the equation X.ψ is in Φ.

Modal and boolean moves above are essentially as in the classical setting. The only
substantial difference is for automatic moves: the idea is that players are allowed to (and
indeed are forced to) travel across various equations from a given system. When a node
with a bound variable X is reached, the game automatically transfers to the X-th equation
of the system that binds it.

Nonzero ranks are assigned only to nodes of bound variables, and they depend on the
alternation depth of the subformulas of φ which bind those variables. More precisely, consider
a node 〈X,x〉, where X is bound in φ by ηX ′.Φ (i.e. it occurs on the left-hand side of one
of the equations from Φ), for η ∈ {µ, ν}. Then

• if η = µ, then the rank of 〈X,x〉 is 2 · bα(µX′.Φ)
2 c+ 1 and

• if η = ν, then the rank of 〈X,x〉 is 2 · bα(νX′.Φ)
2 c.

Now we are ready to prove

Theorem 7.4 (Adequacy theorem). For every state x in a Kripke model K and every

formula φ in ~LAµ ,

x |=K φ ⇐⇒ 〈φ, x〉 ∈Win∃(Gφ,K).

Proof. We closely follow the lines of [41, Thm. 3.27]. That proof relies on an auxiliary
notion of an unfolding game, which needs to be generalized a little to adapt it to the present
context, where fixpoints are taken over families of sets indexed by atoms. This requires only
a very small adjustment of the original conctruction. Given a monotone operator

F : P(A)B → P(A)B,

we can see it as a monotone operator F ′ of type

P(B ×A)→ P(B ×A).

With the above definition one quickly checks that

〈b, a〉 ∈ lfp(F ′) ⇐⇒ a ∈ (lfp(F))b.

〈b, a〉 ∈ gfp(F ′) ⇐⇒ a ∈ (gfp(F))b.

Now, the definition the unfolding game of F is as in [41] (we sketch it for the reader’s
convenience): it is a simple parity game with the set of nodes

(B ×A) ∪ P(B ×A).

Nodes in B ×A are controlled by ∃, the remaining nodes are controlled by ∀. From a node
〈b, a〉 ∈ B ×A, the player ∃ is allowed to move to any set C ⊆ B ×A such that

〈b, a〉 ∈ F (C).

5:24 Bartek Klin and Mateusz Le lyk Vol. 15:4

Conversely, given a set C ⊆ B ×A, the player ∀ chooses any 〈b, a〉 such that

〈b, a〉 ∈ C.
The winning condition depends on whether we want to characterize the greatest or the

least fixpoint of F . In the former case, every infinite game is won by ∃ (i.e. all positions
are assigned rank 0), in the latter, such games are won by ∀ (i.e. all positions are assigned
rank 1). In both cases the player who got stuck, loses.

The unfolding game for the least fixpoint of F will be denoted by UµF ; the game for the
greatest fixpoint by UνF .

The following proposition is proved by a mix of routine fixpoint arguments; see the
proof of [41, Thm. 3.14].

Proposition 7.5 . For a monotone F : P(A)B → P(A)B, let lfp(F) and gfp(F) denote the
least and the greatest fixpoints of F . For any a ∈ A and b ∈ B,

• 〈a, b〉 ∈Win∃(UµF) if and only if a ∈ (lfp(F))b, and
• 〈a, b〉 ∈Win∃(UνF) if and only if a ∈ (gfp(F))b.

As in [41, Thm. 3.27], a proof of Theorem 7.4 follows by induction on the structure
of the formula φ. At each step, allowing a nonempty but orbit-finite set {Xj}j∈J of free
variables and assuming their interpretations {Aj}j∈J as subsets Aj ⊆ K, one proves that:

x ∈ [[φ]]{Xj 7→Aj}j∈J ⇐⇒ 〈φ, x〉 ∈Win∃(Gφ,K[Xj 7→Aj]j∈J). (7.1)

The only case that differs slightly from [41] is the fixpoint operator: once again we
have to adapt the proof to the case of vectorial calculus. Assume that φ = ηXi.Φ where
η ∈ {µ, ν} and

Φ := {Xj .ψj}j∈J
is an orbit-finite set of equations with i ∈ J . The monotone operator induced by Φ on
P(K)J will be denoted by [[Φ]]. For every j ∈ J we put

φj := ηXj .Φ.

(Note that φi = φ.) By our inductive assumption, for every j the condition (7.1) holds for
ψj . By the definition of [[ηX.Φ]] and by Proposition 7.5 it is sufficient to demonstrate that
for every x ∈ K and j ∈ J :

〈x, j〉 ∈Win∃(Uη[[Φ]]) ⇐⇒ 〈φj , x〉 ∈Win∃(Gφj ,K).

The proof of the above fact (for the scalar case) given in [41, Thm. 3.27] proceeds by trans-
lating winning strategies for ∃ between the two games. This proof adapts straightforwardly
to our case.

We should remark that in the above proof, the changes that we introduced were driven
by the vectorial character of our formalism rather than directly by the use of atoms. One
would have to make essentially the same changes in the original proof (i.e. [41, Thm. 3.27]) to
make it work for the standard (i.e. atom-less) vectorial µ-calculus. As we already mentioned,
in the atom-less setting this can be avoided since the atom-less vectorial calculus can be
encoded into the scalar one. That encoding fails in the presence of atoms, as we shall show
in Section 10.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:25

8. Atomic bisimulation games

In Sections 10-11 we shall show that atomic µ-calculi cannot define various properties of
Kripke models. A general strategy for proving such results is using suitable notions of
bisimulation: first prove that bisimilar states cannot be distinguished by any formula, then
show a Kripke model and two bisimilar states p, q in it such that p has property P but q
does not, to conclude that the property P is not definable by any formula.

In this section, to prepare the ground for such undefinability results, we define two
notions of bisimulation (or, more precisely, two hierarchies of bisimulations parametrized by
natural numbers). The first, which we call stack bisimulation, is suitable for scalar µ-calculi
with atoms. The second, simply called bisimulation, is suitable for the vector calculi.

Denote by A(≤k) the set of ordered tuples of atoms of length at most k. Elements of

such sets will be denoted with vector notation: ~a,~b etc. If |~a| > 0, let pop(~a) denote the
tuple ~a with the last element removed. Recall that we write x ∼ y to say that x and y are
in the same orbit.

Definition 8.1. For a number k ∈ N, a k-stack-bisimulation on a Kripke model K is a

symmetric relation B on K × A(≤k) such that, whenever 〈x,~a〉B〈y,~b〉 then:

(i) 〈pred(x),~a〉 ∼ 〈pred(y),~b〉 (and in particular |~a| = |~b|),
(ii) for every x′ such that x −→ x′ there is a y′ such that y −→ y′ and 〈x′,~a〉B〈y′,~b〉,
(iii) if |~a| > 0 then 〈x,pop(~a)〉B〈y,pop(~b)〉,
(iv) if |~a| < k then for every c ∈ A there exists a d ∈ A such that 〈x,~ac〉B〈y,~bd〉.

Two states are called k-stack-bisimilar if they are related by a k-stack-bisimulation.

Formal definitions of particular bisimulations are often rather dry, and it is convenient
to prove their existence using simple bisimulation games. A k-stack-bisimulation game on a
model K is played between two players called Spoiler and Duplicator, who make their moves
alternately. A legal position in the game is a tuple

〈x,~a, y,~b〉 ∈ K × A(≤k) ×K × A(≤k)

such that 〈pred(x),~a〉 ∼ 〈pred(y),~b〉 (and in particular |~a| = |~b|). In such a position, Spoiler
can make three kinds of moves. He can either

• make a model move:
– choose a state x′ ∈ K such that x −→ x′, to which Duplicator must respond by choosing

a state y′ ∈ K such that y −→ y′; or
– choose a state y′ ∈ K such that y −→ y′, to which Duplicator must respond by choosing

a state x′ ∈ K such that x −→ x′;

the game then proceeds from 〈x′,~a, y′,~b〉 provided that it is a legal position; or
• make a pop move, assuming that |~a| > 0:

– remove the last element from ~a, to which Duplicator must respond by removing the last

element of ~b; or

– remove the last element from ~b, to which Duplicator must respond by removing the last
element of ~a;

the game then proceeds from 〈x,pop(~a), y,pop(~b)〉, which is always a legal position; or
• make a push move, assuming that |~a| < k:

– extend ~a with some atom c, to which Duplicator must respond by extending ~b with
some atom d; or

5:26 Bartek Klin and Mateusz Le lyk Vol. 15:4

– extend ~b with some atom d, to which Duplicator must respond by extending ~a with
some atom c;

the game then proceeds from 〈x,~ac, y,~bd〉, provided that it is a legal position.

Duplicator loses if she fails to move the game to a legal position in response to a Spoiler move.
Since Spoiler can always make a pop move or a push move, the only way for Duplicator to
win is to achieve an infinite play.

By a standard argument, 〈x,~a〉 and 〈y,~b〉 are k-stack-bisimilar if and only if Duplicator

has a winning strategy in the k-stack-game from the position 〈x,~a, y,~b〉.
We will now show that k-stack-bisimilar states cannot be distinguished by formulas from

a certain fragment of the atomic µ-calculus LAµ . To describe this fragment, it is convenient
to introduce a notion of an “ordered” global support of a subformula.

Given a fixed equivariant formula φ, we define a relation between finite sequences of
atoms and (occurrences of) subformulas of φ. For ~a ∈ A∗ and ψ E φ, we write ~a Iφ ψ to
read “~a globally supports ψ within φ”. This relation is defined by induction on the depth of
the occurrence of ψ within φ:

• ~a Iφ φ if and only if ~a = ε,
• if ψ E φ such that ψ = ♦ψ′, ψ = �ψ′, ψ = µX.ψ′ or ψ = νX.ψ′ then ~a Iφ ψ′ if and only

if ~a Iφ ψ,
• if ψ E φ such that ψ =

∨
Ψ or ψ =

∧
Ψ and ψ′ ∈ Ψ, then ~e Iφ ψ′ if and only if there is a

(necessarily unique, for a given ~e) decomposition ~e = ~a_~c such that:
– ~a Iφ ψ and
– ~c is some ordering of the set supp(ψ′).

Some basic properties of global supports follow directly from the definition. Every (occurrence
of) subformula ψ E φ is globally supported by some sequence, possibly more than one, since
the least supports of each formula on the path trom ψ to the root of φ may be ordered in
many ways. However, all global supports of any given ψ within φ have the same length.
Moreover, for subformulas ψ E θ E φ,

• every global support of ψ within φ has a (unique) prefix that globally supports θ within
φ, and
• every global support of θ within φ extends (not necessarily uniquely) to a global support

of ψ within φ.

It is also easy to see that if ~a Iφ ψ then the set of all atoms in ~a supports ψ, not only as a
formula but also as its occurrence within φ.

Call a formula φ globally k-supported if every subformula ψ E φ has a global support of

length at most k. It is easy to see that every formula φ in LAµ , or even in ~LAµ , is globally
k-supported for some number k, bounded from above by the height of φ multiplied by the
maximal size of the least support of a subformula of φ.

The following theorem is formulated for equivariant models and formulas, but it is not
difficult to generalize it to ones supported by some fixed set S.

Theorem 8.2. Assume that 〈x, ε〉 and 〈y, ε〉 are k-stack-bisimilar in an equivariant model
K. For every equivariant, globally k-supported formula φ in LAµ , x |= φ if and only if y |= φ.

Proof. Fix φ, x and y as in the assumptions. We will define a bisimulation relation B (in
the classical sense) on the graph of the game Gφ,K such that

〈φ, x〉B〈φ, y〉. (8.1)

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:27

This theorem will then follow by Theorem 7.4. Note that the graph of Gφ,K can be seen as
a Kripke model where labels correspond to ranks of nodes together with the information
about which player controls which node. Since K is fixed we will skip the reference to it.

The bisimulation B is defined by: 〈ψ, x′〉B〈θ, y′〉 if and only if

(1) there exists π ∈ Aut(A) such that (the occurrence) ψ in φ is mapped by π to (the
occurrence) θ in φ (note that φ · π = φ since φ is equivariant), and

(2) there exist ~a,~b ∈ A(≤k) such that:
• ~a Iφ ψ,

• ~b Iφ θ,
• 〈x′,~a〉 and 〈y′,~b〉 are k-stack bisimilar.

Under this definition (8.1) indeed holds: it is enough to put the identity automorphism as π

and ~a = ~b = ε.
We need to verify that B is a bisimulation on Gφ. Note that if 〈ψ, x′〉B〈θ, y′〉 then both

pairs get the same label (i.e. rank) in Gφ, since the label of a formula depends only on its
syntactical properties (i.e. alternation depth), which are preserved by application of atom
automorphims.

Now we verify the zig-zag bisimulation condition for B. Since B is clearly symmetric, it
is enough to verify one direction only. Assume that

〈ψ, x′〉B〈θ, y′〉 and 〈ψ, x′〉 −→Gφ 〈ψ′, x′′〉.
We are looking for 〈θ′, y′′〉 such that

〈ψ′, x′′〉B〈θ′, y′′〉 and 〈θ, y′〉 −→Gφ 〈θ′, y′′〉.
We cover three non-trivial cases:

(1) ψ = ♦ξ (the case ψ = �ξ is similar),
(2) ψ =

∨
Ψ (the case ψ =

∧
Ψ is similar), or

(3) ψ = X (for a bound X).

Case 1. In such a situation ψ′ = ξ and x′ −→K x′′. Moreover, θ = ♦θ′ for some formula θ′.

Since 〈ψ, x′〉B〈θ, y′〉, there are some sequences ~a,~b ∈ A(≤k) such that ~a Iφ ψ, ~b Iφ θ and

〈x′,~a〉 and 〈y′,~b〉 are k-stack bisimilar. By condition (ii) in Definition 8.1, there is some state

y′′ in K such that y′ −→K y′′ (hence 〈θ, y′〉 −→Gφ 〈θ′, y′′〉 as required) and 〈x′′,~a〉 and 〈y′′,~b〉
are k-stack bisimilar. By definition of the global support relation we have ~a Iφ ψ′, ~b Iφ θ′,
hence 〈ψ′, x′′〉B〈θ′, y′′〉 (the automorphism π that was good for the pair ψ, θ remains good
for ψ′, θ′).

Case 2. In such a situation x′′ = x′ and ψ′ ∈ Ψ. Moreover, θ =
∨

Θ for some orbit-finite

set Θ of formulas. Since 〈ψ, x′〉B〈θ, y′〉, there are some sequences ~a,~b ∈ A(≤k) such that

~a Iφ ψ, ~b Iφ θ and 〈x′,~a〉 and 〈y′,~b〉 are k-stack bisimilar. Let ~c be any ordering of the
finite set supp(ψ′). Then ~a_~c Iφ ψ′, and since by our assumption φ is globally k-supported,
the length of ~a_~c is at most k.

Since 〈x′,~a〉 and 〈y′,~b〉 are k-stack bisimilar, by repeated application of condition (iv)

in Definition 8.1, there is a sequence ~d ∈ A∗ such that

〈x′,~a_~c〉 and 〈y′,~b_~d〉 are k-stack bisimilar.

5:28 Bartek Klin and Mateusz Le lyk Vol. 15:4

This means in particular that ~a_~c ∼ ~b_~d. This implies that there exists some π′ ∈ Aut(A)
such that:

ψ · π′ = θ (hence Ψ · π′ = Θ), ~a · π′ = ~b and ~c · π′ = ~d.

Put θ′ = ψ′ · π′ and y′′ = y′. Then

θ′ ∈ Θ and ~b_~d Iφ θ
′.

As a result,
〈ψ′, x′′〉B〈θ′, y′′〉 and 〈θ, y′〉 −→Gφ 〈θ′, y′′〉

as required.

Case 3. In this situation x′′ = x′ and ψ E ψ′ = µX.ζ is the subformula of φ that binds X.
Since π maps ψ to θ as an occurrence of a subformula, we get that

θ = X · π E θ′ = µ(X · π).(ζ · π) E φ.

Clearly, ψ′ · π = θ′, hence θ′ is the subformula of φ that binds X · π and 〈θ, y′〉 −→Gφ 〈θ′, y′〉.
Since 〈ψ, x′〉B〈θ, y′〉, there are some sequences ~a,~b ∈ A(≤k) such that ~a Iφ ψ, ~b Iφ θ and

〈x′,~a〉 and 〈y′,~b〉 are k-stack bisimilar. Let ~c be the (unique) prefix of ~a such that ~c Iφ ψ′,
and let ~d be the prefix of ~b with the same length as ~c. Then ~d Iφ θ′. Indeed, by equivariance
we have (~c · π) Iφ θ′, so all sequences that globally support θ′ within φ must have the same

length as ~c; moreover, since ~b Iφ θ we know that some prefix of ~b must globally support θ′,

and ~d is the prefix of ~b of the same length as ~c.
By repeated use of condition (iii) in Definition 8.1, putting y′′ = y′, we get that 〈x′′,~c〉

and 〈y′′, ~d〉 are k-stack bisimilar. From this we obtain

〈ψ′, x′′〉B〈θ′, y′′〉 and 〈θ, y′〉 −→Gφ 〈θ′, y′′〉
as required.

Note that every formula in LAµ is globally k-supported for some number k. Therefore,
by Theorem 8.2, to prove that a property P is not definable it is enough to construct, for
every number k, a Kripke model K over A as the language of basic predicate symbols, and
two states x, y ∈ K such that 〈x, ε〉 and 〈y, ε〉 are k-stack-bisimilar and P fails for x but
holds for y.

As we shall see in Section 10, formulas of vectorial atomic µ-calculus ~LAµ can distinguish
between stack-bisimilar states in a Kripke model. Therefore, to show undefinability results
for vector calculi, we shall now introduce a finer notion of bisimulation, where in the
corresponding bisimulation games Spoiler can replace atoms in the current position at will,
not respecting the stack regime of Definition 8.1.

Definition 8.3. For a number k ∈ N, a k-bisimulation on a Kripke model K is a symmetric

relation B on K × A(≤k) such that, whenever 〈x,~a〉B〈y,~b〉 then:

(i) 〈pred(x),~a〉 ∼ 〈pred(y),~b〉,
(ii) for every x′ such that x −→ x′ there is a y′ such that y −→ y′ and 〈x′,~a〉B〈y′,~b〉, and

(iii) for every ~c ∈ A(≤k) there exists a ~d ∈ A(≤k) such that 〈~a,~c〉 ∼ 〈~b, ~d〉 and 〈x,~c〉B〈y, ~d〉.
Two states are called k-bisimilar if they are related by a k-bisimulation.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:29

As for stack bisimulations above, k-bisimilarity on a Kripke model is an equivalence

relation. If shorter tuples ~a′ and ~b′ arise from ~a and ~b respectively by selecting the same

subset of positions, then 〈x,~a′〉 and 〈y,~b′〉 are k-bisimilar as well. Finally, for l < k, the

restriction of a k-bisimulation to the set K × A(≤l) is an l-bisimulation.
As before, a k-bisimulation game on a model K is played between Spoiler and Duplicator,

and a legal position in the game is a tuple

〈x,~a, y,~b〉 ∈ K × A(≤k) ×K × A(≤k)

such that 〈pred(x),~a〉 ∼ 〈pred(y),~b〉. In such a position, Spoiler can make two kinds of
moves. He can either

• make a model move:
– choose a state x′ ∈ K such that x −→ x′, to which Duplicator must respond by choosing

a state y′ ∈ K such that y −→ y′; or
– choose a state y′ ∈ K such that y −→ y′, to which Duplicator must respond by choosing

a state x′ ∈ K such that x −→ x′;

the game then proceeds from 〈x′,~a, y′,~b〉 provided that it is a legal position; or
• make an atom replacement move:

– choose any tuple ~c ∈ A(≤k), to which Duplicator must respond by choosing a tuple
~d ∈ A(≤k) such that 〈~a,~c〉 ∼ 〈~b, ~d〉; or

– choose any tuple ~d ∈ A(≤k), to which Duplicator must respond by choosing a tuple

~c ∈ A(≤k) such that 〈~a,~c〉 ∼ 〈~b, ~d〉;
the game then proceeds from 〈x,~c, y, ~d〉 provided that it is a legal position.

Duplicator loses if she fails to move the game to a legal position in response to a Spoiler move.
Since Spoiler can always make an atom replacement move, the only way for Duplicator to
win is to achieve an infinite play.

By a standard argument, 〈x,~a〉 and 〈y,~b〉 are k-bisimilar if and only if Duplicator has a

winning strategy from the position 〈x,~a, y,~b〉.
The following result shows that k-bisimilar states cannot be distinguished by formulas

from the globally k-supported fragment of the vectorial atomic µ-calculus ~LAµ . As for
Theorem 8.2, is not difficult to generalize it to models and formulas supported by some fixed
set S.

Theorem 8.4. Assume that 〈x, ε〉 and 〈y, ε〉 are k-bisimilar in an equivariant model K. For
every equivariant, globally k-supported formula φ, x |= φ if and only if y |= φ.

Proof. The idea is the same as in the proof of Theorem 8.2: for any globally k-supported

formula φ in ~LAµ , we define a bisimulation B on the graph of the game Gφ,K such that 〈φ, x〉
and 〈φ, y〉 are related by b.

The relation B is defined exactly as before, with k-stack bisimulation replaced by
k-bisimulation. In checking the bisimulation condition, the only difference is the case of
bound variables (i.e. Case 3), arising from the fact that the binding fixpoint constructions
are now richer than those in the scalar calculus. Assume that

〈X,x′〉B〈θ, y′〉
and X is a variable bound in µY.Φ E φ. By definition of B, there is some π ∈ Aut(A) such
that X · π = θ, so θ is a variable bound in some µ(Y · π).(Φ · π) E φ.

5:30 Bartek Klin and Mateusz Le lyk Vol. 15:4

The game Gφ,K makes an automatic move from the node 〈X,x′〉 to the node 〈ψ′, x′〉,
where ψ′ is the unique formula such that X.ψ′ ∈ Φ. Note, however, that X is not necessarily
a subformula of ψ′, so there is no guarantee that the automatic move from 〈θ, y′〉 goes to
the node 〈ψ′ · π, y′〉.

Since 〈X,x′〉B〈θ, y′〉, there are some sequences ~a,~b ∈ A(≤k) such that ~a Iφ X, ~b Iφ θ
and 〈x′,~a〉 and 〈y′,~b〉 are k-bisimilar. Moreover, let ~c ∈ A(≤k) be such that ~c Iφ ψ′. Note
that it may not be possible to choose ~c which is a prefix of ~a; this is the crucial difference
from the proof of Theorem 8.2.

Since 〈x′,~a〉 and 〈y′,~b〉 are k-bisimilar, thanks to condition (iii) in Definition 8.3 we can

choose ~d such that 〈~a,~c〉 ∼ 〈~b, ~d〉 and such that 〈x′,~c〉 and 〈y′, ~d〉 are k-bisimilar. So pick

some τ ∈ Aut(A) such that ~a · τ = ~b and ~c · τ = ~d. By definition of ~a we have that

X · τ = X · π = θ and Φ · τ = Φ · π.
As a result, ψ′ · τ is the formula such that the equation

θ.(ψ′ · τ)

is in Φ · τ . Also, since ~c Iφ ψ′, hence ~d Iφ (ψ′ · τ). Hence putting θ′ = ψ′ · τ and y′′ = y′ we
are done.

As we already observed, every formula of the vectorial atomic µ-calculus ~LAµ is globally
k-supported for some number k. Therefore, by Theorem 8.4, to prove that a property P is
not definable it is enough to construct, for every number k, an orbit-finite Kripke model K
over A as the language of basic predicate symbols, and two states x, y ∈ K such that 〈x, ε〉
and 〈y, ε〉 are k-bisimilar and P fails for x but holds for y.

9. Undecidability results

The main purpose of this section is to show that the satisfiability of atomic µ-calculus formulas
is undecidable, even for the scalar calculus LAµ . We start by showing that satisfiability of
atomic LTL formulas is undecidable and end with the same conclusion about the model
checking problem for CTL∗. All proofs in this section work the same both for equality and
ordered atoms.

Theorem 9.1. It is undecidable whether a given atomic LTL formula is satisfiable.

Proof. The proof follows the lines of the proof from [34] of the undecidability of the univer-
sality problem for register automata.

Given a Turing machine M with a (finite) set of states Q, a (finite) working alphabet
Γ (including a blank symbol [), initial and accepting states qinit, qacc ∈ Q and a transition
relation δ, we shall build an atomic LTL formula that is satisfiable if and only if M accepts
the empty word. Without loss of generality assume that M, upon reaching an accepting
configuration, enters an infinite loop in that configuration.

Consider the following language of basic predicate symbols:

• a special symbol $,
• atoma for each a ∈ A,
• tapeγ for each γ ∈ Γ,
• headq for each q ∈ Q.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:31

Our formula shall be a conjunction of several properties. First, we enforce that every state
in a model either satisfies $ (and no other basic predicates) or satisfies exactly one predicate
atoma, exactly one predicate tapeγ and at most one predicate headq. This is ensured by a
conjunction of formulas such as:

G

(
$ ∨

∨
a∈A

atoma

)
and

∧
a6=b∈A

G(atoma → ¬atomb)

and so on. We also ensure that the initial state of the model satisfies $.
Furthermore, we ensure that as far as predicates $ and atoma are concerned, the model

can be presented as an infinite word:

ww$w · · ·
where w is a finite sequence of predicate symbols of the form atoma such that no single
predicate appears in w more than once. This is achieved by a conjunction of formulas such
as:

•
∧
a,b∈A G(atoma ∧ Xatomb → G(atoma → Xatomb))

•
∧
a∈A G(atoma → (¬atomaU$)).

Portions of the model between two consecutive occurrences of $ will store configurations
of M. To this end, we ensure that each portion contains exactly one state that satisfies
some head predicate:

G($→ X((¬ψ ∧ ¬$)U(ψ ∧ X(¬ψU$))))

where ψ =
∨
q∈Q headq.

We then ensure that every two consecutive configurations encode a legal step of M.
Predicates atom are useful for this, as they trace single tape cells in subsequent configurations.
To ensure that the letters on the tape do not change unless the machine head is directly
over them, we state for each γ ∈ Γ:∧

a∈A
G(atoma ∧ tapeγ ∧ ¬ψ → X(¬atomaU(atoma ∧ tapeγ)))

where ψ is as before.
Furthermore, for every “head to the right” rule

〈q, γ, q′, γ′,⇒〉 ∈ δ
we add a formula∧

a∈A
G(atoma ∧ headq ∧ tapeγ → X(¬atomaU(atoma ∧ tapeγ′ ∧ Xheadq′)))

and similarly for “head to the left” transition rules.
Finally we ensure the correct form of the initial configuration and that an accepting

state is reached, by adding formulas Xheadqinit , X(tape[U$) and Fheadqacc .
Models of the conjunction of all these formulas correspond to accepting runs of M

on the empty input word. As a result, it is undecidable whether an LTL formula has a
model.

Properties used in the above proof can be formulated in atomic µ-calculus as well.
As an immediate result, it is undecidable whether a given atomic µ-calculus formula has
a deterministic model. Some more care is needed to prove that general satisfiability is
undecidable, but:

5:32 Bartek Klin and Mateusz Le lyk Vol. 15:4

Theorem 9.2. It is undecidable whether a given formula of the atomic µ-calculus is satisfi-
able.

Proof. For any LTL formula φ in the negation normal form (i.e., one where negations occur
only in front of basic predicates, and where conjunction, disjunction, X, U and R modal
operators are used), construct an atomic µ-calculus formula M(φ) by induction as follows:

M(>) = >, M(⊥) = ⊥
M(p) = p, M(¬p) = ¬p

M(Xφ) = �M(φ)

M(φ ∨ ψ) = M(φ) ∨M(ψ)

M(φ ∧ ψ) = M(φ) ∧M(ψ)

M(φUψ) = µY.(M(ψ) ∨ (M(φ) ∧�Y))

M(φRψ) = νY.(M(ψ) ∧ (M(φ) ∨�Y))

This translation does not have all properties that may be desired (see e.g. [10]) but it is
sufficient for our purposes:

(i) In every word model, if a state satisfies φ then it satisfies M(φ),
(ii) In every Kripke model K, if a state x satisfies M(φ) then every infinite path in K that

starts from x, considered as a word model, satisfies φ.

Note that the converse to the implication in (ii) does not hold in general (consider e.g.
φ = Xp ∨ Xq and its translation M(φ) = �p ∨�q). Both properties (i) and (ii) are proved
by induction, for example for (ii):

• Assume x |= M(φ ∨ ψ). Without loss of generality, assume x |= M(φ). By the inductive
assumption, every path starting from x satisfies φ, so it satisfies φ ∨ ψ.
• Assume x |= M(φUψ). By definition of M , on every path π starting from x the formula
M(φ) holds in every state y until at some point M(ψ) holds. Now, for each state y the
path π has a sub-path that starts at y, and by the inductive assumption φ holds for all
these subpaths until at some point ψ holds. As a result, φUψ holds for the path π.

Properties (i) and (ii) immediately imply that φ is satisfiable if and only if M(φ) is
satisfiable in a state where some infinite path begins. Putting ψ = νX.♦X, a formula which
holds exactly in those states where an infinite path begins, we get that φ is satisfiable if and
only if M(φ) ∧ ψ is satisfiable. By Theorem 9.1, satisfiability of atomic µ-calculus formulas
is undecidable.

Finally, as a corollary of Theorem 9.1 we obtain:

Theorem 9.3. The model checking problem for atomic CTL∗ is undecidable.

Proof. We reduce the satisfiability problem for atomic LTL, with some insight into the proof
of Theorem 9.1. Given any Turing machine M as considered there, consider a Kripke model
with the set of states:

(A× Γ× (Q ∪ {nohead})) ∪ {$}
with basic predicates defined in the obvious way, and with transitions going both ways
between every two states. This model is orbit-finite and equivariant.

Now, for the atomic LTL formula φ obtained from M as in the proof of Theorem 9.1,
the formula ∃φ holds in this model in the state $ if and only if φ is satisfiable.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:33

This works regardless of whether we interpret CTL* path formulas over arbitrary paths
or over finitely supported ones, because the formula φ in the proof of Theorem 9.1 forces its
model to be finitely supported.

As a corollary we conclude that, unlike in the classical, atom-less setting, atomic CTL∗

is not a fragment of the atomic µ-calculus.

10. Separation results

In previous sections we introduced four atomic µ-calculi altogether: the scalar L=
µ and the

vectorial ~L=
µ calculus for equality atoms, and their corresponding versions L<µ and ~L<µ for

ordered atoms. It is clear that the vectorial versions are at least as expressive as the scalar
ones, and that ordered-atoms calculi can express all properties that equality-atoms calculi
can. In this section we show that all four calculi are in fact different, and we show three
properties of Kripke models, called InfSucc, Chain and EvenSucc, that separate the four
calculi as shown:

~L<µ

L<µ

EvenSucc

~L=
µ

EvenSucc

L=
µ

InfSucc Chain

Later, in Section 11, we shall show a further property that is not definable even in ~L<µ .

10.1. The InfSucc property.
It is obvious that atomic µ-calculus over ordered atoms is able to express many properties

that are not definable over equality atoms simply because they refer to the ordering of atoms.
However, there are properties that do not rely on that order per se, but are still definable in

L<µ and not even in the vectorial calculus ~L=
µ .

Consider a vocabulary of basic predicates that coincides with the set A of atoms. Let
InfSucc denote the property “there are infinitely many atoms a such that some immediate
successor of the current state satisfies a”.

Atom ordering is not mentioned anywhere in the definition on InfSucc, and indeed it
is an equivariant property of (states in) Kripke models over equality atoms. However, it is

not definable in ~L=
µ . To see this, we rely on Theorem 8.4.

For any number k, we construct a model K over equality atoms and two states p, q ∈ K
that are k-bisimilar in k, but such that InfSucc holds for p and fails for q. To this end, fix
some finite set S ⊆ A with |S| = 2k. The model will be supported by S (see below how to
achieve a similar result with an equivariant model). Let the set of states of K be:

K = {p, q}+ {ra | a ∈ A}
with the obvious action of Aut(A) that makes each of p and q a singleton orbit. The
satisfaction relation of K is such that

pred(p) = pred(q) = ∅ and pred(ra) = {a} for a ∈ A,

5:34 Bartek Klin and Mateusz Le lyk Vol. 15:4

and the transition relation is defined by

p −→ ra for a 6∈ S and q −→ ra for a ∈ S.
It is clear that the property InfSucc holds for p but fails for q. However, 〈p, ε〉 and 〈q, ε〉
are k-bisimilar according to Definition 8.3. To see this we describe a winning strategy for
Duplicator in the corresponding k-bisimulation game.

Starting from the initial position 〈p, ε, q, ε〉, Spoiler may begin by making a series of
atom replacement moves. Duplicator responds to each of these, ensuring that every position
reached:

〈p,~a, q,~b〉
is legal, i.e. that ~a ∼ ~b (hence in particular |~a| = |~b|), and that the condition

ai 6∈ S ⇐⇒ bi ∈ S
holds for each i = 1, . . . , |~a|. It is easy to see that this is possible thanks to the assumption
that |~a| ≤ k and |S| = 2k.

Afterwords, when Spoiler decides to make a model move from (say) p to some ra such

that a = ai for some i ≤ |~a|, Duplicator responds by moving from q to bi ∈ ~b. Thanks to
Duplicator’s previous effort, this is always a legal move. Other model moves from Spoiler
are dealt with similarly. Afterwords, Spoiler is reduced to atom replacement moves that
Duplicator can parry easily.

Our model K is supported by S, but it is easy to achieve a similar results in an equivariant
model that includes a copy of our K for each S ⊆ A with |S| = 2n, with two additional
equivariant initial states that can make transitions to the states p and q, respectively, in
each of the copies.

As a result, by Theorem 8.4, InfSucc is not definable in ~L=
µ .

Over ordered atoms, however, the situation is quite different. Notice that in a Kripke
model with atoms, the set of successors of any particular state (and therefore the set of basic
predicates that hold in those successors) is finitely supported. Recall that over ordered atoms,
finitely supported subsets of A are exactly those that are finite unions of open intervals
and single points. As a result, a finitely supported set of atoms is infinite if and only if it
contains an open interval. Using this observation, it is easy to see that InfSucc is definable
in L<µ by a formula: ∨

a<b∈A

∧
c∈(a;b)

♦c.

10.2. The Chain property.
As before, consider a vocabulary of basic propositions that coincides with the set of A

of atoms (in this section we consider equality atoms only). Given a Kripke model K, an
infinite path:

x0 −→ x1 −→ x2 −→ · · ·
in K is called a chain if

|pred(xi)| = 1 and pred(x2i) = pred(x2i+3)

for each i ∈ N. The following diagram, where required equality of basic propositions satisfied
in states is marked with dashed lines, justifies the name chain:

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:35

x0
// x1

// x2
// x3

// x4
// x5

// x6
// x7

// x8
// · · ·

Let Chain denote the property “there exists a chain path starting from the current
state”. To show that it is not definable in L=

µ , we rely on Theorem 8.2. We construct, for
every number k, an orbit-finite Kripke model K over A as the language of basic predicate
symbols, and two states p, q ∈ K such that 〈p, ε〉 and 〈q, ε〉 are k-stack-bisimilar and Chain
holds for p but fails for q.

Given a positive number k, pick some large n (n > 2k will be enough) and fix 2n distinct
atoms

S = {a0, a1, . . . , an−1, an} ∪ {b1, . . . , bn−1}.
We shall build a (finite) model K supported by S. Its set K of states will contain:

• pi and qi for i = 1, . . . , 2n,
• ri and si for i = 1, . . . , n− 1,
• two special states > and ⊥.

The satisfaction relation of K is defined so that:

• pred(pi) = pred(qi) = {a i
2
−1} if i is even,

• pred(pi) = pred(qi) = {a i+1
2
} if i is odd,

• pred(ri) = pred(si) = {bi},
• pred(>) = an and pred(⊥) = ∅.
The transition relation of K contains the following:

• pi −→ pi+1 and qi −→ qi+1 for 1 ≤ i < 2n,
• p2n −→ > and q2n −→ ⊥,
• p2i+1 −→ ri and q2i+1 −→ si for 1 ≤ i < n,
• ri −→ q2i+3 and si −→ p2i+3 for 1 ≤ i < n− 1,
• rn−1 −→ ⊥ and sn−1 −→ >,
• > −→ >.

These definitions look rather depressing, but the following diagram for n = 5 should make
the idea clear. Here, atomic predicates satisfied in a state are marked over its outgoing
transitions:

p1
a1 // p2

a0 // p3
a2 //

��

p4
a1 // p5

a3 //

��

p6
a2 // p7

a4 //

��

p8
a3 // p9

a5 //

��

p10
a4 // > a5

ww

s1 b1

>>

s2 b2

>>

s3 b3

>>

s4 b4

>>

r1 b1

r2 b2

r3 b3

r4 b4

q1 a1

// q2 a0
// q3 a2

//

AA

q4 a1
// q5 a3

//

AA

q6 a2
// q7 a4

//

AA

q8 a3
// q9 a5

//

AA

q10 a4
// ⊥

stage 3

5:36 Bartek Klin and Mateusz Le lyk Vol. 15:4

(see below for an explanation of what stage 3 means).
It is important to note that the top-most path starting in p1 and eventually entering an

infinite loop at state >, is a chain path. The state p1 therefore satisfies the property Chain.
On the other hand, the state q1 does not satisfy the property: to build an infinite path
from q1 one has to visit a state si at some point, and when that happens the chain property
is immediately invalidated, since the basic predicate bi satisfied in si does not match the
predicate ai that held three steps earlier.

We shall show that p1 and q1 are k-stack-bisimilar. We begin by showing a strategy for
Duplicator in the k-stack-bisimulation game that, although not successful, will be the basis
for constructing a better, winning strategy.

Starting from the initial position 〈p1, ε, q1, ε〉, Duplicator may try to copy Spoiler’s moves
verbatim, that is:

• respond to a model move pi −→ pi+1 with qi −→ qi+1, to a model move p2i+1 −→ ri with
q2i+1 −→ si, etc.,
• respond to a push move with an atom c with a push move with the same atom c.

(Spoiler’s pop moves do not leave any choice for Duplicator, so there is no need to specify
Duplicator’s response to them.)

This strategy is losing: Spoiler can make a sequence of model moves from p1 to p2, . . . , p2n

and finally to > and then loop there, to which Duplicator responds by moving from q1 all
the way to ⊥ and then she is stuck.

However, along the way, Duplicator may look for an opportunity to “cheat”. To
describe such opportunities, let us divide states in our model into stages, where stage i (for
i = 1, . . . , n− 1) consists of states:

p2i, q2i, p2i+1, q2i+1, ri−1 and si−1

(the latter two are included only if i > 1). For example, stage 3 is marked in the diagram
above. Moreover, we say that an atom is remembered in a position if it is present in a sequence
of atoms ~a that is a component of that position. Note that, according to Duplicator’s strategy
so far, the two sequences of atoms in every reachable position are the same, so at most k
atoms are remembered in any given position.

Since model moves in the game must be matched by a model moves, the two states in a
game position always belong to the same stage; we can therefore meaningfully say that a
position belongs to a stage. An opportunity for Duplicator to cheat occurs when the play
reaches a position in a stage i, such that neither the atom ai nor bi is remembered.

If such a position is reached, Duplicator starts to respond to Spoiler’s moves in a way
that arises from applying the swap permutation (ai bi), leaving all other atoms intact. More
specifically,

• if Spoiler makes a push move with ai (or bi), Duplicator responds with a push move with
bi (resp. ai). This results in a legal position, since neither ai nor bi is satisfied in any state
that belongs to stage i;
• if Spoiler makes a model move p2i+1 −→ p2i+2, Duplicator responds by q2i+1 −→ si. The

resulting position
〈p2i+2,~a, si,~a · (ai bi)〉

is legal. Moreover, after the next round of model moves (possibly preceded by a sequence
of push and pop moves) the game will necessarily reach the position

〈p2i+3,~c, p2i+3,~c · (ai bi)〉

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:37

for some sequence ~c. This position is winning for Duplicator, since neither ai nor bi are
relevant for the remainder of the game.

Other model moves for Spoiler are dealt with in a similar way.

It remains to be shown that an opportunity to cheat must inevitably happen for
Duplicator. Assume to the contrary that during a play, either ai or bi is remembered
throughout the stage i, for each i = 1, . . . , n − 1. Since model moves do not change the
set of atoms remembered, it follows that ai or bi is remembered also in the last position
before entering stage i, and in the first position after leaving stage i. As a result, positions
in the play are covered by overlapping regions throughout which particular atoms must be
remembered, as depicted here:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ ◦ ◦
a1 or b1 rem’d a2 or b2 rem’d a3 or b3 rem’d an−2 or bn−2 rem’d an−1 or bn−1 rem’d

(The regions correspond to stages of the game, but note that the regions need not be of the
same size, since the players may make different numbers of push-or-pop moves in each stage.)
Since only k atoms may be remembered at any given time, and since atoms are remembered
in a stack-like regime, this is impossible if n > 2k. To prove this, proceed by induction on k:

• for k = 1 we have n− 1 ≥ 2 so at some point two atoms must be remembered but there is
no space for it,
• for k > 1, notice that throughout the overlapping regions, the stack that remembers atoms

may never get empty, even for a moment. This means that there is some atom ai (or
bi) that sits at the bottom of the stack (formally, remains the first element of the atom
sequence that is a component of game positions) throughout this part of the play. One of
the intervals

1, . . . , i− 1 or i+ 1, . . . , n− 1

is of the size at least half of the interval 1, . . . , n − 1. In the part of the play defined
by the longer of the two intervals of stages, the atom ai (or bi) remains useless, which
effectively leaves enough space for remembering k − 1 atoms. It is now enough to invoke
the inductive assumption.

A winning strategy for Duplicator is to first copy Spoiler’s moves, then use the first
opportunity to cheat to force the game into a winning position as described above. This
shows that Duplicator wins from the starting position 〈p1, ε, q1, ε〉 as required.

This means that 〈p1, ε〉 and 〈q1, ε〉 are k-stack-bisimilar, hence by Theorem 8.2 they
satisfy the same globally k-supported formulas. Since every formula of the atomic µ-calculus
is globally k-supported for some k, this implies that no formula in L=

µ defines Chain.

However, it is not hard to define Chain in the vectorial calculus ~L=
µ . Indeed, for any

atom a ∈ A, the property there exists a chain

x0 −→ x1 −→ x2 −→ x3 −→ · · ·
starting in the current state such that pred(x1) = {a}, is defined by a formula:

φa = νXa.

{
Xb.

∨
c∈A

(θc ∧ ♦ (θb ∧ ♦Xc))

}
b∈A

,

where for any b ∈ A the formula

θb = b ∧
∧
d 6=b
¬d

5:38 Bartek Klin and Mateusz Le lyk Vol. 15:4

ensures that b, and no other basic proposition, holds in the current state. Then Chain is
defined by the alternative

∨
a∈A φa.

10.3. The EvenSucc property.
As before, consider a vocabulary of basic propositions that coincides with the set of

A of atoms. Let EvenSucc denote the property “the number of atoms a such that some
immediate successor of the current state satisfies a, is finite and even”. We shall show that

this property is not definable in ~L=
µ or L<µ , but it is definable in ~L<µ .

The argument for ~L=
µ relies on the same model K as considered in Section 10.1. Notice

that |S| there is even, hence the state q ∈ K satisfies EvenSucc, but the state p ∈ K does
not, and they are k-bisimilar over equality atoms as shown before.

For L<µ , we rely on Theorem 8.2. For any number k, we construct a model K over ordered
atoms and two states p, q ∈ K that are k-stack-bisimilar in k, but such that EvenSucc
holds for p and fails for q. To this end, put n = 2k+1 and fix some finite sets S, T ⊆ A with
|S| = n, |T | = 2n+ 1 and such that every element of T is greater than every element of S.
Let the set of states of K be:

K = {p, q}+ {ra | a ∈ A}
with the obvious action of Aut(A) that makes each of p and q a singleton orbit. The
satisfaction relation of K is such that

pred(p) = pred(q) = ∅ and pred(ra) = {a} for a ∈ A,
and the transition relation is defined by

p −→ ra for a ∈ S and q −→ ra for a ∈ T.
Obviously the property EvenSucc holds for p but fails for q. However, 〈p, ε〉 and 〈q, ε〉 are
k-stack-bisimilar according to Definition 8.3. To see this we describe a winning strategy for
Duplicator in the corresponding k-stack-bisimulation game.

Starting from the initial position 〈p, ε, q, ε〉, Spoiler may begin by making a series of
push moves. An important observation is that at this stage, before any model move has
been made, pop moves make no sense for Spoiler: they just bring the game to a position
that has already been visited. This means that this first phase of the game takes at most
k moves. In this phase, Duplicator responds to Spoiler’s moves much as she would in an
k-round Ehrenfeucht-Fraissé game on two large total orders, one of them of even size, the
other of odd size. As in that classical scenario, Duplicator is able to survive k rounds of the
game, and ensure that any model move by the Spoiler afterwards can be met with a legal
response.

As a result, by Theorem 8.2, EvenSucc is not definable in L<µ .

On the other hand, the property is definable in ~L<µ . To see this, for fixed atoms a < b,
consider the property “b is the least atom greater than a such that some successor of the
current state satisfies b”, defined by:

φ1
a,b = ♦b ∧

∧
c∈(a;b)

¬♦c.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:39

Then define the property “b is the second least atom greater than a such that some successor
of the current state satisfies b” by:

φ2
a,b =

∨
c∈(a;b)

(φ1
a,c ∧ φ1

c,b).

Then consider the property “the number of atoms c > a such that some immediate successor
of the current state satisfies c, is finite and even”, defined by:

ψa = µXa.

{
Xb.

(∧
c>b

¬♦c

)
∨

(∨
c>b

(φ2
b,c ∧Xc)

)}
b≥a

.

Finally, EvenSucc is defined by: ∨
a∈A

∧
b<a

ψb.

11. Expresiveness limitations

As before, consider Kripke models over a vocabulary of basic predicates that coincides with
the set A of atoms. Denote the property “there exists an infinite path where no a holds
more than once”, by #Path. Such properties of states in Kripke models have potentially
significant practical importance. For example, one may imagine a system equipped with
a token (e.g. password) generator where one needs to verify that, on every path where no
token is generated more than once, the security of the system is never breached.

In a previous version of this paper [28], we proved that #Path is not definable in the
L=
µ , the scalar µ-calculus over equality atoms. This is in contrast to the similar but definable

property P2 from Section 6. Our proof there did not work for ordered atoms, and in [28] we
left is as an open problem whether the property is definable in the calculus that we here call
L<µ . We shall now show that, in fact, #Path is not definable even in the vectorial calculus
~L<µ over ordered atoms.

But first notice that there would be no hope of defining #Path in some calculus with
decidable model checking if the property itself was undecidable. So we begin by showing
that the property is indeed decidable on Kripke models over equality atoms, which makes
its undefinability in our µ-calculi all the more disappointing.

Theorem 11.1. #Path is decidable on orbit-finite Kripke models over equality atoms.

Proof. For simplicity, assume that a given orbit-finite Kripke model K is equivariant; a
generalization to finitely supported models is straightforward.

Notice that for every state x ∈ K, the set pred(x) is either finite (and contained in
supp(x)) or co-finite. Moreover, a single orbit of K only contains states of one of these two
kinds. It is not difficult to decide the existence of a desired path where at least one state
is of the second kind. Indeed, two such states cannot occur on the path at all, and even if
exactly one of them occurs, almost all other states on the path must satisfy none of the basic
predicates. The existence of such a path from a given state x is straightforward to decide.

Once the existence of such paths is excluded, all (orbits of) states x with co-finite pred(x)
may be safely deleted from the model. From now on, assume that pred(x) ⊆ supp(x) for
each x ∈ K.

5:40 Bartek Klin and Mateusz Le lyk Vol. 15:4

Derived from K, construct a new orbit-finite Kripke model K̂, over the empty set of
basic predicates, with the set of states defined by:

K̂ = {〈x, S〉 | x ∈ K, S ⊆ supp(x) \ pred(x)}
and the transition relation by:

〈x, S〉 −→K̂ 〈y, T 〉 if and only if x −→K y and (S ∪ pred(x)) ∩ supp(y) ⊆ T
(since there are no basic predicates, the satisfaction relation in K̂ is trivial). The intuition
is that in a state 〈x, S〉, atoms in S are marked as having had occurred previously on a
path, and are forbidden from occurring in the future. Note that this marking is restricted to
atoms from the support of the current state x only.

Note that K̂ is indeed equivariant and orbit-finite: every orbit of K gives rise to at most
2k orbits in K̂, where k is the size of the least support of any (equivalently, every) element

in the orbit. Moreover, (a representation of) K̂ is computable from K: for each orbit in K

one can enumerate all corresponding orbits in K̂, and orbits of transitions are also easy to
enumerate.

We shall now prove that a state x ∈ K admits an infinite path where no a holds more
than once, if and only if 〈x, ∅〉 ∈ K̂ admits any infinite path. (Note that the theorem
follows from this, since the latter property is decidable, indeed, it is definable in the atomic
µ-calculus L=

µ , whose model-checking problem is decidable by Theorem 5.1).
For the left-to-right implication, assume an infinite path in K, i.e., a sequence

x = x0 −→K x1 −→K x2 −→K x3 −→K · · ·
such that pred(xi) ∩ pred(xj) = ∅ for each i 6= j ∈ N. Define

yi = 〈xi, Si〉, where Si = supp(xi) ∩
i−1⋃
j=0

pred(xj).

In particular, y0 = 〈x, ∅〉. Then

〈xi, Si〉 −→K̂ 〈xi+1, Si+1〉 (11.1)

for each i ∈ N. Indeed, calculate

(Si ∪ pred(xi)) ∩ supp(xi+1) =

supp(xi) ∩
i−1⋃
j=0

pred(xj)

 ∪ pred(xi)

 ∩ supp(xi+1)

⊆

 i⋃
j=0

pred(xj)

 ∩ supp(xi+1) = Si+1.

As a result
〈x, ∅〉 = 〈x0, S0〉 −→K̂ 〈x1, S1〉 −→K̂ 〈x2, S2〉 −→K̂ · · · (11.2)

form an infinite path in K̂.
For the right-to-left implication, assume any infinite sequence as in (11.2), for some xi

and Si such that the condition (11.1) holds for every i ∈ N. We construct sequences

y0, y1, . . . ∈ K T0, T1, . . . ⊆ A π1, π2, . . . ∈ Aut(A)

by simultaneous induction as follows:

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:41

• y0 = x0 and T0 = S0,
• πi+1 is an atom automorphism such that:

– πi+1(a) = a for a ∈ supp(yi), and

– πi+1(a) 6∈
⋃i
j=0 supp(yj) for a ∈ supp(xi+1 · π1π2 · · ·πi) \ supp(yi),

and acting in an arbitrary way on the remaining atoms (such an automorphism always
exists since the union of supports in the second clause is finite, and therefore some atoms
exists outside of it),
• yi+1 = xi+1 · π1π2 · · ·πiπi+1,
• Ti+1 = Si+1 · π1π2 · · ·πiπi+1.

Notice that, since 〈xi+1, Si+1〉 is a legal state in K̂, by equivariance so is 〈yi+1, Ti+1〉.
Moreover,

〈yi, Ti〉 −→K̂ 〈yi+1, Ti+1〉
for each i ∈ N, therefore the sequence

〈y0, T0〉 −→K̂ 〈y1, T1〉 −→K̂ 〈y2, T2〉 −→K̂ · · ·
is an infinite path in K̂. To see this, note that

〈yi · πi+1, Ti · πi+1〉 −→K̂ 〈yi+1, Ti+1〉,

(by equivariance of the transition relation −→K̂, applying the automorphism π1 · · ·πi+1 to

the transition 〈xi, Si〉) −→K̂ 〈xi+1, Si+1〉), and

yi · πi+1 = yi and Ti · πi+1 = Ti

since πi+1 by definition fixes supp(yi) and Ti ⊆ supp(yi).
As a consequence, the sequence

y0 −→K y1 −→K y2 −→K · · ·
forms a path in K. A useful property of this path, easy to infer from the definition of yi, is
that:

(supp(yi+1) \ supp(yi)) ∩
i⋃

j=0

supp(yj) = ∅. (11.3)

In words, whenever a locally fresh atom appears in some yi, then it does not appear anywhere
earlier in the path.

We shall show that no basic predicate holds on this path more than once. Assume
towards a contradiction that

a ∈ pred(yi) ∩ pred(yj)

for some a ∈ A and i < j. Then obviously a ∈ supp(yi) and a ∈ supp(yj), and by induction
on the difference j − i, using (11.3), we get that a ∈ supp(yk) for all k between i and j.

Again by induction, and by definition of the transition relation in K̂, a belongs to all sets
Ti+1, Ti+2, . . . , Tj . But this means that a ∈ Tj ∩ pred(yj), which contradicts the fact that

〈yj , Tj〉 is a legal state in K̂. This completes the proof of the right-to-left implication, and
of the entire theorem.

We shall now show that, in spite of its decidability and intuitive simplicity, #Path is

not definable in ~L<µ , the vectorial atomic µ-calculus over ordered atoms. To this end, we
rely on Theorem 8.4. We construct, for every number k, an orbit-finite Kripke model K over

5:42 Bartek Klin and Mateusz Le lyk Vol. 15:4

A as the language of basic predicate symbols, and two states x, y ∈ K such that 〈x, ε〉 and
〈y, ε〉 are k-bisimilar and #Path fails for x but holds for y.

Given k > 0, fix some n > k and fix any set S of 2n atoms:

a1 < b1 < a2 < b2 < · · · < an < bn.

We shall build a Kripke model K and its sub-model Ǩ, both supported by S. Both models
operate in three phases:

• Phase I, both in K and in Ǩ, consists of n states p1, . . . , pn ∈ K such that pred(pi) = {ai},
with transitions:

pi −→ pi+1 for 1 ≤ i < n.

Note that the transition relation is entirely deterministic in this phase.
• Phase II in K consists of n2 + n states

q0
1, q

0
2, . . . , q

0
n, q

1
1, q

1
2, . . . , q

1
n, . . . , q

n
1 , q

n
2 , . . . , q

n
n ∈ K

with

pred(pij) =

{
{aj} if i = j
{bj} otherwise.

A transition from Phase I to Phase II is realised by adding n+ 1 transitions from pn:

pn −→ qi1 for 0 ≤ i ≤ n.
Note that this introduces nondeterminism to the model. Further transitions in Phase II
are:

qij −→ qij+1 for 0 ≤ i ≤ n and 1 ≤ j < n.

These transitions, again, are deterministic.
In Ǩ, Phase II is the same but with the states q0

1, q
0
2, . . . , q

0
n excluded (so only n2 states

are present).
• Phase III, both in K and in Ǩ, is an infinite (but single-orbit) clique of states:

{rc | c ∈ A} ⊆ K
with pred(rc) = {c} and the full relation as the transition relation. Additionally, a
transition from Phase II to Phase III is realised by adding a transition from each state pin
(for 0 ≤ i ≤ n) to each state rc. This, obviously, is highly nondeterministic.

Note that every state in K satisfies exactly one basic predicate. The following diagram
shows the general shape of K, with basic predicates satisfied in a state marked over its

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:43

outgoing transitions:

q0
1

b1 // q0
2

b2 // · · ·
bn−1 // q0

n

��

bn

�� ��

q1
1

a1 // q1
2

b2 // · · ·
bn−1 // q1

n

��

bn

''
))

p1
//a1 // p2

a2 // · · ·
an−1 // pn

.

.

.

an

DD

an

BB

an

��

...
...

. . .
...

.

.

. Phase III

qn1
b1 // qn2

b2 // · · ·
bn−1 // qnn

55

an

77 EE

states absent in Ǩ

Both K and Ǩ are orbit-finite. Indeed, there are only finitely many states in Phases
I and II, each of them forming a singleton orbit, and the single infinite orbit of states is
formed by Phase III. The models are not equivariant, but with a small additional effort
they can be made so: keeping n fixed, consider a disjoint union of the models K taken for
all sets of atoms S = {a1, b1, · · · , an, bn}. Then add a single equivariant state ? where no
basic predicate holds, with transitions from ? to states p1 in all the disjoint components.
The resulting models remain orbit-finite, they are equivariant, and the following reasoning
applies to them with little change.

It is easy to see that the state p1 (and, indeed, every state) in K satisfies #Path: in
the finite path

p1, . . . , pn, q
0
1, . . . , q

0
n

no basic predicate holds more than once, and in Phase III it is easy to extend it to an infinite
path so that this remains true. On the other hand, in the smaller model Ǩ the state p1 does
not satisfy #Path, since in Phase II one of the ai from Phase I is necessarily repeated there.

We shall show that 〈p1, ε〉 in K is k-bisimilar to 〈p1, ε〉 in Ǩ by providing a winning
strategy for Duplicator in the corresponding k-bisimulation game. Formally, since we defined
both k-bisimulations and k-bisimulation games as operating on single Kripke models, we
need to consider the bisimulation game on a disjoint union of K and Ǩ. To avoid confusion
we will denote the states in the Ǩ-component of this union by p̌i, q̌

i
j etc., and will describe a

winning strategy for Duplicator from the position

〈p1, ε, p̌1, ε〉
in the k-bisimulation game.

In Phase I, Duplicator copies Spoiler’s moves verbatim. That is, whenever Spoiler makes
a model move from pi to pi+1 (or from p̌i to p̌i+1), Duplicator responds by moving from p̌i
to p̌i+1 (respectively, from pi to pi+1; Duplicator has no choice here anyway, since in Phase
I the transition relation is deterministic in both models). Moreover, whenever Spoiler makes
an atom replacement move by choosing some new tuple of atoms, Duplicator responds by
picking the same tuple of atoms. In this way, Duplicator ensures that in Phase I the game
visits only positions of the form 〈pi,~a, p̌i,~a〉 for ~a ∈ A(≤k).

5:44 Bartek Klin and Mateusz Le lyk Vol. 15:4

Duplicator fares well this way until at some point Spoiler decides to make a model move
from a configuration

〈pn,~a, p̌n,~a〉.
Note that at this point Duplicator has no control over how atoms in ~a relate to the atoms
a1, b1, · · · , an, bn.

If Spoiler makes a model move from p̌n to some q̌i1, Duplicator responds by moving from
pn to qi1. The game is then essentially over: q̌i1 and qi1 have the same futures in Ǩ and K, so
Duplicator can proceed by forever copying Spoiler’s moves. Similarly, if Spoiler makes a
move from pn to some qi1 for i > 0, Duplicator responds by moving from p̌n to q̌i1 and wins.

The only remaining case is when Spoiler moves from pn to q0
1; the only move that does

not have an obvious counterpart in Ǩ. Since n > k and |~a| ≤ k, there exists an i ∈ {1, . . . , n}
such that ~a contains no atom from the closed interval [ai, bi]. Then there exists an atom
automorphism π (i.e., a monotone bijection on the total order of rational numbers) such
that:

• ~a · π = ~a, that is, π(c) = c for each c ∈ ~a,
• π(bj) = bj for j 6= i, and
• π(bi) = ai.

Having fixed such a π, Duplicator responds to Spoiler’s move by moving from p̌n to q̌i1. Note
that the target position:

〈q0
1,~a, q̌

i
1,~a〉

is legal. For this we need to check that:

〈pred(q0
1),~a〉 ∼ 〈pred(q̌i1),~a〉.

By definition, pred(q0
1) = {b1}. If i 6= 1 then pred(q̌i1) = {b1} and the condition holds

trivially. If i = 1 then pred(q̌1
1) = {a1} and the condition holds since ~a does not contain any

atom from the interval [a1, b1].
Afterwards, Duplicator copies Spoiler’s moves translating them along the automorphism

π. More specifically, throughout Phase II:

• if Spoiler makes a model move from q0
j to q0

j+1, Duplicator responds by moving from q̌ij to

q̌ij+1 (again, no real choice here) and vice versa,
• if Spoiler makes an atom replacement move by choosing a new tuple of atoms ~c in the
K-component of the game position, Duplicator responds by choosing ~c · π. If, on the other

hand, Spoiler picks a new tuple of atoms ~d in the Ǩ-component, Duplicator responds by

choosing ~d · π−1.

In Phase III the strategy remains similar, except that a Spoiler’s model move to a state rc is
matched by Duplicator’s move to řπ(c), and a Spoiler’s move to řc is matched by a move to
rπ−1(c). This strategy ensures that only legal positions in the game are visited, and since
every move by Spoiler is met with a response, the strategy is winning for Duplicator.

This means that 〈p0, ε〉 and 〈p̌0, ε〉 are k-bisimilar, hence by Theorem 8.4 they satisfy
the same globally k-supported formulas. Since every formula of the atomic µ-calculus is
globally k-supported for some k, this implies that no formula defines #Path.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:45

12. Future work

We list some interesting aspects of the atomic µ-calculus that we leave for future work.

Complexity issues. For the decidability results we presented, in particular for the model
checking problem over orbit-finite structures, one immediately asks about the complexity of
the algorithms proposed. The answer depends on the way one measures the size of input
structures. One obvious option is to consider the length of their representation with set-
builder expressions and first-order formulas. With this view, most basic operations listed in
Remark 3.4 become Pspace-hard, because the first-order theory of pure equality is Pspace-
complete. As a result, the complexity of basic operations dwarfs the distinction between the
two algorithmic approaches to model checking based on direct fixpoint computation and on
parity games.

Another approach is to measure orbit-finite structures by the number of their orbits,
and the (hereditary) size of their least support. Note that the number of orbits of a set can
be exponentially bigger than the size of its logical representation; for example, the number
of orbits of the set An, whose representation has size linear in n, is equal to the n-th Bell
number. In this view the difference between the two approaches to model checking becomes
more prominent.

We defer precise complexity analyses until we have a better general understanding of
various time and space complexity models on atomic structures.

Other atoms. To simplify the presentation, in this paper we focus on equality atoms and
ordered atoms only. However, the definition of atomic µ-calculus and its basic properties
could be transported without much difficulty to other relational structures of atoms subject
to some model-theoretic assumptions such as oligomorphicity (i.e. the assumption that An is
orbit-finite for every n), homogeneity (i.e. the assumption that every isomorphism between
two finite substructures of A extends to an automorphism of A), and decidability of the
first-order theory of A.

This, however, is with some exceptions. Some of our proofs in this paper, in particular
the one for undefinability of #Path, rely on particular atom structures and it is not clear
how far they generalize. As a concrete open problem, we leave the question whether #Path
is perhaps definable over atoms from the universal undirected graph, also known as the
random graph or Rado graph, where vertices are natural numbers, and an undirected edge
{n,m} is present if and only if the n-th bit in the binary representation of m is 1 (for
n < m).

Defining #Path. The fact that #Path is not definable in atomic µ-calculi is disappointing,
since it looks like a property of potential practical importance in system verification. Since
we know that #Path is decidable, it is desirable to extend atomic µ-calculus in some well-
structured and syntactically economic way that would allow one to define such properties
while preserving the decidability of model checking. The property of “global freshness” has
been studied in the context of automata with atoms [40], and one may look for inspiration
there. Our proof of Theorem 11.1 also suggests some promising options. We leave this for
future work.

References

[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus. Studies in logic and the foundations of mathematics.
London, Amsterdam, 2001.

5:46 Bartek Klin and Mateusz Le lyk Vol. 15:4

[2] A. Bauer and P. L. Lumsdaine. On the bourbaki–witt principle in toposes. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 155, pages 87–99. Cambridge University Press, 2013.

[3] M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. Log. Meth. Comp. Sci., 10,
2014.

[4] M. Bojańczyk and T. Place. Toward model theory with data values. In Procs. ICALP 2012 Part II,
volume 7392 of Lecture Notes in Computer Science, pages 116–127, 2012.

[5] J. Bradfield and C.Stirling. Modal mu-calculi. In Handbook of Modal Logic, volume 3, pages 721 – 756.
Elsevier, 2007.

[6] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In Handbook of Process
Algebra, pages 293–330. North-Holland, 2001.

[7] J. Bradfield and I. Walukiewicz. The mu-calculus and model-checking. In H. Veith E. Clarke, T. Henzinger,
editor, Handbook of Model Checking. Springer-Verlag, 2015.

[8] C. Carapelle and M. Lohrey. Temporal logics with local constraints (invited talk). In Procs. CSL 2015,
volume 41 of LIPIcs, pages 2–13, 2015.

[9] V. Ciancia and U. Montanari. Symmetries, local names and dynamic (de)-allocation of names. Inf.
Comput., 208(12):1349–1367, 2010.

[10] S. Cranen, J. F. Groote, and M. Reniers. A linear translation from CTL∗ to the first-order modal
µ-calculus. Theoretical Computer Science, 412(28):3129 – 3139, 2011.

[11] M. Dam. Model checking mobile processes. Information and Computation, 129(1):35–51, 1996.
[12] R. De Nicola and M. Loreti. Multiple-labelled transition systems for nominal calculi and their logics.

Mathematical Structures in Computer Science, 18(01):107–143, 2008.
[13] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Inf. Comput., 205(3):380–

415, 2007.
[14] S. Demri, D. D’Souza, and R. Gascon. Temporal logics of repeating values. J. Log. Comput., 22(5):1059–

1096, 2012.
[15] S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter systems. Logical

Methods in Computer Science, 12(3), 2016.
[16] S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM Trans. Comput.

Log., 10(3):16:1–16:30, 2009.
[17] S. Demri, R. Lazic, and D. Nowak. On the freeze quantifier in constraint LTL: decidability and complexity.

Inf. Comput., 205(1):2–24, 2007.
[18] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: On branching versus linear

time temporal logic. J. ACM, 33(1):151–178, 1986.
[19] G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification environment for

mobile processes. ACM Transactions on Software Engineering and Methodology, 12(4):440–473, 2003.
[20] D. Figueira. Alternating register automata on finite words and trees. Logical Methods in Computer

Science, 8(1), 2012.
[21] D. Figueira and L. Segoufin. Future-looking logics on data words and trees. In Procs. MFCS 2009,

volume 5734 of Lecture Notes in Computer Science, pages 331–343, 2009.
[22] N. Francez and M. Kaminski. Finite-memory automata. TCS, 134(2):329–363, 1994.
[23] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal Asp.

Comput., 13(3-5):341–363, 2002.
[24] J. F. Groote and R. Mateescu. Verification of temporal properties of processes in a setting with data. In

Procs. AMAST’99, pages 74–90, 1999.
[25] J. F. Groote and T. AC Willemse. Model-checking processes with data. Science of Computer Programming,

56(3):251–273, 2005.
[26] M. Jurdzinski and R. Lazic. Alternating automata on data trees and xpath satisfiability. ACM Trans.

Comput. Log., 12(3):19:1–19:21, 2011.
[27] B. Klin, E. Kopczyński, J. Ochremiak, and S. Toruńczyk. Locally finite constraint satisfaction problems.

In Procs. LICS 2015, pages 475–486, 2015.
[28] B. Klin and M. Le lyk. Modal µ-Calculus with Atoms. In Procs. CSL 2017, volume 82 of LIPIcs, pages

30:1–30:21, 2017.
[29] B. Klin and M. Szynwelski. SMT solving for functional programming over infinite structures. In MFSP,

volume 207, pages 57–75, 2016.

Vol. 15:4 SCALAR AND VECTORIAL µ-CALCULUS WITH ATOMS 5:47

[30] E. Kopczyński and S. Toruńczyk. Lois: Syntax and semantics. In Procs. of POPL 2017, pages 586–598,
2017.

[31] D. Kozen. Results on the propositional µ-calculus. Theor. Comp. Sci., 27(3):333 – 354, 1983.
[32] Hui-Min Lin. Predicate µ-calculus for mobile ambients. Journal of Computer Science and Technology,

20(1):95–104, 2005.
[33] S. Lösch and A. M. Pitts. Denotational semantics with nominal scott domains. J. ACM, 61(4):27:1–27:46,

2014.
[34] F. Neven, T. Schwentick, and V. Vianu. Towards regular languages over infinite alphabets. In MFCS,

pages 560–572, 2001.
[35] J. Ochremiak. Extended constraint satisfaction problems. PhD thesis, University of Warsaw, 2016.
[36] J. Parrow, J. Borgström, L.-H. Eriksson, R. Gutkovas, and T. Weber. Modal logics for nominal transition

systems. In Procs. CONCUR 2015, volume 42 of LIPIcs, pages 198–211, 2015.
[37] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press,

2013.
[38] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Procs. CSL 2006,

volume 4207 of Lecture Notes in Computer Science, pages 41–57, 2006.
[39] W. Thomas and T. Wilke. Automata, logics, and infinite games: A guide to current research. Bulletin

of Symbolic Logic, 10(1):114–115, 2004.
[40] N. Tzevelekos. Fresh-register automata. SIGPLAN Not., 46(1):295–306, 2011.
[41] Y. Venema. Lectures on the modal µ-calculus. ILLC, Univ. of Amsterdam, 2007.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. -calculus and related logics
	3. Sets with atoms
	3.1. Equality atoms
	3.2. Ordered atoms

	4. -calculus with atoms
	4.1. Syntax
	4.2. Semantics
	4.3. The vectorial calculus

	5. Model checking
	6. Failure of orbit-finite model property
	6.1. The case of equality atoms
	6.2. The case of ordered atoms

	7. Parity games
	8. Atomic bisimulation games
	9. Undecidability results
	10. Separation results
	10.1. The InfSucc property
	10.2. The Chain property
	10.3. The EvenSucc property

	11. Expresiveness limitations
	12. Future work
	References

