
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Coalgebraic Modal Logic Beyond Sets

Bartek Klin1,2

Warsaw University, Edinburgh University

Abstract

Polyadic coalgebraic modal logic is studied in the setting of locally presentable categories. It is shown
that under certain assumptions, accessible functors admit expressive logics for their coalgebras. Examples
include typical functors used to describe systems with name binding, interpreted in nominal sets.

Keywords: coalgebra, modal logic, locally presentable category

1 Introduction

In recent years, coalgebra has received much attention as a unifying abstract ap-
proach to transition systems [29,16]. Many kinds of systems considered in theoretical
computer science, including labelled, probabilistic and timed ones, are modeled as
coalgebras for certain functors (called behaviour functors in this context) on the
category Set of sets and functions. Other categories have also been considered, for
example presheaf categories [11] or the category Nom of nominal sets [10] to model
process algebras with name binding. The coalgebraic approach provides an abstract
view on notions of coinduction and bisimulation.

Properties of transition systems are normally specified with a modal logic. Var-
ious logics have been developed to describe properties of different kinds of systems,
e.g., Hennessy-Milner logic for labelled transition systems [14], probabilistic modal
logic [17] for probabilistic systems, or logics for systems with name binding [24,8].
Importantly, such logics are expressive, i.e., they characterize their respective no-
tions of bisimilarity. However, non-expressive fragments of these logics are also often
used to characterize other notions of process equivalence, e.g., trace equivalence or
testing equivalence [13]. A successful abstract theory of transition systems must
provide a general perspective on modal logics and their properties.

The first abstract approach to logics for coalgebras was coalgebraic logic of
Moss [25], providing expressive logics for essentially all functors on Set. However

1 Supported by EPSRC grant EP/D039045/1.
2 Email: bklin@inf.ed.ac.uk

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Klin

general, coalgebraic logic is rather difficult to use in practice, as its syntax involve
applications of the behaviour functor to formulas, and it does not provide simple
and natural modalities like those known from Hennessy-Milner or similar logics.
On the other hand, logics developed in [15,19,26,28] are close to their usual con-
crete presentations, but their expressivity depends on some conditions imposed on
the behaviour functor. For example, modalities in [26] are predicate liftings, which
map predicates on X to predicates on BX, where B is the behaviour functor, and
the resulting modal logic is expressive provided enough predicate liftings exist for
B. This approach was analyzed and generalized by Schröder [30], who noted that
predicate liftings are equivalent to functions B2→ 2 and considered polyadic modal
logic, where modalities of any arity, such as functions B(2n) → 2, are allowed. He
then proved polyadic modal logics expressive for all accessible behaviour functors.

All results mentioned above apply to functors on Set. In particular, Schröder’s
expressivity proof is set-theoretic in nature and it is not immediately clear how to
translate it to other base categories. It is the purpose of this paper to generalize
the definition of polyadic modal logic, and the proof of its expressivity, to accessible
functors on locally presentable categories that satisfy some additional conditions.

Our approach is inspired by recent work by Kurz and Bonsangue [6,7,20,21],
who use Stone dualities to obtain logics for coalgebras on arbitrary categories, and
by that by Pavlovic, Mislove and Worrell [27], who exploit logical connections be-
tween data and tests to develop an abstract theory of testing. In those works, as in
the present paper, contravariant adjunctions provide the infrastructure for linking
processes and formulas. In [6,7,20], the adjunctions are assumed to be categorical
dualities. This easily implies the existence of expressive logics for all functors, and
the main effort is directed towards the nontrivial task of finding concrete presenta-
tions of those logics; to that end, in [21] adjunctions that are not dualities were used.
In the present, more flexible approach, the duality assumption is not made. This
often makes concrete presentations of expressive logics easier to find, and opens a
possibility to treat various interesting, but non-expressive logics in a uniform fash-
ion, but it comes for a price: the existence of expressive logics depends on certain
conditions, as in [30]. On the other hand, in [27] the duality assumption is not made,
and the adjunctions arise from certain cogenerators in the relevant categories. This
does not apply to all examples of interest, and in the present paper we work with
more general adjunctions. Also, in [27] the main focus is on non-expressive logics,
and no expressivity results are provided there.

The paper is structured as follows. After §2 of technical preliminaries, §3 presents
a categorical generalization of Schröder’s polyadic modal logic, which is proved
expressive under some conditions in §4. In §5, a categorical notion of modality is
suggested. Examples for functors on three different categories are studied in §6.

Acknowledgments. The author is grateful to Jǐŕı Adámek for pointing out the
notion of strongly locally presentable category, to Gordon Plotkin and John Power
for useful discussions, and to Alexander Kurz and Sam Staton for comments on a
previous draft of this paper.

2

Klin

2 Preliminaries

The reader is assumed to be acquainted with basic category theory; [2,22] are good
references.

An epimorphism e : X → Y is strong if for every commutative square (i) with
m mono there exists a unique diagonal d : Y → U such that (ii) commutes.

X
e // //

f

��

Y

g

��
U

� �

m
//Z

X
e // //

f

��

Y

g

��

d

~~
U

� �

m
//Z

(i) (ii)

Y is then a strong quotient of X. One says that strong epis and monos form a
factorization system in a category C if every morphism in C can be factorized as a
strong epi followed by a mono.

A source { fi : X → Yi | i ∈ I } is jointly monic if for every g, h : Z → X, one
has g = h if fi ◦ g = fi ◦h for all i ∈ I. An object X in a category C is a cogenerator
if for every object Y , the source of all morphisms from Y to X is jointly monic. For
example, every set with at least two elements is a cogenerator in Set.

A category D is filtered if (i) for every d, d′ ∈ D there exists a cospan d→ d′′ ← d′

in D, and (ii) every parallel pair of morphisms in D has a coequalizer in D. A
filtered colimit is a colimit of a diagram whose domain category is nonempty and
filtered; the dual notion is that of cofiltered limit. An object X of a category C is
finitely presentable if the functor hom(X,−) : C → Set preserves filtered colimits.
For example, finitely presentable objects of Set are exactly finite sets, and in an
equational class of algebras, an algebra is finitely presentable if and only if it can be
presented by finitely many generators and finitely many equations. A category C is
locally finitely presentable if it is cocomplete and has a set G of finitely presentable
objects such that every object of C is a filtered colimit of objects in G. For C,D
finitely presentable, a functor B : C → D is finitary if it preserves filtered colimits.
In a locally presentable category, an object is finitely generated if it is a strong
quotient of a finitely presentable object. In Set, finitely presentable and finitely
generated objects coincide, and an algebra is finitely generated if and only if it is
so in the sense of universal algebra.

The above notions can be generalized to κ-filtered colimits, locally κ-presentable
categories and κ-accessible functors, for any regular cardinal κ. All definitions,
results and proofs given in this paper work for the more general case with no change.
For more information and intuition on locally presentable categories, see [3,23].

For an endofunctor L on a category C, an algebra is an object X (the carrier),
with a map g : LX → X (the structure). An algebra morphism from g : LX → X

to h : LY → Y is a map f : X → Y in C such that f ◦ g = h ◦ Lf . Dually, for an
endofunctor B, a coalgebra is an object X (the carrier), with a map g : X → BX

(the structure). A coalgebra morphism from g : X → BX to h : Y → BY is a
map f : X → Y in C such that h ◦ f = Bf ◦ g. For example, if B = Pω(A × −)
on Set, where Pω is the finite powerset functor and A is a fixed set of labels,

3

Klin

then B-coalgebras are finitely branching labelled transition systems (LTSs). For a
coalgebra h : X → BX in Set, elements (called processes in this context) x, y ∈ X
are behaviourally equivalent if they are identified by a coalgebra morphism from
h. For LTSs as coalgebras in Set, behavioural equivalence coincides with strong
bisimilarity. More information and examples of coalgebras can be found in [29,16].

On finitely branching LTSs, bisimilarity is characterized by finitary Hennessy-
Milner logic [14], with syntax

φ ::= > | ¬φ | φ1 ∧ φ2 | 〈a〉φ (1)

and with semantics defined, on a given LTS, by

x |= 〈a〉φ ⇐⇒ x
a−→ y s.t. y |= φ

and the standard interpretation of propositional connectives. Fragments of
Hennessy-Milner logic have also been considered (see [13] for a survey). For ex-
ample, restricted to the grammar

φ ::= > | 〈a〉φ, (2)

the logic characterizes trace equivalence on LTSs.
Acquaintance with various known approaches aimed at generalizing Hennessy-

Milner and other logics to other functors (on Set) is not strictly necessary to un-
derstand the following technical developments. However, without any knowledge
of those approaches it would be hard to put the present work in context. Due to
lack of space that related work is not described here; [30] is a good reference, but
e.g. [15,19,25,26,28] are also worth reading.

3 Logical Connections

Our generalization of coalgebraic modal logic proceeds along lines similar to those
of [27]. To gain momentum, we begin by considering the familiar setting of sets and
functions. Typically, the semantics of a logic is some satisfaction relation |= ⊆ X×Φ
between the set Φ of tests (formulas) and the set X of tested entities (processes),
or equivalently a function:

|=: X × Φ→ 2

(here and in the following, 2 denotes the two-element set {tt, ff}). Its two trans-
poses:

[[]] : Φ→ 2X [[]][: X → 2Φ (3)

defining the semantics of processes by sets of formulas that hold for them, and the
semantics of formulas by sets of processes that satisfy them. In particular, two
processes in X are logically equivalent if they are equated by [[]][. This functional
presentation is easily generalized to cover logics where another set is used for “truth
values”; for example, in some probabilistic logics the continuous interval [0, 1] is used
instead of 2.

Abstracting from the category of sets, consider any symmetric monoidal closed
category (C,⊗,() with a chosen object Ω. The contravariant internal hom-functor

4

Klin

−(Ω on C is self-adjoint, with the bijection

C(X,Φ (Ω) ∼= C(X ⊗ Φ,Ω) ∼= C(Φ⊗X,Ω) ∼= C(Φ, X (Ω) (4)

obtained from the symmetric monoidal closed structure. 3 Even more generally, we
assume any logical connection, i.e., any contravariant adjunction

C
Z�

F
$$

⊥ DY�
G

cc C(X,GΦ) ∼= D(Φ, FX) (5)

(the contravariance of F and G is marked by the cross arrow tails), where X ∈ C,
Φ ∈ D. Slightly abusing notation, we will denote both sides of the bijection in (5) by
−[. Objects of C are thought of as sets (or structures) of processes, and objects of D
as sets (or structures) of formulas. The connection (5) provides the infrastructure
for relating processes and formulas. It is clear that (4) is a special case of (5),
and (3) is a special case of (4).

In any connection, the composite (covariant) functors GF and FG are monads
on C and D, respectively. We denote the units and multiplications of these monads
by ηGF , ηFG, µGF and µFG. The bijection (5) can be expressed in terms of these
transformations:

f [= Ff ◦ ηFG
Φ g[= Gg ◦ ηGF

X , (6)

for f : X → GΦ in C and g : Φ → FX in D. We will sometimes use the following
property of adjunctions:

FηGF ◦ ηFGF = id. (7)

The following is a central definition in our approach to logics for coalgebras.

Definition 3.1 In the situation of (5), for any endofunctor B on C, a polyadic
coalgebraic modal logic (or shortly a logic) for B-coalgebras is a pair (L, ρ) where
L (called the syntax) is an endofunctor on D, and ρ : LF =⇒ FB (called the
semantics) connects L and B along the adjunction.

A connection ρ as above defines the adjoint connection ρ? : BG =⇒ GL by

ρ? = GLηFG ◦GρG ◦ ηGFBG; (8)

in turn, ρ? determines ρ by ρ = (ρ?)? = FBηGF ◦ FρF ◦ ηFGLF .
If L has an initial algebra a : LΦL → ΦL, then ΦL can be thought of as the object

of L-formulas. Given any coalgebra h : X → BX, the semantic interpretation [[]]h

3 In [27], the object Ω of truth values was assumed to be a cogenerator in C. Here no such assumption is
made, and indeed in §6.2 the object of truth values is not a cogenerator. However, we later assume that Ω
is an internal cogenerator, see Remark 4.6.

5

Klin

of ΦL in h is defined by L-induction in D:

LFX

ρX

��

LΦL
L[[]]hoo_ _ _

a

��

FBX

Fh
��

FX ΦL[[]]h
oo_ _ _ _

(9)

and its transpose [[]][h : X → GΦL is a map that, intuitively, identifies logically
equivalent processes.

Example 3.2 To illustrate the framework described so far on a simple example,
consider the logic for trace equivalence on labelled transition systems. To this end,
take C = D = Set, F = G = 2− and B = P(A×−) for a fixed set A. The syntax (2)
is modeled by the functor L = 1 + A × − with an initial algebra ΦL = A∗. The
connection ρ at X, i.e., a function ρX : L(2X)→ (BX → 2), is defined by cases:

ρX(>)(β) = tt always

ρX(〈a〉φ)(β) = tt ⇐⇒ ∃ (a, y) ∈ β. φ(y) = tt,

where β ∈ BX and φ ∈ 2X . The similarity of this definition to the usual semantics
of (2) is hopefully apparent. Indeed, it is straightforward to check that in any LTS
h : X → BX, [[x]][h ∈ 2A∗

is (the characteristic function of) the set of traces of
x ∈ X, and the kernel of [[]][h is trace equivalence on h.

We now proceed to formulate and prove that logics (L, ρ) respect behaviour, i.e.,
that behavioural equivalence implies logical equivalence. This property of logics is
usually defined in terms of individual processes, however in the categorical setting a
more abstract approach is needed. Since [[]][h intuitively identifies logically equiva-
lent processes, and coalgebra maps identify behaviourally equivalent processes, the
following theorem plausibly captures the right categorical notion:

Theorem 3.3 Any logic (L, ρ) respects behaviour, i.e., for any coalgebra h : X →
BX, the map [[]][h factorizes through every coalgebra map from h.

Proof. Consider any other coalgebra g : Y → BY and a coalgebra map f : X → Y

from h to g. It is enough to show that [[]][h = [[]][g ◦ f , or equivalently that [[]]h =
Ff ◦ [[]]g. This is proved by induction from the definition (9), since in the diagram:

LFX

ρX

��

LFY
LFfoo

ρY

��

LΦL
L[[]]goo

a

��

FBX

Fh
��

FBY

Fg

��

FBfoo

FX FYFf
oo ΦL[[]]g

oo

6

Klin

the upper left part commutes by naturality of ρ, the right part by (9), and the lower
left part since f is a coalgebra map. 2

4 Expressivity

Recall the intuition that for a given logic (L, ρ), with L admitting initial algebras,
the interpretation [[]][h in a coalgebra h : X → BX identifies logically equivalent
processes. Expressivity of a logic means that logical equivalence implies behavioural
equivalence, therefore one can say that a logic (L, ρ) is expressive if [[]][h is a coal-
gebra morphism from h. This, however, requires a B-coalgebra structure on GΦL,
which intuitively is an unnecessary strong assumption: for expressivity, it should be
sufficient to provide a B-coalgebra on the image of [[]][h in GΦL, and a morphism
from h to that coalgebra. This leads to the following definition:

Definition 4.1 A logic (L, ρ) for B-coalgebras is expressive if for every h : X →
BX, the map [[]][h is a coalgebra morphism from h followed by a mono in C.

The following theorem gives simple conditions sufficient for logic expressivity.

Theorem 4.2 In the situation of (5), for any B : C → C, for any logic (L, ρ) for
B-coalgebras, if

• L has an initial algebra,
• C has a (StrEpi,Mono)-factorization system,
• B preserves monos, and
• ρ? : BG =⇒ GL is pointwise monic,

then (L, ρ) is expressive.

Proof. The following diagram in C commutes:

BGFX
BG[[]]h //� _

ρ?
FX

��

BGΦL� _

ρ?
ΦL

��
BX

BηGF
X

;;wwwwwwwwwwwwww

ηGF
BX

##H
HHHHHHHHHHHHH GLFX

GL[[]]h //GLΦL

GFBX

GρX

OO

X
ηGF

X

//

h

OO

GFX

GFh

OO

G[[]]h
//GΦL

Ga

OO

Indeed, the lower right part is (9) mapped along G, the upper right part is the
naturality of ρ?, the lower left part is the naturality of ηGF and the upper left part

7

Klin

commutes by (8) and (7). The outer shape of this diagram is

BX
[[]][h //BGΦL� _

ρ?
ΦL
��

GLΦL

X
[[]][h

//

h

OO

GΦL

Ga

OO

(see (6)). Let m ◦ e by the strong epi-mono factorization of [[]][h. Since B preserves
monos, Bm is a mono:

BX
Be //BI

� � Bm //BGΦ� _
ρ?
Φ

��
GLΦ

X e
// //

h

OO

I
� �

m
//

i

OO�
�
�
�
�
�

GΦ

Ga

OO

and a diagonal morphism i : I → BI as above exists since e is strong. This makes
e a coalgebra morphism from h, and m ◦ e satisfies Definition 4.1. 2

The first three conditions of Theorem 4.2 hold in most practical examples, and
usually the key condition to check is the pointwise monicity of ρ?. In Example 3.2,
for any Φ ∈ D, the function

ρ?
Φ : B(2Φ)→ (LΦ→ 2)

is defined by:

ρ?
X(β)(>) = tt always

ρ?
X(β)(〈a〉φ) = tt ⇐⇒ ∃ (a, y) ∈ β. y(φ) = tt,

where β ∈ B(2Φ) = P(A × 2Φ) and φ ∈ Φ, and it is not always pointwise monic:
for example, for Φ = {φ, ψ}, it is straightforward to check that

ρ?
Φ({(a, {φ}) , (a, {ψ})}) = ρ?

Φ({(a, {φ, ψ})}).

Indeed, the logic for traces is not expressive for B-coalgebras. Note, however, that
the conditions of Theorem 4.2 are not necessary for (L, ρ) to be expressive.

A natural question arises as to what conditions are sufficient for expressive logics
to exist for a given B on C. Assuming D, F and G have been chosen, a promising
choice is L = FBG, with the canonical

ρ = FBηGF : LF = FBGF =⇒ FB

ρ? = ηGFBG : BG =⇒ GFBG = GL

8

Klin

and the monad unit ηGF is usually pointwise monic (see Remark 4.6). Unfortu-
nately, FBG often fails to have initial algebras. For example, if C = D = Set and
F = G = 2−, then even for finitary B, such as B = Pω, the functor FBG does not
have initial algebras for cardinality reasons.

In search for a better candidate for L, note that finitary functors on locally
finitely presentable categories have initial algebras [3]. Assuming D locally finitely
presentable, a general technique to restrict any functor L on D to a finitary Lω that
acts “almost as” L is via left Kan extensions: define

Lω = LanI(LI)

where I : PresωD → D is the inclusion functor of the full subcategory of finitely
presentable objects. In more elementary terms, to calculate LωΦ, represent Φ as
a filtered colimit of a diagram DΦ of finitely presentable objects, map DΦ along L,
i.e., form the (filtered) diagram LDΦ, and take its colimit as LωΦ.

Φ

Φk
Φi

Φj

. . .

'& %$

 ! "# DΦ

ci

FF�����������

LL��������������

ck

OO LωΦ γΦ //______ LΦ

LΦk
LΦi

LΦj

. . .

'& %$

 ! "# LDΦ

Lci

FF�����������

\\999999999999

LL��������������

lj

SS

Lck

OO

lk

bbEEEEEEEEEEEEEEEE
(10)

The unique mediating morphism γΦ extends to a natural transformation γ : Lω =⇒
L, and Lω coincides with L on PresωD. Moreover, Lω is finitary even if L is not [23,
Prop. 2.4.3].

We may now define Lω = (FBG)ω with the canonical connections ρ : LωF =⇒
FB and ρ? : BG =⇒ GLω defined by:

ρ = FBηGF ◦ γF ρ? = Gγ ◦ ηGFBG. (11)

As before, it is natural to assume that ηGF is pointwise monic, but Gγ almost never
is. However, under certain additional conditions their composition is pointwise
monic. To spell out those conditions, one more important notion is needed:

Definition 4.3 [Adámek] A locally finitely presentable category is strongly locally
finitely presentable if for every cofiltered limit cone {li : Y → Yi}i∈I , and for any
mono f : X → Y with X finitely generated, there exists i ∈ I such that li ◦ f is a
mono.

X
� � f //// Y

Yi

li

OO Yk

lk

FF

YjLL��������

. . .

(12)

For example, Set and Pos are all strongly locally finitely presentable (and the
locally countably presentable ωCpo is strongly so). The category Un of unary
algebras is not strongly locally finitely presentable, even though it is locally finitely
presentable (see [1]).

9

Klin

We are now ready to formulate sufficient conditions for ρ? in (11) to be pointwise
monic.

Theorem 4.4 In the situation of (5), for a B on C, with Lω and ρ defined as
above, if

• C is strongly locally finitely presentable,
• D is locally finitely presentable,
• B is finitary and preserves monos, and
• ηGF is pointwise monic,

then ρ? = Gγ ◦ ηGFBG is pointwise monic.

Proof. For an object Φ in D, we shall prove that ρ?
Φ : BGΦ → GLωΦ is a mono.

Recall from (10) that LωΦ is a part of a cocone

{li : FBGΦi → LωΦ}i∈I

for the diagram FBGDΦ, where DΦ is a filtered diagram of finitely presentable
objects with Φ as the colimit. To show that ρ?

Φ is a mono it is enough to show that
the source

{Gli ◦ ρ?
Φ : BGΦ→ GFBGΦi}i∈I (13)

is jointly monic. Further, for any i ∈ I, one has

Gli ◦ ρ?
Φ = ηGF

BGΦi
◦BGci ;

indeed, chase the diagram

BGΦ
GF ED

ρ?
Φ

��

ηGF
BGΦ

//

BGci

��

GFBGΦ GγΦ

//

GFBGci

&&MMMMMMMMMMMMMMM GLκΦ

Gli

��
BGΦi

ηGF
BGΦi

//GFBGΦi

where the left square is the naturality of ηGF , and the triangle commutes by defini-
tion of γ in (10). Since ηGF is pointwise monic, to prove the joint monicity of (13)
it is enough to show that the source

{BGci : BGΦ→ BGΦi}i∈I

is jointly monic.
To this end, consider an object X in C and maps f, g : X → BGΦ such that for

each i ∈ I:
BGci ◦ f = BGci ◦ g .

We must prove that f = g.
Since C is locally finitely presentable, finitely presentable objects generate it and

without loss of generality we may assume that X is finitely presentable. Moreover,

10

Klin

GΦ is a colimit of a filtered diagram E of finitely presentable objects. Denote the
colimiting cocone by

{nj : Yj → GΦ}j∈J .

Since B is finitary, it preserves the colimit, and

{Bnj : BYj → BGΦ}j∈J

is a colimiting cocone of the filtered diagram BE. By finite presentability of X,
there exists a j ∈ J and two maps f ′, g′ : X → BYj such that

f = Bnj ◦ f ′ and g = Bnj ◦ g′ .

Since C is locally finitely presentable, strong epis and monos form a factorization
system [3] and the map nj : Yj → GΦ factorizes into a strong epi e : Yj → Z followed
by a mono m : Z → GΦ. By definition Z is finitely generated.

Recall that Φ is a colimit of a diagram DΦ and denote the colimiting cocone by

{ci : Φi → Φ}i∈I .

G, being a contravariant adjoint, maps the cocone to a limiting cone

{Gci : GΦ→ GΦi}i∈I

of the cofiltered diagram GDΦ. Now, by strong local finite presentability of C, there
exists an index i ∈ I such that Gci ◦m is a mono. Since B preserves monos, also
BGci ◦Bm is a mono.

Note that f = Bm ◦Be ◦ f ′ and g = Bm ◦Be ◦ g′. Moreover, by our assumption
on f and g,

BGci ◦Bm ◦Be ◦ f ′ = BGci ◦Bm ◦Be ◦ g′

By monicity of BGci ◦Bm, one has Be ◦ f ′ = Be ◦ g′ and finally

f = Bm ◦Be ◦ f ′ = Bm ◦Be ◦ g′ = g .

2

Corollary 4.5 In the situation of (5), if C is strongly locally finitely presentable, D
is locally finitely presentable and ηGF is pointwise monic, then every finitary functor
on C that preserves monos, admits an expressive logic.

Proof. Combine Theorems 4.2 and 4.4. The only non-trivial point to make is that
in every locally presentable category, strong epis and monos form a factorization
system [3, Prop. 1.61]. 2

Remark 4.6 The meaning of the pointwise monicity of ηGF becomes clear when
the above result is specialized to adjunctions arising from chosen objects in sym-
metric monoidal closed categories, as in (4). An object Ω is an internal cogenerator
if for any X, the map ηX : X → (X (Ω) (Ω is a mono. For example, for
F = G = Ω− on Set, the pointwise monicity assumption means that the set Ω of
logical values must have at least two elements. Corollary 4.5 specializes to:

11

Klin

Corollary 4.7 If a strongly locally finitely presentable, symmetric monoidal closed
category C has an internal cogenerator, then every finitary functor on C that pre-
serves monos, admits an expressive logic.

5 Polyadic Modalities

Results proved in §4 show how to guarantee an expressive logic for B-coalgebras to
exist. However, it might not be clear how to present the syntax and semantics of
the logic in concrete situations. Moreover, the development presented so far does
not suggest any treatment of (possibly non-expressive) fragments of the canonical
logic. For example, it would be useful to know whether every logic according to
Definition 3.1 is a fragment of an expressive logic. This section addresses these
questions. First, we analyze the structure of the canonical logic Lω and define a
logic L+

ω , with semantics essentially the same as that of Lω, but with syntax allowing
for a simpler presentation in concrete examples. The structure of L+

ω suggests a
general notion of polyadic modality. It is also showed that any logic with finitary
syntax is canonically represented in Lω. These results will considerably simplify the
presentation of our main examples in §6.

By definition,
LωΦ = colim(Ψ,Ψ→Φ)∈I/Φ FBGΨ

(see (10)). Replacing the colimit with a coproduct, define

L+
ω Φ =

∐
(Ψ,Ψ→Φ)∈I/Φ

FBGΨ =
∐
Ψ

D(Ψ,Φ) · FBGΨ (14)

where the coproduct on the right side is indexed over a chosen generating set of
finitely presentable objects, and · denotes copower. The evident mediating mor-
phism δΦ : L+

ω Φ→ LωΦ extends to a natural transformation δ, and is epi. G, being
a contravariant adjoint, maps epis to monos, hence the canonical adjoint connection

Gδ ◦Gγ ◦ ηGFBG : BG =⇒ GL+
ω

is pointwise monic if and only if the corresponding connection (11) for Lω is point-
wise monic. Therefore L+

ω is expressive if and only if Lω is, provided that it is finitary
and so admits initial algebras. In concrete cases, L+

ω is slightly easier to present syn-
tactically than Lω. Its structure also suggests a general notion of polyadic modality:
intuitively, in an obvious sense, a modality (or indeed any logical connective) of arity
n is an operator mapping n-tuples of formulas to formulas. A finitely presentable
object Ψ can be seen as an arity object, and a map Ψ → Φ as a tuple indexed by
Ψ. This, together with the structure of (14), motivates the following definition:

Definition 5.1 For a finitely presentable object Ψ ∈ D, the object FBGΨ is the
object of B-modalities of arity Ψ.

Examples in §6 will confirm the plausibility of this definition.
We proceed to show that every logic (L, ρ) with finitary syntax can be seen as

a fragment of Lω. We begin with a basic notion of logic morphism:

12

Klin

Definition 5.2 For any B on C, a logic (L, ρ) is represented in (L′, ρ′) by θ : L =⇒
L′ if the equation

ρ = ρ′ ◦ θF (15)

holds.

Clearly θ preserves the semantics ρ. Moreover, for any L, and for a logic (L′, ρ′),
a transformation θ : L =⇒ L′ defines a semantics for L by (15). In particular, the
semantics of a logic L can be defined by showing how the syntax L is embedded
in Lω. The following representation theorem shows that every logic with a finitary
syntax can be defined this way.

Theorem 5.3 For any B on C, any logic (L, ρ) with L finitary is represented in(
Lω, FBη

GF ◦ γF
)
.

Proof. First, note that any (L, ρ) (with L not necessarily finitary) is canonically
represented in

(
FBG,FBηGF

)
by ιρ : L =⇒ FBG defined as the transpose of the

adjoint connection ρ?, or more explicitly by ιρ = ρG ◦ LηFG. Indeed, a straight-
forward calculation shows that (15) commutes for θ = ιρ. If L is finitary, the
representation ιρ yields a transformation ιρω : L =⇒ Lω along the bijection

Nat(L,FBG) ∼= Nat(LI, FBGI) = Nat(LI, LωI) ∼= Nat(L,Lω)

where I : PresωD → D is the inclusion functor, the left and the right bijections hold
since (by finitarity) L = LanI LI, and the middle equation holds since LωI = FBGI

by definition of Lω. Now, the transformation γ ◦ ιρω : L =⇒ FBG is also mapped to
ιρω along the same series of bijections:

γ ◦ ιρω 7→ (γ ◦ ιρω)I = γI ◦ ιρωI = ιρωI 7→ ιρω

hence, by bijectivity, ιρ = γ ◦ ιρω and the equation (15)

ρ = ιρF ◦ FBηGF = ιρωF ◦ γF ◦ FBηGF

holds. 2

Together with observations on the structure on Lω made earlier in this section,
the above theorem allows one to give more concrete presentations of expressive and
non-expressive logics. Examples shown in the following section illustrate this point.

6 Examples

This section shows how Definitions 4.1 and 5.1 specialize to useful and natural no-
tions in concrete settings, and how Theorems 4.2 and 4.4 can be used to find expres-
sive logics (and to present their non-expressive fragments) for transition systems.
In §6.1, the familiar setting of sets and functions is studied. Schröder’s polyadic
coalgebraic modal logic [30,18] is shown to be a special case of the present approach,
hence all examples covered there are examples here a well. However, for complete-
ness we describe the classical example of finitary Hennessy-Milner logic. In §6.2,
the case of nominal sets and equivariant functions is studied, and it is shown how

13

Klin

Milner-Parrow-Walker logic [24] for late bisimilarity on systems with name binding,
is an expressive fragment of our Lω. Finally, §6.3 illustrates the importance of the
technical assumption of strong local presentability in Theorem 4.4, on the example
of unary algebras and homomorphisms.

6.1 Sets and Finitary Hennessy-Milner Logic

Let C = D = Set, F = G = 2−, and consider any finitary B on C. A finitely
presentable set is (isomorphic) to a finite cardinal n ∈ N, a modality of arity n

according to Definition 5.1 is a function

λ : B(2n)→ 2,

and the syntax L+
ω can be described by the grammar:

φ ::= [λ](φ1, . . . , φn)

where n ∈ N and λ : B(2n) → 2. The logic Lω is additionally quotiented by
a straightforward equivalence of modalities ensuring that a modality that ignores
some of its arguments is equal to a modality of a smaller arity.

Given h : X → BX, the inductive definition (9) of [[]]h : ΦL+
ω
→ 2X translates

to:
[[[λ](φ1, . . . , φn)]]h = 2h(ρX([λ]([[φ1]]h, . . . , [[φn]]h))) =

= 2h(2BηGF
X (2B2([[φ1]]h,...,[[φn]]h)

(λ))) =

= λ ◦B2([[φ1]]h,...,[[φn]]h) ◦BηGF
X ◦ h =

= λ ◦B([[φ1]]h, . . . , [[φn]]h)[◦ h =

= w ◦B 〈[[φ1]]h, . . . , [[φn]]h〉 ◦ h.

Note that ([[φ1]]h, . . . , [[φn]]h) : n→ 2X is a tuple of functions, and 〈[[φ1]]h, . . . , [[φn]]h〉 :
X → 2n is a function obtained by tupling.

The above syntax and semantics of ΦL+
ω

both correspond exactly to the polyadic
coalgebraic modal logic of [30,18], which is thus a special case of the present ap-
proach. Also the result on the existence of expressive polyadic modal logic in [30]
immediately follows from Corollary 4.7. Indeed, Set is cartesian closed and strongly
locally finitely presentable, and any set with at least two elements is an internal co-
generator. Moreover, all functors on Set preserve monos with nonempty domains,
and in [4] it was shown how to modify any functor on Set so that it preserve all
monos, without a substantial change in its category of coalgebras.

For a specific application, consider B = Pω(A×−) for a fixed set A of labels; B-
coalgebras are finitely branching labelled transition systems. A B-modality accord-
ing to Definition 5.1 is a function w : Pω(A× 2n)→ 2 for n ∈ N. Any such function
can be presented as an expression built of negations, finite conjunctions, diamond
modalities and placeholders, with an interpretation as in Hennessy-Milner logic. For
example, the expression 〈a〉(−∧¬−)∧¬〈b〉− defines a function w : Pω(A×23)→ 2.
It is straightforward to see that any modality w can be described with such an ex-
pression. Formulas in L+

ω are built of such expressions, and the canonical connection

14

Klin

ρ : L+
ω 2− =⇒ 2Pω(A×−) is derived from the interpretation of them, for example:

ρX (〈a〉(φ ∧ ¬ψ) ∧ ¬〈b〉σ) (β) = tt ⇐⇒

 ∃ (a, x) ∈ β. φ(x) = tt, ψ(x) = ff and

6 ∃ (b, x) ∈ β. σ(x) = tt.

The syntax L+
ω obviously relates to finitary Hennessy-Milner logic (1). It is easy to

see that given an LTS h : X → Pω(A × X), the map [[]]h defined as in (9) is the
usual semantics of that logic. Thus finitary Hennessy-Milner logic is a special case
of the present approach, and its expressivity follows from Corollary 4.5.

Polyadic modalities used above are admittedly quite complicated, which makes
L+

ω rather awkward, given that it is little more than finitary Hennessy-Milner logic.
One can alleviate this problem by choosing a fragment of L+

ω and using Theorem 4.2
to show that it is still expressive. For example, consider a logic L defined by the
grammar

φ ::= 〈a〉
∧

j=1..n

ψj ψ ::= φ | ¬φ (16)

that is, by the functor LΦ = A×
∑

n∈N (2× Φ)n on Set. The obvious inclusion of
L in L+

ω determines a connection ρ : L2− =⇒ 2Pω(A×−) as shown in §5; explicitly,
the adjoint connection ρ? : Pω(A× 2−) =⇒ 2L− is defined by:

ρ?
Φ(β)(〈a〉(ψ1∧· · ·∧ψn)) = tt ⇐⇒ ∃(a, y) ∈ β.∀i = 1..n.

ψi = φi ⇒ y(φi) = tt

ψi = ¬φi ⇒ y(φi) = ff

By Theorem 4.2, to prove L expressive it is enough to show that ρ? is pointwise
monic. To this end, for any distinct β, γ ∈ B2Φ one needs to find a ∈ A, n ∈ N,
φi ∈ Φ and ψi ∈ {φi,¬φi} such that

ρ?
Φ(β)(〈a〉(ψ1 ∧ · · · ∧ ψn)) 6= ρ?

Φ(γ)(〈a〉(ψ1 ∧ · · · ∧ ψn))

Without loss of generality assume β 6⊆ γ and fix any (a, x) ∈ β such that (a, x) 6∈ γ.
Define δ ⊆ 2Φ by:

δ = {y : (a, y) ∈ γ}
Obviously, δ is finite. Pick n = |δ|. For any y ∈ δ we have y 6= x, hence one can
choose an element φy ∈ Φ such that x(φy) 6= y(φy). Define φ ∈ LΦ by:

φ = 〈a〉
∧
y∈δ

ψy

where ψi = φi iff x(φy) = tt and ψi = ¬φi otherwise. It is straightforward to check
that

ρ?
Φ(β)(φ) = tt and ρ?

Φ(γ)(φ) = ff

therefore ρ?
Φ(β) 6= ρ?

Φ(γ) and ρ?
Φ is pointwise monic.

6.2 Nominal Sets and Systems with Name Binding

We begin by recalling the basics of nominal sets. For more information, see e.g. [12].

15

Klin

Throughout this section, fix a countably infinite set N = {a, b, c, . . .} of names.
An action of the symmetric group Sym(N) (i.e., the group of permutations of N)
on a set X is a function •X : Sym(N) × X → X such that for any x ∈ X there
is idN •X x = x and, for any π, σ ∈ Sym(N), that (πσ) •X x = π •X (σ •X x). A
set N0 ⊆ N supports an x ∈ X if for all π that fix N0 there is π •X x = x. A
tuple (X, •X), is a nominal set, denoted by X, if every element of X is supported
by a finite set. In a nominal set every element x has the smallest supporting set,
denoted supp(x), and a#x, read “a is fresh in x”, means a 6∈ supp(x). Nom is the
category of nominal sets with equivariant maps, i.e., functions f : X → Y such that
f(π •X x) = π •Y f(x) for all x ∈ X and π ∈ Sym(N).

The set N is nominal, with the action defined by π•N a = π(a). For any nominal
set X, the nominal abstraction set [N]X has the carrier (N × X)/ ∼[N]X , where
(a, x) ∼[N]X (b, y) if and only if for all c ∈ N such that c#x and c#y there is
[a↔ c] •X x = [b↔ c] •X y. This construction extends to a functor [N] on Nom.

Nom has colimits and finite limits calculated as in Set. Also the covariant finite
powerset functor extends to a functor Pω on Nom, with Sym(N)-action calculated
pointwise. Nom is also cartesian closed, and the exponential XY is the set of (not
necessarily equivariant) functions from Y to X with an action defined by

(π •XY f)(y) = π •X (f(π−1 •Y y))

for all π ∈ Sym(N) and y ∈ Y , restricted to functions that are finitely supported
with respect to this action, i.e., those functions for which there exists a finiteN0 ⊆ N
such that for all π that fix N0 there is f(π •Y y) = π •X f(y) for all y ∈ Y .

In the following two particular types of exponentials will be used. First, let 2
be the set {tt, ff} with the trivial action. For any X, a function f : X → 2 is
supported by N0 if and only if f(π •X x) = f(x) for each x ∈ X and each π that
fixes N0. The set 2X consists of functions satisfying this condition for a finite N0. It
is straightforward to check that 2 is an internal cogenerator for the cartesian closed
structure of Nom. Note that 2 is not a cogenerator in Nom.

Now consider the nominal set XN for a given set X. It is not difficult to check
that a function f : N → X is supported by N0 ⊆ N if and only if:

• for all a ∈ N , N0 ∪ {a} supports f(a), and
• for all a, b ∈ N \ N0, (a, f(a)) ∼[N]X (b, f(b)).

It follows that every function in XN is uniquely determined by a finite partial
function f̄ : N fin→ X together with an element f̂ ∈ [N]X. Indeed, given these data,
the function f : N → X defined by:

f(a) =

 f̄(a) if a ∈ dom(f̄)

y ∈ X s.t. (a, y) ∈ f̂ , otherwise

(here y is uniquely determined) is finitely supported, and every finitely supported
function can be obtained this way.

The free nominal set over a set Z is Sym(N) × Z with the evident Sym(N)-
action. A nominal set is finitely presentable in Nom if and only if it is isomorphic

16

Klin

to the free nominal set over a finite set, quotiented by a finite set of equations.
Nom is locally finitely presentable. A nominal set X is finitely generated if and
only if there exists a finite Z ⊆ X that generates X, i.e., such that for all x ∈ X
there exist z ∈ Z, π ∈ Sym(N) such that x = π •X z.

Nom is strongly locally finitely presentable. The proof of this proceeds as
follows:

(i) In every finitely generated nominal set X, every finite N0 ⊆ N supports only
finitely many elements. To prove this, let a finite Z generate X and show that
for a fixed z ∈ Z there are only finitely many elements of the form π •X z

supported by N0. To this end, consider any π ∈ Sym(N) and observe that
if N0 supports π •X z then −→π (supp(z)) = supp(π •X z) ⊆ N0. Moreover, for
any σ ∈ Sym(N), if π and σ agree on supp(z) then π−1σ fixes supp(z), hence
π •X z = σ •X z. Altogether, π •X z 6= σ •X z are both supported by N0 only if
π and σ are different maps when restricted to supp(z), and if they both map
supp(z) to subsets of N0. But there are only finitely many such maps.

(ii) For any X, Y finitely generated, there are only finitely many equivariant maps
from X to Y . To prove this note that for any equivariant f : X → Y , for any
x ∈ X there is supp(f(x)) ⊆ supp(x). This, together with (i) applied to Y ,
means that any fixed x ∈ X can be mapped to only finitely many elements of
Y with an equivariant map. Since X is finitely generated, an equivariant map
from X to Y is determined by how it acts on a finite subset of X, hence there
are only finitely many such maps.

(iii) Sym(N) as a nominal set, i.e., the free nominal set on one generator ?, is
a generator (in the categorical sense of the word) in Nom. Indeed, take any
equivariant f, g : X → Y . If f 6= g, take any x ∈ X such that f(x) 6= g(x)
and take the equivariant h : Sym(N) → X determined by h(?) = x. Then
f ◦ h 6= g ◦ h.

(iv) Nom is strongly locally finitely presentable. In the situation of (12), consider
any f, g : Sym(N)→ X such that f 6= g. Since limiting cones are jointly monic,
and m is a mono, there is an if,g ∈ I such that cif,g

◦m◦f 6= cif,g
◦m◦g. By (ii),

there are only finitely many choices of f and g. Since the diagram is cofiltered,
take i to be a common bound of all if,g. Then obviously ci ◦m ◦ f 6= ci ◦m ◦ g
for all f 6= g. Now take any nominal set Z with two functions h, k : Z → X

such that ci ◦ m ◦ h = ci ◦ m ◦ k. By the previous observation, for any map
l : Sym(N) → Z there must be h ◦ l = k ◦ l. But Sym(N) is a generator by
(iii), therefore h = k.

Consider the following functor on Nom:

BX = Pω(N ×XN +N ×N ×X +N × [N]X +X).

This is the functor for late bisimulation on systems with name binding
(see [11,10,9,5] for a comparison), i.e., observational equivalence coincides with late
bisimilarity. B is finitary on Nom. To apply the framework of polyadic modal
logic, choose C = D = Nom and F = G = 2−. As we have seen, all assumptions
of Theorem 4.4 hold, therefore the canonical finitary logic L+

ω is expressive for late

17

Klin

bisimilarity. However, modalities used in L+
ω are quite complicated; we therefore

present a simpler logic L and use Theorem 4.2 to prove its expressivity, as in §6.1.
Specifically, we choose

LΦ = N × Σn∈N(N × 2× Φ)n +N ×N × Φ̄ +N × [N]Φ̄ + Φ̄

where Φ̄ is shorthand for Σn∈N(2 × Φ)n. It is obvious how to present this functor
with the grammar:

φ ::= 〈a〉(〈b1〉ψ1 ∧ · · · ∧ 〈bm〉ψm)

| 〈āb〉(ψ1 ∧ · · · ∧ ψm)

| 〈ā(b)〉(ψ1 ∧ · · · ∧ ψm)

| 〈τ〉(ψ1 ∧ · · · ∧ ψm)

ψ ::= φ | ¬φ
where a, b, bi ∈ N and b binds in the ψi in the third production.

A connection ρ : L2− =⇒ 2B− is determined, at a nominal setX, by its transpose
L2X × BX → 2, i.e. an equivariant relation |= ⊆ BX × L2X defined by cases as
follows. Here for simplicity negations are ignored, but it is obvious how to extend
the definition to the full grammar:

β |= 〈a〉(〈b1〉φ1 ∧ · · · ∧ 〈bm〉φm) ⇐⇒ ∃ι1(a, f) ∈ β.∀i = 1..m. φi(f(bi)) = tt

β |= 〈āb〉(φ1 ∧ · · · ∧ φm) ⇐⇒ ∃ι2(a, b, x) ∈ β.∀i = 1..m. φi(x) = tt

β |= 〈ā(b)〉(φ1 ∧ · · · ∧ φm) ⇐⇒ ∃ι3(a, [(b, x)][N]X) ∈ β.∀i = 1..m. φi(x) = tt

β |= 〈τ〉(φ1 ∧ · · · ∧ φm) ⇐⇒ ∃ι4(x) ∈ β.∀i = 1..m. φi(x) = tt

where φi ∈ 2X , f ∈ XN , and the ιi are the coproduct inclusions in BX.
To prove L expressive, by Theorem 4.4, it is enough to show that ρ? is pointwise

monic. The proof is much the same as in §6.1: for a nominal set Φ, and for any
distinct β, γ ∈ B2Φ, without lost of generality assume β * γ and pick any v ∈ β \γ.
Assume that v = ι1(a, f) with f ∈ (2Φ)N = 2Φ×N . Define δ ⊆ 2Φ×N by:

δ = { g | ι1(a, g) ∈ γ } .

Obviously δ is finite. For any g ∈ δ we have g 6= f , hence for some ag ∈ N and
φg ∈ Φ one has f(ag)(φg) 6= g(ag)(φg). Define φ ∈ LΦ by:

φ = 〈a〉(
∧
g∈δ

〈ag〉ψg)

where ψg = φg if f(ag)(φg) = tt and ψg = ¬φg otherwise. It is straightforward to
check that ρ?

Φ(β)(φ) = tt and ρ?
Φ(γ)(ψ) = ff, therefore ρ?

Φ(β) 6= ρ?
Φ(γ).

On the other hand, assume v = ι3(a, [(b, x)][N]2Φ) and define δ ⊆ [N]2Φ by:

δ = { g | ι3(a, g) ∈ γ } .

18

Klin

Again δ is finite. For any g ∈ δ we have g 6= [(b, x)][N]2Φ , hence one can choose some
c ∈ N , xg 6= yg ∈ 2Φ such that for all g ∈ δ (b, x) ∼[N]2Φ (c, xg) and (c, yg) ∈ g.
Further, one can choose a φg ∈ Φ such that xg(φg) 6= yg(φg). Define φ ∈ LΦ by:

φ = 〈ā(c)〉
∧
g∈δ

ψg

where ψg = φg if xg(φg) = tt and ψg = ¬φg otherwise. It is straightforward to
check that ρ?

Φ(β)(φ) = tt and ρ?
Φ(γ)(ψ) = ff, therefore ρ?

Φ(β) 6= ρ?
Φ(γ). The other

two cases of v are easier and altogether show that ρ?
Φ is monic. Expressivity of L

follows from Theorem 4.2.
In fact, the logic L can be easily translated to the logic LM of [24], where

it is proved to be expressive for late bisimilarity. The only nontrivial bit of the
translation is

〈a〉(〈b1〉ψ1 ∧ · · · ∧ 〈bm〉ψm) 7→ 〈a(c)〉L([c = b1]ψ1 ∧ · · · ∧ [c = bm]ψm)

where c is any variable fresh in ψ1, . . . , ψm. The image of the translation is a proper
subset of of LM (for example, match operators can occur only directly under late
input modalities), but by Theorem 4.2 it is an expressive subset. Indeed, a close
inspection of the proof of Theorem 1 in [24] shows that only formulas of this form
are needed for the expressivity of LM.

6.3 Unary Algebras and Distant Transition Systems

This example shows that the assumption of strong local presentability cannot be
dropped from Theorem 4.4.

A unary algebraX is a set, also denotedX and called the carrier, with a function
sX : X → X, called the successor function of the algebra. A homomorphism from
X to Y is a function f between the respective carriers such that f ◦ sX = sY ◦ f .
The category of unary algebras and their homomorphisms is denoted Un.

For a unary algebra X, and a subset Y ⊆ X, the subalgebra of X generated
by Y is denoted and defined by Y = { sn

X(y) | y ∈ Y, n ∈ N } (we omit X in this
notation as it will always be clear from the context.) A unary algebra X is finitely
presentable if and only if is finitely generated, i.e., if there is a finite subset Y ⊆ X
such that Y = X. Un is locally finitely presentable, but not strongly locally finitely
presentable (see [1]).

Un is cartesian closed, with Y X an algebra of homomorphisms f : N×X → Y

(here N is the unary algebra of natural numbers and incrementation), with the
successor defined by sXY (f)(n, x) = f(n + 1, x). However, this closed symmetric
monoidal structure is not convenient for our purposes; in particular, the algebra
2 = 1 + 1, an obvious candidate for the algebra of logical values, is not an internal
cogenerator for this structure. We therefore choose another contravariant adjunction
on Un, not based on any closed symmetric monoidal structure. Define P : Un →

19

Klin

Unop by:

PX = PX,

sPX(Φ) = {x ∈ X | sX(x) ∈ Φ } for Φ ⊆ X,

Pf =
←−
f for f : X → Y .

To check that Pf is a homomorphism, calculate for f : X → Y , Φ ⊆ Y :

sPX(Pf(Φ)) = sPX(
←−
f (Φ)) = {x ∈ X | f(sX(x)) ∈ Φ } =

= {x ∈ X | sY (f(x)) ∈ Φ } =
←−
f { y ∈ Y | sY (y) ∈ Φ } = Pf(sPY (Φ)).

P is a contravariant self-adjoint. Indeed, for any homomorphism f : X → PY ,
define f [: Y → PX by:

f [(y) = {x ∈ Y | y ∈ f(x) } .

To check that f [is a homomorphism, calculate:

f [(sY (y)) = {x ∈ X | sY (y) ∈ f(x) } = {x ∈ X | y ∈ sPY (f(x)) } =

= {x ∈ X | y ∈ f(sX(x)) } = sPX {x ∈ X | y ∈ f(x) } = sPX(f [(y)).

The bijectivity of the construction f 7→ f [follows from its bijectivity on sets. Maps
in Un are monos if and only if they are injective on carriers, and pointwise monicity
of the unit ηPP follows from its pointwise monicity on sets.

Let Pω : Un → Un be the “finitely covered powerset” functor, mapping an
algebra to the set of all subsets of finitely generated subalgebras:

PωX =
{
Z ⊆ X

∣∣ Z ⊆ Y for some finite Y ⊆ X
}

sPωX(Y) = { sX(y) | y ∈ Y }

Pωf =
−→
f

The above is well defined since for any f : X → X ′ and Z ⊆ Y ⊆ X there is

Pωf(Z) ⊆
−→
f (Y) =

−→
f (Y),

hence Pωf(Z) ∈ PωX
′. To check that Pωf is a homomorphism, calculate for

f : X → Z, Y ∈ PωX:

Pωf(sPωX(Y)) =
−→
f { sX(y) | y ∈ Y } = { sZ(f(y)) | y ∈ Y } = sPωZ(Pωf(Y)).

To check that Pω is finitary on Un, consider any f : Y → PωX with Y finitely
generated. For each y ∈ Y , let Gy ⊆ X be a finite set such that f(y) ⊆ Gy, and
take G be the (finite) union of all Gy’s taken over a set of y’s generating Y . Let Z
be the subalgebra of X generated by G. Then for each y ∈ Y , f(y) ∈ PωZ and f

factorizes through the inclusion PωZ → PωX.

20

Klin

We will consider coalgebras h : X → BX = Pω(A×X) for a fixed unary algebra
A of labels. Such a coalgebra can be seen a labelled transition system (X,A,−→)
defined on the carriers of X and A, together with successor functions sX : X → X

and sA : A→ A such that:

(i) ∀x, y ∈ X, a ∈ A. x a−→ y =⇒ sX(x)
sA(a)−→ sX(y),

(ii) ∀x, y ∈ X, a ∈ A. sX(x) a−→ y =⇒ ∃z ∈ X, b ∈ A. y = sX(z), a = sA(b), x b−→ z

(iii) ∀x ∈ X. ∃finite A′ ⊆ A,X ′ ⊆ X. (∀y ∈ X, a ∈ A. x a−→ y =⇒
∃n ∈ N, a′ ∈ A′, y′ ∈ Y ′. a = sn

A(a′), y = sn
X(y′), x a′

−→ y′).

These transition systems are introduced here to show the technical importance of
strong local presentability assumption, and are not expected to have any practical
applications. However, to get some intuition, one might see the elements of X and
A as processes and actions observed from some distance, with the action of sX

and sA corresponding to taking a “step back”, which can make some processes or
actions appear identical (if, for example, sA(a) = sA(b) for a 6= b). This intuition
explains conditions (i) and (ii) above, and condition (iii) is analogous to the finite
branching condition of ordinary LTSs, with the additional possibility of a process
moving “away” by a nondeterministically chosen distance with each action.

Note that B is finitary. For a finitely generated algebra Ψ, a B-modality of arity
Ψ according to Definition 5.1 is a predicate λ ⊆ BPΨ, and the syntax L+

ω can be
described by the grammar:

φ ::= [λ](φ1, . . . , φn)

where λ is of arity Ψ, n is the number of generators of Ψ, and for φi ∈ Φ, the tuple
(φ1, . . . , φn) : n → Φ represents its unique extension (φ1, . . . , φn) : Ψ → Φ, i.e., a
tuple of arity Ψ. Moreover,

sL+
ω
([λ](φ1, . . . , φn)) = [sPBPΨ(λ)](φ1, . . . , φn).

As in §6.1, Lω is additionally quotiented by a straightforward equivalence of
modalities. Given a coalgebra h : X → BX, the inductive definition (9) of
[[]]h : ΦL+

ω
→ PX translates to:

x ∈ [[[λ](φ1, . . . , φn)]]h ⇐⇒ x ∈ Ph(ρX([λ]([[φ1]]h, . . . , [[φn]]h))) ⇐⇒

⇐⇒ h(x) ∈ PBηPP
X (PBP([[φ1]]h, . . . , [[φn]]h)(λ)) ⇐⇒

⇐⇒ BP([[φ1]]h, . . . , [[φn]]h)(BηPP
X (h(x))) ∈ λ ⇐⇒

⇐⇒ B([[φ1]]h, . . . , [[φn]]h)
[
(h(x)) ∈ λ ⇐⇒

⇐⇒ βh
x ∈ λ

(17)
where βh

x ∈ BPΨ is defined by:

βh
x =

{(
a,

{
sk
Ψ(gi)

∣∣∣ k ∈ N, y ∈ sk
Φ(φi)

}) ∣∣∣ (a, y) ∈ h(x)
}

21

Klin

where gi ∈ Ψ is the i’th generator of Ψ, i.e., (φ1, . . . , φn)(gi) = φi.
It turns out that all these complicated modalities do not ensure the expressivity

of L+
ω . For a counterexample, consider the following algebra A of labels:

. . . // b3 // b2 // b1 // b0 // a
zz

c
{{

(the action of sA is indicated with dotted arrows), and the coalgebra h : X →
Pω(A×X) described by the graph:

y0 //

c

��

c

 A
AA

AA
AA

AA
AA

A

c

$$

···

y1 // y2 // . . .

. . . // x−1 //
b1

tt x0 //
b0ss x1 //

att x2 //
att . . .

att xω
��

a

QQ

z0 //

c

OO

c

>>}}}}}}}}}}}}}

c

::

··· c

33fff z1 // z2 // . . .

where transitions are indicated with solid arrows, and the transitions of y1, y2, . . .

and z1, z2, . . ., determined by those of y0 and z0 by condition (i) and (ii) above, are
omitted for clarity. Note that neither A nor X are finitely generated.

No coalgebra morphism from h identifies y0 and z0. To see this, note that no
coalgebra morphism identifies xω with xn for any n ∈ N (this is easily proved by
induction over n). Since z0 can do a c-labelled step to xω and y0 cannot, the two
processes are not behaviourally equivalent. However, no formula from L+

ω distin-
guishes them. The proof of this is similar to the classical proof of the inexpressivity
of finitary HML with respect to infinitely branching LTSs, and it relies on the fact
that every formula in φ ∈ ΦL+

ω
is x-continuous, meaning that for some nφ ∈ N, for

all m > nφ, xm ∈ [[φ]]h ⇐⇒ xω ∈ [[φ]]h. Indeed, is is straightforward to show that:

(i) If φ is x-continuous than so is s(φ), using the fact that [[]]h is a homomorphism,
and it is enough to take ns(φ) = nφ.

(ii) A set Ψ of formulas finitely generated by a set of x-continuous formulas is x-
continuous; here take nΨ = max(nφ), with φ ranging over the set of generators.

(iii) Every formula is x-continuous. This is proved by induction using (17): for
φ = [λ](φ1, . . . , φn) with λ of arity Ψ, choose nφ = nΨ + 1 and show that
βh

xnφ
= βh

ω.

(iv) For every formula φ, y0 ∈ [[φ]]h ⇐⇒ z0 ∈ [[φ]]h. This follows from (17), since
by (iii) one has βh

y0
= βh

z0
.

This means that L+
ω is not expressive for B-coalgebras, hence neither is Lω. This

shows that the assumption of strong local presentability cannot be dropped from
Theorem 4.4.

References

[1] J. Adámek. On final coalgebras of continuous functors. Theoretical Computer Science, 294:3–29, 2003.

22

Klin

[2] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Wiley-Interscience,
1990.

[3] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Cambridge University Press,
1994.

[4] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science, 114:299–315,
1993.

[5] M. Bonsangue and A. Kurz. Pi-calculus in logical form. Draft available from
http://www.cs.le.ac.uk/people/akurz/works.html.

[6] M. Bonsangue and A. Kurz. Duality for logics of transition systems. In Proc. FOSSACS’05, volume
3441 of LNCS, pages 455–469, 2005.

[7] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In Proc. FOSSACS’06,
volume 3921 of LNCS, pages 172–186, 2006.

[8] M. Dam. Proof systems for pi-calculus logics. In Logic for Concurrency and Synchronisation, R. de
Queiroz (ed.), Trends in Logic, Studia Logica Library, pages 145–212. Kluwer, 2003.

[9] M. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Information
and Computation, 204:524–560, 2006.

[10] M. Fiore and S. Staton. A congruence rule format for name-passing process calculi from mathematical
structural operational semantics. In Proc. LICS’06, pages 49–58. IEEE Computer Society Press, 2006.

[11] M. P. Fiore and D. Turi. Semantics of name and value passing. In Proc. LICS’01, pages 93–104. IEEE
Computer Society Press, 2001.

[12] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2001.

[13] R. J. van Glabbeek. The linear time – branching time spectrum I. In J. A. Bergstra, A. Ponse, and
S. Smolka, editors, Handbook of Process Algebra. Elsevier, 1999.

[14] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM,
32:137–161, 1985.

[15] B. Jacobs. Towards a duality result in the modal logic for coalgebras. In Proc. CMCS 2000, volume 33
of ENTCS, pages 160–195. Elsevier, 2000.

[16] B. Jacobs and J. J. M. M. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin of the
EATCS, 62, 1996.

[17] B. Jonsson, W. Yi, and K. G. Larsen. Probabilistic extensions of process algebras. In J. A. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 685–710. Elsevier, 2002.

[18] B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. In Proc. CALCO 2005,
volume 3629 of LNCS, pages 247–262, 2005.

[19] A. Kurz. Specifying coalgebras with modal logic. Theoretical Computer Science, 260:119–138, 2001.

[20] A. Kurz. Coalgebras and their logics. ACM SIGACT News, 37, 2006.

[21] A. Kurz and J. Rosický. Strongly complete logics for coalgebras. To appear. Draft available from
http://www.cs.le.ac.uk/people/akurz/.

[22] S. Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.

[23] M. Makkai and R. Paré. Accessible Categories: The Foundations of Categorical Model Theory, volume
104 of Contemporary Mathematics. American Mathematical Society, 1989.

[24] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical Computer Science,
114(1):149–171, 1993.

[25] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:177–317, 1999.

[26] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Proc. STACS 2001, volume
2010 of LNCS. Springer, 2001.

[27] D. Pavlovic, M. Mislove, and J. B. Worrell. Testing semantics: connecting processes and process logics.
In Proc. AMAST’05, volume 4019 of LNCS, pages 308–322. Springer, 2005.

[28] M. Rößiger. Coalgebras and modal logic. In Proc. CMCS 2000, volume 33 of ENTCS. Elsevier, 2000.

[29] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–80,
2000.

[30] L. Schröder. Expressivity of coalgebraic modal logic: the limits and beyond. In Proc. FOSSACS’05,
volume 3441 of LNCS, pages 470–484, 2005.

23

	Introduction
	Preliminaries
	Logical Connections
	Expressivity
	Polyadic Modalities
	Examples
	Sets and Finitary Hennessy-Milner Logic
	Nominal Sets and Systems with Name Binding
	Unary Algebras and Distant Transition Systems

	References

