
Iterated Covariant Powerset is not a Monad 1

Bartek Klin2

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

Warsaw, Poland

Julian Salamanca 3

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

Warsaw, Poland

Abstract

We prove that the double covariant powerset functor PP does not admit any monad structure. The same
applies to the n-fold composition of P for any n > 1.
Keywords: monad, double covariant powerset, distributive law

1 Introduction

The categorical concept of a monad (see e.g. [19, Ch. VI]) has found multiple appli-
cations in mathematical foundations of programming science, and they have become
an important design pattern in languages such as Haskell [12,33] or Scala [27]. De-
pending on the context, monads can be viewed as abstract notions of computational
effects [26, 34], or as collections to gather computed values [24], or as structures of
values to be computed upon [3]. These perspectives are not mutually exclusive: for
example, the (covariant) powerset monad P can be seen either as a very simple kind
of unstructured collections, or as a carrier of nondeterminism as a computational
effect.

An application where monads are viewed both as effects and as collections is the
coalgebraic study of trace semantics of transition systems and automata (e.g. [6,11,

1 Research supported by the European Research Council (ERC) under the European Unions Horizon 2020
research and innovation programme (ERC consolidator grant LIPA, agreement no. 683080).
2 Email: klin@mimuw.edu.pl
3 Email: jsalamanca@mimuw.edu.pl

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 341 (2018) 261–276

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.11.013

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:klin@mimuw.edu.pl
mailto:jsalamanca@mimuw.edu.pl
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1016/j.entcs.2018.11.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


13,15,18,28,29]). There, a monad usually appears as a component of the type of be-
haviour of transition systems; more specifically, the component that represents the
“type of branching” that systems exhibit, as opposed to the other component, the
“type of transition”, usually required to be simply an endofunctor. Typical mon-
ads used in this context are the powerset monad P or its finitary version the finite
powerset monad Pf for nondeterministic systems, and the probability distribution
monad for probabilistic systems. One then resolves branching by interpreting sys-
tems in either the Kleisli or the Eilenberg-Moore category for the monad, either to
collect behaviour traces of a system or to return a determinised system of a simpler
type.

With this rough idea in mind, one naturally turns attention to alternating au-
tomata [5], which play a fundamental role in language theory and verification. To
model them coalgebraically, it is natural to consider systems where the branching
type is modeled by the double powerset functor. There are actually two functors
that bear this name and act in the same way on objects: the double powerset 22

−
,

which is the composition of the contravariant powerset with itself, and the double
powerset PP , which is the composition of the covariant powerset with itself. Coal-
gebras for the former functor (which, by the way, is a well-known monad), called
neighbourhood frames [10], have a rather different behaviour from alternating au-
tomata. The use of double covariant powerset is more promising (see [14,15,17]), but
before one applies, off-the-shelf style, the machinery of coalgebraic trace semantics
to alternating automata, one needs to answer the question: is PP a monad?

This simple question does not seem to get a simple answer in the literature
so far. Some authors avoid the question by looking for more laborious ways to
deal with alternating behaviour (e.g. [15, Sec. 5.3] or [17, Ex. 4.5] or [14, Ex. 12]
or [2]), which suggests that they do not expect an easy positive answer. Others
give an explicit negative answer [31], but without any concrete evidence for it. On
the other hand, Manes in [21, Ex. 2.12] proposed a specific monad structure onPP , only to remark later [23] that the structure is flawed. (The same mistake was
repeated in [22, Ex. 2.4.7] and independently by one of us in [16, Ex. 9], then noticed
in [4, Sec. 7] and [17, Ex. 6.8].)

Our main contribution in this paper is a proof that the double covariant powersetPP cannot be endowed with any monad structure. The same applies to the double
finite powerset PfPf. More generally, neither Pn nor Pn

f (i.e. the n-fold composition
of P or Pf) is a monad for any n > 1.

It is a standard result that a distributive law λ ∶ TS "⇒ ST of a monad T
over a monad S defines a monad structure on the composite functor ST . Our
result therefore implies that there is no distributive law of the monad P over itself.
Actually, we claim more: if we consider P merely as a pointed functor (i.e., as
an endofunctor equipped with a unit natural transformation η ∶ Id"⇒ P , with no
multiplication structure), there is still no distributive law of P over itself. Our proof
of this resembles a previously known proof (credited to Plotkin in [32, Prop. 3.2])
that the probability distribution monad does not admit any distributive law overP , and we formulate it in a way that generalises both cases: if a pointed functor T ,

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276262



(1) preserves preimages and (2) admits what we call a nontrivial idempotent term,
then there is no distributive law of T over P (both considered as pointed functors).

This contrasts with (but does not contradict) some known positive results about
the existence of distributive laws. In [13, Sec. 4] it is proved that every functor that
preserves weak pullbacks admits a distributive law over the monad P . By [25,
Thm. 2.9], every analytic functor has a distributive law over every commutative
monad. (P is commutative, and although it is not analytic, it is easy to find an
analytic functor that satisfies our conditions (1) and (2) above.) Finally, [15, Lem. 8]
shows a very simple distributive law of any monad over the underlying functor of
another monad, provided that the two monads are linked by a monad morphism. In
all these works, distributive laws of the functor-over-monad or monad-over-functor
shape are constructed, whereas we show the lack of distributive laws of pointed
functors over pointed functors.

The structure of this paper is as follows. In Section 2 we prove a negative result
about the existence of distributive laws of pointed functors. In Section 3, we prove
that PP admits no monad structure, and in Section 4 we generalise that to Pn for
any n > 1. In Section 5 we summarise some previous erroneous attempts to define
a monad structure on PP .

We are grateful to Miko"laj Bojańczyk for inspiring discussions and to Filippo
Bonchi, Fabio Zanasi and Maaike Zwart for valuable comments. The first author
thanks Joost Winter for pointing out the mistake in [16], and Jurriaan Rot for
tracing it back to [22].

2 Distributive laws

Throughout this paper we work only in the category of sets and functions. A monad(T,η, µ) (see [19, Ch. VI] for more details) is an endofunctor T together with natural
transformations η ∶ Id"⇒ T (the unit) and µ ∶ TT "⇒ T (the multiplication) such
that the following diagrams commute:

T
ηT !! TT

µ
""

(†) (‡) T
Tη##

T

TTT
Tµ !!

µT
""

TT

µ
""

TT µ
!! T.

(1)

When no risk of confusion arises, we will denote such a monad simply by T .

The (covariant) powerset monad P is defined so that PX is the set of all subsets
of X, and:

ηX(x) = {x}, µX(Φ) =⋃Φ for x ∈X,Φ ⊆ PX.

All results in this paper remain true when P is replaced by the finite powerset
monad Pf, with the same proofs.

To simplify the presentation, we will only consider functors T that preserve
inclusions, i.e., such that X ⊆ Y implies TX ⊆ TY and the inclusion function from

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 263



X to Y is mapped by T to the inclusion function from TX to TY . This assumption
only matters in this section, and it could be dropped with little effort. The functorP obviously preserves inclusions.

A pointed functor (T,η) is an endofunctor T together with a unit natural trans-
formation η ∶ Id"⇒ T . Obviously every monad (and P in particular) is a pointed
functor. A distributive law of a pointed functor (T,ηT ) over a pointed functor(S, ηS) is a natural transformation

λ ∶ TS "⇒ ST

such that the following two unit laws hold:

T
TηS !!

ηST $$

TS

λ
""

S
ηTS##

SηT%%
ST .

(2)

If S and T are monads, λ becomes a distributive law of the monad T over the
monad S if it satisfies two further axioms that involve the multiplication structures
of S and T (see [1]).

The following definition is taken from [9] (where it is formulated more generally,
without assumming that T preserves inclusions). Functors with the property below
are also known as taut [20] or semi-analytic [30].

Definition 2.1 A functor T preserves preimages if for every function f ∶X → Y , a
subset Z ⊆ Y and an element t ∈ TX,

if Tf(t) ∈ TZ then t ∈ T (f−1(Z)), (3)

where f−1(Z) ⊆X denotes the inverse image of Z along f .

If, additionally, X ⊆ Y and f ∶ X → Y is the inclusion function, the above
property specialises to

TX ∩ TZ ⊆ T (X ∩Z). (4)

Most functors considered in coalgebra theory, including P, preserve preimages
(see [9] for a detailed study).

Definition 2.2 A nontrivial idempotent term for a pointed functor (T,η) is a nat-
ural transformation

β ∶ Id × Id"⇒ T

such that:

● βX(x,x) = ηX(x) for each x ∈X (idempotence), and

● β{0,1}(0,1) /∈ T{0} ∪ T{1} (non-triviality).

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276264



Example 2.3 The functor P admits a nontrivial idempotent term defined by:

βX(x, y) = {x, y} for x, y ∈X.

The probability distribution monad (called V in [32], but studied also in e.g. [8])
also admits a nontrivial idempotent term:

βX(x, y) = 1

2
x + 1

2
y for x, y ∈X.

Other examples of a nontrivial idempotent term include: the free (distributive)
lattice monad (βX(x, y) = x∨y) and the free idempotent monoid monad (βX(x, y) =
x ⋅ y).

Note that by the Yoneda Lemma, a natural transformation β ∶ Id × Id "⇒ T
canonically corresponds to an element of T2. For T = P , the β above corresponds
to the element 2 ∈ T2.
Theorem 2.4 If a pointed functor (T,η) preserves preimages and admits a non-
trivial idempotent term, then there is no distributive law of (T,η) over the pointed
functor P.
Proof. Assume, towards a contradiction, that there is such distributive law λ ∶
TP "⇒ PT . Consider sets

A = {a, b, c, d} and U = {u, v}
and three functions f, g, h ∶ A→ U defined by:

f(a) = f(b) = u, g(a) = g(c) = u, h(a) = h(d) = u,
f(c) = f(d) = v, g(b) = g(d) = v, h(b) = h(c) = v. (5)

Consider the element
t = βPA({a, b},{c, d}) ∈ TPA

and analyse how the three naturality squares for f , g and h act on t:

TPA TPf &&

λA
''

TPU
λU
''PTA PTf

&&PTU
TPA TPg &&

λA
''

TPU
λU
''PTA PTg

&&PTU
TPA TPh &&

λA
''

TPU
λU
''PTA PTh

&&PTU.
Recall that P acts on functions by taking direct images, so in particular:

Pf{a, b} = {u} Pg{a, b} = Ph{a, b} = {u, v},
Pf{c, d} = {v} Pg{c, d} = Ph{c, d} = {u, v}.

By naturality and idempotence of β we get:

TPg(t) = TPh(t) = βPU({u, v},{u, v}) = ηPU{u, v}

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 265



hence, by a unit law for λ in (2):

λU(TPg(t)) = λU(TPh(t)) = {ηU(u),ηU(v)}.
By naturality squares for g and h we obtain:

PTg(λA(t)) = PTh(λA(t)) = {ηU(u),ηU(v)}
which implies that λA(t) is nonempty and

Tg(s), Th(s) ∈ {ηU(u),ηU(v)} for every s ∈ λA(t). (6)

Now, if for example Tg(s) = ηU(u) ∈ T{u} then, by (3) for Z = {u}, we obtain
s ∈ T{a, c}. Applying the same reasoning to four cases in (6) we obtain:

s ∈ (T{a, c} ∪ T{b, d}) ∩ (T{a, d} ∪ T{b, c}) for every s ∈ λA(t).
Distributing intersections over unions and using the intersection preservation prop-
erty (4), we get:

s ∈ T{a} ∪ T{b} ∪ T{c} ∪ T{d} for every s ∈ λA(t). (7)

Now let us come back to the function f . By naturality of β we get:

TPf(t) = βPU({u},{v})
hence, by the naturality square for f and by a unit law for λ in (2):

PTf(λA(t)) = λU(TPf(t)) = {βU(u, v)}.
This means that

Tf(s) = βU(u, v) for every s ∈ λA(t).
But this, together with (7), contradicts the assumption that β is nontrivial. Indeed,
if for example s ∈ T{a} then Tf(s) ∈ T{u} so Tf(s) cannot be βU(u, v). ◻

This is essentially the same proof as in [32, Prop. 3.2] for the probability distri-
bution monad taken as T , in that the same sets A,U and functions f, g, h are used
there. Here we distilled assumptions so that the proof covers also the case of T = P .
3 PP is not a monad

Theorem 2.4 implies that there is no distributive law of the monad P over itself.
Although such a law would be a natural way to define a monad structure on PP ,
this does not prove yet that such a monad structure does not exist. As shown in [1],
composite monads that arise from distributive laws are of a special form, and not
every monad is of that form in general.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276266



Example 3.1 For any monoid (M,e, ⋅), the functor TX =M ×X is a monad with

ηX(x) = (e, x), µX(g, h, x) = (g ⋅ h,x) for x ∈X,g, h ∈M. (8)

Let T be defined from the monoid (Z2,0,+) in this way. Now, any monoid on
the set {0,1,2,3} ≅ 2 × 2 defines a monad structure on the functor TT . Pick the
commutative monoid M where e = 0 and ⋅ is addition with 3 playing the role of
infinity (i.e., x ⋅ 3 = 3 for every x and 2 ⋅ 2 = 3). From [1] we know that for every
monad on TT that arises from a distributive law from T over T , ηT ∶ T "⇒ TT
is a monad morphism. Both our T and TT arise from monoids as in (8), and
monad morphisms between such monads correspond to homomorphisms between
the corresponding monoids. However, the only monoid homomorphism from Z2 to
our M is trivial and therefore non-injective. This gives a contradiction, since by(†) in (1) the transformation ηT must be pointwise injective. As a result, our M
cannot be derived from any distributive law of T over T .

This example shows that sometimes monads on composite functors do not arise
from distributive laws between those functors, so Theorem 2.4 does not quite answer
our main question yet. However:

Theorem 3.2 There is no monad structure on PP.
Proof. We use the same situation with sets A, U and functions f, g, h ∶ A → U
as in (5) in the proof of Theorem 2.4, but we analyse it some more. We remark
that this idea is not unexpected. Indeed, in the recent work [7] it is stated that
the original proof from [32], regarding the lack of distributive law of P over the
probability distribution monad D, can be modified to show that the compositionPD admits no monad structure.

Denote T = PP . Assume, towards contradiction, that there exist natural trans-
formations η ∶ Id "⇒ T and µ ∶ TT "⇒ T that make (T,η, µ) a monad. By the
Yoneda Lemma, we have that:

Nat(Id, T ) = Nat(Set(1, ), T ) ≅ T1 = PP1 = {∅,{∅},{1},{∅,1}}.
Therefore, there are only four possible choices for η, which are defined for every
x ∈X as:

η♣X(x) = ∅, η♢X(x) = {∅}, η♡X(x) = {{x}} and η♠X(x) = {∅,{x}}.
Note that η♣ and η♢ cannot be the unit of such a monad since, by (†) in (1), every
component of ηT must be injective.

Consider now the case of η♡. For A = {a, b, c, d}, consider the element S ∈ TTA =PPPPA given by:

S = {{{{a},{b}},{{c},{d}}}}. (9)

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 267



Notice that, for U = {u, v}:
µU
⎛
⎝{{{{u}},{{v}}}}

⎞
⎠ = {{u, v}} and µU

⎛
⎝{{{{u},{v}}}}

⎞
⎠ = {{u},{v}},

(10)
which follow from (‡) in (1) acting on {{u, v}} ∈ TU and from (†) in (1) acting

on {{u},{v}} ∈ TU , respectively. Now, consider the function f ∶ A → U as defined
in (5). By naturality of µ we have:

(Tf ○ µA)(S) = (µU ○ TTf)(S) (10)= {{u, v}}.
Therefore, since T acts on functions by taking direct images, we have that:

∅ ≠ µA(S) ⊆ {{a, b, c, d},{a, b, c},{a, b, d},{a, c, d},{b, c, d},{a, c},{a, d},{b, c},{b, d}}.
(11)

Now, consider the function g ∶ A→ U as defined in (5). By naturality of µ we have:

(Tg ○ µA)(S) = (µU ○ TTg)(S) (10)= {{u},{v}}.
Together with (11), this implies that:

µA(S) = {{a, c},{b, d}}. (12)

With this established, consider the function h ∶ A → U as defined in (5). By
naturality of µ we have:

{{u, v}} (12)= (Th ○ µA)(S) = (µU ○ TTh)(S) (10)= {{u},{v}},
which is a contradiction. Therefore, η♡ cannot be the unit of such a monad.

Finally, consider the case of η♠. For A = {a, b, c, d} as before, consider the
element S ∈ TTA = PPPPA given by:

S = {∅,{{∅,{a},{b}},{∅,{c},{d}}}}. (13)

By analogy to (10), for U = {u, v} we have that:

µU
⎛
⎝{∅,{{∅,{u}},{∅,{v}}}}

⎞
⎠ = {∅,{u, v}} and

µU
⎛
⎝{∅,{{∅,{u},{v}}}}

⎞
⎠ = {∅,{u},{v}} (14)

which follow from (‡) in (1) acting on {∅,{u, v}} ∈ TU and from (†) in (1) acting on{∅,{u},{v}} ∈ TU , respectively. Now, consider the function f ∶ A → U as defined
in (5). By naturality of µ we have:

(Tf ○ µA)(S) = (µU ○ TTf)(S) (14)= {∅,{u, v}}.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276268



Therefore, we have that:

∅ ≠ µA(S) ⊆ {∅,{a, b, c, d},{a, b, c},{a, b, d},{a, c, d},{b, c, d},{a, c},{a, d},{b, c},{b, d}}.
(15)

Now, consider the function g ∶ A→ U as defined in (5). By naturality of µ we have:

(Tg ○ µA)(S) = (µU ○ TTg)(S) (14)= {∅,{u},{v}}.
Together with (15), this implies that:

µA(S) = {∅,{a, c},{b, d}}. (16)

With this established, consider the function h ∶ A → U as defined in (5). By
naturality of µ we have:

{∅,{u, v}} (16)= (Th ○ µA)(S) = (µU ○ TTh)(S) (14)= {∅,{u},{v}},
which is a contradiction. Therefore, η♠ cannot be the unit of such a monad. This
finishes the proof that there is no monad structure on T = PP . ◻
4 Pn is not a monad for n > 1
Intuitively, the cases of η♡ and η♠ in the proof of Theorem 3.2 clearly follow a
similar pattern. To generalise the theorem to Pn (i.e. the n-fold composition of P)
we need to understand that pattern better, since candidates for a monad unit forPn are more numerous and complicated, making ad-hoc reasoning impossible.

Theorem 4.1 There is no monad structure on Pn, for any n > 1.
Proof. Denote T = Pn. The case n = 2 was dealt with in Theorem 3.2, so we
now assume that n ≥ 3. Assume, towards contradiction, that there exist natural
transformations η ∶ Id "⇒ T and µ ∶ TT "⇒ T that make the diagrams in (1)
commute.

We use the same situation with sets A = {a, b, c, d}, U = {u, v} and functions
f, g, h ∶ A→ U as in (5) in the proof of Theorem 2.4.

Denote 1 = {⋆}. For a set X and elements x ≠ y ∈ X, define γx,y ∶ P21 → P2X
by:

γx,y(∅) = ∅ γx,y({{⋆}}) = {{x},{y}}
γx,y({∅}) = {∅} γx,y({∅,{⋆}}) = {∅,{x},{y}}.

Then define Bx,y ∈ PnX by:

Bx,y = (Pn−2γx,y)(η1(⋆)).
We shall use three objects defined by this formula: Ba,b,Bc,d ∈ PnA and Bu,v ∈ PnU .

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 269



Furthermore, define a function σ ∶ P1→ Pn+1A by:

σ(∅) = ∅ σ({⋆}) = {Ba,b,Bc,d}
and let S ∈ P2nA be defined by:

S = (Pn−1σ)(η1(⋆)). (17)

Note that this definition of S coincides with (9) and (13) for the two particular η’s
considered in the proof of Theorem 3.2.

We will strive for contradiction by looking at the naturality squares for µ on
maps f , g and h from (5), acting on the element S:

P2nA
P2nf &&

µA

''

P2nU

µU

''PnA Pnf
&&PnU

P2nA
P2ng &&

µA

''

P2nU

µU

''PnA Png
&&PnU

P2nA P2nh &&

µA

''

P2nU

µU

''PnA Pnh
&&PnU.

First, since f(a) = f(b) = u, the composition

P2f ○ γa,b ∶ P21→ P2U

is the function P2(⋆ ↦ u). As a result we obtain

(Pnf)Ba,b = (Pnf)((Pn−2γa,b)(η1(⋆))) = (Pn−2(P2f ○ γa,b))(η1(⋆))
= (Pn(⋆ ↦ u))(η1(⋆)) = ηU(u). (18)

By the same reasoning we get

(Pnf)Bc,d = ηU(v). (19)

On the other hand, since g(a) = u and g(b) = v, the composition

P2g ○ γa,b ∶ P21→ P2U

is simply the function γu,v, and the same applies to h instead of g and/or c, d instead
of a, b. As a result we obtain

(Png)Ba,b = (Png)Bc,d = (Pnh)Ba,b = (Pnh)Bc,d = Bu,v. (20)

Now come back to the function σ. Using (18) and (19), the composition:

Pn+1f ○ σ ∶ P1→ Pn+1U
is mapping ∅ to ∅ and {⋆} to {ηU(u),ηU(v)}. Define a function θ ∶ P1→ PU by:

θ(∅) = ∅ θ({⋆}) = {u, v}.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276270



We have just shown that

Pn+1f ○ σ = PηU ○ θ. (21)

We can therefore derive:

(P2nf)(S) (17)= (P2nf)((Pn−1σ)(η1(⋆))) = (Pn−1(Pn+1f ○ σ))(η1(⋆))
(21)= (PnηU)((Pn−1θ)(η1(⋆))).

By the unit law (‡) in (1) this implies that

µU((P2nf)(S)) = (Pn−1θ)(η1(⋆)),
which by naturality of µ means that

(Pnf)(µA(S)) = (Pn−1θ)(η1(⋆)). (22)

Let us now turn attention to the function g. By (20), the composition

Pn+1g ○ σ ∶ P1→ Pn+1U

is mapping ∅ to ∅ and {⋆} to {Bu,v}. This means that:

(P2ng)(S) (17)= (P2ng)((Pn−1σ)(η1(⋆))) = (Pn−1(Pn+1g ○ σ))(η1(⋆))
= (Pn(⋆ ↦ Bu,v))(η1(⋆)) = ηPnU(Bu,v).

The same applies to h instead of g. This, by the unit law (†) in (1) and by naturality
of µ, implies that

(Png)(µA(S)) = (Pnh)(µA(S)) = Bu,v = (Pn−2γu,v)(η1(⋆)). (23)

From now on we will work with (22) and (23). We will first bring the exponent n
in these equations down to 3, which will be enough to obtain a contradiction.

To this end, consider the natural transformation

ν ∶ Pn−2 "⇒ P
which is the standard multiplication of the monad P, iterated in the obvious sense
(remember that we assume that n ≥ 3; for n = 3 we take ν = idP). Note that this
has nothing to do with the purported multiplication µ of Pn. By naturality of ν
and by (22) post-composed side-wise with νP2U , and denoting Q = νP2A(µA(S)),
we obtain:

(P3f)(Q) = νP2U((Pnf)(µA(S))) (22)= νP2U((Pn−1θ)(η1(⋆)))
= (P2θ)(νP2A(η1(⋆))). (24)

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 271



Similarly, postcomposing both sides of (23) with νP2U , we obtain:

(P3g)(Q) = νP2U((Png)(µA(S))) (23)= νP2U((Pn−2γu,v)(η1(⋆)))
= (Pγu,v)(νP2A(η1(⋆))) (25)

and the same for h in place of g.

Note that the function γu,v takes on only four distinct values. Denoting

Γ = {∅,{∅},{{u},{v}},{∅,{u},{v}}} ⊆ P2U,

we may write the type of this function as γu,v ∶ P21 → Γ. Similarly, the function θ
takes on only two distinct values, so Pθ can be given the type Pθ ∶ P21→ Θ for:

Θ = {∅,{∅},{{u, v}},{∅,{u, v}}} ⊆ P2U.

From (24) and (25) we infer:

(P3f)(Q) ∈ PΘ, (P3g)(Q) ∈ PΓ, (P3h)(Q) ∈ PΓ.
This means that for every R ∈ Q we have

(P2f)(R) ∈ Θ, (P2g)(R) ∈ Γ, (P2h)(R) ∈ Γ.
The first two of these conditions taken together imply, by using a similar reasoning
as in the proof of Theorem 3.2, that:

R ∈ {∅,{∅},{{a, c},{b, d}},{∅,{a, c},{b, d}}}.
Then the extra condition (P2h)(R) ∈ Γ implies that R ∈ {∅,{∅}}, so we infer

Q ⊆ {∅,{∅}} = P2∅ hence Q ∈ P3∅.
Recall that Q denotes νP 2A(µA(S)). By the way the natural transformation ν is
defined, we get

µA(S) ∈ Pn∅.
Using (22) we infer (Pn−1θ)(η1(⋆)) ∈ Pn∅
hence, by definition of θ and by how Pn−1 acts on functions,

η1(⋆) ∈ Pn∅.
By naturality of η we get that for every set X and element x ∈X

ηX(x) ∈ Pn∅.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276272



But the set Pn∅ is finite and it does not depend on X, therefore for every X such
that ∣X ∣ > ∣Pn∅∣ the function ηX cannot be injective. We arrive at a contradiction,
since by the unit law (†) in (1) the function ηTX must be injective for every X. ◻
5 Mistakes

We shall now summarise different sources in which it has been mistakenly concluded
that PP is a monad.

5.1 Mistake by Klin and Rot, 2015 [16]

In [16, Ex. 9], it is claimed that a monad-over-monad distributive law λ ∶ PP "⇒PP could be formally defined by:

λX(A) = {Pg(A) ∣ g ∶ A→X s.t. g(A) ∈ A for each A ∈ A} for A ⊆ PX. (26)

In words, given a family A of subsets ofX, λX returns the family of subsets obtained
by picking a single element from every set in A in every possible way.

The mistake in this is that λ is not a natural transformation. This was noticed
in [4, Sec. 7]; a variant of the argument, pointed out to us by J. Winter, is the
following. Consider

X = {a, b, c} Y = {d, e} f(a) = f(b) = d f(c) = e.
The naturality square for f ∶X → Y does not commute, as shown here:

{{a, c},{b, c}}
∈

✤ &&
❴

''

{{d, e}}
∋

❴

''

P2X
P2f &&

λX
''

P2Y

λY
''P2X

P2f &&P2Y {{d},{e}}∋

{{a, b},{a, c},{b, c},{c}}
∈

✤ && {{d},{d, e},{e}}.
∈ ≠

5.2 Mistake by Manes and Mulry, 2003-07 [21,22]

In [22, Ex. 2.4.7], a “distributive law” of P over P is defined by:

λX(A) = {{aA ∣ A ∈ A} ∣ (aA) ∈ ∏
A∈AA} for A ⊆ PX. (27)

It is not difficult to see that this definition is equivalent to (26), and so it does not
define a natural transformation. In [22] naturality of λ is actually inferred from the
naturality of the unit and multiplication of a purported monad PP claimed there.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 273



The reader of [22] is referred to [21, pages 76–79] for a proof that PP is a monad.
There, the monad is defined in terms of a Kleisli triple (PP ,η, (−)#) and the monad
multiplication µ is derived from that in the usual way (see [21, Prop. 2.14]).

Given a function f ∶ X → PPY , a function f# ∶ PPX → PPY is defined in [21]
by:

f#(A) = {⋃
x∈ABx ∣ A ∈ A, ∀x ∈ A.Bx ∈ f(x)} .

This is equivalent to saying that

B ∈ f#(A) ⇐⇒ ∃A ∈ A.∃(Bx ∈ f(x))x∈A. B = ⋃
x∈ABx (28)

for A ⊆ PX. Here, the second existential quantifier means that “there exists a
family (Bx)x∈A such that every Bx belongs to f(x)”.

Viewing this (−)# as a Kleisli extension and the obvious ηX(x) = {{x}} as the
unit, the usual construction gives a “monad” structure on PP as described in [22].
Since that structure is wrong, one expects problems with the Kleisli triple, and
indeed the axiom:

(g# ○ f)# = g# ○ f# for f ∶X → PPY, g ∶ Y → PPZ (29)

fails.

In [21], on pages 78–79, a proof of the axiom is attempted. The left-hand side
is rewritten as:

C ∈ (g# ○ f)#(A) ⇐⇒ ∃A ∈ A.∃(Bx ∈ f(x))x∈A.∃(Cx,y ∈ g(y))x∈A,y∈Bx .C = ⋃
x∈A ⋃y∈Bx

Cx,y

and this transformation is correct. The right-hand side is first rewritten as:

C ∈ (g#(f#(A)) ⇐⇒ ∃B ∈ f#(A).∃(Cy ∈ g(y))y∈B. C = ⋃
y∈BCy

⇐⇒ ∃A ∈ A.∃(Bx ∈ f(x))x∈A.∃(Cy ∈ g(y))x∈A,y∈⋃x∈A Bx .C = ⋃
y∈⋃x∈A Bx

Cy

and this is also correct. However, in the last equivalence on page 78, this is then
equated to the left-hand side, and this is incorrect. Intuitively, looking at the third
existential quantifiers on both sides above, the equality may not hold if the family(Bx)x∈A contains some overlapping sets.

Indeed, the axiom (29) fails for the following data:

X = {1,2} Y = {∗} Z = {a, b}
f(1) = f(2) = {{∗}} g(∗) = {{a},{b}}.

To see this, calculate from (28)

B ∈ f#({{1,2}}) ⇐⇒ ∃A = {1,2}.∃B1,B2 = {∗}.B = B1 ∪B2

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276274



so f#({{1,2}}) = {{∗}}. Further, again from (28):

C ∈ g#({{∗}}) ⇐⇒ ∃B = {∗}.∃C∗ ∈ {{a},{b}}.C = C∗
so

g#(f#({{1,2}})) = g#({{∗}}) = {{a},{b}}.
On the other hand, g# ○ f ∶X → PPZ is defined by:

g#(f(1)) = g#(f(2)) = g#({{∗}}) = {{a},{b}}.
So calculate from (28):

C ∈ (g# ○ f)#({{1,2}}) ⇐⇒ ∃A = {1,2}.∃C1, C2 ∈ {{a},{b}}.C = C1 ∪C2

therefore (g# ○ f)#({{1,2}}) = {{a},{b},{a, b}}
hence

(g#f)#({{1,2}}) ≠ g#(f#({{1,2}})).

References

[1] Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical Homology
Theory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg.

[2] Meven Bertrand and Jurriaan Rot. Coalgebraic determinization of alternating automata. CoRR,
abs/1804.02546, 2018.

[3] Miko!laj Bojańczyk. Recognisable languages over monads. In Igor Potapov, editor, Developments in
Language Theory, pages 1–13. Springer International Publishing, 2015.

[4] Filippo Bonchi and Fabio Zanasi. Bialgebraic Semantics for Logic Programming. Logical Methods in
Computer Science, 11, 2015.

[5] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,
January 1981.

[6] Corina Cirstea. Canonical coalgebraic linear time logics. In Lawrence S. Moss and Pawel Sobocinski,
editors, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), volume 35
of Leibniz International Proceedings in Informatics (LIPIcs), pages 66–85, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Fredrik Dahlqvist and Renato Neves. Program semantics as Kleisli representations. to appear.

[8] Erik P. de Vink and Jan J. M. M. Rutten. Bisimulation for probabilistic transition systems: A
coalgebraic approach. Theoretical Computer Science, 221(1-2):271–293, 1999.

[9] H. Peter Gumm and Tobias Schröder. Types and coalgebraic structure. Algebra Universalis, 53(2-
3):229–252, 2005.

[10] Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit. Neighbourhood structures: Bisimilarity and basic
model theory. Logical Methods in Computer Science, Volume 5, Issue 2, 2009.

[11] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Log. Meth.
Comp. Sci., 3, 2007.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276 275



[12] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph H. Fasel,
Maŕıa M. Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, Richard B. Kieburtz, Rishiyur S.
Nikhil, Will Partain, and John Peterson. Report on the programming language Haskell, a non-strict,
purely functional language. SIGPLAN Notices, 27(5):1, 1992.

[13] Bart Jacobs. Trace semantics for coalgebras. Electronic Notes in Theoretical Computer Science,
106:167–184, 2004. Proceedings of the Workshop on Coalgebraic Methods in Computer Science
(CMCS).

[14] Bart Jacobs, Paul B. Levy, and Jurriaan Rot. Steps and traces. In Corina Cirstea, editor,
14th International Workshop on Coalgebraic Methods in Computer Science, CMCS 2018. Springer
International Publishing, 2018. To appear.

[15] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. Journal of
Computer and System Sciences, 81(5):859 – 879, 2015.

[16] Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. In FoSSaCS 2015.
Proceedings, pages 151–166, 2015.

[17] Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. Log. Meth. Comp. Sci.,
12, 2016.

[18] Alexander Kurz, Stefan Milius, Dirk Pattinson, and Lutz Schröder. Simplified coalgebraic trace
equivalence. In Software, Services, and Systems: Essays Dedicated to Martin Wirsing on the Occasion
of His Retirement from the Chair of Programming and Software Engineering, pages 75–90. Springer
International Publishing, 2015.

[19] Saunders Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.

[20] Ernest G. Manes. Taut monads and T0-spaces. Theor. Comput. Sci., 275(1-2):79–109, 2002.

[21] Ernie Manes. Monads of sets. Handbook of algebra, 3:67–153, 2003.

[22] Ernie Manes and Philip Mulry. Monad compositions I: general constructions and recursive distributive
laws. Theory and Applications of Categories, 18(7):172–208, 2007.

[23] Ernie Manes and Philip Mulry. Monad compositions II: Kleisli strength. Math. Struct. Comp. Sci.,
18(3):613–643, 2008.

[24] Ernie G Manes. Implementing collection classes with monads. Math. Struct. in Comp. Sci., 8(3):231–
276, 1998.

[25] Stefan Milius, Thorsten Palm, and Daniel Schwencke. Complete iterativity for algebras with effects.
In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer
Science, pages 34–48, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[26] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[27] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc, 2008.

[28] John Power and Daniele Turi. A coalgebraic foundation for linear time semantics. Electronic Notes
in Theoretical Computer Science, 29:259 – 274, 1999. CTCS ’99, Conference on Category Theory and
Computer Science.

[29] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. Generalizing determinization
from automata to coalgebras. Logical Methods in Computer Science, Volume 9, Issue 1, 2013.

[30] Stanis!law Szawiel and Marek Zawadowski. Monads of regular theories. Applied Categorical Structures,
23(3):215–262, 2015.

[31] Johan van Benthem, Nick Bezhanishvili, and Sebastian Enqvist. A propositional dynamic logic for
instantial neighborhood models. In Alexandru Baltag, Jeremy Seligman, and Tomoyuki Yamada,
editors, Logic, Rationality, and Interaction, pages 137–150, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

[32] Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Mathematical
Structures in Computer Science, 16(1):87–113, 2006.

[33] Philip Wadler. Comprehending monads. In LISP and Functional Programming, pages 61–78, 1990.

[34] Philip Wadler. Monads for functional programming. In Advanced Functional Programming, First
International Spring School on Advanced Functional Programming Techniques-Tutorial Text, pages
24–52, London, UK, UK, 1995. Springer-Verlag.

B. Klin, J. Salamanca / Electronic Notes in Theoretical Computer Science 341 (2018) 261–276276


	Introduction
	Distributive laws
	PP is not a monad
	¶n is not a monad for n>1
	Mistakes
	Mistake by Klin and Rot, 2015 fossacs15
	Mistake by Manes and Mulry, 2003-07 manes,manes-mulry

	References

